Sample records for includes cooling capacity

  1. STATE OF CALIFORNIA MAXIMUM RATED TOTAL COOLING CAPACITY

    E-Print Network [OSTI]

    that the installed space conditioning system must have a cooling capacity rating at ARI conditions that is equal Total Cooling Capacity of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities, then the sum of ARI Rated Cooling Capacities of the installed cooling systems must be calculated and entered

  2. STATE OF CALIFORNIA MAXIMUM RATED TOTAL COOLING CAPACITY

    E-Print Network [OSTI]

    /09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities of multiple systems installed Cooling Capacities of the installed cooling systems must be calculated and entered in row 3b. 4a MRTCC

  3. Psychrometric Testing Facility Restoration and Cooling Capacity Testing 

    E-Print Network [OSTI]

    Cline, Vincent E.

    2010-10-12T23:59:59.000Z

    .................................................................. 15 Table 3 Specified test tolerances for cooling capacity testing according to ASHRAE 210/240 .................................................................. 16 Table 4 Required test condition variations not covered in Table 2... throughout the test while maintaining the room conditions [2]. The air conditioning system and psychrometric rooms are run for at least 1.5 hours before data is recorded in order to allow the rooms to reach and maintain steady state conditions. Data...

  4. Cooling design of large capacity gas insulated transformer

    SciTech Connect (OSTI)

    Kawano, Koichiro; Biswas, Debasis; Ishizuka, Masaru; Muramatsu, Koji; Nakadate, Masumi; Toda, Katsutoshi [Toshiba Corp., Kawasaki (Japan)

    1995-12-31T23:59:59.000Z

    From the view point of safety and maintenance simplicity, the development of large capacity gas insulated transformer has been desirable. In this type of transformer, the coolant gas is circulated in the gap between the coils to cool it. The flow pattern of coolant in the flow path strongly depend on its configuration formed by the coil. Therefore, in order to achieve high cooling efficiency of coils and at the same time to reduce the pressure loss, it is important to have sufficient knowledge about the flow behavior in the coil flow path. In the present work, in order to improve the coil cooling efficiency, appropriate flow path configuration were decided on the basis of numerical simulation using various coil configuration and validity of the computed results were tested by comparing with experimental data.

  5. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq (Taichung, TW); Weng, Kuo-Liang (Taichung, TW)

    1998-01-01T23:59:59.000Z

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  6. Psychrometric Testing Facility Restoration and Cooling Capacity Testing

    E-Print Network [OSTI]

    Cline, Vincent E.

    2010-10-12T23:59:59.000Z

    ......................... 17 Table 5 Correlation between the primary and secondary cooling capacity methods for each test...................................................................... 21 Table 6 Comparison of the performance for the different tests... 80.05 0.05 0.45 0.07 95.03 0.03 0.52 0.17 1A WB 67.06 0.06 0.29 0.11 2A DB 80.03 0.03 0.43 0.07 95.01 0.01 0.49 0.12 2A WB 66.83 -0.17 0.09 0.02 3A DB 79.94 -0.06 0.41 0.07 95.11 0.11 0.27 0.09 3A WB 66.88 -0.12 0...

  7. INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity (Page 1 of 2)

    E-Print Network [OSTI]

    INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity (Page 1 of 2) Site of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities of multiple systems installed Cooling Capacities of the installed cooling systems must be calculated and entered in row 3b. 4a MRTCC

  8. Articles which include chevron film cooling holes, and related processes

    DOE Patents [OSTI]

    Bunker, Ronald Scott; Lacy, Benjamin Paul

    2014-12-09T23:59:59.000Z

    An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

  9. Determining Optimal Equipment Capacities in Cooling, Heating and Power (CHP) Systems

    SciTech Connect (OSTI)

    DeVault, Robert C [ORNL; Hudson II, Carl Randy [ORNL

    2006-01-01T23:59:59.000Z

    Evaluation of potential cooling, heating and power (CHP) applications requires an assessment of the operations and economics of a particular system in meeting the electric and thermal demands of a specific end-use facility. A key determinate in whether a candidate system will be economic is the proper selection of equipment capacities. A methodology to determine the optimal capacities for CHP prime movers and absorption chillers using nonlinear optimization algorithms has been coded into a Microsoft Excel spreadsheet tool that performs the capacity optimization and operations simulation. This paper presents details on the use and results of this publicly available tool.

  10. A TURBINE RESEARCH FACILITY TO STUDY TIP DESENSITIZATION INCLUDING COOLING FLOWS

    E-Print Network [OSTI]

    Camci, Cengiz

    CC-1 A TURBINE RESEARCH FACILITY TO STUDY TIP DESENSITIZATION INCLUDING COOLING FLOWS Cengiz Camci with the description of the Axial Flow Turbine Research Facility (AFTRF) installed at the Turbomachinery Laboratory of the Pennsylvania State University. The AFTRF is a single-stage cold flow turbine specifically designed for studying

  11. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    SciTech Connect (OSTI)

    Ames, Forrest; Bons, Jeffrey

    2014-09-30T23:59:59.000Z

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness levels found on in service vanes (Bons, et al., 2001, up to 300 microns) flow blockage in first stage turbine nozzles can easily reach 1 to 2 percent in conventional turbines. Deposition levels in syngas fueled gas turbines are expected to be even more problematic. The likelihood of significant deposition to the leading edge of vanes in a syngas environment indicates the need to examine this effect on the leading edge cooling problem. It is critical to understand the influence of leading edge geometry and turbulence on deposition rates for both internally and showerhead cooled leading edge regions. The expected level of deposition in a vane stagnation region not only significantly changes the heat transfer problem but also suggests that cooling arrays may clog. Addressing the cooling issue suggests a need to better understand stagnation region heat transfer with realistic roughness as well as the other variables affecting transport near the leading edge. Also, the question of whether leading edge regions can be cooled internally with modern cooling approaches should also be raised, thus avoiding the clogging issue. Addressing deposition in the pressure side throat region of the nozzle is another critical issue for this environment. Issues such as examining the protective effect of slot and full coverage discrete-hole film cooling on limiting deposition as well as the influence of roughness and turbulence on effectiveness should be raised. The objective of this present study is to address these technical challenges to help enable the development of high efficiency syngas tolerant gas turbine engines.

  12. Gas cooling performance in disc winding of large-capacity gas-insulated transformer

    SciTech Connect (OSTI)

    Nakadate, M.; Toda, K.; Sato, K.; Biswas, D.; Nakagawa, C.; Yanari, T. [Toshiba Corp., Kawasaki (Japan)] [Toshiba Corp., Kawasaki (Japan)

    1996-04-01T23:59:59.000Z

    The authors have developed the gas-cooling system of a 275 kV, 300 MVA class gas-insulated transformer. In this study model experiments in which gas flow was substituted by water flow equivalently and 2-dimensional numerical flow analyses and network analyses were conducted. In this paper the outline of the development and optimization condition to get high cooling performance in SF{sub 6} gas-disc winding system of the transformer are presented.

  13. #include #include

    E-Print Network [OSTI]

    Campbell, Andrew T.

    process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

  14. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  15. Simulating the Sunyaev-Zel'dovich effect(s): including radiative cooling and energy injection by galactic winds

    E-Print Network [OSTI]

    Martin White; Lars Hernquist; Volker Springel

    2002-07-08T23:59:59.000Z

    We present results on the thermal and kinetic Sunyaev-Zel'dovich (SZ) effects from a sequence of high resolution hydrodynamic simulations of structure formation, including cooling, feedback and metal injection. These simulations represent a self-consistent thermal model which incorporates ideas from the `pre-heating' scenario while preserving good agreement with the low density IGM at z~3 probed by the Ly-a forest. Four simulations were performed, at two different resolutions with and without radiative effects and star formation. The long-wavelength modes in each simulation were the same, so that we can compare the results on an object by object basis. We demonstrate that our simulations are converged to the sub-arcminute level. The effect of the additional physics is to suppress the mean Comptonization parameter by 20% and to suppress the angular power spectrum of fluctuations by just under a factor of two in this model while leaving the source counts and properties relatively unchanged. We quantify how non-Gaussianity in the SZ maps increases the sample variance over the standard result for Gaussian fluctuations. We identify a large scatter in the Y-M relation which will be important in searches for clusters using the SZ effect(s).

  16. #include #include

    E-Print Network [OSTI]

    Poinsot, Laurent

    #include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

  17. Basic cooling characteristics of perfluorocarbon liquid immersed windings for nonflammable transformers; Disk coil cooling for large-capacity forced circulating transformers. Part 1

    SciTech Connect (OSTI)

    Yamazaki, H.; Sakamoto, T. (Mechanical Engineering Research Lab., Hitachi, Ltd. (JP)); Takagi, I. (Chubu Electric Power Co., Inc., Keizaburo Hawashima (JP))

    1991-01-01T23:59:59.000Z

    This paper reports that to develop a new type of nonflammable large-power transformer which uses perfluorocarbon liquid as the cooling and insulation medium, the basic cooling characteristics of the liquid were investigated. Using a horizontal coil duct model, design data on heat-transfer characteristics of perfluorocarbon liquid were obtained by the computer program. Using a two-dimensional cooling model of nine coils per section, the velocity distribution in the coil ducts and the temperature rise distribution of the coils were clarified. Comparisons were made between experimental and calculated results and the developed computer program was found to be valid for the prediction of the velocity distribution in the coil ducts and of the temperature rise distribution of the coils.

  18. Advances in Energy Efficiency, Capital Cost, and Installation Schedules for Large Capacity Cooling Applications Using a Packaged Chiller Plant Approach

    E-Print Network [OSTI]

    Pierson, T. L.; Andrepont, J. S.

    during periods of high ambient air temperatures. It is precisely at those times that the general demand for energy is at its peak and therefore the price or value of energy is also at its highest level. Cooling loads often drive the peak electric power...

  19. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    points for maximum cooling liquid supply temperatures thatLiquid cooling guidelines may include: Supply temperatureliquid supply temperature for liquid cooling guidelines. Due

  20. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01T23:59:59.000Z

    embedded heating and cooling systems. Brussels, Belgium,of radiant heating/cooling systems for non-residentalSimulations of floor cooling system capacity." Applied

  1. Natural vs. mechanical ventilation and cooling.

    E-Print Network [OSTI]

    Brager, Gail; Alspach, Peter; Nall, Daniel H.

    2011-01-01T23:59:59.000Z

    both the ventila- tion and cooling effects of outdoorair exchange, including coolingpeople, cooling the space during the day, or cooling the

  2. Evolution of cool-roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11T23:59:59.000Z

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  3. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    and the Future Integration of Alternative Cooling Systems infuture developments include refinement of four essential components of the radiant cooling and

  4. Cool Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Links Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Cool Links Los Alamos National Laboratory links Los...

  5. Cooling of electronics in collider experiments

    SciTech Connect (OSTI)

    Richard P. Stanek et al.

    2003-11-07T23:59:59.000Z

    Proper cooling of detector electronics is critical to the successful operation of high-energy physics experiments. Collider experiments offer unique challenges based on their physical layouts and hermetic design. Cooling systems can be categorized by the type of detector with which they are associated, their primary mode of heat transfer, the choice of active cooling fluid, their heat removal capacity and the minimum temperature required. One of the more critical detector subsystems to require cooling is the silicon vertex detector, either pixel or strip sensors. A general design philosophy is presented along with a review of the important steps to include in the design process. Factors affecting the detector and cooling system design are categorized. A brief review of some existing and proposed cooling systems for silicon detectors is presented to help set the scale for the range of system designs. Fermilab operates two collider experiments, CDF & D0, both of which have silicon systems embedded in their detectors. A review of the existing silicon cooling system designs and operating experience is presented along with a list of lessons learned.

  6. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11T23:59:59.000Z

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  7. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    1996-01-01T23:59:59.000Z

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  8. Cooling with Superfluid Helium

    E-Print Network [OSTI]

    Lebrun, P

    2014-01-01T23:59:59.000Z

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  9. STOCHASTIC COOLING

    E-Print Network [OSTI]

    Bisognano, J.

    2010-01-01T23:59:59.000Z

    L. Thorndahl, Stochastic Cooling o f Momentum Spread by F ion Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. Sand S. A. Kheifhets', On Stochastic Cooling, P a r t i c l e

  10. STOCHASTIC COOLING

    E-Print Network [OSTI]

    Bisognano, J.

    2010-01-01T23:59:59.000Z

    the stochastic cooling technique. This work directly led tol . . Physics and Techniques o f Stochastic Cooling, PhysicsCooling o f Momentum Spread by F i l t e r Techniques, CERN-

  11. Stochastic Cooling

    SciTech Connect (OSTI)

    Blaskiewicz, M.

    2011-01-01T23:59:59.000Z

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  12. Property:Cooling Capacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to: navigation, search This is a

  13. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

    2008-01-29T23:59:59.000Z

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  14. Cooled snubber structure for turbine blades

    DOE Patents [OSTI]

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01T23:59:59.000Z

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  15. Future Cooling Experiments R. B. Palmer (BNL)

    E-Print Network [OSTI]

    McDonald, Kirk

    Future Cooling Experiments R. B. Palmer (BNL) FNAL June 13 2008 1 #12;Short Term 6D cooling Experiments Demonstrate 6D cooling without acceleration using a wedge at MICE Tracks can be selected off lineH or polyethylene wedge will show 6D cooling Later re-acceleration can be included 2 #12;Long Term 6D Cooling

  16. Testing of novel desiccant materials and dehumidifier matrices for desiccant cooling applications

    SciTech Connect (OSTI)

    Pesaran, A.A.; Bingham, C.E.

    1989-03-01T23:59:59.000Z

    This paper presents the results of testing of desiccant materials and dehumidifier matrices for desiccant cooling and dehumidification applications. In testing desiccant materials, we used a gravimetric technique to measure the moisture capacity of four desiccant materials. These materials were microporous silica gel powder, macroporous silica gel powder, polystyrene sulfonic acid sodium salt, and a silica-gel/epoxy composite. The microporous silica gel powder had the most desirable moisture capacity properties of the four materials tested for desiccant cooling applications. The polystyrene sulfonic acid sodium salt showed some promise. Our testing of dehumidifier matrices included measuring the pressure drop and heat- and mass-transfer rate characteristics of a silica-gel/corrugated dehumidifier matrix under conditions typical of desiccant cooling systems. The matrix is a section of a commercial dehumidifier. The transient dehumidification capacity of the matrix was calculated from the tests and compared with previously tested matrices. 9 refs., 10 figs., 2 tabs.

  17. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01T23:59:59.000Z

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  18. Superfast Cooling

    E-Print Network [OSTI]

    S. Machnes; M. B. Plenio; B. Reznik; A. M. Steane; A. Retzker

    2010-01-15T23:59:59.000Z

    Currently laser cooling schemes are fundamentally based on the weak coupling regime. This requirement sets the trap frequency as an upper bound to the cooling rate. In this work we present a numerical study that shows the feasibility of cooling in the strong coupling regime which then allows cooling rates that are faster than the trap frequency with state of the art experimental parameters. The scheme we present can work for trapped atoms or ions as well as mechanical oscillators. It can also cool medium size ions chains close to the ground state.

  19. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru, E-mail: babac@itu.edu.tr [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey)] [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-05-15T23:59:59.000Z

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  20. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    2000-01-01T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  1. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    1999-07-20T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  2. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  3. Cooling arrangement for a tapered turbine blade

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-07-27T23:59:59.000Z

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  4. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    SciTech Connect (OSTI)

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01T23:59:59.000Z

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  5. Development of large-capacity gas-insulated transformer

    SciTech Connect (OSTI)

    Takahashi, E.; Tanaka, K. [Tokyo Electric Power Co., Ltd. (Japan)] [Tokyo Electric Power Co., Ltd. (Japan); Toda, K.; Ikeda, M.; Teranishi, T.; Inaba, M.; Yanari, T. [Toshiba Corp., Kawasaki (Japan)] [Toshiba Corp., Kawasaki (Japan)

    1996-04-01T23:59:59.000Z

    Concentrations of population and business activities result in high electricity demand in urban areas. This requires the construction of large-capacity underground substations. Oilless, non-flammable and non-explosive equipment is recommended for underground substations. Therefore, several types of large-capacity gas-insulated transformer have been developed. Because the gas forced cooling type was considered to be available up to approximately 60 MVA, all of these gas-insulated transformers are liquid cooled. But the liquid cooling type has the disadvantage of a complex structure for liquid cooling. For this reason, the authors have been studying the development of a simple design for a gas forced cooling, large-capacity gas-insulated transformer. This paper discusses research and development of cooling and insulation technology for a large-capacity gas-insulated transformer and the development of a 275 kV, 300 MVA gas-insulated transformer.

  6. Cooled railplug

    DOE Patents [OSTI]

    Weldon, William F. (Austin, TX)

    1996-01-01T23:59:59.000Z

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  7. Water Management for Evaporatively Cooled Condensers

    E-Print Network [OSTI]

    California at Davis, University of

    Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

  8. Ventilative cooling

    E-Print Network [OSTI]

    Graça, Guilherme Carrilho da, 1972-

    1999-01-01T23:59:59.000Z

    This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

  9. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.gain on radiant floor cooling system design. ” Proceedings,of designing radiant slab cooling systems, including load

  10. Combustor liner cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06T23:59:59.000Z

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  11. Superconductor rotor cooling system

    DOE Patents [OSTI]

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02T23:59:59.000Z

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  12. Superconductor rotor cooling system

    DOE Patents [OSTI]

    Gamble, Bruce B. (Wellesley, MA); Sidi-Yekhlef, Ahmed (Framingham, MA); Schwall, Robert E. (Northborough, MA); Driscoll, David I. (South Euclid, OH); Shoykhet, Boris A. (Beachwood, OH)

    2002-01-01T23:59:59.000Z

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  13. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  14. Passive containment cooling system

    DOE Patents [OSTI]

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25T23:59:59.000Z

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  15. Passive containment cooling system

    DOE Patents [OSTI]

    Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  16. Cooled railplug

    DOE Patents [OSTI]

    Weldon, W.F.

    1996-05-07T23:59:59.000Z

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  17. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1990-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  18. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

    1991-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  19. Multi-pass cooling for turbine airfoils

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2011-06-28T23:59:59.000Z

    An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

  20. Quantum Channel Capacities

    E-Print Network [OSTI]

    Graeme Smith

    2010-07-16T23:59:59.000Z

    A quantum communication channel can be put to many uses: it can transmit classical information, private classical information, or quantum information. It can be used alone, with shared entanglement, or together with other channels. For each of these settings there is a capacity that quantifies a channel's potential for communication. In this short review, I summarize what is known about the various capacities of a quantum channel, including a discussion of the relevant additivity questions. I also give some indication of potentially interesting directions for future research.

  1. Alternate Cooling Methods for Industrial Plants

    E-Print Network [OSTI]

    Brown, M.; Moore, D.

    refrigerants has caused many plants to evaluate existing cooling methods. This paper presents case studies on alternate cooling methods used for space conditioning at several different industrial facilities. Methods discussed include direct and indirect...

  2. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect (OSTI)

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01T23:59:59.000Z

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  3. TETRA MUON COOLING RING

    SciTech Connect (OSTI)

    KAHN,S.A.FERNOW,R.C.BALBEKOV,V.RAJA,R.USUBOV,Z.

    2003-11-18T23:59:59.000Z

    We give a brief overview of recent simulation activities on the design of neutrino factories. Simulation work is ongoing on many aspects of a potential facility, including proton drivers, pion collection and decay channels, phase rotation, ionization cooling, and muon accelerators.

  4. Review of cavity optomechanical cooling

    E-Print Network [OSTI]

    Yong-Chun Liu; Yu-Wen Hu; Chee Wei Wong; Yun-Feng Xiao

    2014-11-14T23:59:59.000Z

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. A crucial goal is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit.

  5. Methods of Beam Cooling

    E-Print Network [OSTI]

    Sessler, A. M.

    2008-01-01T23:59:59.000Z

    of Optical Stochastic Cooling", presented at PAC, (1995).1991). Hangst, J. , "Laser Cooling of a Stored Ion Beam - ATheorem and Phase Space Cooling", Proceedings of the

  6. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01T23:59:59.000Z

    ASHRAE’s permission. Mixed-Mode Cooling Photo Credit: Paulnatural ventilation for cooling. Buildings typically had1950s of large-scale mechanical cooling, along with other

  7. Empirical Modeling of a Rolling-Piston Compressor Heat Pump for Predictive Control in Low-Lift Cooling

    E-Print Network [OSTI]

    Gayeski, Nicholas

    Inverter-driven variable-capacity air conditioners, heat pumps, and chillers can provide energy-efficient cooling, particularly at part-load capacity. Varying the capacity of vapor compression systems enables operation at ...

  8. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26T23:59:59.000Z

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  9. Cold side thermal energy storage system for improved operation of air cooled power plants

    E-Print Network [OSTI]

    Williams, Daniel David

    2012-01-01T23:59:59.000Z

    Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

  10. Water-lithium bromide double-effect absorption cooling analysis. Final report

    SciTech Connect (OSTI)

    Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

    1980-12-01T23:59:59.000Z

    This investigation involved the development of a numerical model for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy. The dynamic model should be valuable as a design tool for developing new absorption machines or modifying current machines to make them optimal based on current and future energy costs.

  11. Cool Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConverting Biomass toCool Links

  12. Non-intrusive cooling system

    DOE Patents [OSTI]

    Morrison, Edward F. (Burnt Hills, NY); Bergman, John W. (Barrington, NH)

    2001-05-22T23:59:59.000Z

    A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

  13. COOLING DYNAMICS STUDIES AND SCENARIOS FOR THE RHIC COOLER.

    SciTech Connect (OSTI)

    FEDOTOV,A.V.; BEN-ZVI,I.; LITVINENKO, V.

    2005-05-16T23:59:59.000Z

    In this paper, we discuss various electron cooling dynamics studies for RHIC. We also present simulations [1] of various possibilities of using electron cooling at RHIC, which includes cooling at the top energy, pre-cooling at low energy, aspects of transverse and longitudinal cooling and their impact on the luminosity. Electron cooling at various collision energies both for heavy ions and protons is also discussed.

  14. Cooling circuit for a gas turbine bucket and tip shroud

    DOE Patents [OSTI]

    Willett, Fred Thomas (25 Long Creek Dr., Burnt Hills, NY 12027); Itzel, Gary Michael (12 Cider Mill Dr., Clifton Park, NY 12065); Stathopoulos, Dimitrios (11 Wyngate Rd., Glenmont, NY 12077); Plemmons, Larry Wayne (late of Hamilton, OH); Plemmons, Helen M. (2900 Long Ridge Trails, Hamilton, OH 45014); Lewis, Doyle C. (444 River Way, Greer, SC 29651)

    2002-01-01T23:59:59.000Z

    An open cooling circuit for a gas turbine bucket wherein the bucket has an airfoil portion, and a tip shroud, the cooling circuit including a plurality of radial cooling holes extending through the airfoil portion and communicating with an enlarged internal area within the tip shroud before exiting the tip shroud such that a cooling medium used to cool the airfoil portion is subsequently used to cool the tip shroud.

  15. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18T23:59:59.000Z

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  16. High temperature cooling system and method

    DOE Patents [OSTI]

    Loewen, Eric P.

    2006-12-12T23:59:59.000Z

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  17. New Approaches to Final Cooling

    E-Print Network [OSTI]

    Neuffer, David

    2015-01-01T23:59:59.000Z

    A high-energy muon collider scenario requires a "final cooling" system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  18. A critical review of cooling techniques in proton exchange membrane fuel cell stacks

    E-Print Network [OSTI]

    Kandlikar, Satish

    of a cooling system. To promote the development of effective cooling strategies, cooling techniques reported, challenges and progress of various cooling techniques, including (i) cooling with heat spreaders (using highReview A critical review of cooling techniques in proton exchange membrane fuel cell stacks

  19. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Environmental Management (EM)

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve...

  20. Potential of Evaporative Cooling Systems for Buildings in India

    E-Print Network [OSTI]

    Maiya, M. P.; Vijay, S.

    2010-01-01T23:59:59.000Z

    Evaporative cooling potential for building in various climatic zones in India is investigated. Maintainable indoor conditions are obtained from the load - capacity analysis for the prevailing ambient conditions. For the assumed activity level...

  1. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Little, David Allen (Oviedo, FL)

    2001-01-01T23:59:59.000Z

    A combustion turbine may have a cooling circuit for directing a cooling medium through the combustion turbine to cool various components of the combustion turbine. This cooling circuit may include a compressor, a combustor shell and a component of the combustion turbine to be cooled. This component may be a rotating blade of the combustion turbine. A pressure changing mechanism is disposed in the combustion turbine between the component to be cooled and the combustor shell. The cooling medium preferably flows from the compressor to the combustor shell, through a cooler, the component to the cooled and the pressure changing mechanism. After flowing through the pressure changing mechanism, the cooling medium is returned to the combustor shell. The pressure changing mechanism preferably changes the pressure of the cooling medium from a pressure at which it is exhausted from the component to be cooled to approximately that of the combustor shell.

  2. ION-BY-ION COOLING EFFICIENCIES

    SciTech Connect (OSTI)

    Gnat, Orly [Theoretical Astrophysics, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States) and Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Ferland, Gary J., E-mail: orlyg@tapir.caltech.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2012-03-01T23:59:59.000Z

    We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (version 10.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 10{sup 4} and 10{sup 8} K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific nonequilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios or to estimate the cooling due to elements not included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

  3. Lamination cooling system

    DOE Patents [OSTI]

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11T23:59:59.000Z

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  4. Keeping Cool Close to the Sun

    SciTech Connect (OSTI)

    Hazi, A

    2006-01-13T23:59:59.000Z

    The germanium detector in the gamma-ray spectrometer (GRS) aboard the MESSENGER spacecraft is only the size and weight of a can of peaches but will play a critical role in investigating Mercury, the planet closest to the Sun. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft travels at about 38 kilometers per second and is named after the scientific goals of the mission. It is the first spacecraft to visit Mercury since 1975. MESSENGER must take an oblique route to approach Mercury so that it does not fly past the planet and fall directly into the Sun. The spacecraft will travel 7.9 billion kilometers, flying by Earth once, Venus twice, and Mercury three times before settling into orbit around this mysterious planet. Of all the terrestrial planets, which include Venus, Earth, and Mars, Mercury is the smallest and the densest; its days are 176 Earth days long, two complete orbits of the planet around the Sun. Temperatures range from a high of 450 C on the Sun side during its long day to a low of -185 C on its night side. By studying this extreme planet, scientists hope to better understand how Earth formed and evolved. The GRS, one of the seven lightweight scientific instruments on MESSENGER, will be used to help scientists determine the abundance of elements in Mercury's crust, including the materials that might be ice at its poles. Livermore engineer Norman Madden led the West Coast team effort to design and build the GRS in a collaboration led by Johns Hopkins University Applied Physics Laboratory (JHUAPL). The team included Lawrence Berkeley and Lawrence Livermore national laboratories as well as University of California at Berkeley (UCB) Space Sciences Laboratory (SSL). The JHUAPL MESSENGER project is a National Aeronautics and Space Administration (NASA) Discovery Mission. Because the detector needs to operate at very low temperatures and MESSENGER is close to the Sun, the thermal design to protect the detector was critical. The detector is kept cool by an electromechanical cryocooler attached to the outside of the device. However, the cryocooler has a limited cooling capacity because of size and weight constraints. To ensure the cryocooler would sufficiently cool the detector, Livermore scientists used SINDA/FLUINT, a commercial program originally developed by NASA, to model the thermal environments that the spectrometer was expected to encounter--during liftoff, in space while en route to Mercury, and in orbit around the planet. Using the data from the model, scientists from Lawrence Livermore and Lawrence Berkeley developed a design that included three closely spaced and highly reflective thermal shields held in place with DuPont KEVLAR{reg_sign} fiber.

  5. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2002-12-15T23:59:59.000Z

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).

  6. Cooling apparatus and method

    DOE Patents [OSTI]

    Mayes, James C. (Sugar Land, TX)

    2009-05-05T23:59:59.000Z

    A device and method provide for cooling of a system having an energy source, one or more devices that actively consume energy, and one or more devices that generate heat. The device may include one or more thermoelectric coolers ("TECs") in conductive engagement with at least one of the heat-generating devices, and an energy diverter for diverting at least a portion of the energy from the energy source that is not consumed by the active energy-consuming devices to the TECs.

  7. Hot gas path component cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18T23:59:59.000Z

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  8. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOE Patents [OSTI]

    Itzel, Gary Michael (Clifton Park, NY); Yu, Yufeng (Guilderland, NY)

    2002-01-01T23:59:59.000Z

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  9. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  10. Energy Efficient Electronics Cooling Project

    SciTech Connect (OSTI)

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17T23:59:59.000Z

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  11. Cryogenics for the MuCool Test Area (MTA)

    SciTech Connect (OSTI)

    Darve, Christine; Norris, Barry; Pei, Liu-Jin; /Fermilab

    2005-09-01T23:59:59.000Z

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R&D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH{sub 2}) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN{sub 2} and LH{sub 2}. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R&D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.

  12. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    systems for the Gas Cooled Fast Reactor (GCFR) includes theThey are 1) gas cooled fast reactors (GFR), 2) very high

  13. Parallel Simulation of Electron Cooling Physics and Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all electron cooling simulation activities of the accelerator SciDAC-2 project "ComPASS" that has been extended into 2013. The electron cooling team includes personnel from...

  14. Low pressure cooling seal system for a gas turbine engine

    DOE Patents [OSTI]

    Marra, John J

    2014-04-01T23:59:59.000Z

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  15. Emergency core cooling system

    DOE Patents [OSTI]

    Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

    1983-01-01T23:59:59.000Z

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  16. Cooling air recycling for gas turbine transition duct end frame and related method

    DOE Patents [OSTI]

    Cromer, Robert Harold (Johnstown, NY); Bechtel, William Theodore (Scotia, NY); Sutcu, Maz (Niskayuna, NY)

    2002-01-01T23:59:59.000Z

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  17. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    2000. “Closed Circuit Cooling Tower Selection Program”S R. Lay, 2003 “Radiant Cooling Systems – A Solution forH. 1994. “Hydronic Radiant Cooling Systems. ” Center for

  18. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    energy sources of cooling supply water and an aggressiveas the primary source of cooling supply water. The analysisthermal mass to the cooling supply water source, nighttime

  19. Quantum noise in photothermal cooling

    SciTech Connect (OSTI)

    De Liberato, Simone [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lambert, Neill [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2011-03-15T23:59:59.000Z

    We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. We achieve this by developing a Langevin formalism for the motion of the cantilever, valid in the bad-cavity limit, which includes both photon absorption shot noise and the noise due to radiation pressure. This allows us to tackle the cooling problem down to the noise-dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

  20. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  1. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    C: DIRECT LIQUID AND AIR COOLING COMPONENT TCASE FORECASTGRAPHICS Direct Liquid Cooling Thermal Components andThermal Design Margins Air Cooling Thermal Components and

  2. Three-Dimensional Laser Cooling

    E-Print Network [OSTI]

    Okamato, H.

    2008-01-01T23:59:59.000Z

    Three-Dimensional Laser Cooling H. Okamoto, A.M. Sessler,effective transverse laser cooling simultaneously withlongitudinal laser cooling, two possibilities are

  3. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    defining liquid cooling guidelines for future use. The goalis key to reducing cooling energy consumption for futureliquid-cooling temperatures to guide future supercomputer

  4. Cooling Water System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    2005-01-01T23:59:59.000Z

    During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

  5. Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2003-07-01T23:59:59.000Z

    Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual cooling energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California Code of Regulations) for NR buildings withlow-sloped roofs include a cool-roof prescriptive requirement in allCalifornia climate zones. Buildings with roofs that do not meetprescriptive requirements may comply with the code via an"overall-envelope" approach (non-metal roofs only), or via a performanceapproach (all roof types).

  6. Gas cooled traction drive inverter

    DOE Patents [OSTI]

    Chinthavali, Madhu Sudhan

    2013-10-08T23:59:59.000Z

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  7. Quantum Capacities of Channels with small Environment

    E-Print Network [OSTI]

    Michael M. Wolf; David Perez-Garcia

    2006-07-11T23:59:59.000Z

    We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional--including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the channel arises from a sufficiently small coupling to a qubit environment. Extensions to instances of channels with larger environment are provided and it is shown that bounds on the capacity with unconstrained environment can be obtained from decompositions into channels with small environment.

  8. AGN and Cooling Flows

    E-Print Network [OSTI]

    James Binney

    2001-03-23T23:59:59.000Z

    For two decades the steady-state cooling-flow model has dominated the literature of cluster and elliptical-galaxy X-ray sources. For ten years this model has been in severe difficulty from a theoretical point of view, and it is now coming under increasing pressure observationally. For two decades the steady-state cooling-flow model has dominated the literature of cluster and elliptical-galaxy X-ray sources. For ten years this model has been in severe difficulty from a theoretical point of view, and it is now coming under increasing pressure observationally. A small number of enthusiasts have argued for a radically different interpretation of the data, but had little impact on prevailing opinion because the unsteady heating picture that they advocate is extremely hard to work out in detail. Here I explain why it is difficult to extract robust observational predictions from the heating picture. Major problems include the variability of the sources, the different ways in which a bi-polar flow can impact on X-ray emission, the weakness of synchrotron emission from sub-relativistic flows, and the sensitivity of synchrotron emission to a magnetic field that is probably highly localized.

  9. Apparatus and method for cooling a combustor cap

    DOE Patents [OSTI]

    Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

    2014-04-29T23:59:59.000Z

    A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

  10. Cooling load estimation methods

    SciTech Connect (OSTI)

    McFarland, R.D.

    1984-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

  11. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

    2014-01-29T23:59:59.000Z

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  12. Industrial stator vane with sequential impingement cooling inserts

    DOE Patents [OSTI]

    Jones, Russell B; Fedock, John A; Goebel, Gloria E; Krueger, Judson J; Rawlings, Christopher K; Memmen, Robert L

    2013-08-06T23:59:59.000Z

    A turbine stator vane for an industrial engine, the vane having two impingement cooling inserts that produce a series of impingement cooling from the pressure side to the suction side of the vane walls. Each insert includes a spar with a row of alternating impingement cooling channels and return air channels extending in a radial direction. Impingement cooling plates cover the two sides of the insert and having rows of impingement cooling holes aligned with the impingement cooling channels and return air openings aligned with the return air channel.

  13. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    LBL buildings, with the solar collectors on the roof, theCBB 757-5496 Figure 3: Solar Collectors Mounted· on the RoofSolar Heating and Cooling Systems. The components include Collectors (

  14. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard (Pittsburgh, PA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  15. Mold heating and cooling microprocessor conversion. Final report

    SciTech Connect (OSTI)

    Hoffman, D.P.

    1995-07-01T23:59:59.000Z

    Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessor board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.

  16. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21T23:59:59.000Z

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  17. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

  18. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

  19. The Cooling of Particle Beams

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    achieved), is laser cooling. In the future, we may expectachieved), is laser cooling. In the future, we may expect

  20. I. IONIZATION COOLING A. Introduction

    E-Print Network [OSTI]

    McDonald, Kirk

    ionization cooling techniques to reduce the 6­dimensional phase space emittance. B. Cooling TheoryI. IONIZATION COOLING A. Introduction The muon beam at the end of the decay channel is very intense for beam cooling. Cooling by synchrotron radiation, conventional stochastic cooling and conventional

  1. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  2. Stochastic cooling in RHIC

    SciTech Connect (OSTI)

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20T23:59:59.000Z

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  3. Cooling of superconducting devices by liquid storage and refrigeration unit

    DOE Patents [OSTI]

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20T23:59:59.000Z

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  4. Dry cooling: Perspectives on future needs

    SciTech Connect (OSTI)

    Guyer, E.C. (Yankee Scientific, Inc., Ashland, MA (United States))

    1991-08-01T23:59:59.000Z

    The factors that can be expected to determine the future role of dry cooling in the United States electric power generation industry are identified and characterized. Focus is primarily on the issues of water availability for the electric power industry and the environmental impacts of evaporative cooling systems. The question of future water availability is addressed in terms of both limitations and opportunities facing the industry. A brief review of the status of dry cooling applications is provided. Included is a summary of an extensive survey of electric utility industry perspectives on the future requirements and role for dry cooling. Some regional assessments of the expected future requirements for this technology are also provided. Conclusions are a qualitative characterization of the expected future role of dry cooling in the electric power industry. 72 refs., 7 figs., 13 tabs.

  5. Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC

    E-Print Network [OSTI]

    Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

    2014-01-01T23:59:59.000Z

    : 2,900kW TR1,2 Centrifugal Chiller (Constant Speed ) Cooling Capacity : 3,516kW (1,000RT) 2 TR3,4 Inverter Centrifugal Chiller Cooling Capacity : 1,758kW (500RT) 2 BTR1,2 Centrifugal Chiller for Ice Storage Cooling Capacity : 1,571kW (447RT) 2 Ice... Making Capacity : 1297kW (369RT) IST1,2 Ice Storage Tank Capacity of Thermal Storage :11,603kWh (3,300RTh) 2 BO1,2 Hot Water Boiler Heating Capacity : 465kW 2 7 ABOUT THE DHC PLANT ESL-IC-14-09-25 Proceedings of the 14th International Conference...

  6. Information technology equipment cooling system

    SciTech Connect (OSTI)

    Schultz, Mark D.

    2014-06-10T23:59:59.000Z

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  7. Cooling circuit for and method of cooling a gas turbine bucket

    DOE Patents [OSTI]

    Jacala, Ariel C. P. (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    A closed internal cooling circuit for a gas turbine bucket includes axial supply and return passages in the dovetail of the bucket. A first radial outward supply passage provides cooling medium to and along a passageway adjacent the leading edge and then through serpentine arranged passageways within the airfoil to a chamber adjacent the airfoil tip. A second radial passage crosses over the radial return passage for supplying cooling medium to and along a pair of passageways along the trailing edge of the airfoil section. The last passageway of the serpentine passageways and the pair of passageways communicate one with the other in the chamber for returning spent cooling medium radially inwardly along divided return passageways to the return passage. In this manner, both the leading and trailing edges are cooled using the highest pressure, lowest temperature cooling medium.

  8. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  9. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01T23:59:59.000Z

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  10. Power electronics cooling apparatus

    SciTech Connect (OSTI)

    Sanger, P.A.; Lindberg, F.A.; Garcen, W.

    2000-01-18T23:59:59.000Z

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  11. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31T23:59:59.000Z

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  12. Energy 101: Cool Roofs

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  13. Energy 101: Cool Roofs

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  14. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

    1991-01-01T23:59:59.000Z

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  15. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

    1991-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  16. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; West, David L [ORNL] [ORNL; Mallow, Anne M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  17. Refinery Capacity Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    by State as of January 1, 2006 PDF 5 Refiners' Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2006 PDF 6 Operable Crude Oil and Downstream Charge...

  18. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    Capacity Report June 2014 With Data as of January 1, 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by...

  19. Sequential cooling insert for turbine stator vane

    DOE Patents [OSTI]

    Jones, Russell B; Krueger, Judson J; Plank, William L

    2014-04-01T23:59:59.000Z

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  20. Sequential cooling insert for turbine stator vane

    DOE Patents [OSTI]

    Jones, Russel B; Krueger, Judson J; Plank, William L

    2014-11-04T23:59:59.000Z

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  1. Forward capacity market CONEfusion

    SciTech Connect (OSTI)

    Wilson, James F.

    2010-11-15T23:59:59.000Z

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  2. Turbine airfoil with an internal cooling system having vortex forming turbulators

    DOE Patents [OSTI]

    Lee, Ching-Pang

    2014-12-30T23:59:59.000Z

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  3. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01T23:59:59.000Z

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  4. DOAS, Radiant Cooling Revisited

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01T23:59:59.000Z

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  5. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26T23:59:59.000Z

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  6. Why Cool Roofs?

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29T23:59:59.000Z

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  7. Why Cool Roofs?

    SciTech Connect (OSTI)

    Chu, Steven

    2010-01-01T23:59:59.000Z

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  8. Cool Earth Solar

    SciTech Connect (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22T23:59:59.000Z

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  9. Bucket platform cooling scheme and related method

    DOE Patents [OSTI]

    Abuaf, Nesim (Lincoln City, OR); Barb, Kevin Joseph (Halfmoon, NY); Chopra, Sanjay (Greenville, SC); Kercher, David Max (Ipswich, MA); Kellock, Iain Robertson (Simpsonville, SC); Lenahan, Dean Thomas (Cincinnati, OH); Nellian, Sankar (Mauldin, SC); Starkweather, John Howard (Sharonville, OH); Lupe, Douglas Arthur (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    A turbine bucket includes an airfoil extending from a platform, having high and low pressure sides; a wheel mounting portion; a hollow shank portion located radially between the platform and the wheel mounting portion, the platform having an under surface. An impingement cooling plate is located in the hollow shank portion, spaced from the under surface, and the impingement plate is formed with a plurality of impingement cooling holes therein.

  10. Vortex-augmented cooling tower - windmill combination

    DOE Patents [OSTI]

    McAllister, J.E. Jr.

    1982-09-02T23:59:59.000Z

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  11. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  12. Cooling system of an internal combustion engine having a turbo-charger

    SciTech Connect (OSTI)

    Hasegawa, M.; Fukuda, T.

    1986-09-02T23:59:59.000Z

    A cooling system of an internal combustion engine is described having a turbo-charger, comprising a cooling water circulation passageway filled with cooling water for cooling the engine including at least a cylinder head cooling portion, a cooling water circulation passageway for cooling the turbo-charger including a turbo-charger cooling portion, and means for supplying a part of the engine cooling water to the turbo-charger cooling water ciruclation passageway and returning it from there to the engine cooling water cirulation passageway, characterized in that the turbo-charger cooling portion is positioned at the same level or higher than the cylinder head cooling portion of the engine, the turbo-charger cooling water circulation passageway includes a water volume positioned at a level higher than the turbo-charger cooling portion. The volume is connected to a cooling water reservoir tank via a pressure relief valve which is opened when pressure in the volume exceeds a predetermined value to supply cooling water to the volume.

  13. Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications 

    E-Print Network [OSTI]

    Gomri, R.

    2010-01-01T23:59:59.000Z

    results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors...

  14. Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications

    E-Print Network [OSTI]

    Gomri, R.

    2010-01-01T23:59:59.000Z

    results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors...

  15. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  16. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  17. Status of cool roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen

    2007-06-01T23:59:59.000Z

    Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

  18. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    This is because the heat capacity of liquids is orders ofthe heat capacity and transfer efficiency of liquids is

  19. Coherent Electron Cooling: JLab Effort Helps to Cool Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    labmanager.com?articles.viewarticleNo7392titleCoherent-Electron-Cooling--Combining-Methods-to-Cool-Parti... Submitted: Friday, April 13...

  20. Cooling System Basics | Department of Energy

    Energy Savers [EERE]

    Homes & Buildings Space Heating & Cooling Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings...

  1. The Cooling of Particle Beams

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    67, 15. Hangst, J "Laser Cooling of a Stored Ion Beam - ATheorem an.d Phase Space Cooling", Proceedings of theWorkshop on Beam Cooling and Related Topics, Montreaux, CERN

  2. Stochastic Cooling in Muon Colliders

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01T23:59:59.000Z

    Research Division Stochastic Cooling in Muon Colliders W.A.AC03-76SFOOO98. STOCHASTIC COOLING IN MUON COLLIDERS Williamcan consider the stochastic cooling option as more than a

  3. STOCHASTIC COOLING OF BUNCHED BEAMS

    E-Print Network [OSTI]

    Bisognano, J.J.

    2010-01-01T23:59:59.000Z

    March 11-13, 1981 STOCHASTIC COOLING OF BUNCHED BEAMS J.J.W-7406-BW-48 STOCHASTIC COOLING OF BUNCHED BEAMS* J.J.longitudinal stochastic cooling of bunched particle beams.

  4. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    61–65° F (16–18°C) cooling supply air temperatures requiredprovide appropriate cooling with supply water no cooler thancirculation of the cooling/heating supply water through the

  5. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect (OSTI)

    Starke, M.R.

    2005-10-24T23:59:59.000Z

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  6. Internship Contract (Includes Practicum)

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

  7. Quantum Cooling Evaporation Process in Regular Black Holes

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-09-28T23:59:59.000Z

    We investigate a universal behavior of thermodynamics and evaporation process for the regular black holes. We newly observe an important point where the temperature is maximum, the heat capacity is changed from negative infinity to positive infinity, and the free energy is minimum. Furthermore, this point separates the evaporation process into the early stage with negative heat capacity and the late stage with positive heat capacity. The latter represents the quantum cooling evaporation process. As a result, the whole evaporation process could be regarded as the inverse Hawking-Page phase transition.

  8. Cryo Utilities Room Cooling System

    SciTech Connect (OSTI)

    Ball, G.S.; /Fermilab

    1989-01-26T23:59:59.000Z

    Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

  9. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30T23:59:59.000Z

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  10. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01T23:59:59.000Z

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  11. Multiphase cooling flows

    E-Print Network [OSTI]

    Peter A. Thomas

    1996-08-20T23:59:59.000Z

    I discuss the multiphase nature of the intracluster medium whose neglect can lead to overestimates of the baryon fraction of clusters by up to a factor of two. The multiphase form of the cooling flow equations are derived and reduced to a simple form for a wide class of self-similar density distributions. It is shown that steady-state cooling flows are \\emph{not} consistent with all possible emissivity profiles which can therefore be used as a test of the theory. In combination, they provide strong constraints on the mass distribution within the cooling radius.

  12. Air Cooling R&D

    Broader source: Energy.gov (indexed) [DOE]

    or otherwise restricted information. 2 State of the Art Everything on a vehicle is air cooled, ultimately... Air cooling can be done... When?... How? Honda Insight Power...

  13. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07T23:59:59.000Z

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  14. Multilayer Ceramic Regenerator Materials for 4 K Cooling

    SciTech Connect (OSTI)

    Numazawa, T.; Kamiya, K. [Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Satoh, T. [Cryogenics Department, Sumitomo Heavy Industries, Ltd., 2-1-1 Yato-Cho, Nishitokyo City, Tokyo 188-8585 (Japan); Nozawa, H.; Yanagitani, T. [Ceramics Division, Konoshima Chemical Co. Ltd., 80 Koda, Takuma-Cho, Mitoyo-Gun, Kagawa 769-1103 (Japan)

    2006-04-27T23:59:59.000Z

    The ceramics oxide magnetic materials have shown excellent properties for use as regenerator materials used in 4 K crycoolers. Currently four kinds of oxide magnetic materials GdVO4, GAP=GdAlO3, GOS=Gd2O2S and Tb2O2S are available for applications for regenerators or thermal anchors from 2 K to 8 K. This paper focused on controlling the heat capacity of the (GdxTb1-x)2O2S system to cover the refrigeration temperatures between 6 K and 8 K. A concept of multilayer regenerator material consisting of multicomponent magnetic materials has been proposed and investigated. Two-layer ceramic material including two kinds of magnetic materials (Gd0.1Tb0.9)2O2S+Tb2O2S was successfully fabricated in the form of regenerator particles with an average diameter of 0.25 mm. Measured heat capacity data showed that it had twin peaks relating to those of (Gd0.1Tb0.9)2O2S and Tb2O2S, and the entire curve became broader and wider. The mechanical properties of strength and hardness of the two-layer ceramic material were the same as other ceramic regenerator materials like GOS. Thus, it is concluded that the multilayer ceramic material is very useful to control the heat capacity of the regenerator particles. The cooling tests using the two-layer ceramic material with HoCu2 and GOS have been done to investigate the 2nd stage regenerator configuration.

  15. Progress in Muon Cooling Research and Development

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MuCool Collaboration

    2003-01-29T23:59:59.000Z

    The MuCool R&D program is described. The aim of MuCool is to develop all key pieces of hardware required for ionization cooling of a muon beam. This effort will lead to a more detailed understanding of the construction and operating costs of such hardware, as well as to optimized designs that can be used to build a Neutrino Factory or Muon Collider. This work is being undertaken by a broad collaboration including physicists and engineers from many national laboratories and universities in the U.S. and abroad. The intended schedule of work will lead to ionization cooling being well enough established that a construction decision for a Neutrino Factory could be taken before the end of this decade based on a solid technical foundation.

  16. Cool Farming: Climate impacts

    E-Print Network [OSTI]

    Levi, Ran

    Cool Farming: Climate impacts of agriculture and mitigation potential greenpeace.org Campaigningfor meat categories as well as milk and selected plant products for comparison. 36 Figure 1: Total global

  17. Global Cool Cities Alliance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the...

  18. Optimization of Cooling Water

    E-Print Network [OSTI]

    Matson, J.

    A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems....

  19. Why Cool Roofs?

    Broader source: Energy.gov [DOE]

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple,...

  20. Cooling system for superconducting magnet

    DOE Patents [OSTI]

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15T23:59:59.000Z

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  1. RHIC stochastic cooling motion control

    SciTech Connect (OSTI)

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28T23:59:59.000Z

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  2. Laser cooling of solids

    SciTech Connect (OSTI)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01T23:59:59.000Z

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  3. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

    2007-09-11T23:59:59.000Z

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  4. Method of fabricating a cooled electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11T23:59:59.000Z

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  5. Nuclear Equation of State and Neutron Star Cooling

    E-Print Network [OSTI]

    Yeunhwan Lim; Chang Ho Hyun; Chang-Hwan Lee

    2015-01-19T23:59:59.000Z

    We investigate the effects of the nuclear equation of state (EoS) to the neutron star cooling. New era for nuclear EoS has begun after the discovery of $\\sim 2\\msun$ neutron stars PSR J1614$-$2230 and PSR J0348$+$0432 [1, 2]. Also recent works on the mass and radius of neutron stars from low-mass X-ray binaries [3] strongly constrain the EoS of nuclear matter. On the other hand, observations of the neutron star in Cassiopeia A (Cas A) more than 10 years confirmed the existence of nuclear superfluidity [4, 5]. Nuclear superfluidity reduces the heat capacities as well as neutrino emissivities. With nuclear superfluidity the neutrino emission processes are highly suppressed, and the existence of superfluidity makes the cooling path quite different from that of the standard cooling process. Superfluidity also allows new neutrino emission process, which is called `Pair Breaking and Formation'(PBF). PBF is a fast cooling process and can explain the fast cooling rate of neutron star in Cas A. Therefore, it is essential to add the superfluidity effect in the neutron star cooling process. In this work, we simulate neutron star cooling curves using both non-relativistic and relativistic nuclear models. The existence of too early direct Urca process shows that some of nuclear models do not fit for the cooling simulation. After this first selection process, the nuclear pairing gaps are searched using the observational neutron star's age and temperature data.

  6. Living Expenses (includes approximately

    E-Print Network [OSTI]

    Maroncelli, Mark

    & engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated

  7. Gas-cooled nuclear reactor

    DOE Patents [OSTI]

    Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

    1985-01-01T23:59:59.000Z

    A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

  8. Photovoltaics effective capacity: Interim final report 2

    SciTech Connect (OSTI)

    Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

    1997-11-01T23:59:59.000Z

    The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

  9. Wavy flow cooling concept for turbine airfoils

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-08-31T23:59:59.000Z

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  10. Muon Cooling Channels Eberhard Keil

    E-Print Network [OSTI]

    Keil, Eberhard

    Muon Cooling Channels Eberhard Keil Katharinenstr. 17, DE-10711 Berlin, Germany Abstract Parameters of muon cooling channels are discussed that achieve cooling of a muon beam from initial to final emittances in all three degrees of freedom in a given length. Published theories of ionisation cooling yield

  11. Laser Cooling of Matter INTRODUCTION

    E-Print Network [OSTI]

    Kaiser, Robin

    - velopment of techniques that have allowed the ion motion to be cooled into the ground state of the confiningLaser Cooling of Matter INTRODUCTION Laser cooling of neutral atoms in the past decades has been a breakthrough in the understanding of their dy- namics and led to the seminal proposals of laser cooling

  12. Numerical Simulation of Transpiration Cooling

    E-Print Network [OSTI]

    University, Templergraben 55, 52056 Aachen SUMMARY Transpiration cooling using ceramic matrix composite (CMC

  13. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect (OSTI)

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01T23:59:59.000Z

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  14. Passive cooling system for a vehicle

    DOE Patents [OSTI]

    Hendricks, Terry Joseph; Thoensen, Thomas

    2005-11-15T23:59:59.000Z

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  15. Passive Cooling System for a Vehicle

    DOE Patents [OSTI]

    Hendricks, T. J.; Thoensen, T.

    2005-11-15T23:59:59.000Z

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  16. Plants for passive cooling. A preliminary investigation of the use of plants for passive cooling in temperate humid climates

    SciTech Connect (OSTI)

    Spirn, A W; Santos, A N; Johnson, D A; Harder, L B; Rios, M W

    1981-04-01T23:59:59.000Z

    The potential of vegetation for cooling small, detached residential and commercial structures in temperate, humid climates is discussed. The results of the research are documented, a critical review of the literature is given, and a brief review of energy transfer processes is presented. A checklist of design objectives for passive cooling, a demonstration of design applications, and a palette of selected plant species suitable for passive cooling are included.

  17. Department of Mechanical and Nuclear Engineering Fall 2010 Advanced Cooled Compressor Diaphragms

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Fall 2010 Advanced Cooled Compressor compressor that is cooled by circulating water through its diaphragm (isothermal compression instead of each ANSYS run included deflection and principle stresses Material for advanced compressor

  18. Marketing Cool Storage Technology

    E-Print Network [OSTI]

    McCannon, L.

    ~nized for a means to provide for technology transfer and dissemination of current information in the field. The International Thermal Stora~e Advisorv Council was formed to help meet this perceived need. This paper will review activities of EPRI... of cool stora~e. At the same time, +n educational effort was needed to infotm en~ineers and end-users on the use of t~e technol02V. and of the ener~v cost savin~s th t could result. The EPRI "Commercialization of Cool Stora e Technolo~v" project (RP...

  19. Quantum thermodynamic cooling cycle

    E-Print Network [OSTI]

    Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

    2001-06-08T23:59:59.000Z

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  20. Quantum thermodynamic cooling cycle

    E-Print Network [OSTI]

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01T23:59:59.000Z

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  1. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConverting Biomass toCoolCool

  2. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControlling Graphene'sPortalofExploreCoolCool

  3. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControllingCool Magnetic Molecules Cool Magnetic

  4. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26T23:59:59.000Z

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  5. Turbomachine rotor with improved cooling

    DOE Patents [OSTI]

    Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

    1998-01-01T23:59:59.000Z

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  6. Electricity market module: Electricity capacity planning submodule

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The purpose of this report is to describe modifications to the Electricity Capacity Planning Submodule (ECP) for the Annual Energy Outlook 1996. It describes revisions to enhance the representation of planned maintenance, incorporate technological improvements in operating efficiencies, revise the algorithm for determining international firm power imports, and include risk premiums for new plant construction.

  7. Hybrid heat capacity-moving slab solid-state laser

    DOE Patents [OSTI]

    Stappaerts, Eddy A.

    2005-03-01T23:59:59.000Z

    Laser material is pumped and its stored energy is extracted in a heat capacity laser mode at a high duty factor. When the laser material reaches a maximum temperature, it is removed from the lasing region and a subsequent volume of laser material is positioned into the lasing region to repeat the lasing process. The heated laser material is cooled passively or actively outside the lasing region.

  8. Gas turbine bucket cooling circuit and related process

    DOE Patents [OSTI]

    Lewis, Doyle C. (Greer, SC); Barb, Kevin Joseph (Halfmoon, NY)

    2002-01-01T23:59:59.000Z

    A turbine bucket includes an airfoil portion having leading and trailing edges; at least one radially extending cooling passage within the airfoil portion, the airfoil portion joined to a platform at a radially inner end of the airfoil portion; a dovetail mounting portion enclosing a cooling medium supply passage; and, a crossover passage in fluid communication with the cooling medium supply passage and with at least one radially extending cooling passage, the crossover passage having a portion extending along and substantially parallel to an underside surface of the platform.

  9. Cooling devices and methods for use with electric submersible pumps

    DOE Patents [OSTI]

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02T23:59:59.000Z

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  10. Covered Product Category: Cool Roof Products

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  11. Gas Cooling Through Galaxy Formations

    E-Print Network [OSTI]

    Mariwan A. Rasheed; Mohamad A. Brza

    Abstract-- Gas cooling was studied in two different boxes of sizes and by simulation at same redshifts. The gas cooling is shown in four different redshifts (z=1.15, 0.5, 0.1 and 0). In the simulation the positions of the clumps of cooled gas were studied with slices of the two volumes and also the density of cooled gas of the two volumes shown in the simulation. From the process of gas cooling it is clear that this process gives different results in the two cases. Index Term- Gas Cooling, Simulation, galaxy Formation. I.

  12. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Report

  13. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Report5

  14. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Operable

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity

  17. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail

  18. Refinery Capacity Report Historical

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail

  19. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project *1980-1981 U.S.CapabilitiesCapacity Building

  20. Cooling Towers, The Debottleneckers

    E-Print Network [OSTI]

    Burger, R.

    Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units...

  1. Cooling Dry Cows

    E-Print Network [OSTI]

    Stokes, Sandra R.

    2000-07-17T23:59:59.000Z

    , little work has been done on the responses of cooling cows in this period. The dry period is particularly crucial because it involves regen- eration of the mammary gland and rapid fetal growth. This is also when follicles begin develop- ing and maturing...

  2. Cooling Towers, The Debottleneckers 

    E-Print Network [OSTI]

    Burger, R.

    1998-01-01T23:59:59.000Z

    looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more...

  3. The nominal cooling tower

    SciTech Connect (OSTI)

    Burger, R. [Burger Associates, Dallas, TX (United States)

    1995-12-31T23:59:59.000Z

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95{degrees}F. Hot Water temperature (HWT) Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies through out the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can select the nominal cooling tower model recommended by the manufacturer. Ask any HVAC operator, refinery manager, power generating station operator what happens when the Wet Bulb reaches or exceeds the design WBT of the area. He probably will tell you, {open_quotes}My cooling tower works quite well, but in the summer time, I usually have trouble with it.{close_quotes} This occurs because he is operating a nominal cooling tower.

  4. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers 

    E-Print Network [OSTI]

    Smith, M.

    1991-01-01T23:59:59.000Z

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  5. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers

    E-Print Network [OSTI]

    Smith, M.

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  6. Two stage serial impingement cooling for isogrid structures

    DOE Patents [OSTI]

    Lee, Ching-Pang; Morrison, Jay A.

    2014-09-09T23:59:59.000Z

    A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.

  7. Liquid metal reactor air cooling baffle

    DOE Patents [OSTI]

    Hunsbedt, A.

    1994-08-16T23:59:59.000Z

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  8. Liquid metal reactor air cooling baffle

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA)

    1994-01-01T23:59:59.000Z

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  9. Cooling airflow design calculations for UFAD

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Benedek, Corinne

    2007-01-01T23:59:59.000Z

    written permission. Cooling Airflow Design Calculations form) height. Table 2: Design cooling airflow performance fortool predictions of UFAD cooling airflow rates and associ-

  10. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01T23:59:59.000Z

    De- velopment of a Simplified Cooling Load Design Tool forand C. Benedek. 2007. “Cooling airflow design calculationscalculation method for design cooling loads in underfloor

  11. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heating and cooling systems covering a wide range ofpractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  12. Hybrid Radiator Cooling System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiator Cooling System Technology available for licensing: Hybrid radiator cooling system uses conventional finned air cooling under most driving conditions that would be...

  13. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect (OSTI)

    BLASKIEWICZ, M.

    2005-05-16T23:59:59.000Z

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  14. DOE mixed waste treatment capacity analysis

    SciTech Connect (OSTI)

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01T23:59:59.000Z

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  15. Heat capacity at the glass transition

    E-Print Network [OSTI]

    Kostya Trachenko; Vadim Brazhkin

    2010-07-13T23:59:59.000Z

    A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature $T_g$ without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if $T_g$ is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at $T_g$ follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of $T_g$ with the quench rate and the correlation of heat capacity jump with liquid fragility.

  16. Cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Salamah, Samir Armando (Niskayuna, NY); Bylina, Noel Jacob (Niskayuna, NY)

    2003-01-01T23:59:59.000Z

    A plurality of arcuate circumferentially spaced supply and return manifold segments are arranged on the rim of a rotor for respectively receiving and distributing cooling steam through exit ports for distribution to first and second-stage buckets and receiving spent cooling steam from the first and second-stage buckets through inlet ports for transmission to axially extending return passages. Each of the supply and return manifold segments has a retention system for precluding substantial axial, radial and circumferential displacement relative to the rotor. The segments also include guide vanes for minimizing pressure losses in the supply and return of the cooling steam. The segments lie substantially equal distances from the centerline of the rotor and crossover tubes extend through each of the segments for communicating steam between the axially adjacent buckets of the first and second stages, respectively.

  17. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  18. Diesel lubrication and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The film describes the parts of diesel lubricating and cooling systems and how they work in relation to each other.

  19. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10T23:59:59.000Z

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  20. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  1. Evaporative Cooling for Energy Conservation

    E-Print Network [OSTI]

    Meyer, J. R.

    1983-01-01T23:59:59.000Z

    cooling. A recent application of evaporative air cooling equipment in a heat treat area at the John Deere Component Works in Waterloo, Iowa provided the required cooling at an operating cost of 30% of a city water coil and 10% of a chilled water system...

  2. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect (OSTI)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01T23:59:59.000Z

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  3. Cooling by heating

    E-Print Network [OSTI]

    A. Mari; J. Eisert

    2011-04-01T23:59:59.000Z

    We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

  4. Cooled particle accelerator target

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2005-06-14T23:59:59.000Z

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  5. Natural Cooling Retrofit

    E-Print Network [OSTI]

    Fenster, L. C.; Grantier, A. J.

    1981-01-01T23:59:59.000Z

    Figure V). Tower Water Injection Natural Cool ing consists of crossover piping between the chillers, condenser and chiller water piping, switching valves, con trols, a strainer and/or a filtration system, and a water treatment system, in addition..., if not impera tive, to utilize a combination of strainers, filters, and/or sophisticated water treatment to ensure that the thermal efficiency of the chilled water system is not degraded due to scal ing, corro sion, and microbial growth. A routine water...

  6. Conduction cooled tube supports

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

    1984-01-01T23:59:59.000Z

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  7. Cab Heating and Cooling

    SciTech Connect (OSTI)

    Damman, Dennis

    2005-10-31T23:59:59.000Z

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  8. Special Property Assessment for Renewable Heating and Cooling Systems

    Broader source: Energy.gov [DOE]

    Title 8 of Maryland’s property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not...

  9. Temperature and humidity control during cooling and dehumidifying by compressor and evaporator fan speed variation

    SciTech Connect (OSTI)

    Krakow, K.I.; Lin, S.; Zeng, Z.S. [Concordia Univ., Montreal, Quebec (Canada). Dept. of Mechanical Engineering

    1995-08-01T23:59:59.000Z

    The accurate control of temperature and relative humidity during cooling and dehumidifying air-conditioning processes may be achieved by compressor and evaporator fan speed variation. Proportional-integral-differential (PID) control methods are shown to be suitable for attaining compressor and evaporator fan speeds such that the sensible and latent components of the refrigeration system capacity equal the sensible and latent components of the system load. The feasibility of the control method has been verified experimentally. A numerical model of an environmental control system, including refrigeration, space, and PID control subsystems, has been developed. The model is suitable for determining system response to variations of PID coefficient values and to variations of system loads.

  10. Cooling, AGN Feedback and Star Formation in Simulated Cool-Core Galaxy Clusters

    E-Print Network [OSTI]

    Li, Yuan; Ruszkowski, Mateusz; Voit, G Mark; O'Shea, Brian W; Donahue, Megan

    2015-01-01T23:59:59.000Z

    Numerical simulations of active galactic nuclei (AGN) feedback in cool-core galaxy clusters have successfully avoided classical cooling flows, but often produce too much cold gas. We perform adaptive mesh simulations that include momentum-driven AGN feedback, self-gravity, star formation and stellar feedback, focusing on the interplay between cooling, AGN heating and star formation in an isolated cool-core cluster. Cold clumps triggered by AGN jets and turbulence form filamentary structures tens of kpc long. This cold gas feeds both star formation and the supermassive black hole (SMBH), triggering an AGN outburst that increases the entropy of the ICM and reduces its cooling rate. Within 1-2 Gyr, star formation completely consumes the cold gas, leading to a brief shutoff of the AGN. The ICM quickly cools and redevelops multiphase gas, followed by another cycle of star formation/AGN outburst. Within 6.5 Gyr, we observe three such cycles. There is good agreement between our simulated cluster and the observations...

  11. Cooled turbine vane with endcaps

    DOE Patents [OSTI]

    Cunha, Frank J. (Avon, CT); Schiavo, Jr., Anthony L. (Ovideo, FL); Nordlund, Raymond Scott (Orlando, FL); Malow, Thomas (Oviedo, FL); McKinley, Barry L. (Chuluota, FL)

    2002-01-01T23:59:59.000Z

    A turbine vane assembly which includes an outer endcap having a plurality of generally straight passages and passage segments therethrough, an inner endcap having a plurality of passages and passage segments therethrough, and a vane assembly having an outer shroud, an airfoil body, and an inner shroud. The outer shroud, airfoil body and inner shroud each have a plurality of generally straight passages and passage segments therethrough as well. The outer endcap is coupled to the outer shroud so that outer endcap passages and said outer shroud passages form a fluid circuit. The inner endcap is coupled to the inner shroud so that the inner end cap passages and the inner shroud passages from a fluid circuit. Passages in the vane casting are in fluid communication with both the outer shroud passages and the inner shroud passages. Passages in the outer endcap may be coupled to a cooling system that supplies a coolant and takes away the heated exhaust.

  12. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, Franklin E. (San Jose, CA)

    1992-01-01T23:59:59.000Z

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  13. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, F.E.

    1992-12-08T23:59:59.000Z

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  14. Doppler cooling of calcium ions using a dipole-forbidden transition Richard J. Hendricks,1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , a large variety of laser cooling techniques have been proposed and demonstrated 1,2 . These includeDoppler cooling of calcium ions using a dipole-forbidden transition Richard J. Hendricks,1 Jens L; published 4 February 2008 Doppler cooling of calcium ions has been experimentally demonstrated using the S1

  15. An Experimental Study of Film Cooling Effectiveness by Using PIV and PSP Techniques

    E-Print Network [OSTI]

    Hu, Hui

    An Experimental Study of Film Cooling Effectiveness by Using PIV and PSP Techniques Blake Johnson1 temperatures is necessary, typically through the implementation of film-cooling techniques. Optimization cooling has been studied widely through use of a number of experimental techniques, including infrared (IR

  16. A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems

    E-Print Network [OSTI]

    A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems Simon, thermoelectric active cooling systems can help maintain electronic devices at a desired temperature condition for calculating the steady-state operational point of a TEC based active cooling system, including the heatsink

  17. User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems

    E-Print Network [OSTI]

    User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems)-based active cooling system, including the heatsink role. The method is simple and intuitive and provides com- prehensive information about the cooling system such as its feasibility, required heatsink, the TEC current

  18. Study of the Physics of Droplet Impingement Cooling

    E-Print Network [OSTI]

    Soriano, Guillermo Enrique

    2012-07-16T23:59:59.000Z

    is one of the most promising technologies in applications which require large heat removal capacity in very small areas. Previous experimental studies have suggested that one of the main mechanisms of heat removal in spray cooling is forced convection... flux behavior, critical heat flux, and film morphology were elucidated. The study showed that forced heat convection is the main heat transfer mecha- nism inside the crown formation formed by droplet impingement and impact regimes play an important...

  19. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect (OSTI)

    Bharathan, D.

    2013-06-01T23:59:59.000Z

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  20. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  1. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  2. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConverting Biomass toCool

  3. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControlling Graphene'sPortalofExplore »Cool

  4. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControlling Graphene'sPortalofExploreCool

  5. cooling | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constantconvert program |cooling

  6. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOE Patents [OSTI]

    Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)

    2002-01-01T23:59:59.000Z

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  7. Methodology for Calculating Cooling and Heating Energy-Imput-Ratio (EIR) From the Rated Seasonal Performance Efficiency (SEER or HSPF)

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.

    2013-01-01T23:59:59.000Z

    in the simulations. For a simulation input, a SEER or a HSPF rating needs to be converted to COP95 (i.e., Energy Efficiency Ratio (EER)/3.412) or COP47, respectively, which is the steady-state efficiency at certain test conditions specified in the ANSI.../AHRI Standard 210/240-2008 (AHRI 2008). Issue 2: Fan Energy Removal • The system efficiency ratings currently available (i.e., SEER, EER, or HSPF) are based on net cooling or heating capacity (i.e., total cooling capacity less supply fan heat for cooling...

  8. Results from an advanced power plant cooling demonstration

    SciTech Connect (OSTI)

    Bartz, J.A.; Allemann, R.T.; Laverman, R.J.; Fricke, H.D.; Van Laar, J.

    1986-04-01T23:59:59.000Z

    Results of four years of operation and testing of a 17 MW(th) advanced water-conserving cooling demonstration are presented. Component performance data on four heat exchange systems are reported. These consist of an air-cooled ammonia condenser augmented by an evaporative cooler, an air-cooled ammonia condenser augmented by water deluge, a condenser/reboiler with steam condensing and ammonia porous boiling enhancements, and a capacitive cooling system that provides supplemental cooling without evaporating water. Comparisons of component performance at bench and pilot scale are made with the field tests. A discussion of measurement techniques, systems safety, control, reliability and practicality in a power plant environment, and avoidance of two-phase flow instabilities is included.

  9. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    SciTech Connect (OSTI)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J., E-mail: p.cargill@imperial.ac.uk [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-07-20T23:59:59.000Z

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  10. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    Systems for Low-Energy Buildings, Proved in Practice”with optimized building envelopes, low-energy cooling waterbuilding perspective, thermal performance for the low-energy

  11. Computer model for gas turbine blade cooling; including a comparison of steam to air as a cooling medium

    E-Print Network [OSTI]

    Ortman, Daniel William

    1982-01-01T23:59:59.000Z

    THROUGH A DUCT OR PIN-FIN DUCT . FLOW THROUGH THE LEADING EDGE CALCULATION OF BLADE SURFACE TEMPERATURE CAPABILITIES OF THE MODEL RESULTS AND CONCLUSION FUTURE WORK OPTIMIZATION OF COOLANT FLOW PARAMETERS . INCLUSION OF THREE-DIMENSIONAL CONDUCTION... pressure Downstream coolant fluid static pressure Coolant fluid coefficient of friction Hydraulic diameter of coolant duct Length of coolant duct (element) Density of fluid coolant (corrected for pressure and temperature) Velocity of the coolant...

  12. Turbine engine component with cooling passages

    DOE Patents [OSTI]

    Arrell, Douglas J. (Oviedo, FL); James, Allister W. (Orlando, FL)

    2012-01-17T23:59:59.000Z

    A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.

  13. HIGH FIELD SOLENOID FOR MUON COOLING.

    SciTech Connect (OSTI)

    KAHN, S.A.; ALSHARO'A, M.; HANLET, P.; JOHNSON, R.P.; KUCHNIR, M.; NEWSHAM, F.; GUPTA, R.C.; PALMER, R.B.; WILLEN, E.

    2006-06-26T23:59:59.000Z

    Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in accelerators and beam lines. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS conductor based on BSCCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. In this paper we will evaluate the technical issues associated with building this magnet. In particular we address how to mitigate the high Lorentz stresses associated with this high field magnet.

  14. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA)

    1982-01-01T23:59:59.000Z

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  15. Laser cooling of infrared sensors.

    SciTech Connect (OSTI)

    Hasselbeck, M. P. (Michael P.); Sheik-Bahae, M (Mansoor); Thiede, J. (Jared); Distel, J. R. (James R.); Greenfield, S. R. (Scott R.); Patterson, Wendy M.; Bigotta, S.; Imangholi, B.; Seletskiy, D. (Denis); Bender, D.; Vankipuram, V.; Vadiee, N.; Epstein, Richard I.

    2004-01-01T23:59:59.000Z

    We present an overview of laser cooling of solids. In this all-solid-state approach to refrigeration, heat is removed radiatively when an engineered material is exposed to high power laser light. We report a record amount of net cooling (88 K below ambient) that has been achieved with a sample made from doped fluoride glass. Issues involved in the design of a practical laser cooler are presented. The possibility of laser cooling of semiconductor sensors is discussed.

  16. Passively cooled direct drive wind turbine

    DOE Patents [OSTI]

    Costin, Daniel P. (Chelsea, VT)

    2008-03-18T23:59:59.000Z

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  17. Convective cores in galactic cooling flows

    E-Print Network [OSTI]

    A. Kritsuk; T. Plewa; E. Mueller

    2001-05-02T23:59:59.000Z

    We use hydrodynamic simulations with adaptive grid refinement to study the dependence of hot gas flows in X-ray luminous giant elliptical galaxies on the efficiency of heat supply to the gas. We consider a number of potential heating mechanisms including Type Ia supernovae and sporadic nuclear activity of a central supermassive black hole. As a starting point for this research we use an equilibrium hydrostatic recycling model (Kritsuk 1996). We show that a compact cooling inflow develops, if the heating is slightly insufficient to counterbalance radiative cooling of the hot gas in the central few kiloparsecs. An excessive heating in the centre, instead, drives a convectively unstable outflow. We model the onset of the instability and a quasi-steady convective regime in the core of the galaxy in two-dimensions assuming axial symmetry. Provided the power of net energy supply in the core is not too high, the convection remains subsonic. The convective pattern is dominated by buoyancy driven large-scale mushroom-like structures. Unlike in the case of a cooling inflow, the X-ray surface brightness of an (on average) isentropic convective core does not display a sharp maximum at the centre. A hybrid model, which combines a subsonic peripheral cooling inflow with an inner convective core, appears to be stable. We also discuss observational implications of these results.

  18. Desiccant-based, heat-actuated cooling assessment for DHC (District Heating and Cooling) systems

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-07-01T23:59:59.000Z

    An assessment has been completed of the use of desiccant-based, heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that such desiccant-based cooling (DBC) systems are generally applicable to District Heating (DH) systems. Since the DH system only has to supply hot water (or steam) to its customers, systems that were designed as conventional two-pipe DH systems can now be operated as DHC systems without major additional capital expense. Desiccant-based DHC systems can be operated with low-grade DH-supplied heat, at temperatures below 180{degree}F, without significant loss in operating capacity, relative to absorption chillers. During this assessment, a systems analysis was performed, an experimental investigation was conducted, developmental requirements for commercializing DBC systems were examined, and two case studies were conducted. As a result of the case studies, it was found that the operating cost of a DBC system was competitive with or lower than the cost of purchasing DHC-supplied chilled water. However, because of the limited production volume and the current high capital costs of desiccant systems, the payback period is relatively long. In this regard, through the substitution of low-cost components specifically engineered for low-temperature DHC systems, the capital costs should be significantly reduced and overall economics made attractive to future users. 17 figs.

  19. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

    2010-09-14T23:59:59.000Z

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  20. Wind turbine generators having wind assisted cooling systems and cooling methods

    DOE Patents [OSTI]

    Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

    2008-09-23T23:59:59.000Z

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  1. Parametric Study of Turbine Blade Internal Cooling and Film Cooling

    E-Print Network [OSTI]

    Rallabandi, Akhilesh P.

    2010-10-12T23:59:59.000Z

    is used to remove heat from the hot turbine blade. This air flows through passages in the hollow blade (internal cooling), and is also ejected onto the surface of the blade to form an insulating film (film cooling). Modern land-based gas turbine engines...

  2. COOL03 Workshop September 27, 2003 Muon Cooling Channels

    E-Print Network [OSTI]

    Keil, Eberhard

    , Japan 19 to 23 May 2003 My WWW home directory: http://keil.home.cern.ch/keil/ MuMu/Doc/COOL03/talk03.pdf and II and have ­ no dispersion ­ transverse cooling ­ no wedge-shaped absorbers ­ longitudinal heating and heating by multiple scattering and straggling rate of change per unit length of RMS relative momentum

  3. Film cooling for a closed loop cooled airfoil

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

    2003-01-01T23:59:59.000Z

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  4. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect (OSTI)

    Hart, T. L. [University of Mississippi-Oxford, University, MS 38677 (United States)

    2010-03-30T23:59:59.000Z

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  5. EVALUATION OF REQUIREMENTS FOR THE DWPF HIGHER CAPACITY CANISTER

    SciTech Connect (OSTI)

    Miller, D.; Estochen, E.; Jordan, J.; Kesterson, M.; Mckeel, C.

    2014-08-05T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is considering the option to increase canister glass capacity by reducing the wall thickness of the current production canister. This design has been designated as the DWPF Higher Capacity Canister (HCC). A significant decrease in the number of canisters processed during the life of the facility would be achieved if the HCC were implemented leading to a reduced overall reduction in life cycle costs. Prior to implementation of the change, Savannah River National Laboratory (SRNL) was requested to conduct an evaluation of the potential impacts. The specific areas of interest included loading and deformation of the canister during the filling process. Additionally, the effect of the reduced wall thickness on corrosion and material compatibility needed to be addressed. Finally the integrity of the canister during decontamination and other handling steps needed to be determined. The initial request regarding canister fabrication was later addressed in an alternate study. A preliminary review of canister requirements and previous testing was conducted prior to determining the testing approach. Thermal and stress models were developed to predict the forces on the canister during the pouring and cooling process. The thermal model shows the HCC increasing and decreasing in temperature at a slightly faster rate than the original. The HCC is shown to have a 3°F ?T between the internal and outer surfaces versus a 5°F ?T for the original design. The stress model indicates strain values ranging from 1.9% to 2.9% for the standard canister and 2.5% to 3.1% for the HCC. These values are dependent on the glass level relative to the thickness transition between the top head and the canister wall. This information, along with field readings, was used to set up environmental test conditions for corrosion studies. Small 304-L canisters were filled with glass and subjected to accelerated environmental testing for 3 months. No evidence of stress corrosion cracking was indicated on either the canisters or U-bend coupons. Calculations and finite element modeling were used to determine forces over a range of handling conditions along with possible forces during decontamination. While expected reductions in some physical characteristics were found in the HCC, none were found to be significant when compared to the required values necessary to perform its intended function. Based on this study and a review of successful testing of thinner canisters at West Valley Demonstration Project (WVDP), the mechanical properties obtained with the thinner wall do not significantly undermine the ability of the canister to perform its intended function.

  6. Spectropolarimetry of cool stars

    E-Print Network [OSTI]

    P. Petit

    2007-03-27T23:59:59.000Z

    In recent years, the development of spectropolarimetric techniques deeply modified our knowledge of stellar magnetism. In the case of solar-type stars, the challenge is to measure a geometrically complex field and determine its evolution over very different time frames. In this article, I summarize some important observational results obtained in this field over the last two decades and detail what they tell us about the dynamo processes that orchestrate the activity of cool stars. I also discuss what we learn from such observations about the ability of magnetic fields to affect the formation and evolution of Sun-like stars. Finally, I evoke promising directions to be explored in the coming years, thanks to the advent of a new generation of instruments specifically designed to progress in this domain.

  7. A California generation capacity market

    SciTech Connect (OSTI)

    Conkling, R.L.

    1998-10-01T23:59:59.000Z

    California, overconfident with its new Power Exchange spot market, seems unaware that it could be afflicted by the same turmoil that bludgeoned the Midwest in June. An electricity capacity market should be put in place before crisis strikes. This article outlines a framework for adding an electricity capacity market in California. The new market would not create a new bureaucracy but would function within the state`s now operational PX and independent system operator (ISO) mechanisms. It would be an open market, in which capacity would be traded transparently, with freedom of entree for all willing sellers and all willing buyers.

  8. Shock absorbing effect of the BUSS cask cooling fins

    SciTech Connect (OSTI)

    Gwinn, K.W.

    1986-06-01T23:59:59.000Z

    The structural response of the Beneficial Uses Shipping System (BUSS) cask to the hypothetical accident puncture test was determined using large deformation finite element analyses. Three orientations were considered to ensure that the most severe orientation was analyzed. These were the end, side, and center-of-gravity over corner puncture of the cask. The side puncture event, which was initially analyzed without the circumferential cooling fins, produced the most severe decelerations in the cask. Subsequent analyses, which included the cooling fins, showed a significant reduction in acceleration and yielding in the cask body. This demonstrates the viability for using cooling fins for the puncture protection of monolithic walled casks.

  9. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  10. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  11. Solar Roof Cooling by Evaporation

    E-Print Network [OSTI]

    Patterson, G. V.

    1982-01-01T23:59:59.000Z

    Evaporation is nature's way of cooling. By the application of a thin film of water, in the form of a mist, on the roof of the building, roof temperatures can be reduced from as high as 165o to a cool 86oF. Thus, under-roof temperatures are reduced...

  12. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  13. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  14. The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid

    SciTech Connect (OSTI)

    Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

    2007-08-27T23:59:59.000Z

    The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

  15. Development of a Very Dense Liquid Cooled Compute Platform

    SciTech Connect (OSTI)

    Hughes, Phillip N.; Lipp, Robert J.

    2013-12-10T23:59:59.000Z

    The objective of this project was to design and develop a prototype very energy efficient high density compute platform with 100% pumped refrigerant liquid cooling using commodity components and high volume manufacturing techniques. Testing at SLAC has indicated that we achieved a DCIE of 0.93 against our original goal of 0.85. This number includes both cooling and power supply and was achieved employing some of the highest wattage processors available.

  16. System and method for cooling a combustion gas charge

    DOE Patents [OSTI]

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25T23:59:59.000Z

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  17. Desiccant-based, heat actuated cooling assessment for DHC systems

    SciTech Connect (OSTI)

    DiBella, F.; Patch, K.; Becker, F.

    1989-10-01T23:59:59.000Z

    The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of an application of a desiccant-based, heat actuated cooling system in a District Heating System. The results of this study will encourage the deployment of cooler transport temperatures in District Heating Systems. The proposed concept includes a liquid or solid desiccant-based air cooling and drying system that can be integrated with an existing HVAC system. 3 refs., 6 figs.

  18. Vortex-augmented cooling tower-windmill combination

    DOE Patents [OSTI]

    McAllister, Jr., John E. (Aiken, SC)

    1985-01-01T23:59:59.000Z

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  19. A Markov method for generating capacity reliability evaluation including operating considerations

    E-Print Network [OSTI]

    Asgarpoor, Sohrab

    1981-01-01T23:59:59.000Z

    ) ~ ~ ( 100) 5(100), KAPS(100) ~ ALPHA( 100) O(20, 900) IF(900) I, V(400) R(900) H(20) CAP(20), UNN(20) LAM(20), MEW(20) LOAD(100) 1 s(20) NT(6000 2) ST(200) CAPP(100) ~ CAPS( IGQI, E(100 100) I MA(100) SA(100) 58(20 ~ 100) ~ SO(20 ~ 100) SC(100) SE(100...) ~ SN(100) '3(MENSIQN LOSP( 100) . P T(100), IR(20, (00) PR ( 100) C C C C C C C C C C C C C C C C DOUBLE PRECISION GI, P A 8 C C E, S PT PR FR I. '(TEGER H, Q 0 V, CAP, W SU, I CD CA JNN HE, H2 I, ST, SA 58 SD SC SE ~ SN I, SPRS REAL...

  20. METHOD OF FABRICATING ELECTRODES INCLUDING HIGH-CAPACITY, BINDER-FREE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, In this3,Office

  1. Property:Number of Plants included in Capacity Estimate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSizeNbrGeneratingUnitsBuild Out

  2. Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance...

    Office of Environmental Management (EM)

    Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Study...

  3. Predictive pre-cooling control for low lift radiant cooling using building thermal mass

    E-Print Network [OSTI]

    Gayeski, Nicholas (Nicholas Thomas)

    2010-01-01T23:59:59.000Z

    Low lift cooling systems (LLCS) hold the potential for significant energy savings relative to conventional cooling systems. An LLCS is a cooling system which leverages existing HVAC technologies to provide low energy cooling ...

  4. Film cooling air pocket in a closed loop cooled airfoil

    DOE Patents [OSTI]

    Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Osgood, Sarah Jane (East Thetford, VT); Bagepalli, Radhakrishna (Schenectady, NY); Webbon, Waylon Willard (Greenville, SC); Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01T23:59:59.000Z

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  5. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01T23:59:59.000Z

    eliminating the need for compressor cooling. The plant modelunique design (using compressor cooling only when needed by

  6. Cooling system for three hook ring segment

    DOE Patents [OSTI]

    Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang; Patat, Harry

    2014-08-26T23:59:59.000Z

    A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in the midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.

  7. Compound cooling flow turbulator for turbine component

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J

    2014-11-25T23:59:59.000Z

    Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.

  8. SRS reactor control rod cooling without normal forced convection cooling

    SciTech Connect (OSTI)

    Smith, D.C. (SAIC, Albuquerque, NM (United States)); Easterling, T.C. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1993-01-01T23:59:59.000Z

    This paper describes an analytical study of the coolability of the control rods in the Savannah River site (SRS) K production reactor under conditions of loss of normal forced convection cooling. The study was performed as part of the overall safety analysis of the reactor supporting its restart. The analysis addresses the buoyancy-driven boiling flow over the control rods that occurs when forced cooling is lost. The objective of the study was to demonstrate that the control rods will remain cooled (i.e., no melting) at powers representative of those anticipated for restart of the reactor.

  9. High field solenoids for muon cooling

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    Field Solenoids for Muon Cooling M. A. Green a , Y. EyssaField Solenoids for Muon Cooling · M. A. Green a, Y. EyssaABSTRA CT The proposed cooling system for the muon collider

  10. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01T23:59:59.000Z

    fraction (SPF) of cooling Supply Plenum SPF heat transfer bythrough the supply ple- Figure 2: Design day cooling loadsupply represent the????????????????????????????????????????????? air temperature, diffuser type and number, room setpoint instantaneous cooling

  11. Stochastic cooling in muon colliders

    SciTech Connect (OSTI)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01T23:59:59.000Z

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

  12. Liquid Cooling in Data Centers

    SciTech Connect (OSTI)

    Cader, Tahir; Sorell,, Vali; Westra, Levi; Marquez, Andres

    2009-05-01T23:59:59.000Z

    Semiconductor manufacturers have aggressively attacked the problem of escalating microprocessor power consumption levels. Today, server manufacturers can purchase microprocessors that currently have power consumption levels capped at 100W maximum. However, total server power levels continue to increase, with the increase in power consumption coming from the supportin chipsets, memory, and other components. In turn, full rack heat loads are very aggressivley climbing as well, and this is making it increasingly difficult and cost-prohibitive for facility owners to cool these high power racks. As a result, facilities owners are turning to alternative, and more energy efficient, cooling solutions that deploy liquids in one form or another. The paper discusses the advent of the adoption of liquid-cooling in high performance computing centers. An overview of the following competing rack-based, liquid-cooling, technologies is provided: in-row, above rack, refrigerated/enclosed rack, rear door heat exchanger, and device-level (i.e., chip-level). Preparation for a liquid-cooled data center, retroft and greenfield (new), is discussed, with a focus on the key issues that are common to all liquid-cooling technologies that depend upon the delivery of water to the rack (or in some deployments, a Coolant Distribution Unit). The paper then discusses, in some detail, the actual implementation and deployment of a liquid device-level cooled (spray cooled) supercomputer at the Pacific Northwest National Laboratory. Initial results from a successful 30 day compliance test show excellent hardware stability, operating system (OS) and software stack stability, application stability and performance, and an availability level that exceeded expectations at 99.94%. The liquid-cooled supercomputer achieved a peak performance of 9.287 TeraFlops, which placed it at number 101 in the June 2007 Top500 fastest supercomputers worldwide. Long-term performance and energy efficiency testing is currently underway, and detailed results will be reported in upcoming publications.

  13. Evaporative Roof Cooling- A Simple Solution to Cut Cooling Costs

    E-Print Network [OSTI]

    Abernethy, D.

    Since the “Energy Crisis” Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retro-fit installations show direct energy savings...

  14. Cool Cities, Cool Planet (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2011-04-28T23:59:59.000Z

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  15. The Cooling of Compact Stars

    E-Print Network [OSTI]

    Dany Page; Ulrich Geppert; Fridolin Weber

    2005-08-01T23:59:59.000Z

    The cooling of a compact star depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission, as well as on the structure of the stellar outer layers which control the photon emission. Open issues concern the hyperon population, the presence of meson condensates, superfluidity and superconductivity, and the transition of confined hadronic matter to quark matter. This paper describes these issues and presents cooling calculations based on a broad collection of equations of state for neutron star matter and strange matter. These results are tested against the body of observed cooling data.

  16. CO$_2$ cooling experience (LHCb)

    E-Print Network [OSTI]

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01T23:59:59.000Z

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  17. Improving Process Cooling Tower Eddiciency

    E-Print Network [OSTI]

    Turpish, W.

    2013-01-01T23:59:59.000Z

    -Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 2 Types of Cooling Towers Forced Draft Towers ESL-IE-13-05-08 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 3 Types... of Cooling Towers Induced draft Cross-flow ESL-IE-13-05-08 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 4 Types of Cooling Towers Induced Draft-Counter Flow Two-cell Single Cell Four Cell...

  18. NightCool: An Innovative Residential Nocturnal Radiation Cooling Concept

    E-Print Network [OSTI]

    Parker, D. S.

    2006-01-01T23:59:59.000Z

    ) will store sensible cooling to reduce daytime space conditioning needs. The concept may also be able to help with daytime heating needs in cold climates as well by using a darker roof as a solar collector. SIMULATION MODEL Within the assessment, we...NIGHTCOOL: AN INNOVATIVE RESIDENTIAL NOCTURNAL RADIATION COOLING CONCEPT Danny S. Parker John Sherwin Principal Research Scientist Research Engineer Florida Solar Energy Center Cocoa, FL ABSTRACT Using a...

  19. Best Management Practice #10: Cooling Tower Management

    Broader source: Energy.gov [DOE]

    Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower...

  20. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  1. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25T23:59:59.000Z

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  2. Cryogenic performance of a cryocooler-cooled superconducting undulator

    SciTech Connect (OSTI)

    Fuerst, J. D.; Doose, C.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.; Shiroyanagi, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-01-29T23:59:59.000Z

    A cryocooler-cooled superconducting undulator has been installed and operated with beam at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The device consists of a dual-core 42-pole magnet structure that is cooled to 4.2 K with a system of four cryocoolers operating in a zero-boil-off configuration. This effort represents the culmination of a development program to establish concept feasibility and evaluate cryostat design and cryocooler-based refrigeration. Cryostat performance is described including cool-down/warm-up, steady-state operation, cooling margin, and the impact of beam during operation in the APS storage ring. Plans for future devices with longer magnets, which will incorporate lessons learned from the development program, are also discussed.

  3. Petrochem industry expands North American MTBE capacity

    SciTech Connect (OSTI)

    Not Available

    1992-10-05T23:59:59.000Z

    This paper reports that petrochemical manufacturers continue to increase methyl tertiary butyl ether (MTBE) capacity in North America. The action reflects refiners' reformulation of gasoline to help reduce auto emissions. Demand for gasoline blending oxygenates such as MTBE is expected to increase as U.S. refiners reconfigure processing trains to produce fuels meeting requirements of the Clean Air Act amendments of 1990. Recent progress includes plans to build an MTBE plant in Mexico and start-ups of plants on the U.S. Gulf Coast and in Canada.

  4. Advance in MEIC cooling studies

    SciTech Connect (OSTI)

    Zhang, Yuhong [JLAB, Newport News, VA (United States); Derbenev, Ya. [JLAB, Newport News, VA (United States); Douglas, D. [JLAB, Newport News, VA (United States); Hutton, A. [JLAB, Newport News, VA (United States); Kimber, A. [JLAB, Newport News, VA (United States); Li, R. [JLAB, Newport News, VA (United States); Nissen, E. [JLAB, Newport News, VA (United States); Tennant, [JLAB, Newport News, VA (United States); Zhang, H. [JLAB, Newport News, VA (United States)

    2013-06-01T23:59:59.000Z

    Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

  5. Cooling using complimentary tapered plenums

    DOE Patents [OSTI]

    Hall, Shawn Anthony (Pleasantville, NY)

    2006-08-01T23:59:59.000Z

    Where a fluid cooling medium cools a plurality of heat-producing devices arranged in a row along a generalized coordinate direction, with a space between each adjacent pair of devices, each space may have a partition that defines a boundary between a first plenum and a second plenum. The first plenum carries cooling medium across an entrance and thence into a first heat-producing device located on a first side of the partition facing the first plenum. The second plenum carries cooling medium away from a second heat-producing device located on a second side of the partition facing the second plenum and thence across an exit. The partition is disposed so that the first plenum becomes smaller in cross-sectional area as distance increases from the entrance, and the second plenum becomes larger in cross sectional area as distance decreases toward the exit.

  6. Qantum theory of optomechanical cooling

    E-Print Network [OSTI]

    Florian Marquardt; A. A. Clerk; S. M. Girvin

    2008-03-07T23:59:59.000Z

    We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching $10^{5}$, and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize.

  7. Cooling Towers, Energy Conservation Machines

    E-Print Network [OSTI]

    Burger, R.

    1980-01-01T23:59:59.000Z

    Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water...

  8. Cooling Towers, Energy Conservation Strategies

    E-Print Network [OSTI]

    Burger, R.

    1983-01-01T23:59:59.000Z

    system. While our engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified...

  9. A Successful Cool Storage Rate 

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's ...

  10. A Successful Cool Storage Rate

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air...

  11. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  12. Turbine airfoil with controlled area cooling arrangement

    DOE Patents [OSTI]

    Liang, George

    2010-04-27T23:59:59.000Z

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  13. Cooling the dark energy camera instrument

    SciTech Connect (OSTI)

    Schmitt, R.L.; Cease, H.; /Fermilab; DePoy, D.; /Ohio State U.; Diehl, H.T.; Estrada, J.; Flaugher, B.; /Fermilab; Kuhlmann, S.; /Ohio State U.; Onal, Birce; Stefanik, A.; /Fermilab

    2008-06-01T23:59:59.000Z

    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been used when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.

  14. Cool Roofs: Your Questions Answered

    Broader source: Energy.gov [DOE]

    When Secretary Chu announced that the Department of Energy had installed a “cool roof” atop the west building of our Washington, DC headquarters, it elicited a fair number of questions from his Facebook fans. We decided to reach out to the people behind the project for their insight on the specific benefits of switching to a cool roof, and the process that went into making that choice.

  15. Cooling Techniques for Trapped Ions

    E-Print Network [OSTI]

    Daniel M. Segal; Christof Wunderlich

    2014-09-24T23:59:59.000Z

    This book chapter gives an introduction to, and an overview of, methods for cooling trapped ions. The main addressees are researchers entering the field. It is not intended as a comprehensive survey and historical account of the extensive literature on this topic. We present the physical ideas behind several cooling schemes, outline their mathematical description, and point to relevant literature useful for a more in-depth study of this topic.

  16. Quantum limit of photothermal cooling

    E-Print Network [OSTI]

    Simone De Liberato; Neill Lambert; Franco Nori

    2010-11-30T23:59:59.000Z

    We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

  17. A Computer Program Predicting Steady-State Performance of a Nuclear Research Reactor's Cooling System

    SciTech Connect (OSTI)

    Kamel Sidi Ali [Nuclear Research Center of Birine (Algeria)

    2002-07-01T23:59:59.000Z

    The performances of a nuclear reactor are directly affected by its cooling system, especially when it uses wet towers to evacuate the heat generated in the nuclear reactor core. Failure of the cooling system can yield very serious damages to most of the components of the nuclear reactor core. In this work, a computer program simulating the thermal behavior of a nuclear research reactor's cooling system is presented. Starting from the proposed start-up data of the reactor, the program predicts the cooling capacity of the nuclear reactor while taking into account the current climate conditions and also monitors the behavior of the thermal equipment involved in this process and this for different levels of power. The proposed simulation is based on a set of heat transfer equations representing all the equipment making up the cooling system up to the nuclear reactor core. Owing to the proposed inter-connected set of equations used to predict the thermal behaviour of the system, this program allows the user to modify at will a specified parameter and study the induced resulting effects on the rest of the system. The computer program developed has been experimentally validated on an operational system generating 6.8 MW and the obtained results are in good agreement with experiment. The results produced by the program concern the capacity of the cooling system to evacuate all the heat generated in the nuclear reactor core while taking into account the current climate conditions, the determination of the optimal number of thermal equipment that need to be engaged, the monitoring of the reactor core's entry end exit temperatures as well as the temperatures of all the components of the cooling system. Moreover, the program gives all the characteristics of air at the exit of the cooling towers and the loss of water due to the cooling process. (authors)

  18. Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

    2005-04-01T23:59:59.000Z

    Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

  19. Stopping Cooling Flows with Jets

    E-Print Network [OSTI]

    Fabrizio Brighenti; William G. Mathews

    2006-01-24T23:59:59.000Z

    We describe 2D gasdynamical models of jets that carry mass as well as energy to the hot gas in galaxy clusters. These flows have many attractive attributes for solving the galaxy cluster cooling flow problem: Why the hot gas temperature and density profiles resemble cooling flows but show no spectral evidence of cooling to low temperatures. Using an approximate model for the cluster A1795, we show that mass-carrying jets can reduce the overall cooling rate to or below the low values implied by X-ray spectra. Biconical subrelativistic jets, described with several ad hoc parameters, are assumed to be activated when gas flows toward or cools near a central supermassive black hole. As the jets proceed out from the center they entrain more and more ambient gas. The jets lose internal pressure by expansion and are compressed by the ambient cluster gas, becoming rather difficult to observe. For a wide variety of initial jet parameters and several feedback scenarios the global cooling can be suppressed for many Gyrs while maintaining cluster temperature profiles similar to those observed. The intermittancy of the feedback generates multiple generations of X-ray cavities similar to those observed in the Perseus Cluster and elsewhere.

  20. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  1. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  2. Charge Separation for Muon Collider Cooling

    SciTech Connect (OSTI)

    Palmer, R.B.; Fernow; R.C.

    2011-03-28T23:59:59.000Z

    Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling. Charge separation using bent solenoids can be effective if carefully designed. Bent solenoids can generate dispersion from 'momentum drift', but can spoil emittance from 'amplitude drift'. Abrupt entry into a bent solenoid causes emittance growth, but matching using integral {lambda} lengths, or Norem's method, corrects this problem. Reverse bending removes the dispersion and reduces 'amplitude drift', but only if there is no rf until after all bending. The main problem is bunch lengthening and distortion from the long transports without rf. At 230 MeV/c, even with a higher field of 3 T, non-linearities increase the 6D emittance by 117% and give 13% loss, which is not acceptable. Raising the momentum from 230 to 300 MeV gives a 6D emittance growth of 38% and the loss 5%, which may be acceptable. Raising the momentum further to 400 MeV/c gives very good results: 6D growth of 24% and 2.5% loss. Further optimization should include the acceleration to the higher momenta prior to the separation, and the higher momentum cooling immediately after it. The longitudinal phase space prior to the separation should be rotated to minimize the total bunch lengthening.

  3. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01T23:59:59.000Z

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  4. Kampung Capacity Local Solutions for

    E-Print Network [OSTI]

    Kammen, Daniel M.

    utility customers. Using a hybrid energy resource optimization framework, we explore optimal configurationKampung Capacity Local Solutions for Sustainable Rural Energy in the Baram River Basin, Sarawak Energy Laboratory (RAEL) & Energy and Resources Group and Goldman School of Public Policy Release Date

  5. Data aggregation for capacity management

    E-Print Network [OSTI]

    Lee, Yong Woo

    2004-09-30T23:59:59.000Z

    This thesis presents a methodology for data aggregation for capacity management. It is assumed that there are a very large number of products manufactured in a company and that every product is stored in the database with its standard unit per hour...

  6. Thermal Performance of Phase Change Wallboard for Residential Cooling Application

    E-Print Network [OSTI]

    Feustel, H.E.

    2011-01-01T23:59:59.000Z

    Alternatives to the Compressor Cooling Project sponsored byAlternatives to Compressor Cooling in Residences," Energy

  7. July 25, 2006 RHIC Stochastic Cooling

    E-Print Network [OSTI]

    (abandoned at SppS and Tevatron) ­ Not part of RHIC base line design #12;July 25, 2006 Heavy ions should before (red) and after (blue) cooling, Wall Current Monitor Schottky spectrum before cooling: blue trace "hot" beam best ·Good for counteracting IBS ·Effective for tails of distribution ·E-cooling cools "cold

  8. Numerical Simulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen: finite volume method, film cooling, cooling gas injection, multiscale techniques, grid adaptation AMS@igpm.rwth-aachen.de (Thomas Gotzen) #12;Numerical simulation of cooling gas injection using adaptive multiscale techniques

  9. Muon Cooling via Ionization Andrea Kay Forget

    E-Print Network [OSTI]

    Cinabro, David

    decay, as a result of their short lives many of the known cooling techniques (electron, stochastic this cooling technique has never been used many bugs need to be worked out, such as the setup and layout for muon ionization cooling to work efficiently. I. INTRODUCTION Muons need a faster beam cooling technique

  10. ANNUAL REPORT WESTERN COOLING EFFICIENCY CENTER

    E-Print Network [OSTI]

    California at Davis, University of

    Sinks for Unitary Air Conditioners 10 Graywater Reuse for Evaporative Cooling 14 In-Home Energy Display COOLING EFFICIENCY CENTER WESTERN COOLING EFFICIENCY CENTER EXPLORING MANY OPTIONS FOR ENERGY EFFICIENCY and leadership in the field of energy efficiency. This document, the second Annual Report on Cooling in the West

  11. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    Research Applied to National Needs. EXPERIMENTAL SYSTEM A generalized system for solar heating and cooling

  12. Solar Heating & Cooling: Energy for a Secure Future

    Broader source: Energy.gov [DOE]

    Today, more than 30,000 solar heating and cooling systems (SHC) are being installed annually in the United States, employing more than 5,000 American workers from coast to coast. These numbers are good – but they can be a lot better. Installing more SHC systems would provide a huge boost to the economy and help the environment, too. This first-of-its-kind SHC roadmap, developed by a task force made up of SEIA-member companies and BEAM Engineering, lays the groundwork – as well as makes a compelling case – for driving installed SHC capacity from 9 GW thermal to 300 GW thermal by 2050.

  13. Economics of cool storage for electric load leveling

    SciTech Connect (OSTI)

    Asbury, J.G. (Argonne National Lab., IL); Dougherty, D.

    1981-01-01T23:59:59.000Z

    Equipment and methods for cold storage in commercial buildings to effect reduced summer peak load demands for electric utilities are described and the economics of this load leveling means is examined using the Potomac Electric Power Co. (PEPCO) studies and data. This examination reveals that investments in this technology can offer attractive paybacks (3 to 5 y) in new building applications. Partial storage, because of chiller-capacity savings, offers faster payback than full-storage systems. Estimates of its market potential indicate that cool storage will play an important role in PEPCO's Energy Use Management Plan. (LCL)

  14. INFRARED RADIATIVE COOLING

    E-Print Network [OSTI]

    Berdahl, Paul

    2011-01-01T23:59:59.000Z

    n a s u l f u r dioxide scrubber. Application to ZnClg/ MeOHTo f=0.50 Symbols x C 4 scrubber) Molar flow y f=0.75 H n -can be made to include the scrubber in the f i n a l design.

  15. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  16. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01T23:59:59.000Z

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  17. Metal Cooling in Simulations of Cosmic Structure Formation

    E-Print Network [OSTI]

    Britton D. Smith; Steinn Sigurdsson; Tom Abel

    2008-01-03T23:59:59.000Z

    The addition of metals to any gas can significantly alter its evolution by increasing the rate of radiative cooling. In star-forming environments, enhanced cooling can potentially lead to fragmentation and the formation of low-mass stars, where metal-free gas-clouds have been shown not to fragment. Adding metal cooling to numerical simulations has traditionally required a choice between speed and accuracy. We introduce a method that uses the sophisticated chemical network of the photoionization software, Cloudy, to include radiative cooling from a complete set of metals up to atomic number 30 (Zn) that can be used with large-scale three-dimensional hydrodynamic simulations. Our method is valid over an extremely large temperature range (10 K 10^-4 Zsun, regions of density and temperature exist where gas is both thermally unstable and has a cooling time less than its dynamical time. We identify these doubly unstable regions as the most inducive to fragmentation. At high redshifts, the CMB inhibits efficient cooling at low temperatures and, thus, reduces the size of the doubly unstable regions, making fragmentation more difficult.

  18. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect (OSTI)

    Taha, Haider; Akbari, Hashem

    2003-04-07T23:59:59.000Z

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  19. Laser cooling with ultrafast pulse trains

    E-Print Network [OSTI]

    David Kielpinski

    2003-06-14T23:59:59.000Z

    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires vacuum-ultraviolet laser light, while multielectron atoms need laser light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and carbon appears feasible, and extension of the technique to molecules may be possible.

  20. Cooling Towers--Energy Conservation Strategies 

    E-Print Network [OSTI]

    Matson, J.

    1991-01-01T23:59:59.000Z

    COOLING TOWERS -- ENERGY CONSERVATION STRATEGIES Cooling Water Optimization Dr. JACK MATSON Environmental Engg. Dept. University of Houston Houston, Texas A cooling water system can be optimized by operating the cooling tower... pressures on generating turbines and all of the good things listed above can be achieved with a well upgraded modernized cooling tower, but if minimum or no attention is paid to the water chemistry, poor performance, and loss of energy and dollar...

  1. Blowing Ratio Effects on Film Cooling Effectiveness

    E-Print Network [OSTI]

    Liu, Kuo-Chun

    2010-01-14T23:59:59.000Z

    cooling Rib turbulators Shaped internal cooling passage Trailing edge ejection Cooling air 3 Among the variety of film cooling hole designs, compound angle and shaped holes are generally considered in modern high pressure and high temperature gas turbine... ratio of 1.85. As compared to cylindrical hole, both shaped holes showed significant improved thermal protection of the surface downstream of the ejection location. Yu et al. [7] studied film cooling effectiveness and heat transfer distributions on a...

  2. The Asymptotic Cooling of Heat-Bath Algorithmic Cooling

    E-Print Network [OSTI]

    Sadegh Raeisi; Michele Mosca

    2014-12-02T23:59:59.000Z

    The purity of quantum states is a key requirement for many quantum applications. Improving the purity is limited by fundamental laws of thermodynamics. Here we are probing the fundamental limits for a natural approach to this problem, namely heat-bath algorithmic cooling(HBAC). The existence of the cooling limit for HBAC techniques was proved by Schulman et al. in, the limit however remained unknown for the past decade. Here for the first time we find this limit. In the context of quantum thermodynamics, this corresponds to the maximum extractable work from the quantum system.

  3. Method and system for powering and cooling semiconductor lasers

    DOE Patents [OSTI]

    Telford, Steven J; Ladran, Anthony S

    2014-02-25T23:59:59.000Z

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  4. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOE Patents [OSTI]

    Manthiram, Arumugam (Austin, TX); Wu, Yan (Austin, TX)

    2010-03-16T23:59:59.000Z

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  5. A better cooling water system

    SciTech Connect (OSTI)

    Gale, T.E.; Beecher, J.

    1987-12-01T23:59:59.000Z

    To prepare their newly constructed reduced crude conversion (RCC) open recirculating cooling water system for the implementation of a corrosion and deposit control water treatment program, Ashland Petroleum, Catlettsburg, Ky., made plans for and carried out precleaning and passivation procedures. Here, the authors share the results, and some potential guidelines for one's own operations. Inspection of equipment after precleaning showed that the precleaning procedures was very effective in removing undesirable matter. After precleaning and passivation of the system, the recommended cooling water treatment program was started. Corrosion rates for mild steel specimens ranged from 0.5 to 1.5 mils per year (mpy), with an average of 1.0 mpy. The corrosion rates for admiralty specimens ranged from 0.1 to 0.2 mpy. Benefits of the precleaning and passivating programs greatly outweigh the costs, since the normal cooling water treatment program for corrosion and deposit control can then operate more effectively.

  6. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

    2007-10-30T23:59:59.000Z

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  7. Single-Photon Molecular Cooling

    E-Print Network [OSTI]

    Edvardas Narevicius; S. Travis Bannerman; Mark G. Raizen

    2009-01-04T23:59:59.000Z

    We propose a general method to cool the translational motion of molecules. Our method is an extension of single photon atomic cooling which was successfully implemented in our laboratory. Requiring a single event of absorption followed by a spontaneous emission, this method circumvents the need for a cycling transition and can be applied to any paramagnetic or polar molecule. In our approach, trapped molecules would be captured near their classical turning points in an optical dipole or RF-trap following an irreversible transition process.

  8. Unparticle effects in Supernovae cooling

    E-Print Network [OSTI]

    Prasanta Kumar Das

    2007-11-08T23:59:59.000Z

    Recently H. Georgi suggested that a scale invariant unparticle ${\\mathcal{U}}$ sector with an infrared fixed point at high energy can couple with the SM matter via a higher-dimensional operator suppressed by a high cut-off scale. Intense phenomenological search of this unparticle sector in the collider and flavour physics context has already been made. Here we explore it's impact in cosmology, particularly it's possible role in the supernovae cooling. We found that the energy-loss rate (and thus the cooling) is strongly dependent on the effective scale \\LdaU and the anomalous dimension \\dU of this unparticle theory.

  9. Lamination cooling system formation method

    DOE Patents [OSTI]

    Rippel, Wally E. (Altadena, CA); Kobayashi, Daryl M. (Monrovia, CA)

    2012-06-19T23:59:59.000Z

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  10. Lamination cooling system formation method

    DOE Patents [OSTI]

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12T23:59:59.000Z

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  11. Cooling assembly for fuel cells

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Werth, John (Princeton, NJ)

    1990-01-01T23:59:59.000Z

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  12. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  13. ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.

    SciTech Connect (OSTI)

    FERNOW,R.C.

    1999-03-25T23:59:59.000Z

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

  14. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation and CoolCalc HVAC Tool Development 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  15. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

  16. Progress on Design and Construction of a MuCool Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, L.; Liu, Xiao Kun; Xu, FengYu; Li, S.; Pan, Heng; Wu, Hong; Guo, Xinglong; Zheng, ShiXian; Li, Derun; Virostek, Steve; Zisman, Mike; Green, M.A.

    2010-06-28T23:59:59.000Z

    The MuCool program undertaken by the US Neutrino Factory and Muon Collider Collaboration is to study the behavior of muon ionization cooling channel components. A single superconducting coupling solenoid magnet is necessary to pursue the research and development work on the performance of high gradient, large size RF cavities immersed in magnetic field, which is one of the main challenges in the practical realization of ionization cooling of muons. The MuCool coupling magnet is to be built using commercial copper based niobium titanium conductors and cooled by two cryo-coolers with each cooling capacity of 1.5 W at 4.2 K. The solenoid magnet will be powered by using a single 300A power supply through a single pair of binary leads that are designed to carry a maximum current of 210A. The magnet is to be passively protected by cold diodes and resistors across sections of the coil and by quench back from the 6061 Al mandrel in order to lower the quench voltage and the hot spot temperature. The magnet is currently under construction. This paper presents the updated design and fabrication progress on the MuCool coupling magnet.

  17. Countries Gasoline Prices Including Taxes

    Gasoline and Diesel Fuel Update (EIA)

    Selected Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 51115 6.15 6.08 6.28 6.83 6.96 6.75 3.06 5415 6.14 6.06...

  18. Sponsorship includes: Agriculture in the

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

  19. Spiral cooled fuel nozzle

    DOE Patents [OSTI]

    Fox, Timothy; Schilp, Reinhard

    2012-09-25T23:59:59.000Z

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  20. Cooling system having reduced mass pin fins for components in a gas turbine engine

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11T23:59:59.000Z

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  1. innovati nNREL Helps Cool the Power Electronics in Electric Vehicles

    E-Print Network [OSTI]

    innovati nNREL Helps Cool the Power Electronics in Electric Vehicles Researchers at the National for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine vehicles. Widespread use of advanced electric-drive vehicles--including electric vehicles (EVs) and hybrid

  2. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago

    E-Print Network [OSTI]

    Törnqvist, Torbjörn E.

    Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago Yong cooling that can be directly linked to a well-documented freshwater source with a temporal resolution has received extensive interest for a wide range of reasons, including its potential role in a future

  3. Long-term ice storage for cooling applications

    DOE Patents [OSTI]

    Schertz, William W. (Batavia, IL)

    1981-01-01T23:59:59.000Z

    A device is providing for cooling a stored material and then for later use of the cold thus stored. The device includes a tank containing a liquid such as water which is frozen by means of a reflux condenser heat pipe.

  4. Covered Product Category: Water-Cooled Electric Chillers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  5. RF cavity using liquid dielectric for tuning and cooling

    DOE Patents [OSTI]

    Popovic, Milorad (Warrenville, IL); Johnson, Rolland P. (Newport News, VA)

    2012-04-17T23:59:59.000Z

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  6. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

    2012-06-12T23:59:59.000Z

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  7. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

    2011-09-13T23:59:59.000Z

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  8. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

    2012-06-26T23:59:59.000Z

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  9. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  10. Annual Simulation Results for an Air-Cooled Binary Power Cycle Employing Flash Cooling Enhancement

    SciTech Connect (OSTI)

    Buys, A.; Gladden, C.; Kutscher, C.

    2006-01-01T23:59:59.000Z

    Objective is to perform detailed simulation of air cooled cycle with flash supplied cooling water using two types of evaporative enhancement, spray nozzels and evaporative media.

  11. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  12. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  13. Tri-Laboratory Linux Capacity Cluster 2007 SOW

    SciTech Connect (OSTI)

    Seager, M

    2007-03-22T23:59:59.000Z

    The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

  14. Engineering Design Cooling flow design

    E-Print Network [OSTI]

    McDonald, Kirk

    · Moderators 2 x H2O (0.5 L) Gd poison + Boral decoupler CH4 (0.5 L) Gd poison + Boral decoupler H2 (0.8 L) no poison + Boral decoupler · Reflector - Rods of Beryllium (D2O cooled) · 17 Neutron Beam lines Upgrade

  15. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24T23:59:59.000Z

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  16. Solar Roof Cooling by Evaporation

    E-Print Network [OSTI]

    Patterson, G. V.

    1981-01-01T23:59:59.000Z

    It is generally recognized that as much as 60% of the air conditioning load in a building is generated by solar heat from the roof. This paper on SOLAR ROOF COOLING BY EVAPORATION is presented in slide form, tracing the history of 'nature's way...

  17. Heating and Cooling Equipment Selection

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

  18. Cooling Flows or Heating Flows?

    E-Print Network [OSTI]

    James Binney

    2003-10-08T23:59:59.000Z

    It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

  19. Study of parameters affecting the performance of solar desiccant cooling systems

    SciTech Connect (OSTI)

    Pesaran, A.A.; Hoo, E.A.

    1993-01-01T23:59:59.000Z

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65[degree]C to 160[degree]C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  20. Study of parameters affecting the performance of solar desiccant cooling systems

    SciTech Connect (OSTI)

    Pesaran, A.A.; Hoo, E.A.

    1993-01-01T23:59:59.000Z

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65{degree}C to 160{degree}C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  1. Capacity expansion in contemporary telecommunication networks

    E-Print Network [OSTI]

    Sivaraman, Raghavendran

    2007-01-01T23:59:59.000Z

    We study three capacity expansion problems in contemporary long distance telecommunication networks. The first two problems, motivated by a major long distance provider, address capacity expansion in national hybrid long ...

  2. Neural substrates of cognitive capacity limitations

    E-Print Network [OSTI]

    Buschman, Tim

    Cognition has a severely limited capacity: Adult humans can retain only about four items “in mind”. This limitation is fundamental to human brain function: Individual capacity is highly correlated with intelligence measures ...

  3. FURTHER EXPERIMENTS IN FISHWAY CAPACITY, 1957

    E-Print Network [OSTI]

    capacity trials 7 Maximum entry and exit 7 Entry capacity 8 Maximum number of fish present in the fishway 8 on 16 and a mean depth of 6. 3 feet. Maximum observed entry and exit of salmonids are discussed

  4. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30T23:59:59.000Z

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  5. Beam Cooling with ionisation losses

    E-Print Network [OSTI]

    C. Rubbia; A. Ferrari; Y. Kadi; V. Vlachoudis

    2006-02-03T23:59:59.000Z

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more favourably exploited with the heavier ion colliding against a gas-jet D2 target. Kinematics is generally very favourable, with emission angles in a narrow angular cone and a relatively concentrated outgoing energy spectrum which allows an efficient collection as a neutral gas in a tiny volume with a technology at high temperatures perfected at ISOLDE. It is however of a much more general applicability. The method appears capable of producing a "table top" storage ring with an accumulation rate in excess of 10**14 Li-8 radioactive ion/s for possible use for radioactive beams for physics studies (for example for beta-beams) or for therapy.

  6. Wet-dry cooling demonstration. Test results

    SciTech Connect (OSTI)

    Allemann, R.T.; DeBellis, D.E.; Werry, E.V.; Johnson, B.M.

    1986-05-01T23:59:59.000Z

    A large-scale test of dry/wet cooling using the ammonia phase-change system, designated the Advanced Concepts Test (ACT), has been operated at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lbs/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling have been tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry cooling system, termed capacitive cooling has been tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump which rejects heat through the ACT Cooling Tower. If operated over the period of a year, each of the wet/dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  7. Voluntary Initiative: Partnering to Enhance Program Capacity...

    Energy Savers [EERE]

    to Enhance Program Capacity Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program...

  8. Doped H(2)-Filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    Yonehara, K.; Chung, M.; Jansson, A.; Hu, M.; Moretti, A.; Popovic, M.; /Fermilab; Alsharo'a, M.; Johnson, R.P.; Neubauer, M.; Sah, R.; /Muons Inc., Batavia; Rose, D.V.; /Voss Sci., Albuquerque

    2009-05-01T23:59:59.000Z

    RF cavities pressurized with hydrogen gas may provide effective muon beam ionization cooling needed for muon colliders. Recent 805 MHz test cell studies reported below include the first use of SF{sub 6} dopant to reduce the effects of the electrons that will be produced by the ionization cooling process in hydrogen or helium. Measurements of maximum gradient in the Paschen region are compared to a simulation model for a 0.01% SF{sub 6} doping of hydrogen. The observed good agreement of the model with the measurements is a prerequisite to the investigation of other dopants.

  9. Trap seal for open circuit liquid cooled turbines

    DOE Patents [OSTI]

    Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

    1980-01-01T23:59:59.000Z

    An improved trap seal for open circuit liquid cooled turbines is disclosed. The trap seal of the present invention includes an annular recess formed in the supply conduit of cooling channels formed in the airfoil of the turbine buckets. A cylindrical insert is located in the annular recesses and has a plurality of axial grooves formed along the outer periphery thereof and a central recess formed in one end thereof. The axial grooves and central recess formed in the cylindrical insert cooperate with the annular recess to define a plurality of S-shaped trap seals which permit the passage of liquid coolant but prohibit passage of gaseous coolant.

  10. The MuCool Test Area and RF Program

    SciTech Connect (OSTI)

    Torun, Y.; Huang, D.; /IIT, Chicago; Norem, J.; /Argonne; Palmer, Robert B.; Stratakis, Diktys; /Brookhaven; Bross, A.; Chung, M.; Jansson, A.; Moretti, A.; Yonehara, K.; /Fermilab; Li, D.; /LBL, Berkeley /Jefferson Lab

    2010-05-01T23:59:59.000Z

    The MuCool RF Program focuses on the study of normal conducting RF structures operating in high magnetic field for applications in muon ionization cooling for Neutrino Factories and Muon Colliders. Here we give an overview of the program, which includes a description of the test facility and its capabilities, the current test program, and the status of a cavity that can be rotated in the magnetic field, which allows for a detailed study of the maximum stable operating gradient vs. magnetic field strength and angle.

  11. The MuCool Test Area and RF Program

    SciTech Connect (OSTI)

    Bross, A D; Jansson, A; Moretti, A; Yonehara, K; Huang, D; Torun, Y; Li, D; Norem, J; Palmer, R B; Stratakis, D

    2010-05-01T23:59:59.000Z

    The MuCool RF Program focuses on the study of normal conducting RF structures operating in high magnetic field for applications in muon ionization cooling for Neutrino Factories and Muon Colliders. This paper will give an overview of the program, which will include a description of the test facility and its capabilities, the current test program, and the status of a cavity that can be rotated in the magnetic field which allows for a more detailed study of the maximum stable operating gradient vs. magnetic field strength and angle.

  12. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31T23:59:59.000Z

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  13. A comparative assessment of alternative combustion turbine inlet air cooling system

    SciTech Connect (OSTI)

    Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

    1996-02-01T23:59:59.000Z

    Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

  14. Can Science and Technology Capacity be Measured?

    E-Print Network [OSTI]

    Wagner, Caroline S; Dutta, Arindum

    2015-01-01T23:59:59.000Z

    The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

  15. Cool Colored Roofs to Save Energy and Improve Air Quality

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23T23:59:59.000Z

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  16. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofInc, Altanta,GA, 2009. Cooling load differences betweensurface level 24-hour total cooling energy between radiant

  17. Experimental Tests of Cooling: Expectations and Additional Needs

    E-Print Network [OSTI]

    Zisman, Michael S

    2008-01-01T23:59:59.000Z

    of established techniques for cooling a beam, the choice forionization cooling is a viable technique. The large initialionization cooling, so an experimental test of the technique

  18. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Embedded Radiant Heating and Cooling Systems, InternationalWATER BASED RADIANT COOLING SYSTEM DESIGN METHODS Jingjuan (Keywords: Radiant Cooling System, Design Approach,

  19. Model Predictive Control for the Operation of Building Cooling Systems

    E-Print Network [OSTI]

    Ma, Yudong

    2010-01-01T23:59:59.000Z

    storage in building cooling systems. Technical report,storage in building cooling systems. Decision and Control,for the Operation of Building Cooling Systems Yudong Ma ? ,

  20. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofof radiant heating and cooling systems versus air systems,Gain on Radiant Floor Cooling System Design, in: Proceedings

  1. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    solar powered cooling system by producing a seamless output of cooling powersolar COP is the ratio of cooling output per available solar power

  2. Sandia National Laboratories: Cool Earth Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Earth Solar Cool Earth Solar and Sandia Team Up in First-Ever Public-Private Partnership on Livermore Valley Open Campus On February 26, 2013, in Concentrating Solar Power,...

  3. IMPLEMENTATION OF ONCE-THROUGH COOLING

    E-Print Network [OSTI]

    IMPLEMENTATION OF ONCE-THROUGH COOLING MITIGATION THROUGH ENERGY INFRASTRUCTURE PLANNING AND PROCUREMENT Michael R. Jaske Electricity Supply Analysis Division California Energy Commission Dennis C ...........................................................................................................................................1 Energy Agencies' Presumptions About Once-through Cooling Mitigation

  4. Cooling Towers--Energy Conservation Strategies

    E-Print Network [OSTI]

    Matson, J.

    A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers...

  5. The NASA CSTI High Capacity Power Program

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01T23:59:59.000Z

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

  6. Cooling Flows of Self-Gravitating, Rotating, Viscous Systems

    E-Print Network [OSTI]

    Mohsen Shadmehri; Jamshid Ghanbari

    2002-04-06T23:59:59.000Z

    We obtain self-similar solutions that describe the dynamics of a self-gravitating, rotating, viscous system. We use simplifying assumptions; but explicitly include viscosity and the cooling due to the dissipation of energy. By assuming that the turbulent dissipation of energy is as power law of the density and the speed v_{rms} and for a power-law dependence of viscosity on the density, pressure, and rotational velocity, we investigate turbulent cooling flows. It has been shown that for the cylindrically and the spherically cooling flows the similarity indices are the same, and they depend only on the exponents of the dissipation rate and the viscosity model. Depending on the values of the exponents, which the mechanisms of the dissipation and viscosity determine them, we may have solutions with different general physical properties. The conservation of the total mass and the angular momentum of the system strongly depends on the mechanisms of energy dissipation and the viscosity model.

  7. Partially turbulated trailing edge cooling passages for gas turbine nozzles

    DOE Patents [OSTI]

    Thatcher, Jonathan Carl (Schenectady, NY); Burdgick, Steven Sebastian (Schenectady, NY)

    2001-01-01T23:59:59.000Z

    A plurality of passages are spaced one from the other along the length of a trailing edge of a nozzle vane in a gas turbine. The passages lie in communication with a cavity in the vane for flowing cooling air from the cavity through the passages through the tip of the trailing edge into the hot gas path. Each passage is partially turbulated and includes ribs in an aft portion thereof to provide enhanced cooling effects adjacent the tip of the trailing edge. The major portions of the passages are smooth bore. By this arrangement, reduced temperature gradients across the trailing edge metal are provided. Additionally, the inlets to each of the passages have a restriction whereby a reduced magnitude of compressor bleed discharge air is utilized for trailing edge cooling purposes.

  8. Guide to Minimizing Compress-based Cooling

    Broader source: Energy.gov [DOE]

    Guide describes best practices for reducing energy use and total-cost-of-ownership for data center cooling systems.

  9. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

    2002-01-01T23:59:59.000Z

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  10. Proceedings of the workshop on cool building materials

    SciTech Connect (OSTI)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01T23:59:59.000Z

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  11. Capacity planning in a transitional economy: What issues? Which models?

    SciTech Connect (OSTI)

    Mubayi, V.; Leigh, R.W. [Brookhaven National Lab., Upton, NY (United States); Bright, R.N. [Anylec Research, Inc., Bayport, NY (United States)

    1996-03-01T23:59:59.000Z

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example) within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.

  12. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOE Patents [OSTI]

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16T23:59:59.000Z

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  13. Berkeley Lab's Cool Your School Program

    SciTech Connect (OSTI)

    Ivan Berry

    2012-07-30T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  14. Sympathetic cooling of 9 for quantum logic

    E-Print Network [OSTI]

    Sympathetic cooling of 9 Be¿ and 24 Mg¿ for quantum logic M. D. Barrett, B. DeMarco, T. Schaetz, D, USA Received 4 June 2003; published 3 October 2003 We demonstrate the cooling of a two species ion crystal consisting of one 9 Be and one 24 Mg ion. Since the respective cooling transitions of these two

  15. Continuous Cooling Transformation (CCT) Assistant Professor

    E-Print Network [OSTI]

    Cambridge, University of

    Continuous Cooling Transformation (CCT) Diagrams R. Manna Assistant Professor Centre of Advanced.ac.uk #12;Continuous cooling transformation (CCT) diagram There are two types of CCT diagrams I) Plot and transformation finish temperature against transformation time on each cooling curve II) Plot of (for each type

  16. Electron Cooling for RHIC V. Parkhomchuk

    E-Print Network [OSTI]

    C-A/AP/47 April 2001 Electron Cooling for RHIC V. Parkhomchuk Budker Institute of Nuclear Physics I Upton, NY 11973 #12;C-A/AP/47 April 2001 Electron Cooling for RHIC V. Parkhomchuk Budker Institute National Laboratory Upton, NY 11973 #12;ELECTRON COOLING FOR RHIC Review of the Principles of Electron

  17. Laser cooling of trapped ions Jurgen Eschner

    E-Print Network [OSTI]

    Blatt, Rainer

    of the art is reported, and several new cooling techniques are outlined. The principles of ion trapping by elucidating several milestone experiments. In addition, a number of special cooling techniques pertainingLaser cooling of trapped ions Ju¨rgen Eschner Institut fu¨ r Experimentalphysik, Universita

  18. Optomechanical laser cooling with mechanical modulations

    E-Print Network [OSTI]

    Marc Bienert; Pablo Barberis-Blostein

    2014-12-15T23:59:59.000Z

    We theoretically study the laser cooling of cavity optomechanics when the mechanical resonance frequency and damping depend on time. In the regime of weak optomechanical coupling we extend the theory of laser cooling using an adiabatic approximation. We discuss the modifications of the cooling dynamics and compare it with numerical simulations in a wide range of modulation frequencies.

  19. Towards Occupancy-Driven Heating and Cooling

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Burke Parabola Architects Galen Staengl Staengl Engineering h HEATING, VENTILATION, AND cooling (HVAC required for heating, ventilation, and cooling (HVAC) by 20%­30% by tailoring the conditioning of buildingsTowards Occupancy-Driven Heating and Cooling Kamin Whitehouse, Juhi Ranjan, Jiakang Lu, Tamim

  20. A ROOFING TILE FOR NATURAL COOLING

    E-Print Network [OSTI]

    SUNGUARD: A ROOFING TILE FOR NATURAL COOLING Prepared For: California Energy Commission Energy (FAR) SUNGUARD: A ROOFING TILE FOR NATURAL COOLING EISG AWARDEE PowerLight Corporation 2954 San Pablo://www.energy.ca.gov/research/index.html. #12;Page 1 Sunguard: A Roofing Tile For Natural Cooling EISG Grant # 99-07 Awardee: Power

  1. CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT PROGRAM GUIDELINES For Wet and Hybrid Cooling Towers at Power Plants MAY 17, 2004 DRAFTGUIDELINES NOVEMBER 2005 CEC-700-2005-025 Arnold Schwarzenegger, Governor #12;2 DRAFT CALIFORNIA ENERGY COMMISSION STAFF COOLING

  2. Berkeley Lab's Cool Your School Program

    ScienceCinema (OSTI)

    Ivan Berry

    2013-06-24T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  3. Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates

    E-Print Network [OSTI]

    Feng, Jingjuan; Bauman, Fred

    2013-01-01T23:59:59.000Z

    and high temperature cooling_REHVA Guidebook, Federation ofEvaluation of cooling performance of thermally activatedsystem with evaporative cooling source for typical United

  4. Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates

    E-Print Network [OSTI]

    Feng, Jingjuan; Bauman, Fred

    2013-01-01T23:59:59.000Z

    was simulated. The radiant cooling system was an exposedcooling + radiant cooling system alone may not be able toembedded surface radiant cooling systems. Table 3 summarizes

  5. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis P August 2002 Abstract A complete capacity fade analysis was carried out for Sony 18650 cells cycled the other losses. # 2002 Elsevier Science B.V. All rights reserved. Keywords: Capacity fade; Sony 18650

  6. Internally-cooled centrifugal compressor with cooling jacket formed in the diaphragm

    DOE Patents [OSTI]

    Moore, James J.; Lerche, Andrew H.; Moreland, Brian S.

    2014-08-26T23:59:59.000Z

    An internally-cooled centrifugal compressor having a shaped casing and a diaphragm disposed within the shaped casing having a gas side and a coolant side so that heat from a gas flowing though the gas side is extracted via the coolant side. An impeller disposed within the diaphragm has a stage inlet on one side and a stage outlet for delivering a pressurized gas to a downstream connection. The coolant side of the diaphragm includes at least one passageway for directing a coolant in a substantially counter-flow direction from the flow of gas through the gas side.

  7. Chapter 44. Cooling and Trapping Neutral Atoms Cooling and Trapping Neutral Atoms

    E-Print Network [OSTI]

    transition. This year, we made progress in developing novel detection and cooling techniques. 1. SpinChapter 44. Cooling and Trapping Neutral Atoms 44-1 Cooling and Trapping Neutral Atoms RLE Groups in optical lattices. Additional cooling methods will be needed to reach this very interesting temperature

  8. GentleCool: Cooling Aware Proactive Workload Scheduling in Multi-Machine Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    GentleCool: Cooling Aware Proactive Workload Scheduling in Multi-Machine Systems Raid Ayoub characteristics of the workload running on the system. We propose a scheduling framework called GentleCool, a proactive multi-tier approach for significantly lowering the fan cooling costs in highly utilized systems

  9. Air cooling for Vertex Detectors

    E-Print Network [OSTI]

    Arantza Oyanguren

    2012-02-28T23:59:59.000Z

    The vertex detectors are crucial detectors for future linear e+e- colliders since they must give the most accurate location of any outgoing charged particles originating from the interaction point. The DEPFET collaboration is developing a new type of pixel sensors which provide very low noise and high spatial resolution. In order to precisely determine the track and vertex positions, multiple scattering in the detector has to be reduced by minimizing the material in the sensors, cooling, and support structures. A new method of cooling by blowing air over the sensors has been developed and tested. It is applied in the design and construction of the Belle-II detector and may be used in the new generation of vertex detectors for linear colliders.

  10. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  11. Structural stability of cooling flows

    E-Print Network [OSTI]

    Henrik Omma; James Binney

    2003-12-31T23:59:59.000Z

    Three-dimensional hydrodynamical simulations are used to investigate the structural stability of cooling flows that are episodically heated by jets from a central AGN. The radial profile of energy deposition is controlled by (a) the power of the jets, and (b) the pre-outburst density profile. A delay in the ignition of the jets causes more powerful jets to impact on a more centrally concentrated medium. The net effect is a sufficient increase in the central concentration of energy deposition to cause the post-outburst density profile to be less centrally concentrated than that of an identical cluster in which the outburst happened earlier and was weaker. These results suggest that the density profiles of cooling flows oscillate around an attracting profile, thus explaining why cooling flows are observed to have similar density profiles. The possibility is raised that powerful FR II systems are ones in which this feedback mechanism has broken down and a runaway growth of the source parameters has occurred.

  12. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, Daniel L. (Oakley, CA); Arnold, Phillip A. (Livermore, CA); Ball, Don G. (Livermore, CA); Cook, Edward G. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  13. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05T23:59:59.000Z

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  14. Daylighting Design Tools in Atria for Minimum Cooling Loads in Atrium Buildings

    E-Print Network [OSTI]

    Atif, M. R.; Boyer, L. L.; Degelman, L. O.; Claridge, D. E.

    The daylighting and sunlighting value of an atrium are considered the main reasons for including the atrium use in the built environment. However, most atria today are either overlit, which causes tremendous cooling loads, or underlit, requiring...

  15. Field Validation of the ASHRAI Transfer Function Method for Calculating Cooling Load

    E-Print Network [OSTI]

    Braud, H. J.; Quille, T.; Shih, J. C.

    1988-01-01T23:59:59.000Z

    had a calibrated, thermostatically controlled window air conditioning unit and two south-facing windows. The study included a parametric analysis of the thermostat setpoint and fenestration load effect on space heat extraction rate and cooling energy...

  16. Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.

    2006-01-01T23:59:59.000Z

    With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam...

  17. Algorithmic Cooling in Liquid State NMR

    E-Print Network [OSTI]

    Yosi Atia; Yuval Elias; Tal Mor; Yossi Weinstein

    2014-11-17T23:59:59.000Z

    Algorithmic cooling is a method that employs thermalization to increase the qubits' purification level, namely it reduces the qubit-system's entropy. We utilized gradient ascent pulse engineering (GRAPE), an optimal control algorithm, to implement algorithmic cooling in liquid state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of 13C2-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. For example, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic resonance spectroscopy.

  18. Passive containment cooling water distribution device

    DOE Patents [OSTI]

    Conway, Lawrence E. (Hookstown, PA); Fanto, Susan V. (Plum Borough, PA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  19. Great Lakes ports coal handling capacity and export coal potential

    SciTech Connect (OSTI)

    Ames, A.H. Jr.

    1981-02-01T23:59:59.000Z

    This study was developed to determine the competitive position of the Great Lakes Region coal-loading ports in relation to other US coastal ranges. Due to the congestion at some US Atlantic coastal ports US coal producers have indicated a need for alternative export routes, including the Great Lakes-St. Lawrence Seaway System. The study assesses the regions coal handling capacity and price competitiveness along with the opportunity for increased US flag vessel service. A number of appendices are included showing major coal producers, railroad marketing representatives, US vessel operators, and port handling capacities and throughput. A rate analysis is provided including coal price at the mine, rail rate to port, port handling charges, water transportation rates to western Europe, Great Lakes route versus the US Atlantic Coast ports.

  20. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

    1992-01-01T23:59:59.000Z

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  1. Device for cooling and humidifying reformate

    DOE Patents [OSTI]

    Zhao, Jian Lian (Belmont, MA); Northrop, William F. (Ann Arbor, MI)

    2008-04-08T23:59:59.000Z

    Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

  2. Emissions-critical charge cooling using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15T23:59:59.000Z

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  3. Resolved Sideband Cooling of a Micromechanical Oscillator

    E-Print Network [OSTI]

    A. Schliesser; R. Rivière; G. Anetsberger; O. Arcizet; T. J. Kippenberg

    2007-09-26T23:59:59.000Z

    Micro- and nanoscale opto-mechanical systems provide radiation pressure coupling of optical and mechanical degree of freedom and are actively pursued for their ability to explore quantum mechanical phenomena of macroscopic objects. Many of these investigations require preparation of the mechanical system in or close to its quantum ground state. Remarkable progress in ground state cooling has been achieved for trapped ions and atoms confined in optical lattices. Imperative to this progress has been the technique of resolved sideband cooling, which allows overcoming the inherent temperature limit of Doppler cooling and necessitates a harmonic trapping frequency which exceeds the atomic species' transition rate. The recent advent of cavity back-action cooling of mechanical oscillators by radiation pressure has followed a similar path with Doppler-type cooling being demonstrated, but lacking inherently the ability to attain ground state cooling as recently predicted. Here we demonstrate for the first time resolved sideband cooling of a mechanical oscillator. By pumping the first lower sideband of an optical microcavity, whose decay rate is more than twenty times smaller than the eigen-frequency of the associated mechanical oscillator, cooling rates above 1.5 MHz are attained. Direct spectroscopy of the motional sidebands reveals 40-fold suppression of motional increasing processes, which could enable reaching phonon occupancies well below unity (cooling as reported here should find widespread use in opto-mechanical cooling experiments. Apart from ground state cooling, this regime allows realization of motion measurement with an accuracy exceeding the standard quantum limit.

  4. Study of thermosiphon cooling scheme for the production solenoid of the Mu2e experiment at Fermilab

    SciTech Connect (OSTI)

    Dhanaraj, N.; Kashikhin, V.; Peterson, T.; Pronskikh, V.; Nicol, T. [Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510 (United States)

    2014-01-29T23:59:59.000Z

    A thermosiphon cooling scheme is envisioned for the Production Solenoid of the Mu2e experiment at Fermi National Accelerator Laboratory. The thermosiphon cooling is achieved by indirect cooling with helium at 4.7 K. The siphon tubes are welded to the solenoid outer structure. The anticipated heat loads in the solenoid is presented as well as the cooling scheme design. A thermal model using ANSYS to simulate the temperature gradient is presented. The thermal analysis also makes provisions for including the heat load generated in the coils and structures by the secondary radiation simulated using the MARS 15 code. The impact of the heat loads from supports on the solenoid cooling is studied. The thermosiphon cooling scheme is also validated using pertinent correlations to study flow reversals and the cooling regime.

  5. Disaggregating Cooling Energy Use of Commercial Buildings Into Sensible and Latent Fractions From Whole-Building Monitored Data: Methodology and Advantages

    E-Print Network [OSTI]

    Katipamula, S.; Reddy, T. A.; Claridge, D. E.

    In hot and humid climates, where summers are both warm and humid, the latent cooling can be a significant portion of the total cooling load (as much as 40%). Typically the monitored data only includes whole-building heating and cooling energy use...

  6. Passive-solar-cooling system concepts for small office buildings. Final report

    SciTech Connect (OSTI)

    Whiddon, W.I.; Hart, G.K.

    1983-02-01T23:59:59.000Z

    This report summarizes the efforts of a small group of building design professionals and energy analysis experts to develop passive solar cooling concepts including first cost estimates for small office buildings. Two design teams were brought together at each of two workshops held in the fall of 1982. Each team included an architect, mechanical engineer, structural engineer, and energy analysis expert. This report presents the passive cooling system concepts resulting from the workshops. It summarizes the design problems, solutions and first-cost estimates relating to each technology considered, and documents the research needs identified by the participants in attempting to implement the various technologies in an actual building design. Each design problem presented at the workshops was based on the reference (base case) small office building analyzed as part of LBL's Cooling Assessment. Chapter II summarizes the thermal performance, physical specifications and estimated first-costs of the base case design developed for this work. Chapters III - VI describe the passive cooling system concepts developed for each technology: beam daylighting; mass with night ventilation; evaporative cooling; and integrated passive cooling systems. The final Chapters, VII and VIII present the preliminary implications for economics of passive cooling technologies (based on review of the design concepts) and recommendations of workshop participants for future research in passive cooling for commercial buildings. Appendices provide backup information on each chapter as indicated.

  7. Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint

    SciTech Connect (OSTI)

    Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

    2008-07-01T23:59:59.000Z

    Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

  8. Progress on Superconducting Magnets for the MICE Cooling Channel

    E-Print Network [OSTI]

    Green, Michael A

    2010-01-01T23:59:59.000Z

    the MICE cooling channel magnets and the progress in theProgress on the Superconducting Magnets for the MICE Cooling

  9. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates 

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01T23:59:59.000Z

    between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

  10. Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling

    E-Print Network [OSTI]

    Weijo, R. O.; and Brown, D. R.

    1988-01-01T23:59:59.000Z

    use, which occur on hot summer days for summer peaking utilities. Cool storage technology, developed for both commercial and residential applications, is one solution to meeting peak power needs. Demand for this technology is derived from... utilities' hesitancy to pay the extremely high-capacity costs (per kW) required to generate electricity for use at peak periods. This technology does not save energy--it merely shifts its use to a time when residential, commercial, and industrial demand...

  11. Comparison of Software Models for Energy Savings from Cool Roofs

    SciTech Connect (OSTI)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01T23:59:59.000Z

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  12. CoolEarth formerly Cool Earth Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Exploration Technique:Illinois: EnergyRoofCoolEarth

  13. New Cool Roof Coatings and Affordable Cool Color Asphalt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNew Catalytic ConversionNew Cool Roof

  14. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    E-Print Network [OSTI]

    Akbari, Hashem

    2010-01-01T23:59:59.000Z

    cooling load from cool roofs. While important, the annual CO2008. Evolution of cool roof standards in the United States.2005. “Cool Colored Roofs to Save Energy and Improve Air

  15. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27T23:59:59.000Z

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

  16. An assessment of desiccant cooling and dehumidification technology

    SciTech Connect (OSTI)

    Mei, V.C.; Chen, F.C. (Oak Ridge National Lab., TN (United States)); Lavan, Z. (Illinois Inst. of Tech., Chicago, IL (United States)); Collier, R.K. Jr. (Collier Engineering Services, Merritt Island, FL (United States)); Meckler, G. (Gershon Meckler Associates, P.C., Herndon, VA (United States))

    1992-07-01T23:59:59.000Z

    Desiccant systems are heat-actuated cooling and dehumidification technology. With the recent advances in this technology, desiccant systems can now achieve a primary energy coefficient of performance (COP) between 1.3 and 1.5, with potential to go to 1.7 and higher. It is becoming one of the most promising alternatives to conventional cooling systems. Two important and well-known advantages of desiccant cooling systems are that they are CFC free and they can reduce the electricity peak load. Another important but lesser-known advantage of desiccant technology is its potential for energy conservation. The energy impact study in this report indicated that a possible 13% energy saving in residential cooling and 8% in commercial cooling is possible. Great energy saving potential also exists in the industrial sector if industrial waste heat can be used for desiccant regeneration. The latest study on desiccant-integrated building heating, ventilating, and air conditioning (HVAC) systems indicated that the initial cost for the conventional cooling equipment was greatly reduced by using desiccant technology because of downsized compressors, fans, and ductworks. This cost reduction was more than enough to offset the cost of desiccant equipment. Besides, the system operation cost was also reduced. All these indicate that desiccant systems are also cost effective. This study provides an updated state-of-the-art assessment forsiccant technology in the field of desiccant materials, systems, computer models, and theoretical analyses. From this information the technology options were derived and the future research and development needs were identified. Because desiccant technology has already been applied in the commercial building sector with very encouraging results, it is expected that future market breakthroughs will probably start in this sector. A market analysis for the commercial building application is therefore included.

  17. Effectiveness of Cool Roof Coatings with Ceramic Particles

    SciTech Connect (OSTI)

    Brehob, Ellen G [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Atchley, Jerald Allen [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using a portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.

  18. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  19. Increasing water holding capacity for irrigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

  20. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action...

  1. Cool Roofs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex(GC-72) |Reserve |Sadesh Sookraj, EVPGoldContentsCool

  2. Cool Roofs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010Conferencing andContacts for Services»Cool

  3. Feasibility report on alternative methods for cooling cavern oils at the U.S. Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Levin, Bruce L.; Lord, David L.; Hadgu, Teklu

    2005-06-01T23:59:59.000Z

    Oil caverns at the U.S. Strategic Petroleum Reserve (SPR) are subjected to geothermal heating from the surrounding domal salt. This process raises the temperature of the crude oil from around 75 F upon delivery to SPR to as high as 130 F after decades of storage. While this temperature regime is adequate for long-term storage, it poses challenges for offsite delivery, with warm oil evolving gases that pose handling and safety problems. SPR installed high-capacity oil coolers in the mid-1990's to mitigate the emissions problem by lowering the oil delivery temperature. These heat exchanger units use incoming raw water as the cooling fluid, and operate only during a drawdown event where incoming water displaces the outgoing oil. The design criteria for the heat exchangers are to deliver oil at 100 F or less under all drawdown conditions. Increasing crude oil vapor pressures due in part to methane intrusion in the caverns is threatening to produce sufficient emissions at or near 100 F to cause the cooled oil to violate delivery requirements. This impending problem has initiated discussion and analysis of alternative cooling methods to bring the oil temperature even lower than the original design basis of 100 F. For the study described in this report, two alternative cooling methods were explored: (1) cooling during a limited drawdown, and (2) cooling during a degas operation. Both methods employ the heat exchangers currently in place, and do not require extra equipment. An analysis was run using two heat transfer models, HEATEX, and CaveMan, both developed at Sandia National Laboratories. For cooling during a limited drawdown, the cooling water flowrate through the coolers was varied from 1:1 water:oil to about 3:1, with an increased cooling capacity of about 3-7 F for the test cavern Bryan Mound 108 depending upon seasonal temperature effects. For cooling in conjunction with a degas operation in the winter, cavern oil temperatures for the test cavern Big Hill 102 were cooled sufficiently that the cavern required about 9 years to return to the temperature prior to degas. Upon reviewing these results, the authors recommended to the U.S. Department of Energy that a broader study of the cooling during degas be pursued in order to examine the potential benefits of cooling on all caverns in the current degasification schedule.

  4. Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects

    SciTech Connect (OSTI)

    K.A. Gschneidner, Jr; V.K. Pecharsky'

    2008-05-01T23:59:59.000Z

    The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic cooling is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.

  5. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect (OSTI)

    Berry, Jan [ORNL] [ORNL; Ferrada, Juan J [ORNL] [ORNL; Curd, Warren [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Dell Orco, Dr. Giovanni [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Barabash, Vladimir [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Kim, Seokho H [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.

  6. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOE Patents [OSTI]

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08T23:59:59.000Z

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  7. Surface Power Radiative Cooling Tests

    SciTech Connect (OSTI)

    Vaughn, Jason; Schneider, Todd [Environmental Effects Branch, EM50, NASA Marshall Space Flight Center, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. {approx}5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  8. MEIC Electron Cooling Simulation Using Betacool

    SciTech Connect (OSTI)

    Zhang, He [JLAB; Zhang, Yuhong [JLAB

    2013-12-01T23:59:59.000Z

    Electron cooling of ion beams is the most critical R&D issue in Jefferson Lab's MEIC design. In the ion collider ring, a bunched electron beam driven by an energy-recovery SRF linac assisted by a circulate ring will be employed to cool protons or ions with energies up to 100 GeV/u, a parameter regime that electron cooling has never been applied. It is essential to understand how efficient the electron cooling is, particularly in the high energy range, to confirm the feasibility of the design. Electron cooling is also important in LEIC design although the ion energy is 25 GeV/u, lower than MEIC. In this paper, we will present first results of the simulation studies of electron cooling processes in the collider ring of both MEIC and LEIC using BETACOOL code.

  9. Cooling of Kilauea Iki lava lake

    SciTech Connect (OSTI)

    Hills, R.G.

    1982-02-01T23:59:59.000Z

    In 1959 Kilauea Iki erupted leaving a 110 to 120 m lake of molten lava in its crater. The resulting lava lake has provided a unique opportunity to study the cooling dynamics of a molten body and its associated hydrothermal system. Field measurements taken at Kilauea Iki indicate that the hydrothermal system above the cooling magma body goes through several stages, some of which are well modeled analytically. Field measurements also indicate that during most of the solidification period of the lake, cooling from above is controlled by 2-phase convection while conduction dominates the cooling of the lake from below. A summary of the field work related to the study of the cooling dynamics of Kilauea Iki is presented. Quantitative and qualitative cooling models for the lake are discussed.

  10. Cooling and control of a cavity opto-electromechanical system

    E-Print Network [OSTI]

    Lee, Kwan H; Harris, Glen I; Knittel, Joachim; Bowen, Warwick P

    2009-01-01T23:59:59.000Z

    Mechanical oscillators provide a quintessential example of the profound difference between quantum and classical behaviour. However, the quantum regime is yet to be observed. Rapid progress is underway in cavity optomechanical systems (COMS) and nanoelectromechanical systems (NEMS). COMS have superior mechanical transduction sensitivity, able to resolve mechanical zero-point fluctuations. However, the electrical actuation of NEMS provides far greater scope for quantum control. By combining electrical gradient forces from NEMS with the ultrasensitive transduction from COMS, we implement a cavity optoelectromechanical system (COEMS), demonstrating both control and feedback cooling capabilities. Out-of-loop mechanical transduction provides, for the first time, independent temperature verification even when opto-mechanical correlations exist due to strong interactions such as measurement backaction. This technology has significance in fundamental science, improving our capacity to engineer mechanical quantum syst...

  11. Temporary Losses of Highway Capacity and Impacts on Performance: Phase 2

    SciTech Connect (OSTI)

    Chin, S.M.

    2004-11-10T23:59:59.000Z

    Traffic congestion and its impacts significantly affect the nation's economic performance and the public's quality of life. In most urban areas, travel demand routinely exceeds highway capacity during peak periods. In addition, events such as crashes, vehicle breakdowns, work zones, adverse weather, railroad crossings, large trucks loading/unloading in urban areas, and other factors such as toll collection facilities and sub-optimal signal timing cause temporary capacity losses, often worsening the conditions on already congested highway networks. The impacts of these temporary capacity losses include delay, reduced mobility, and reduced reliability of the highway system. They can also cause drivers to re-route or reschedule trips. Such information is vital to formulating sound public policies for the highway infrastructure and its operation. In response to this need, Oak Ridge National Laboratory, sponsored by the Federal Highway Administration (FHWA), made an initial attempt to provide nationwide estimates of the capacity losses and delay caused by temporary capacity-reducing events (Chin et al. 2002). This study, called the Temporary Loss of Capacity (TLC) study, estimated capacity loss and delay on freeways and principal arterials resulting from fatal and non-fatal crashes, vehicle breakdowns, and adverse weather, including snow, ice, and fog. In addition, it estimated capacity loss and delay caused by sub-optimal signal timing at intersections on principal arterials. It also included rough estimates of capacity loss and delay on Interstates due to highway construction and maintenance work zones. Capacity loss and delay were estimated for calendar year 1999, except for work zone estimates, which were estimated for May 2001 to May 2002 due to data availability limitations. Prior to the first phase of this study, which was completed in May of 2002, no nationwide estimates of temporary losses of highway capacity by type of capacity-reducing event had been made. This report describes the second phase of the TLC study (TLC2). TLC2 improves upon the first study by expanding the scope to include delays from rain, toll collection facilities, railroad crossings, and commercial truck pickup and delivery (PUD) activities in urban areas. It includes estimates of work zone capacity loss and delay for all freeways and principal arterials, rather than for Interstates only. It also includes improved estimates of delays caused by fog, snow, and ice, which are based on data not available during the initial phase of the study. Finally, computational errors involving crash and breakdown delay in the original TLC report are corrected.

  12. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05T23:59:59.000Z

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  13. Managing nuclear predominant generating capacity

    SciTech Connect (OSTI)

    Bouget, Y.H.; Herbin, H.C.; Carbonnier, D.

    1998-07-01T23:59:59.000Z

    The most common belief, associated with nuclear power plant, leads to the conclusion that it can only operate, as a base load plant. This observation can be reversed, by just looking at large generating capacity, using an important nuclear generation mix. Nuclear plants may certainly load follow and contribute to the grid frequency control. The French example illustrates these possibilities. The reactor control of French units has been customized to accommodate the grid requests. Managing such a large nuclear plant fleet requires various actions be taken, ranging from a daily to a multi-annual perspective. The paper describes the various contributions leading to safe, reliable, well accepted and cost competitive nuclear plants in France. The combination of all aspects related to operations, maintenance scheduling, nuclear safety management, are presented. The use of PWR units carries considerable weight in economic terms, with several hundred million francs tied in with outage scheduling every year. This necessitates a global view of the entire generating system which can be mobilized to meet demand. There is considerable interaction between units as, on the one hand, they are competing to satisfy the same need, and, on the other hand, reducing maintenance costs means sharing the necessary resources, and thus a coordinated staggering of outages. In addition, nuclear fuel is an energy reserve which remains in the reactor for 3 or 4 years, with some of the fuel renewed each year. Due to the memory effect, the fuel retains a memory of past use, so that today's choices impact upon the future. A medium-term view of fuel management is also necessary.

  14. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

    1981-01-01T23:59:59.000Z

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  15. Mechanically-reattachable liquid-cooled cooling apparatus

    DOE Patents [OSTI]

    Arney, Susanne; Cheng, Jen-Hau; Kolodner, Paul R; Kota-Venkata, Krishna-Murty; Scofield, William; Salamon, Todd R; Simon, Maria E

    2013-09-24T23:59:59.000Z

    An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.

  16. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    SciTech Connect (OSTI)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10T23:59:59.000Z

    To develop the understanding and predictive measures of the post “loss of water inventory” hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  17. Long Range Interactions With Laser Cooled Neutral Atoms

    SciTech Connect (OSTI)

    Gattobigio, Giovanni Luca [Institut Non Lineaire de Nice, Universite de Nice-Sophia-Antipolis, CNRS UMR 661, 1361, route des Lucioles 06560 Valbonne France (France); Dipartimento di Fisica dell'Universita di Ferrara, 44100 Ferrara (Italy); Michaud, Franck; Labeyrie, Guillaume; Kaiser, Robin [Institut Non Lineaire de Nice, Universite de Nice-Sophia-Antipolis, CNRS UMR 661, 1361, route des Lucioles 06560 Valbonne (France); Loureiro, Jorge; Mendonca, Jose Tito; Tercas, Hugo [Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Pohl, Thomas [ITAMP, 60 Garden Street, Cambridge, MA 02138 (United States)

    2008-09-07T23:59:59.000Z

    Multiple scattering of light in a trap of laser cooled neutral atoms leads to repulsion forces between the atoms. The corresponding interactions have long range behavior in 1/r{sup 2} and are thus similar to Coulomb interaction in an one component confined plasma. Consequences of these interactions will be described in this paper, including the limitation of the spatial density one can obtain in such systems and self-sustained oscillations of the cloud.

  18. Bore tube assembly for steam cooling a turbine rotor

    DOE Patents [OSTI]

    DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  19. Mitochondrial Respiratory Capacity Is a Critical Regulator

    E-Print Network [OSTI]

    respiratory capacity (SRC). SRC is the extra capacity available in cells to produce energy in response. In response to antigen (Ag) and costimulation, CD8+ T cells undergo a developmental program characterized- ating in response to Ag, it is thought that quiescent T cells (e.g., naive and memory T cells), like

  20. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30T23:59:59.000Z

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.