National Library of Energy BETA

Sample records for includes commercial sector

  1. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  2. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  3. Model Documentation Report: Commercial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  4. Gas conversion opportunities in LILCO's commercial sector

    SciTech Connect (OSTI)

    Pierce, B.

    1993-03-01

    This report presents the results of a preliminary investigation into opportunities for gas conservation in Long Island Lighting Company's commercial sector. It focusses on gas-fired heating equipment. Various sources of data are examined in order to characterize the commercial buildings and equipment in the service territory. Several key pieces of information necessary to predict savings potential are identified. These include the efficiencies and size distribution of existing equipment. Twenty-one specific conservation measures are identified and their applicability is discussed in terms of equipment size. Recommendations include improving the characterization of existing buildings and equipment, and developing a greater understanding of the savings and costs of conservation measures, and their interactions, especially in the middle size range of buildings and equipment.

  5. LED Site Lighting in the Commercial Building Sector: Opportunities...

    Energy Savers [EERE]

    Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification LED Site Lighting in the Commercial Building Sector: ...

  6. Commercial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  7. LED Site Lighting in the Commercial Building Sector: Opportunities,

    Energy Savers [EERE]

    Challenges, and the CBEA Performance Specification | Department of Energy Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification This March 26, 2009 webcast presented information about the Commercial Building Energy Alliances' (CBEA) efforts to explore the viability of LED site lighting in commercial parking lots.

  8. Gas conversion opportunities in LILCO`s commercial sector

    SciTech Connect (OSTI)

    Pierce, B.

    1993-03-01

    This report presents the results of a preliminary investigation into opportunities for gas conservation in Long Island Lighting Company`s commercial sector. It focusses on gas-fired heating equipment. Various sources of data are examined in order to characterize the commercial buildings and equipment in the service territory. Several key pieces of information necessary to predict savings potential are identified. These include the efficiencies and size distribution of existing equipment. Twenty-one specific conservation measures are identified and their applicability is discussed in terms of equipment size. Recommendations include improving the characterization of existing buildings and equipment, and developing a greater understanding of the savings and costs of conservation measures, and their interactions, especially in the middle size range of buildings and equipment.

  9. Commercial Buildings Sector Agent-Based Model | Open Energy Informatio...

    Open Energy Info (EERE)

    OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US...

  10. DOE Technology Commercialization Fund Kicks Off New Private Sector Outreach

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Technology Commercialization Fund (TCF) is underway in its inaugural year of operation.  This week, the DOE kicked off a new round of private sector outreach...

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  12. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2

  13. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  15. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  16. EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for DOE's Bonneville Power Administration to use several diverse approaches to purchase or acquire energy savings from commercial sector...

  17. DOE/EIA-M066(2010) Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  18. DOE/EIA-M066(2009) Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  19. Conversion of geothermal waste to commercial products including silica

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow S.

    2003-01-01

    A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.

  20. Impact of post-event avoidance behavior on commercial facilities sector venues-literature review.

    SciTech Connect (OSTI)

    Samsa, M. E.; Baldwin, T. E.; Berry, M. S.; Guzowski, L. B.; Martinez-Moyano, I.; Nieves, A. L.; Ramarasad, A.

    2011-03-24

    The terrorist attacks of September 11, 2001 (9/11), focused a great deal of interest and concern on how individual and social perceptions of risk change behavior and subsequently affect commercial sector venues. Argonne conducted a review of the literature to identify studies that quantify the direct and indirect economic consequences of avoidance behaviors that result from terrorist attacks. Despite a growing amount of literature addressing terrorism impacts, relatively little is known about the causal relationships between risk perception, human avoidance behaviors, and the economic effects on commercial venues. Nevertheless, the technical and academic literature does provide some evidence, both directly and by inference, of the level and duration of post-event avoidance behaviors on commercial venues. Key findings are summarized in this Executive Summary. Also included as an appendix is a more detailed summary table of literature findings reproduced from the full report.

  1. Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 This report defines the opportunity for CHP in three specific commercial building market segments: smaller educational facilities, smaller healthcare facilities, and data centers/server farms/telecom switching centers. Major issues affecting each of these markets are explored in the report in detail to provide guidance on the

  2. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs

  3. Commercial Sector Financing Needs and Opportunities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A conceptual vapor-compression cycle design (left of storage tanks) for the commercial integrated heat pump, as well as a conceptual representation of how this packaged rooftop unit would integrate with the water heating system of a commercial building (solar water heater optional). Image credit: Oak Ridge National Laboratory. A conceptual vapor-compression cycle design (left of storage tanks) for the commercial integrated heat pump, as well as a conceptual representation of how this packaged

  4. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    5 Commercial Building Size, as of 2003 (Number of Buildings and Percent of Total Floorspace) Square Foot Range Number of Buildings (thousands) 1,001 to 5,000 10% 5,001 to 10,000 10% 10,001 to 25,000 18% 25,001 to 50,000 13% 50,001 to 100,000 14% 100,001 to 200,000 (1) 14% 200,001 to 500,000 10% Over 500,000 11% Total 100% Note(s): Source(s): 26 8 4,859 1) 35% of commercial floorspace is found in 2.2% of commercial buildings that are larger than 100,000 square feet. EIA, 2003 Commercial Buildings

  5. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    4 Share of Commercial Floorspace, by Census Region and Vintage, as of 2003 (Percent) Region Prior to 1960 1960 to 1989 1990 to 2003 Total Northeast 9% 8% 3% 20% Midwest 8% 11% 6% 25% South 5% 18% 14% 37% West 3% 9% 5% 18% 100% Source(s): EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A2, p. 3-4

  6. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    6 Commercial Building Vintage, as of 2003 1919 or Before 5% 1920 to 1945 10% 1946 to 1959 10% 1960 to 1969 12% 1970 to 1979 17% 1980 to 1989 17% 1990 to 1999 20% 2000 to 2003 9% Total 100% Source(s): Percent of Total Floorspace EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A1, p. 1-

  7. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example,

  8. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2003 Energy Expenditures per Square Foot of Commercial Floorspace, by Vintage ($2010) Vintage $/SF Prior to 1960 1.44 1960 to 1969 1.70 1970 to 1979 1.88 1980 to 1989 2.09 1990 to 1999 1.88 2000 to 2003 1.72 Average 1.77 Source(s): EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Table C4; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for price deflators

  9. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    3 Number of Floors and Type of Ownership, as of 2003 (Percent of Total Floorspace) Floors Ownership One 40% Nongovernment Owned 76% Two 25% Owner-Occupied 36% Three 12% Nonowner-Occupied 37% Four to Nine 16% Unoccupied 3% Ten or More 8% Government Owned 24% Total 100% Federal 3% State 5% Local 15% Total 100% Source(s): EIA, Commercial Building Characteristics 2003, June 2006, Table C1

  10. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  11. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100%

  12. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 Energy Service Company (ESCO) Industry Activity ($Million Nominal) (1) Low High 1990 143 342 Market Segment Share 1991 218 425 MUSH (2) 69% 1992 331 544 Federal 15% 1993 505 703 Commercial & Industrial 7% 1994 722 890 Residential 6% 1995 1,105 1,159 Public Housing 3% 1996 1,294 1,396 1997 1,394 1,506 1998 1,551 1,667 2008 Revenues by Project/Technology Type 1999 1,764 1,925 2000 1,876 2,186 Market Segment Share 2001 - - Energy Efficiency 75% 2002 - - Onsite Renewables 14% 2003 - -

  13. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012,

  14. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06

  15. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Commercial Energy Prices, by Year and Fuel Type ($2010) Electricity Natural Gas Distillate Oil Residual Oil ($/gal) ($/gal) 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 9.39 104.50 2.79 3.78 9.35 104.74 2.81 3.81 9.47 101.25 2.73 3.69 9.40 103.22 2.76 3.75 9.54 99.28 2.67 3.60 9.51 100.49 2.70

  16. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    8 2003 Average Commercial Building Floorspace, by Principal Building Type and Vintage Building Type 1959 or Prior 1960 to 1989 1990 to 2003 All Education 27.5 26.9 21.7 25.6 Food Sales N.A. N.A. N.A. 5.6 Food Service 6.4 4.4 5.0 5.6 Health Care 18.5 37.1 N.A. 24.5 Inpatient N.A. 243.6 N.A. 238.1 Outpatient N.A. 11.3 11.6 10.4 Lodging 9.9 36.1 36.0 35.9 Retail (Other Than Mall) 6.2 9.3 17.5 9.7 Office 12.4 16.4 14.2 14.8 Public Assembly 13.0 13.8 17.3 14.2 Public Order and Safety N.A. N.A. N.A.

  17. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0

  18. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8%

  19. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5%

  20. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5

  1. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018

  2. UDC Teaming with Acuity to Make Commercial-Sector PHOLED Luminaire

    Broader source: Energy.gov [DOE]

    With support from DOE's Small Business Innovation Research program, Universal Display Corporation (UDC) is working with Acuity Brands Lighting to make an efficient, color-tunable luminaire for use in the commercial sector using UDC's proprietary phosphorescent OLED (PHOLED™) technology. The present project aims to adapt this technology—which increases the energy efficiency of OLEDs by as much as fourfold—to high-end commercial and institutional building applications.

  3. Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification webcast.

  4. From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector

    SciTech Connect (OSTI)

    Busch, J.F. Jr.

    1990-08-01

    Thailand serves as a case study of the potential to conserve electricity in the fast-growing commercial sectors of the tropical developing world. We performed a field study of over 1100 Thai office workers in which a questionnaire survey and simultaneous physical measurements were taken. Both air-conditioned and non-air-conditioned buildings were included. We analyzed Thai subjective responses on the ASHRAE, McIntyre and other rating scales, relating them to Effective Temperature, demographics, and to rational indices of warmth such as PMV and TSENS. These results suggest that without sacrificing comfort, significant energy conservation opportunities exist through the relaxation of upper space temperature limits. To investigate the potential for conserving energy in a cost-effective manner, we performed a series of parametric simulations using the DOE-2.1D computer program on three commercial building prototypes based on actual buildings in Bangkok; an office, a hotel, and a shopping center. We investigated a wide range of energy conservation measures appropriate for each building type, from architectural measures to HVAC equipment and control solutions. The best measures applied in combination into high efficiency cases can generate energy savings in excess of 50%. Economic analyses performed for the high efficiency cases, resulted in costs of conserved energy of less than and internal rates of return in excess of 40%. Thermal cool storage, cogeneration, and gas cooling technology showed promise as cost-effective electric load management strategies.

  5. Table 9 U.S. Carbon Dioxide Emissions from Commercial Sector Energy Consumption,

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Commercial Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " Motor Gasoline",,7.919,6.063,5.688,2.095,1.777,1.276,1.873,3.011,2.746,1.998,3.129,2.631,3.172,4.193,3.122,3.185,3.382,4.242,3.106,3.083 "

  6. District of Columbia Price of Natural Gas Delivered to Commercial Sectors

    U.S. Energy Information Administration (EIA) Indexed Site

    by Marketers (Dollars per Thousand Cubic Feet) Marketers (Dollars per Thousand Cubic Feet) District of Columbia Price of Natural Gas Delivered to Commercial Sectors by Marketers (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 14.26 2010's 12.12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  7. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 2003 Commercial Delivered Energy Consumption Intensities, by Ownership of Unit (1) Ownership Nongovernment Owned 85.1 72% Owner-Occupied 87.3 35% Nonowner-Occupied 88.4 36% Government Owned 105.3 28% 100% Note(s): Source(s): Consumption (thousand Btu/SF) 1) Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006,

  8. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    SciTech Connect (OSTI)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

    2014-06-18

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.

  9. The market and technical potential for combined heat and power in the commercial/institutional sector

    SciTech Connect (OSTI)

    None, None

    2000-01-01

    Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

  10. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Commercial Incentive Pilot Program (CIPP). Final Impact Evaluation Report. Cambridge Systematics. (1292) Commercial Incentives Pilot Program (CIPP) Database for the...

  11. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 Commercial Buildings Share of U.S. Natural Gas Consumption (Percent) Site Consumption Primary Consumption Total Commercial Industry Electric Gen. Transportation Commercial Industry Transportation (quads) 1980 13% 41% 19% 3% | 18% 49% 3% 20.22 1981 13% 42% 19% 3% | 18% 49% 3% 19.74 1982 14% 39% 18% 3% | 20% 45% 3% 18.36 1983 14% 39% 17% 3% | 19% 46% 3% 17.20 1984 14% 40% 17% 3% | 19% 47% 3% 18.38 1985 14% 40% 18% 3% | 19% 46% 3% 17.70 1986 14% 40% 16% 3% | 19% 46% 3% 16.59 1987 14% 41% 17% 3% |

  12. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    5 Commercial Buildings Share of U.S. Petroleum Consumption (Percent) Site Consumption Primary Consumption Total Commercial Industry Electric Gen. Transportation Commercial Industry Transportation (quads) 1980 4% 28% 8% 56% | 6% 31% 56% 34.2 1981 4% 26% 7% 59% | 5% 29% 59% 31.9 1982 3% 26% 5% 61% | 5% 28% 61% 30.2 1983 4% 25% 5% 62% | 5% 27% 62% 30.1 1984 4% 26% 4% 61% | 5% 27% 61% 31.1 1985 3% 25% 4% 63% | 5% 26% 63% 30.9 1986 4% 24% 5% 63% | 5% 26% 63% 32.2 1987 3% 25% 4% 63% | 5% 26% 63% 32.9

  13. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    SciTech Connect (OSTI)

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  14. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    8 Commercial Delivered Energy Consumption Intensities, by Vintage Consumption per Year Constructed Square Foot (thousand Btu/SF) Prior to 1960 84.4 23% 1960 to 1969 91.5 12% 1970 to 1979 97.0 18% 1980 to 1989 100.0 19% 1990 to 1999 90.3 19% 2000 to 2003 81.6 8% Average 91.0 Source(s): EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table C1a

  15. Modeling Distributed Generation in the Buildings Sectors

    Reports and Publications (EIA)

    2013-01-01

    This report focuses on how the Energy Information Administrationmodels residential and commercial sector distributed generation, including combined heat and power, for the Annual Energy Outlook.

  16. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications (EIA)

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  17. Collaboration from the ground up: the solar community and private sector take over commercialization

    SciTech Connect (OSTI)

    Janssen, M.; Keller, J.; Wilson, K.

    1983-06-01

    Minnesota needs an aggressive campaign to tackle barriers to the commercialization of solar energy in the state. Three statewide solar organizations have built a unique and effective coalition to address that need and have placed special emphasis on financing and promotion.

  18. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 2003 Commercial Buildings Delivered Energy End-Use Intensities, by Building Activity (Thousand Btu per SF) (1) Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Note(s): Source(s): 43.5 45.2

  19. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large efficiency program in Commercial and Industrial Lighting. BPA continues to invest in improving the lighting program as a critical component to achieving regional...

  20. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  1. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    0 2003 Commercial Primary Energy Consumption Intensities, by Principal Building Type Consumption Percent of Total | Consumption Percent of Total Building Type (thousand Btu/SF) Consumption | Building Type (thousand Btu/SF) Consumption Health Care 345.9 8% | Education 159.0 11% Inpatient 438.8 6% | Service 151.6 4% Outpatient 205.9 2% | Food Service 522.4 6% Food Sales 535.5 5% | Religious Worship 77.0 2% Lodging 193.1 7% | Public Order and Safety 221.1 2% Office 211.7 19% | Warehouse and Storage

  2. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    3 Normalized Annual End Uses of Water in Select Restaurants in Western United States (1) Fixture/End Use (2) Faucets Dishwashing Toilets/Urinals Ice Making Total Indoor Use (3) (4) (4) Building Size (SF) Seats: Meals: Benchmarking Values for Restaurants (6) N Gal./SF/year 90 Gal./meal 90 Gal./seat/day 90 Gal./employee/day 90 Note(s): Source(s): American Water Works Association Research Foundation, Commercial and Institutional End Uses of Water, 2000. 25th Percentile of Users 130 - 331 6 - 9 20 -

  3. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Aggregate Commercial Building Component Loads as of 1998 (1) Load (quads) and Percent of Total Load Component Heating Cooling Roof -0.103 12% 0.014 1% Walls (2) -0.174 21% -0.008 - Foundation -0.093 11% -0.058 - Infiltration -0.152 18% -0.041 - Ventilation -0.129 15% -0.045 - Windows (conduction) -0.188 22% -0.085 - Windows (solar gain) 0.114 - 0.386 32% Internal Gains Lights 0.196 - 0.505 42% Equipment (electrical) 0.048 - 0.207 17% Equip. (non-electrical) 0.001 - 0.006 1% People 0.038 -

  4. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Commercial Site Renewable Energy Consumption (Quadrillion Btu) (1) Growth Rate Wood (2) Solar Thermal (3) Solar PV (3) GHP Total 2010-Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 0.110 0.035 0.010 N.A. 0.155 0.4% 0.110 0.035 0.009 N.A. 0.154 0.4% 0.110 0.035 0.009 N.A. 0.153 0.4% 0.110

  5. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Commercial Delivered and Primary Energy Consumption Intensities, by Year Percent Delivered Energy Consumption Primary Energy Consumption Floorspace Post-2000 Total Consumption per Total Consumption per (million SF) Floorspace (1) (10^15 Btu) SF (thousand Btu/SF) (10^15 Btu) SF (thousand Btu/SF) 1980 50.9 N.A. 5.99 117.7 10.57 207.7 1990 64.3 N.A. 6.74 104.8 13.30 207.0 2000 (2) 68.5 N.A. 8.20 119.7 17.15 250.3 2010 81.1 26% 8.74 107.7 18.22 224.6 2015 84.1 34% 8.88 105.5 18.19 216.2 2020 89.1

  6. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 2003 Commercial Delivered Energy Consumption Intensities, by Principal Building Type and Vintage (1) | Building Type Pre-1959 1960-1989 1990-2003 | Building Type Pre-1959 1960-1989 1990-2003 Health Care 178.1 216.0 135.7 | Education 77.7 88.3 80.6 Inpatient 230.3 255.3 253.8 | Service 62.4 86.0 74.8 Outpatient 91.6 110.4 84.4 | Food Service 145.2 290.1 361.2 Food Sales 205.8 197.6 198.3 | Religious Worship 46.6 39.9 43.3 Lodging 88.2 111.5 88.1 | Public Order & Safety N.A. 101.3 110.6

  7. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Commercial Water Use by Source (Million Gallons per Day) Year 1980 - - - 1985 5,710 1,230 1990 5,900 2,390 1995 6,690 2,890 2000 (3) 7,202 3,111 2005 (3) 7,102 3,068 Note(s): Source(s): 10,314 10,171 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public

  8. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    2 Average Water Use of Commercial and Institutional Establishments (Gallons per Establishment per Day) Average Variation % Total % of CI % Seasonal Daily Use In Use (1) CI Use Customers Use (2) Hotels and Motels 7,113 5.41 5.8% 1.9% 23.1% Laundries/Laundromats 3,290 8.85 4.0% 1.4% 13.4% Car Washes 3,031 3.12 0.8% 0.4% 14.2% Urban Irrigation 2,596 8.73 28.5% 30.2% 86.9% Schools and Colleges 2,117 12.13 8.8% 4.8% 58.0% Hospitals/Medical Offices 1,236 78.5 3.9% 4.2% 23.2% Office Buildings 1,204

  9. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Commercial Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total) Electricity Growth Rate Natural Gas Petroleum (1) Coal Renewable(2) Sales Losses Total Total(3) 2010-Year 1980 2.63 24.9% 1.31 12.4% 0.12 1.1% 0.02 0.2% 1.91 4.58 6.49 61.4% 1981 2.54 23.9% 1.12 10.5% 0.14 1.3% 0.02 0.2% 2.03 4.76 6.80 64.1% 1982 2.64 24.3% 1.03 9.5% 0.16 1.4% 0.02 0.2% 2.08 4.91 6.99 64.5% 1983 2.48 22.7% 1.16 10.7% 0.16 1.5% 0.02 0.2% 2.12 4.98 7.09 65.0% 1984 2.57 22.5% 1.22

  10. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 2010 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Lighting 1.19 1.19 13.6% | 3.69 3.69 20.2% Space Heating 1.65 0.22 0.06 0.11 0.28 2.33 26.6% | 0.88 2.93 16.0% Space Cooling 0.04 0.84 0.88 10.1% | 2.60 2.64 14.5% Ventilation 0.54 0.54 6.1% | 1.66 1.66 9.1% Refrigeration 0.39 0.39 4.5% | 1.21 1.21 6.6% Water Heating 0.44 0.03 0.03 0.09 0.58

  11. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    5 2015 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Lighting 1.01 1.01 11.4% | 3.05 3.05 16.7% Space Heating 1.69 0.20 0.06 0.11 0.17 2.23 25.2% | 0.50 2.57 14.1% Space Cooling 0.04 0.51 0.54 6.1% | 1.52 1.56 8.6% Ventilation 0.54 0.54 6.1% | 1.62 1.62 8.9% Refrigeration 0.35 0.35 4.0% | 1.06 1.06 5.8% Electronics 0.32 0.32 3.6% | 0.95 0.95 5.2%

  12. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    6 2025 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Lighting 1.08 1.08 11.3% | 3.27 3.27 16.3% Space Heating 1.68 0.18 0.06 0.11 0.16 2.20 23.1% | 0.49 2.53 12.6% Ventilation 0.60 0.60 6.2% | 1.80 1.80 9.0% Space Cooling 0.03 0.52 0.55 5.7% | 1.56 1.59 7.9% Electronics 0.40 0.40 4.2% | 1.22 1.22 6.1% Refrigeration 0.34 0.34 3.6% | 1.02 1.02 5.1%

  13. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    7 2035 Commercial Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Natural Fuel Other Renw. Site Site Primary Primary Gas Oil (1) LPG Fuel(2) En.(3) Electric Total Percent Electric (4) Total Percent Lighting 1.15 1.15 11.1% | 3.40 3.40 15.6% Space Heating 1.65 0.18 0.06 0.11 0.16 2.16 20.8% | 0.48 2.48 11.3% Ventilation 0.65 0.65 6.2% | 1.91 1.91 8.7% Space Cooling 0.03 0.54 0.57 5.5% | 1.59 1.62 7.4% Electronics 0.46 0.46 4.5% | 1.37 1.37 6.3% Refrigeration 0.36 0.36 3.4% | 1.05 1.05 4.8%

  14. Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9<//td> 1989 258,193 191,487 578,797 – 1,028,477 [–] – 17,942 13,144 166,392 [–] – – 197,478 – 1,225,955 1990

  15. Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10<//td> 1989 9,135 6,901 18,424 1,143 35,603 [–] 685 1,781 9,112 [–] – – 11,578 – –

  16. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs has facilitated teaming with them on Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) efforts that develop cutting-edge technology in the areas of precision pointing and inertial measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my

  17. Commercial Sector Program Updates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Share AND WE KNOW WHERE IT IS 4 6-YEAR Economic Potential 19% 1% 26% 44% 1% 1% 7% 1% Electronics Food Preparation HVAC Lighting MotorsDrives Process Loads Refrigeration Water...

  18. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  19. Preventive techniques of pollution control, the reliability and safety in core sectors including thermal power plant installations and economic evaluation

    SciTech Connect (OSTI)

    Tewari, J.K.

    1997-12-31

    This paper reports on a study of pollution control techniques, thermal power plant reliability and safety, and economics. Included are some illustrative examples dealing with pollution control. Topics include environmental planning, prevention strategy, pesticide use, food pollution, soil pollution, water pollution, thermal power plant emissions, and pollution control equipment.

  20. Commercial Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology...

  1. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  2. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ –] 803,754 5,302,890 37,398 4

  3. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  4. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  5. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  6. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  7. Overview of Commercial Buildings, 2003 - Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    Trends in Commercial Buildings Sector-1979 to 2003 Since the first CBECS in 1979, the commercial buildings sector has increased in size. From 1979 to 2003: The number of commercial...

  8. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  9. Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use.

  10. Sector Collaborative on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  11. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  12. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Total Use of Water by Buildings (Million Gallons per Day) (1) Year 1985 1990 1995 2000 (2) 2005 (3) Note(s): Source(s): 1) Includes water from the public supply and self-supplied sources (e.g., wells) for residential and commercial sectors. 2) USGS did not estimate water use in the commercial and residential sectors for 2000. Estimates are based on available data and 1995 splits between domestic and commercial use. 3) USGS did not estimate commercial sector use for 2005. Estimated based on

  13. Trends in Commercial Buildings--Introduction

    U.S. Energy Information Administration (EIA) Indexed Site

    series of surveys in each sector reveals the trends in energy use for the sector. Introduction The Commercial Buildings Energy Consumption Survey (CBECS) collects data from a...

  14. Flathead Electric Cooperative- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program...

  15. International Energy Outlook 2016-Buildings sector energy consumption -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration 6. Buildings sector energy consumption Overview Energy consumed in the buildings sector consists of residential and commercial end users and accounts for 20.1% of the total delivered energy consumed worldwide. Consumption of delivered, or site, energy contrasts with the use of the primary energy that also includes the energy used to generate and deliver electricity to individual sites such as homes, offices, or industrial plants. In the International Energy

  16. Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning

    SciTech Connect (OSTI)

    Coffey, Brian; Borgeson, Sam; Selkowitz, Stephen; Apte, Josh; Mathew, Paul; Haves, Philip

    2009-07-01

    This paper describes the origin, structure and continuing development of a model of time varying energy consumption in the US commercial building stock. The model is based on a flexible structure that disaggregates the stock into various categories (e.g. by building type, climate, vintage and life-cycle stage) and assigns attributes to each of these (e.g. floor area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock dynamics, the model has been used to study the likely outcomes of specific policy and innovation scenarios targeting very low future energy consumption in the building stock. Model use has highlighted the scale of the challenge of meeting targets stated by various government and professional bodies, and the importance of considering both new construction and existing buildings.

  17. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  18. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication...

  19. Overview of Commercial Building Partnerships in Higher Education

    SciTech Connect (OSTI)

    Schatz, Glenn

    2013-03-01

    Higher education uses less energy per square foot than most commercial building sectors. However, higher education campuses house energy-intensive laboratories and data centers that may spend more than this average; laboratories, in particular, are disproportionately represented in the higher education sector. The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems–including some considered too costly or technologically challenging–and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions.

  20. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    SciTech Connect (OSTI)

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  1. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  2. Sector 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 9 About Science and Research Beamlines Operations and Schedule Safety Search APS ... Search Argonne Home > Advanced Photon Source > Contacts Advisory Committee Beamlines...

  3. Commercial Building Energy Asset Score - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Asset Score - 2014 BTO Peer Review Commercial Building Energy Asset Score - 2014 ... energy efficiency in the commercial building sector is that building owners and ...

  4. Agriculture Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Industrial Federal Agriculture SIS Variable Frequency Drives Irrigation Pump Testing Irrigation Hardware Upgrades LESA Agricultural Marketing Toolkit BPA's...

  5. Buildings Sector Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  6. Idaho Power - Commercial Custom Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Idaho Power Company Website http:www.idahopower.comEnergyEfficiencyBusinessPrograms...

  7. Longmont Power & Communications - Residential and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    50 per appliance Residential: 1 clothes washer and 1 dishwasher per year Commercial: 3 clothes washers and 3 dishwashers per year Program Info Sector Name Utility...

  8. Wells Public Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Wells Public Utilities Website http:www.SaveEnergyInWells.com State Minnesota Program Type...

  9. Mora Municipal Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Mora Municipal Utilities Website http:www.SaveEnergyInMora.com State Minnesota Program...

  10. Redding Electric - Residential and Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    REU for Commercial Program Info Sector Name Utility Administrator Redding Electric Utility Website http:www2.reupower.comrebates.asp State California Program Type Rebate...

  11. Best Management Practice #11: Commercial Kitchen Equipment

    Broader source: Energy.gov [DOE]

    Commercial kitchen equipment can be a significant water use in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high-volume applications...

  12. Federal Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events Skip navigation links Residential Commercial Industrial Federal Agriculture About five percent of BPA's total electric supply goes to power facilities around...

  13. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  14. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both existing and new commercial buildings. The DOE Building Technologies Office strives to reduce energy consumption across the commercial building sector by developing, demonstrating and deploying cost-effective solutions. Commercial Buildings Initiative: http://www1.eere.energy.gov/buildings/commercial/index.html

  15. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  16. Commercial Building Partnership General Merchandise Energy Savings Overview

    SciTech Connect (OSTI)

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  17. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    SciTech Connect (OSTI)

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  18. Countries Launch Initiative to Drive Energy Efficiency in the Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Industrial Sectors | Department of Energy Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors A fact sheet on the global superior energy performance partnership from the Clean Energy Ministerial. PDF icon Countries Launch Initiative to Drive Energy Efficiency in the Commercial and Industrial Sectors More Documents & Publications Countries Launch

  19. IID Energy- Commercial Rebate Program

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District (IID) offers incentives to its commercial customers to encourage the adoption of energy efficient technologies, including commercial heating and cooling equipment,...

  20. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  1. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  2. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  3. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  4. Energy Outlook for the Transport Sector | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions). Package icon Entire Set File Economywide File Transportation Sector File Industrial Sector File Residential Buildings Sector File Commercial Buildings Sector File Electricity Sector More Documents & Publications Home Performance Contractor Pro Forma Residential Refrigerators-Freezers (Appendix A1) Refrigerators and

  5. Better Buildings Financing Energy Efficiency Retrofits in the Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector -- Part 1 | Department of Energy Financing Energy Efficiency Retrofits in the Commercial Sector -- Part 1 Better Buildings Financing Energy Efficiency Retrofits in the Commercial Sector -- Part 1 Slides from the Better Buildings webinar presented on May 4, 2011: Survey of Small Commercial Energy Efficiency Finance Programs Sponsored by State Governments Oregon Energy Loan: Financingg Oregon Energy Efficiency and Renewable Energy Abundant Power Solutions ADECA Leveraged Clean Energy

  6. District of Columbia Natural Gas Percent Sold to The Commercial...

    U.S. Energy Information Administration (EIA) Indexed Site

    by Local Distribution Companies (Percent) District of Columbia Natural Gas Percent Sold to The Commercial Sectors by Local Distribution Companies (Percent) Decade Year-0 ...

  7. District of Columbia Price of Natural Gas Delivered to Commercial...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distributor Companies (Dollars per Thousand Cubic Feet) District of Columbia Price of Natural Gas Delivered to Commercial Sectors by Local Distributor Companies (Dollars per ...

  8. Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

  9. Microsoft Word - Final AEO2007 Commercial Doc.doc

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  10. Commercial Demand Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  11. Moorhead Public Service Utility - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Personal Computing Equipment Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Moorhead Public ServiceBright Energy Solutions Website http:...

  12. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  13. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  14. Commercial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  15. Pilot project for a commercial buildings Energy Analysis and Diagnostic Center (EADC) program. Final report

    SciTech Connect (OSTI)

    Capehart, B.L.

    1996-02-01

    Commercial energy use costs businesses around $70 billion annually. Many of these businesses are small and medium sized organizations that do not have the resources to help themselves, or to pay for professional engineering services to help reduce their energy costs and improve their economic competitiveness. Energy cost reduction actions with payback times of around two years could save the commercial sector 15--20%, or $10--$15 billion per year. This project was initially intended to evaluate the feasibility of performing commercial energy audits as an adjunct to the industrial audit program run by the US Department of Energy Industrial Office. This program is housed in 30 universities throughout the United States. Formerly known as Energy Analysis and Diagnostic Centers (EADC`s), the university programs are now called Industrial Assessment Centers (IAC`s) to reflect their expansion from energy use analyses to include waste and productivity analyses. The success of the EADC/IAC program in helping the manufacturing sector provides an excellent model for a similar program in the commercial buildings sector. This project has investigated using the EADC/IAC approach to performing energy audits for the commercial sector, and has determined that such an approach is feasible and cost effective.

  16. Multi-Sector General Permit (MSGP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  17. End-Use Sector Flowchart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  18. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  19. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect (OSTI)

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  20. Commercial Buildings Partnerships - Overview of Higher Education Projects

    SciTech Connect (OSTI)

    Parrish, Kristen; Robinson, Alastair; Regnier, Cindy

    2013-02-01

    The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems including some considered too costly or technologically challenging and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions. CBP design goals aimed to achieve 50 percent energy savings compared to ANSI/ASHRAE/IES Standard 90.1-2004 for new construction, while retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. After construction and commissioning of the project, laboratory staff continued to work with partners to collect and analyze data for verification of the actual energy reduction. CBP projects represent diverse building types in commercial real estate, including lodging, grocery, retail, higher education, office, and warehouse/storage facilities. Partners also commit to replicating low-energy technologies and strategies from their CBP projects throughout their building portfolios. As a result of CBP projects, five sector overviews (Lodging, Food Sales, General Merchandise, Higher Education, Offices) were created to capture successful strategies and recommended energy efficiency measures that could broadly be applied across these sectors. These overviews are supplemented with individual case studies providing specific details on the decision criteria, modeling results, and lessons learned on specific projects. Sector overviews and CBP case studies will also be updated to reflect verified data and replication strategies as they become available.

  1. Commercial Current Promotions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture This page features all current special promotions for commercial programs....

  2. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  3. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-ow...

  4. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NorthWestern Energy LLC - (MT)","Investor-owned",597...

  5. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Puget Sound Energy Inc","Investor-owned",20568948...

  6. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",567506...

  7. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",19844...

  8. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20585461,570529...

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",38670...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9973395,3434301,4...

  12. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",41994756...

  13. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28224148,9...

  14. Chapter 15: Commercial New Construction Protocol

    SciTech Connect (OSTI)

    Keates, S.

    2014-09-01

    This protocol is intended to describe the recommended method when evaluating the whole-building performance of new construction projects in the commercial sector. The protocol focuses on energy conservation measures (ECMs) measures (or packages of measures) where evaluators can best analyze impacts using building simulation. These ECMs typically require the use of calibrated building simulations under Option D of the International Performance Measurement and Verification Protocol. Examples of such measures include Leadership in Energy and Environmental Design building certification, novel and/or efficient heating, ventilation, and air conditioning system designs, and extensive building controls systems. In general, it is best to evaluate any ECM (or set of measures) expected to significantly interact with other systems within the building and with savings sensitive to seasonal variations in weather.

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    16,571 1991 21,026 18,276 16,026 10,882 5,835 4,162 3,760 3,859 4,580 7,438 12,251 17,451 1992 21,204 19,482 17,679 12,210 6,793 4,520 4,046 4,132 4,579 8,439 12,784 18,385 1993 ...

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 63,740 65,536 70,232 1970's 76,585 76,441 79,987 80,219 90,412 89,651 76,981 67,839 81,121 ...

  17. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    77.5 67.3 65.2 65.8 65.8 65.9 1987-2015 Alabama 79.3 78.9 76.2 76.6 78.4 77.6 1990-2015 Alaska 87.7 88.6 94.9 94.5 94.5 98.2 1990-2015 Arizona 88.7 87.8 86.6 85.5 84.4 83.8 1990-2015 Arkansas 55.6 51.5 40.2 43.7 45.5 42.5 1990-2015 California 54.1 54.3 50.0 49.9 48.4 50.0 1990-2015 Colorado 94.6 93.8 92.2 94.7 94.5 NA 1990-2015 Connecticut 65.4 65.4 65.1 57.9 67.2 76.2 1990-2015 Delaware 49.8 53.4 43.7 45.0 46.2 45.7 1990-2015 District of Columbia 100.0 16.9 17.9 19.1 19.9 21.4 1990-2015 Florida

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,109 11,224 12,435 1970's 14,500 16,073 17,005 15,420 16,247 15,928 16,694 16,813 16,940 16,830...

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864...

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,434 3,514 3,395 2,369 1,720 1,215 1,673 1,117 1,189 1,382 1,955 3,507 1990 4,550 3,040 2,645 2,167 1,626 984 1,157 1,164 1,195 1,353 1,921 2,487 1991 3,334 3,576 2,761 1,886 1,332 1,149 1,128 1,052 1,093 1,311 2,120 2,968 1992 3,739 3,833 2,671 2,287 1,513 1,225 1,108 1,078 1,136 1,320 1,983 3,338 1993 3,532 3,599 3,655 2,569 1,551 1,179 1,084 1,070 1,111 1,259 2,073 3,041 1994 4,325

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alaska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,500 2,691 2,258 1,949 1,569 1,287 1,042 1,091 1,202 1,577 2,144 2,429 1990 2,447 2,584 2,429 1,809 1,456 1,134 1,061 1,077 1,148 1,554 2,106 2,818 1991 2,579 2,388 2,149 1,896 1,576 1,171 1,069 1,073 1,198 1,561 1,930 2,308 1992 2,414 2,372 2,319 1,935 1,597 1,206 1,084 1,013 1,252 1,790 1,928 2,390 1993 2,487 2,471 2,051 1,863 1,441 1,055 917 957 1,112 1,563 1,785 2,301 1994 2,367 2,156

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arizona (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,945 3,572 2,845 2,275 1,994 1,951 1,805 1,579 1,597 1,634 2,296 3,108 1990 3,706 3,577 3,165 2,338 2,174 1,854 1,686 1,580 1,610 1,555 2,018 3,139 1991 3,716 3,091 2,935 2,785 2,039 1,637 1,669 1,722 1,375 1,609 1,941 3,077 1992 3,647 3,011 2,898 2,352 1,620 1,754 1,690 1,505 1,601 1,580 1,858 3,573 1993 3,422 2,954 3,056 2,408 1,851 2,035 1,654 1,601 1,521 1,551 2,100 3,416 1994 3,689

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,522 10,845 9,208 6,135 4,160 3,082 2,328 2,119 2,303 3,232 5,441 8,102 1990 10,718 9,546 8,633 6,902 5,116 3,122 2,167 2,127 2,069 2,918 5,301 7,682 1991 12,120 9,991 7,910 6,328 4,849 2,826 2,180 2,040 2,087 3,017 6,096 9,494 1992 10,794 9,450 7,609 5,965 3,631 3,055 2,430 2,183 2,312 3,078 5,594 10,319 1993 11,775 10,132 9,435 6,499 4,292 3,119 2,445 2,357 3,012 3,108 6,080 9,396

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Connecticut (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358 1,315 1,352 1,603 2,456 3,534 1991 4,341 3,973 3,566 2,352 1,462 1,030 995 1,020 884 1,423 2,396 3,396 1992 4,417 4,374 3,940 2,941 1,779 1,149 1,046 1,061 1,075 1,562 2,623 3,871 1993 4,666 4,995 4,461 3,038 1,583 1,161 1,122 1,070 1,121 1,789 2,896 3,525 1994 5,882

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 632 605 624 398 249 166 128 133 144 182 294 630 1990 784 530 530 419 239 174 139 138 136 163 309 480 1991 677 653 579 414 237 161 146 142 145 203 354 541 1992 744 755 686 537 308 198 166 152 162 240 395 622 1993 739 818 858 574 284 140 165 155 155 229 412 666 1994 945 1,076 856 510 259 209 157 156 172 221 345 554 1995 829 935 854 527 341 223 182 168 205 209 417 851 1996 1,099 1,181 885

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,127 7,499 5,163 3,921 2,982 2,340 2,411 2,360 2,589 3,475 4,834 8,389 1990 8,162 5,935 5,172 3,960 2,844 2,498 2,359 2,535 2,416 3,098 4,228 6,280 1991 7,680 6,782 5,905 3,348 2,820 2,387 2,381 2,482 2,346 3,082 5,153 6,670 1992 8,066 6,952 5,778 4,381 3,103 2,596 2,536 2,503 2,462 3,201 4,640 7,642 1993 7,627 7,915 7,796 4,837 3,069 2,544 2,570 2,481 2,440 3,312 5,214 7,719 1994 9,543

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Hawaii (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 187 178 174 175 181 175 182 173 175 179 172 177 1990 190 188 188 180 181 188 195 180 180 183 184 185 1991 192 177 169 187 173 173 187 172 179 177 178 185 1992 190 180 174 183 177 184 174 173 178 168 178 184 1993 185 190 179 177 168 183 174 170 168 173 183 172 1994 195 176 190 185 181 184 177 178 184 177 189 185 1995 200 180 185 183 185 188 186 178 179 179 178 177 1996 200 192 184 190 172

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Illinois (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 27,838 29,591 25,963 15,899 9,308 5,975 5,445 4,862 6,177 11,093 20,173 33,847 1990 30,713 25,802 22,068 17,635 10,676 6,785 7,008 7,341 7,970 15,118 19,910 29,245 1991 35,376 26,327 22,768 13,059 8,214 5,162 6,031 5,693 7,979 11,574 23,098 28,563 1992 30,506 26,501 23,400 17,598 8,872 4,907 5,811 6,025 6,618 12,394 22,757 31,575 1993 33,166 29,686 27,677 17,598 7,744 5,101 5,879 5,644

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Indiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 11,170 11,376 9,613 5,768 3,297 1,904 1,579 1,659 2,217 3,850 7,577 13,614 1990 11,991 9,374 7,958 6,087 3,191 1,963 1,658 1,860 1,991 4,087 6,640 10,462 1991 13,081 10,656 8,567 4,535 2,546 1,648 1,613 1,710 2,358 3,614 7,821 10,233 1992 12,060 10,265 8,437 6,172 3,400 2,004 1,811 1,955 2,131 4,253 8,135 12,097 1993 12,941 12,125 10,972 6,557 2,866 2,100 1,819 1,838 2,442 4,559 8,381

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Iowa (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,372 7,466 6,928 4,133 2,216 1,380 1,190 1,234 1,247 179 3,738 7,110 1990 8,087 6,374 5,719 4,261 2,409 1,602 1,226 1,204 1,302 2,087 3,726 5,955 1991 9,237 6,828 5,412 3,305 1,993 1,308 1,090 1,198 1,308 2,482 5,287 7,167 1992 7,145 6,709 4,949 3,883 1,877 1,427 1,100 1,257 1,433 2,645 5,843 7,827 1993 8,688 7,779 6,773 4,316 2,029 1,481 1,214 1,214 1,637 2,869 5,694 6,642 1994 9,353 8,260

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,155 7,697 6,870 5,433 3,660 2,547 3,366 4,812 3,081 2,785 4,386 6,763 1990 8,061 6,230 5,114 4,800 3,112 2,848 4,906 4,462 3,836 2,893 3,877 5,907 1991 10,250 7,397 5,694 4,278 3,082 2,657 4,321 3,994 2,629 2,656 6,075 5,538 1992 6,844 5,862 4,372 4,571 3,736 2,814 3,609 3,462 3,132 3,162 4,867 7,543 1993 8,768 7,385 7,019 4,938 2,840 2,559 3,348 3,324 2,395 2,469 4,413 6,565 1994 8,139

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kentucky (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,139 5,507 4,546 2,840 1,766 1,167 1,099 991 1,147 954 3,327 6,648 1990 5,355 4,280 3,496 2,702 1,576 1,129 1,037 1,077 1,025 2,050 3,194 4,884 1991 6,313 5,098 3,647 1,925 1,198 1,029 941 991 1,338 1,862 4,197 5,161 1992 6,191 4,758 3,874 2,612 1,600 1,132 1,066 1,158 1,209 2,237 4,064 5,519 1993 5,878 5,863 5,207 2,934 1,330 1,449 1,029 1,060 1,220 2,417 3,997 5,433 1994 8,181 6,018

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,399 3,365 3,462 2,362 1,790 1,479 1,399 1,340 1,433 1,568 2,035 3,524 1990 4,528 2,757 2,490 2,135 1,628 1,499 1,361 1,238 1,275 1,487 2,082 2,491 1991 3,639 3,555 2,713 1,974 1,539 1,418 1,504 1,253 1,229 1,440 2,347 2,842 1992 4,060 4,003 2,743 2,367 1,769 1,564 1,556 1,431 1,508 1,577 2,295 3,574 1993 3,260 3,207 3,075 2,376 1,742 1,454 1,267 1,277 1,290 1,346 2,091 2,771 1994 3,925

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 229 226 221 160 106 63 51 50 60 96 128 269 1990 268 227 211 175 108 70 52 47 62 83 157 219 1991 282 265 236 180 101 73 65 65 59 103 152 278 1992 322 318 315 229 157 80 79 52 67 116 188 285 1993 356 364 291 192 107 80 71 67 77 166 224 316 1994 458 364 302 181 128 79 63 71 84 135 207 309 1995 350 373 288 211 128 77 70 71 86 129 254 389 1996 413 386 356 208 132 82 74 75 78 172 280 310 1997 433

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,394 6,984 7,234 5,392 3,703 2,150 1,726 1,894 1,799 2,720 3,647 6,864 1990 8,247 6,548 6,367 5,235 3,381 2,491 2,009 2,040 1,906 2,416 4,275 5,704 1991 7,617 7,579 6,948 5,504 3,772 2,466 2,435 2,188 1,939 2,666 4,048 6,027 1992 8,184 8,736 8,217 7,049 4,450 2,768 3,072 2,884 2,753 3,776 5,530 6,933 1993 8,556 9,118 9,026 6,491 4,195 3,184 2,692 2,802 2,766 3,878 5,622 7,098 1994

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Minnesota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 13,112 13,607 11,411 6,916 3,980 2,416 2,112 2,011 2,475 4,718 8,764 13,661 1990 12,696 11,412 9,846 6,734 4,032 2,369 2,100 2,060 2,342 4,865 7,491 12,066 1991 15,649 11,426 10,026 6,092 4,220 2,541 2,315 2,304 2,930 5,399 10,392 12,580 1992 13,000 11,075 10,134 7,517 3,602 2,467 2,244 2,296 2,631 5,092 9,526 12,795 1993 14,685 12,874 11,396 7,267 3,588 2,549 2,190 2,207 2,952 5,614

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,372 2,502 2,411 1,407 947 739 718 701 754 939 1,350 2,727 1990 3,199 2,007 1,675 1,541 1,070 884 819 818 841 1,137 1,508 2,050 1991 2,704 2,572 1,977 1,291 901 875 806 834 865 989 1,721 2,208 1992 2,817 2,595 1,758 1,473 994 888 885 867 847 942 1,489 2,387 1993 2,663 2,583 2,559 1,756 1,108 925 904 864 843 985 1,710 2,298 1994 3,417 2,993 2,136 1,456 1,012 942 992 973 1,000 1,050

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,118 10,280 9,192 5,246 2,799 2,359 1,829 1,780 2,021 2,798 4,716 9,903 1990 11,634 7,979 6,849 5,622 3,309 2,310 2,034 1,971 2,083 2,863 4,811 7,921 1991 12,748 9,932 7,479 4,261 2,760 2,181 1,853 1,896 2,056 2,689 6,471 8,864 1992 10,201 9,060 6,835 5,601 3,144 2,547 1,849 1,993 2,024 2,728 5,335 9,646 1993 12,062 10,467 10,336 6,750 3,580 2,266 2,066 1,959 2,222 2,864 5,974 9,124

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,029 1,923 1,841 1,208 687 478 330 381 442 806 1,235 1,781 1990 1,912 1,705 1,402 998 766 487 323 348 347 782 1,206 1,889 1991 2,425 1,435 1,450 1,053 843 431 357 341 438 724 1,559 1,790 1992 1,726 1,464 1,099 930 568 377 365 331 523 810 1,271 2,095 1993 2,465 1,705 1,741 1,137 682 434 437 416 535 819 1,508 1,999 1994 1,844 1,936 1,465 1,100 699 452 362 348 423 860 1,447 2,043 1995 2,085

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,202 4,825 4,252 2,505 1,648 1,757 3,381 4,240 1,634 2,109 2,602 4,196 1990 4,765 4,019 3,355 2,799 1,480 1,325 4,837 2,596 2,333 2,334 2,552 4,094 1991 5,452 4,111 3,382 2,193 1,771 1,779 5,675 4,406 1,961 2,056 3,468 4,037 1992 4,332 3,760 2,970 2,411 1,781 1,330 2,366 2,393 1,710 2,508 3,988 4,941 1993 5,784 3,806 4,611 3,119 1,629 1,388 1,324 1,828 1,333 2,164 3,495 4,263 1994 5,469

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Hampshire (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 842 753 771 551 339 188 154 140 176 248 393 817 1990 899 803 618 518 307 221 153 153 170 265 380 585 1991 795 798 672 484 291 186 155 156 173 256 420 643 1992 911 931 762 629 376 208 179 169 174 295 515 715 1993 993 973 911 611 294 204 177 171 186 332 522 770 1994 1,261 1,097 863 581 347 229 173 166 206 305 442 743 1995 978 999 864 632 369 227 188 166 197 285 620 989 1996 1,163 1,129

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New York (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 25,565 24,630 25,344 18,494 12,079 8,747 8,382 8,305 8,812 11,741 16,631 27,650 1990 24,659 23,697 22,939 17,706 11,586 10,272 9,602 9,683 10,261 12,661 17,210 24,715 1991 28,442 25,685 23,462 17,684 11,669 9,641 10,331 9,764 9,195 11,571 17,033 25,121 1992 29,246 29,912 27,748 23,039 13,518 9,915 9,327 9,456 9,582 12,860 16,804 25,808 1993 28,857 29,740 28,926 20,266 11,667 11,221 10,477

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,789 1,669 1,514 1,027 508 335 269 238 340 464 951 1,506 1990 1,666 1,457 1,243 1,048 616 383 315 298 370 561 916 1,363 1991 1,917 1,394 1,253 847 629 320 302 314 348 633 1,241 1,535 1992 1,489 1,380 1,082 937 529 298 279 262 363 576 1,015 1,549 1993 1,911 1,477 1,339 925 477 347 317 294 381 629 1,068 1,478 1994 2,016 1,812 1,339 932 526 302 284 288 315 530 1,241 1,198 1995 1,807

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oklahoma (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,884 3,283 2,761 1,724 1,140 989 823 804 882 972 1,624 2,363 1990 2,984 3,031 2,562 1,550 1,268 1,157 821 769 823 1,050 1,697 2,737 1991 4,074 2,764 2,407 2,048 1,610 1,274 902 812 855 927 1,898 2,758 1992 3,231 2,465 1,925 1,542 1,171 884 784 782 863 1,105 1,652 3,166 1993 4,148 3,370 2,880 1,927 1,448 1,010 915 840 934 1,099 1,918 3,557 1994 3,388 3,166 2,480 1,836 1,234 1,078 865 801

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,339 1,454 1,253 776 413 276 203 197 255 434 851 1,374 1990 1,398 1,234 1,064 769 537 306 230 223 239 459 825 1,269 1991 1,723 1,243 1,076 713 543 303 263 251 309 588 1,176 1,286 1992 1,314 1,174 1,007 828 460 303 291 284 324 558 1,104 1,476 1993 1,847 1,496 1,344 995 531 342 315 291 392 632 1,083 1,429 1994 1,738 1,695 1,285 846 524 347 239 322 329 531 946 1,472 1995 1,619 1,491

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Tennessee (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,960 6,840 6,382 4,054 2,529 1,916 1,802 1,659 1,843 2,355 3,769 7,404 1990 8,672 5,800 4,578 3,811 2,474 1,988 1,652 1,791 1,597 2,276 3,426 5,490 1991 7,499 7,400 5,761 3,131 2,231 1,829 1,640 1,708 1,837 2,454 4,304 6,158 1992 7,343 6,834 5,069 4,205 2,436 2,016 1,838 1,681 1,933 2,368 3,963 6,846 1993 7,296 7,526 7,354 4,605 2,613 1,992 1,884 1,811 1,992 2,565 4,648 6,470 1994 9,690

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Texas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 21,163 22,930 20,215 15,779 11,310 10,731 12,786 11,350 9,367 10,345 12,823 23,871 1990 21,376 16,323 17,118 14,054 12,299 14,204 14,184 11,592 9,448 9,571 12,192 19,981 1991 26,377 18,723 16,796 15,181 11,439 10,763 12,769 11,125 8,843 11,156 17,192 20,608 1992 22,907 19,049 15,866 14,174 12,557 10,879 13,768 12,966 11,356 11,672 17,386 22,093 1993 21,489 18,444 16,162 14,455 12,175 12,943

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Utah (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Vermont (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 315 300 283 199 105 66 57 57 73 130 189 307 1990 338 288 269 196 116 68 46 62 84 127 195 261 1991 335 311 259 187 105 61 55 58 82 133 188 284 1992 366 354 320 231 118 75 79 75 77 144 211 269 1993 347 368 350 199 124 80 62 67 83 143 235 324 1994 476 455 341 269 150 90 65 69 88 144 187 334 1995 388 406 352 277 140 89 70 72 95 130 242 410 1996 458 445 381 279 153 97 67 69 90 162 276 348 1997

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,164 6,056 5,721 4,051 2,446 2,129 1,866 1,485 1,985 2,192 3,612 6,474 1990 6,162 5,181 5,100 4,541 2,412 1,831 1,802 1,772 1,671 2,233 3,251 5,081 1991 6,667 5,956 5,270 3,581 2,481 2,159 1,867 2,057 1,860 2,625 3,855 5,701 1992 7,072 6,690 5,985 4,523 3,289 2,271 2,085 2,055 1,903 3,275 4,714 6,895 1993 7,432 7,800 7,347 4,850 2,842 2,177 1,987 2,033 2,106 3,073 4,355 6,877 1994 8,677

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Washington (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,343 5,561 5,424 3,672 2,194 1,851 1,671 1,548 1,357 2,083 3,366 4,433 1990 5,136 5,666 4,496 3,289 2,728 1,951 1,639 1,476 1,575 2,249 3,444 5,071 1991 6,279 5,277 4,597 4,047 3,025 2,400 1,831 1,635 1,689 2,099 3,802 5,057 1992 5,564 4,840 3,855 3,179 2,343 1,830 1,575 1,514 1,734 2,240 3,418 5,709 1993 7,058 5,670 5,157 3,785 2,774 1,905 1,801 1,750 1,829 2,236 3,639 6,016 1994

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in West Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,177 3,265 2,807 2,041 1,476 881 785 853 859 1,373 2,036 3,704 1990 3,701 2,707 2,391 2,064 1,224 924 889 845 862 1,237 1,963 2,585 1991 3,061 2,971 2,522 1,725 1,068 810 848 823 915 1,365 2,169 2,767 1992 3,659 3,565 2,986 2,322 1,341 999 812 855 910 1,482 2,092 3,396 1993 3,123 3,522 3,444 2,169 1,218 992 818 914 983 1,510 2,404 3,286 1994 4,653 3,681 3,246 2,031 1,437 982 812 973

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wisconsin (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,596 10,988 10,169 6,662 3,882 2,012 1,562 1,499 1,718 3,437 6,386 11,183 1990 11,878 9,411 8,746 5,436 3,701 2,130 1,686 1,617 1,786 3,865 6,030 10,074 1991 13,062 10,137 8,785 5,471 3,084 1,643 1,853 1,415 2,229 4,335 8,565 10,938 1992 11,235 10,037 9,113 6,870 3,632 1,986 1,759 1,615 1,954 4,108 7,918 11,087 1993 12,658 11,647 10,442 7,011 3,438 2,418 1,843 1,719 2,326 4,637 7,976

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wyoming (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 1,639 1,249 996 830 680 362 272 248 269 449 873 1,233 1992 1,404 1,078 821 668 438 309 264 269 287 439 760 1,271 1993 1,631 1,376 1,262 882 639 400 362 389 378 667 874 1,407 1994 1,351 1,412 1,065 869 544 369 291 270 308 550 915 1,287 1995 1,671 1,247 1,217 987 873 594

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the District of Columbia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    66,915 64,734 60,519 49,200 58,308 1980's 50,588 46,804 51,536 46,854 48,104 47,643 43,709 38,057 44,955 46,142 1990's 43,953 46,615 46,095 50,337 47,922 50,325 54,571 50,191...

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    63,224 70,083 74,231 1980's 70,048 71,178 71,900 65,409 71,819 69,641 64,821 64,903 71,709 73,625 1990's 67,223 68,383 72,720 78,047 75,819 82,726 87,456 81,753 73,117 73,643...

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,647 1990 4,168 3,115 3,057 2,477 1,557 1,131 1,049 961 1,016 1,095 1,686 2,738 1991 5,709 5,334 4,545 3,320 2,108 1,602 1,545 1,465 1,486 2,289 3,582 5,132 1992 6,323 6,382...

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    144,844 183,603 204,793 220,747 230,099 241,802 285,213 323,054 347,818 1950's 387,838 464,309 515,669 530,650 584,957 629,219 716,871 775,916 871,774 975,107 1960's 1,020,222...

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    21,979 2008 24,390 22,834 18,534 10,680 9,169 6,082 8,246 8,425 7,661 12,575 16,948 23,030 2009 28,831 22,774 20,061 12,767 9,617 8,062 8,926 9,970 9,486 12,390 14,237 23,283...

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    340,171 298,259 233,811 154,185 105,380 94,574 95,494 98,798 124,366 185,922 283,120 1984 436,748 354,468 310,657 243,353 159,502 108,290 96,951 98,111 101,386 127,912 193,132 ...

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 122,050 122,885 128,282 1970's 139,498 145,458 147,326 142,736 136,332 128,273 143,530 130,898...

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,401 34,749 37,275 1970's 36,254 36,657 37,389 33,126 35,349 33,439 34,450 34,303 29,649 36,717 1980's 28,525 26,860 25,876 26,665 27,567 25,836 25,128 22,384 25,562 26,469 1990's 24,287 23,711 25,232 25,723 25,526 26,228 29,000 32,360 25,705 27,581 2000's 25,580 26,391 25,011 25,356 26,456 25,046 24,396 23,420 25,217 24,293 2010's 27,071 25,144 21,551 25,324

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alaska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,722 4,713 11,018 1970's 12,519 14,256 16,011 12,277 13,106 14,415 14,191 14,564 15,208 15,862 1980's 16,513 16,149 24,232 24,693 24,654 20,344 20,874 20,224 20,842 21,738 1990's 21,622 20,897 21,299 20,003 20,698 24,979 27,315 26,908 27,079 27,667 2000's 26,485 15,849 15,691 17,270 18,373 16,903 18,544 18,756 17,025 16,620 2010's 15,920 19,399 19,898 18,694

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35,295 37,886 39,962 1970's 39,169 30,832 32,457 33,789 31,040 33,291 34,011 33,913 34,612 33,442 1980's 30,690 28,282 29,438 27,739 28,995 26,731 24,949 24,603 27,457 27,271 1990's 25,129 25,986 25,314 28,998 27,407 27,409 31,006 29,441 28,062 27,898 2000's 33,180 32,031 32,928 31,746 29,821 31,521 31,286 32,187 36,924 36,373 2010's 40,232 39,986 41,435 47,636

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 184,630 189,903 206,861 1970's 209,945 239,685 231,536 232,774 228,988 240,239 219,840 227,543 221,441 258,490 1980's 258,151 236,910 236,202 215,918 191,838 205,044 182,794 212,904 248,397 259,118 1990's 285,090 287,608 285,008 250,283 261,989 278,761 235,068 253,923 282,153 244,701 2000's 246,439 245,795 238,308 232,912 231,597 233,082 244,432 251,024 251,045

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 39,942 47,287 52,256 1970's 59,081 62,805 63,154 69,844 68,322 76,288 75,959 72,597 71,422 74,831 1980's 66,952 58,913 66,991 64,615 71,890 68,975 61,620 64,355 68,515 67,477 1990's 66,290 68,938 66,420 71,647 65,870 66,639 68,914 69,074 63,132 59,346 2000's 60,874 65,011 66,939 62,616 61,956 62,099 59,851 63,231 65,806 62,441 2010's 57,658 55,843 51,795 58,787

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,968 2,084 2,526 1970's 2,804 3,010 3,205 3,093 3,169 2,964 3,078 2,815 3,005 2,842 1980's 3,246 3,783 3,577 3,428 3,827 3,412 3,514 3,741 4,041 4,184 1990's 4,042 4,253 4,965 5,195 5,459 5,743 6,694 6,608 5,590 6,119 2000's 5,125 5,680 7,477 8,437 8,465 8,383 8,134 8,628 8,868 11,684 2010's 12,193 10,478 10,034 11,170 11,882 11,189

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,501 21,890 24,721 1970's 26,914 25,478 23,243 24,315 22,527 31,745 39,681 41,236 35,386 36,638 1980's 30,182 33,702 29,788 29,228 30,481 30,674 35,829 37,492 37,834 35,105 1990's 36,306 39,264 41,727 41,151 39,935 40,383 41,810 36,700 37,659 36,269 2000's 47,904 49,286 55,803 54,283 56,321 57,690 50,625 51,097 50,901 50,371 2010's 54,065 53,532 54,659 59,971

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,202 36,034 39,020 1970's 38,726 41,881 44,992 47,253 44,317 49,438 46,351 55,268 60,266 62,437 1980's 58,763 57,139 54,718 56,280 55,909 51,519 50,405 54,592 55,963 53,089 1990's 49,486 51,036 53,861 57,525 54,051 56,536 61,377 57,220 55,419 43,581 2000's 58,793 50,645 48,631 50,273 55,047 52,902 48,137 48,591 51,518 53,627 2010's 60,153 56,602 51,918 57,195

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Hawaii (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,715 1,610 1,607 1,548 1,328 1,858 1,883 2,019 2,049 2,129 1990's 2,223 2,148 2,144 2,123 2,200 2,199 2,132 1,751 1,747 1,749 2000's 1,771 1,749 1,720 1,751 1,803 1,838 1,813 1,836 1,769 1,752 2010's 1,777 1,768 1,850 1,873 1,931 1,908

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,972 6,374 6,613 1970's 5,851 8,232 10,712 9,387 8,040 12,177 8,742 8,405 5,503 6,923 1980's 5,756 5,422 5,729 5,758 8,493 8,999 8,543 7,618 8,252 9,024 1990's 8,535 9,582 8,932 10,675 10,088 10,360 11,506 11,433 11,676 12,618 2000's 13,414 13,623 13,592 12,019 12,995 13,231 13,573 14,274 16,333 15,740 2010's 15,033 16,855 15,838 18,485 16,963 16,171

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 175,281 174,565 189,006 1970's 193,434 210,424 224,488 218,530 216,114 215,718 246,659 243,686 251,895 237,199 1980's 228,178 223,427 218,751 204,834 232,170 213,528 204,979 191,047 215,257 196,171 1990's 200,267 193,844 196,964 203,157 197,558 203,802 218,054 202,850 174,687 188,520 2000's 201,768 189,160 204,570 211,710 204,039 201,882 196,361 203,368 222,382

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 37,141 46,232 54,062 1970's 52,632 56,246 61,286 52,674 53,461 51,705 57,310 51,815 64,532 60,931 1980's 58,880 52,036 55,470 52,535 57,516 56,522 55,730 53,609 61,120 58,554 1990's 56,045 58,571 53,973 56,023 52,253 53,122 57,229 41,482 41,788 38,952 2000's 40,297 37,560 38,802 37,781 36,779 29,616 27,505 30,546 33,531 32,512 2010's 31,799 32,117 25,452 33,198

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 51,062 56,937 54,010 1970's 70,321 67,515 66,331 59,518 58,097 50,662 43,567 44,563 65,300 115,743 1980's 39,996 39,507 33,729 34,906 33,088 30,228 27,985 27,845 27,475 27,156 1990's 24,937 25,452 28,445 25,157 24,184 23,833 25,746 25,613 24,042 24,559 2000's 25,687 24,604 25,540 25,161 24,700 25,085 22,240 23,863 22,869 23,672 2010's 27,009 25,925 26,294 28,875

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864 1,043 1,192 1,124 1,124 1,139 1,214 1,250 1,461 1,660 1990's 1,678 1,860 2,209 2,311 2,381 2,426 2,566 2,713 2,456 2,547 2000's 2,770 2,642 5,167 4,781 4,811 4,792 4,701 5,749 5,878 5,541 2010's 5,830 6,593 7,313 8,146 9,030 9,795

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maryland (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,154 30,419 34,674 1970's 37,529 40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635 44,136 46,874 45,842 49,802 57,370 58,103 2000's 55,669 59,802 63,999 70,557 70,195 69,718 62,868 70,852 70,411 69,119 2010's 67,555 67,505 64,146 71,145

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 24,737 25,396 29,821 1970's 35,356 36,994 36,778 39,288 37,384 37,812 37,763 40,598 45,657 46,701 1980's 53,462 50,131 61,286 39,640 41,271 41,382 43,661 46,522 48,915 51,508 1990's 50,618 53,188 64,352 65,429 84,534 82,270 96,187 105,813 90,092 65,136 2000's 63,793 61,677 64,763 62,590 56,879 56,665 52,283 61,504 72,303 71,546 2010's 72,053 81,068 73,040

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 107,796 117,124 130,062 1970's 132,708 146,217 159,970 180,274 189,192 181,949 178,220 131,266 142,935 182,316 1980's 190,268 174,722 170,269 159,916 160,952 157,758 135,592 185,956 167,900 176,182 1990's 159,429 165,558 173,802 180,230 183,068 194,078 201,390 192,258 163,368 179,351 2000's 186,800 173,734 176,010 186,129 175,190 174,625 153,896 163,740 172,108

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 16,547 18,297 17,667 1970's 23,846 25,853 24,604 23,701 25,504 23,922 20,214 19,304 21,312 27,224 1980's 20,886 19,267 17,213 17,158 17,860 16,591 16,891 17,922 18,108 17,568 1990's 17,548 17,743 17,942 19,199 19,232 19,904 22,225 22,070 21,358 20,208 2000's 21,673 21,585 21,221 22,933 22,130 20,882 19,425 20,774 20,181 19,095 2010's 21,179 20,247 17,834

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,524 79,821 79,019 1970's 87,644 89,534 97,506 91,038 90,291 90,719 98,435 93,323 98,680 94,629 1980's 76,054 68,455 69,913 66,106 67,218 60,345 61,890 58,205 63,839 63,039 1990's 59,387 63,191 60,963 69,670 66,196 65,086 72,802 69,829 61,995 63,100 2000's 62,673 64,924 61,897 61,516 61,755 60,369 56,722 59,224 64,993 61,433 2010's 61,194 62,304 54,736 64,522

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,516 13,651 16,593 1970's 18,564 18,109 19,151 19,143 16,602 18,654 17,831 16,706 17,766 17,396 1980's 14,265 13,725 15,987 13,534 14,256 14,820 12,536 10,989 12,041 13,141 1990's 12,164 12,846 11,557 13,880 12,981 13,489 14,823 13,911 12,952 12,088 2000's 13,533 13,245 14,704 15,119 13,407 13,136 13,181 13,223 14,340 23,575 2010's 20,459 22,336 19,205 20,971

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,443 41,765 46,041 1970's 46,824 47,261 45,518 38,690 42,298 43,117 48,713 46,989 40,736 43,507 1980's 43,356 40,612 43,022 39,055 41,900 39,404 36,357 34,205 39,388 37,351 1990's 36,489 40,291 34,490 34,745 38,946 40,044 40,833 33,853 28,911 27,586 2000's 28,907 27,792 28,185 28,368 29,858 27,401 28,087 30,067 34,813 31,790 2010's 31,993 32,115 26,503 32,214

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,164 6,997 8,204 1970's 9,633 11,014 12,755 13,144 14,078 14,965 18,389 17,436 19,940 19,638 1980's 10,207 8,294 8,449 11,758 12,012 12,232 11,451 13,747 14,879 15,116 1990's 15,073 16,960 16,101 17,549 18,694 18,703 20,421 21,958 23,314 22,710 2000's 25,586 22,912 22,685 24,099 26,862 26,552 28,046 28,224 28,920 29,531 2010's 29,475 30,763 28,991 31,211 29,105

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Hampshire (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,116 4,376 4,414 4,437 4,100 4,955 4,438 4,601 5,034 5,371 1990's 5,073 5,028 5,862 6,142 6,412 6,514 7,099 7,489 6,808 7,214 2000's 8,323 7,349 8,768 9,673 8,943 9,844 8,494 9,360 10,043 9,935 2010's 8,406 8,890 8,130 9,204 9,412 9,327

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Jersey (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,656 32,546 34,510 1970's 55,953 60,230 62,917 61,846 58,210 53,346 90,463 53,896 48,005 52,314 1980's 60,481 74,627 78,750 79,624 83,906 83,467 85,775 94,459 101,325 117,385 1990's 115,591 121,240 130,891 128,942 132,008 138,965 150,432 168,760 146,653 163,759 2000's 158,543 131,417 146,176 159,647 168,768 169,857 152,501 168,778 168,574 180,404 2010's

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 27,447 30,713 28,680 1970's 33,035 33,760 32,354 25,569 25,221 22,800 33,708 25,476 25,706 26,371 1980's 24,505 20,446 21,715 22,413 22,947 16,733 20,642 19,939 31,032 28,459 1990's 23,694 24,993 27,884 27,898 24,964 23,934 26,466 27,403 27,206 27,103 2000's 27,009 27,133 25,476 23,745 25,458 24,186 23,404 24,876 25,183 24,701 2010's 25,155 25,035 24,898 26,790

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Carolina (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,100 20,624 24,524 1970's 21,532 26,331 24,200 23,044 21,002 21,615 20,042 18,303 20,366 23,916 1980's 26,172 26,367 24,891 24,705 26,174 25,029 25,474 30,010 32,464 33,145 1990's 31,277 34,313 36,418 37,370 38,940 37,362 40,467 38,021 36,427 38,019 2000's 43,113 38,583 40,198 44,262 45,383 47,696 46,321 45,434 48,567 51,303 2010's 56,225 49,898 48,951

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,059 7,072 7,444 1970's 8,315 9,059 9,874 9,875 11,528 12,425 12,202 11,234 11,845 12,044 1980's 11,026 9,419 11,361 9,828 9,961 10,118 9,084 7,908 9,827 10,609 1990's 10,236 10,732 9,759 10,642 10,783 11,644 12,150 10,870 10,082 10,023 2000's 11,060 10,456 11,675 10,952 10,473 9,903 9,355 10,296 11,101 10,987 2010's 10,302 10,973 10,364 13,236 13,999 12,334

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 153,376 165,414 175,372 1970's 183,412 189,791 208,068 196,663 192,497 169,357 179,392 149,011 172,429 158,117 1980's 166,210 161,110 157,664 143,568 155,350 143,311 139,119 146,983 158,790 161,516 1990's 143,503 150,339 160,645 164,044 166,798 175,160 189,966 183,838 156,630 167,573 2000's 177,917 172,555 163,274 179,611 170,240 166,693 146,930 160,580 167,070

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 38,459 42,751 41,151 1970's 43,921 41,978 43,852 40,403 41,074 41,806 44,862 48,253 45,729 52,036 1980's 47,135 40,833 45,664 44,177 44,423 40,791 36,517 32,428 47,870 38,509 1990's 37,208 39,588 35,190 40,766 36,504 39,639 46,152 45,086 43,800 39,565 2000's 43,125 40,558 40,229 37,472 37,103 39,359 35,492 40,846 40,772 41,421 2010's 41,822 40,393 36,106 44,238

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,961 7,874 9,965 1970's 11,360 13,563 14,530 13,722 13,401 15,896 13,995 10,861 12,124 13,820 1980's 15,171 14,922 16,330 15,143 17,012 19,043 16,843 16,718 18,406 20,249 1990's 20,449 22,328 19,570 24,047 22,960 22,419 25,597 25,465 25,986 28,510 2000's 28,589 27,884 27,714 26,110 26,214 27,631 27,844 29,007 30,444 29,744 2010's 27,246 30,359 28,805 30,566 28,377

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Pennsylvania (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,702 87,620 95,720 1970's 99,339 110,014 122,518 116,265 102,495 98,991 124,517 111,885 110,620 111,498 1980's 118,462 128,561 125,557 115,222 126,211 115,329 114,442 114,800 127,382 132,421 1990's 125,673 125,546 134,254 131,776 138,473 143,735 154,642 144,084 130,996 143,256 2000's 145,319 136,468 136,202 149,458 142,608 144,971 130,328 145,852 144,603

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,142 3,416 3,850 1970's 5,064 4,530 4,734 4,648 4,397 4,233 2,895 3,019 4,783 6,169 1980's 6,751 6,867 7,156 6,976 7,466 7,590 6,718 9,395 8,352 8,767 1990's 8,071 8,269 9,080 9,205 12,049 12,064 12,298 12,303 11,477 11,804 2000's 12,974 12,808 11,468 11,391 11,289 11,043 9,950 11,247 10,843 10,725 2010's 10,458 10,843 10,090 11,633 13,178 11,734

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Carolina (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,840 10,544 12,938 1970's 13,850 14,371 14,137 16,053 14,820 17,202 35,062 32,117 24,681 17,943 1980's 22,885 19,436 15,560 16,548 16,635 15,270 15,894 17,195 17,472 16,525 1990's 15,394 15,796 16,644 17,014 17,870 18,868 20,328 19,560 19,828 20,566 2000's 22,105 20,743 21,029 22,365 22,255 22,048 20,691 20,927 22,283 21,953 2010's 24,119 22,113 21,416

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,444 10,723 11,201 1970's 11,361 10,592 11,204 10,568 11,671 11,488 15,344 14,786 13,547 9,951 1980's 8,507 8,188 9,384 8,651 9,128 9,987 9,166 8,199 8,396 8,826 1990's 8,555 9,473 9,122 10,696 10,274 10,685 11,598 10,422 9,264 9,564 2000's 10,119 9,711 10,258 10,375 9,958 9,819 9,525 10,337 11,362 11,563 2010's 11,025 11,101 9,330 12,151 12,310 10,497

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Tennessee (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,380 38,325 41,069 1970's 42,720 44,062 45,704 45,974 44,651 42,488 38,244 35,127 30,917 42,714 1980's 44,048 42,686 38,697 42,903 46,544 43,399 42,589 44,144 45,852 47,513 1990's 43,552 45,953 46,532 50,754 50,760 51,235 58,497 55,117 52,394 52,572 2000's 53,365 53,010 53,710 56,576 54,201 54,264 51,537 51,056 54,094 51,879 2010's 56,194 52,156 44,928 53,888

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 139,727 139,442 140,854 1970's 146,090 142,423 141,128 155,070 134,418 116,749 135,452 158,683 168,946 233,758 1980's 168,513 157,199 189,447 157,481 165,700 151,774 146,972 156,509 175,368 182,670 1990's 172,333 180,973 184,673 175,988 180,232 209,584 178,549 216,333 169,610 171,714 2000's 190,453 171,847 226,274 218,565 192,901 159,972 147,366 161,255 167,129

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,905 8,114 9,443 1970's 10,180 8,504 7,933 8,997 5,806 6,055 14,681 9,661 8,430 6 1980's 330 343 21,831 7,986 8,569 8,505 4,636 14,811 17,911 16,522 1990's 16,220 19,276 16,584 22,588 26,501 26,825 29,543 31,129 30,955 30,361 2000's 31,282 30,917 33,501 30,994 31,156 34,447 34,051 34,447 37,612 37,024 2010's 38,461 40,444 35,363 41,398 38,156 35,552

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Vermont (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 828 831 853 856 1,467 1,575 1,688 1,833 1,941 2,081 1990's 2,049 2,058 2,319 2,382 2,669 2,672 2,825 3,051 2,979 2,309 2000's 2,595 2,473 2,470 2,757 2,724 2,610 2,374 2,631 2,495 2,483 2010's 2,384 2,479 2,314 4,748 4,830 5,949

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,756 24,594 27,155 1970's 30,090 34,672 34,176 37,632 35,281 32,358 34,887 34,685 43,064 33,946 1980's 38,467 35,255 38,157 38,457 34,825 33,975 35,453 39,401 42,013 44,181 1990's 41,038 44,077 50,757 52,880 52,944 56,948 59,262 61,895 58,283 61,516 2000's 66,098 59,809 62,699 64,004 64,518 65,838 62,352 66,444 67,006 67,709 2010's 68,911 64,282 60,217 68,126

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Washington (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,133 16,244 17,166 1970's 18,490 20,612 23,254 32,333 33,221 31,988 31,652 29,946 25,330 33,369 1980's 30,754 28,629 30,559 28,728 32,371 35,459 32,022 32,366 36,674 38,502 1990's 38,671 41,738 37,800 43,620 42,982 42,568 48,139 46,686 45,561 50,735 2000's 50,462 57,160 46,455 47,845 48,455 49,745 51,292 53,689 56,205 55,697 2010's 51,335 56,487 53,420 55,805

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18,511 20,402 21,534 1970's 21,678 23,106 26,654 25,854 24,586 24,776 20,462 19,556 22,501 22,337 1980's 21,980 22,191 20,548 18,771 18,780 17,224 15,995 16,792 22,416 23,258 1990's 21,391 21,043 24,419 24,381 24,979 25,872 28,025 25,913 24,986 27,301 2000's 26,167 27,737 24,729 26,681 25,177 25,084 23,477 22,633 25,299 23,761 2010's 24,907 24,094 22,634

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wisconsin (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 33,610 36,067 52,315 1970's 54,555 47,662 43,753 55,012 65,705 67,485 57,702 61,280 77,890 80,756 1980's 77,107 68,075 69,694 68,020 70,230 72,803 55,275 57,750 66,939 70,090 1990's 66,339 71,516 71,314 77,079 78,609 84,888 93,816 88,729 81,316 81,689 2000's 81,139 76,095 85,811 87,131 82,187 86,086 86,342 89,016 97,137 91,459 2010's 82,204 87,040 76,949 99,434

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,865 11,637 14,069 1970's 14,026 14,072 17,287 13,206 13,241 10,253 9,152 8,767 8,100 8,211 1980's 4,980 4,511 10,098 9,182 9,431 9,139 8,045 8,443 8,700 8,551 1990's 8,440 9,101 8,009 10,268 9,231 9,833 9,721 10,754 10,414 9,838 2000's 9,752 9,535 10,414 9,986 9,916 9,184 9,500 9,442 10,180 10,372 2010's 11,153 11,680 10,482 12,013 12,188 12,498

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the District of Columbia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,752 14,993 15,881 15,945 11,680 11,921 11,934 13,999 15,012 15,741 1990's 13,473 15,550 16,103 16,229 14,742 17,035 16,347 18,012 16,862 17,837 2000's 17,728 16,546 18,332 17,098 17,384 17,683 17,107 19,297 18,411 18,705 2010's 18,547 16,892 15,363 17,234 17,498 15,793

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    38,497 57,203 50,170 46,647 40,509 1980's 39,359 36,379 35,260 34,111 36,138 33,758 32,666 33,298 35,718 36,148 1990's 31,806 33,700 35,419 37,817 36,744 38,610 40,972 38,627...

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,715 1,610 1,607 1,548 1,328 1,858 1,883 2,019 2,049 2,129 1990's 2,223 2,148 2,144 2,123 2,200...

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,335 23,389 24,501 1970's 22,705 25,604 26,905 31,812 32,742 32,638 36,763 34,076 29,581...

  20. New Commercial Program Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Beginning in spring of 2015, the BPA Commercial Team will be working with utilities...

  1. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arah Schuur Program Manager Commercial Buildings Integration (CBI) April 22, 2014 Commercial Buildings Integration (CBI) 2 Commercial Buildings Integration (CBI) Mission...

  2. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed ...

  3. Fact #610: February 15, 2010 All Sectors' Petroleum Gap

    Broader source: Energy.gov [DOE]

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  4. Fact #561: March 9, 2009 All Sectors' Petroleum Gap

    Broader source: Energy.gov [DOE]

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  5. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design » Types of Homes Types of Homes Manufactured homes are one type of home that may require special considerations for energy efficiency and renewable energy technologies. | Photo courtesy of Florida Solar Energy Center. Manufactured homes are one type of home that may require special considerations for energy efficiency and renewable energy technologies. | Photo courtesy of Florida Solar Energy Center. Some types of homes may require different considerations when it comes to energy

  6. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b. Total Primary Energy Consumption (U.S. and Census Region) By Principal Building Activity (Table 1c) html...

  7. VOLTTRONTM Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of grid services 5 What is VOLTTRON? * VOLLTRON is an application platform (e.g., Android, iOS) for distributed sensing, monitoring and controls applications * It includes a ...

  8. 1999 Commercial Buildings Characteristics--Energy Sources and...

    U.S. Energy Information Administration (EIA) Indexed Site

    that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and...

  9. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  10. DOE Releases Request for Information on Critical Materials, Including...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sector, including fuel cell platinum group metal catalysts. The RFI is soliciting feedback from industry, academia, research laboratories, government agencies, and other ...

  11. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  12. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  13. Private Sector Outreach and Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    ISER’s partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation.

  14. Commercial Grade Dedication Record (ANL-746 Revised) | Department...

    Energy Savers [EERE]

    Record (ANL-746 Revised) Commercial Grade Dedication Record (ANL-746 Revised) A sample of a process to recorddocument CGD activities. Forms are included. Commercial Grade...

  15. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  16. 1999 Commercial Buildings Characteristics

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption SurveyCommercial Buildings Characteristics Released: May 2002 Topics: Energy...

  17. Workforce Training for the Electric Power Sector: Awards

    Broader source: Energy.gov [DOE]

    List of Workforce Training Awards for the Electric Power Sector under the American Recovery and Reinvestment Act organized by state, including, city, recipients, type of project, description,...

  18. Public Finance Mechanisms to Catalyze Sustainable Energy Sector...

    Open Energy Info (EERE)

    all aspects of the sector including technology innovation, project development, (SME) business and industry support, consumer awareness and end-user finance. Regardless of...

  19. International Energy Outlook 2016-Industrial sector energy consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial sector energy consumption also includes basic chemical feedstocks. Natural gas ... For any given amount of chemical output, depending on the fundamental chemical process of ...

  20. Industry Scalable Commercial Lighting Solutions for the Mainstream Market

    SciTech Connect (OSTI)

    Jones, Carol C.; Puranik, Sucheta

    2008-08-17

    Inevitably the greatest obstacles to deep energy savings and mainstream market transformation include complexity and cost. Currently there is a tremendous marketplace gap between the need for widespread integrated lighting solutions and the capacity of the market to provide them. This paper will describe how a new USDOE commercial lighting program provides a multi-faceted strategy to provide the needed how to guidance in support of the numerous mandates and programs that are reaching far beyond codes and standards. The program provides lighting energy-efficiency solutions using high performance products, daylighting, and lighting controls. These lighting solutions are widely applicable to common spaces and are delivered via an interactive webtool, making them scalable to the mainstream market. Complexity is reduced by providing pre-designed vignettes and controls strategies that can be reviewed and selected by the end user or design team. The webtool provides analysis and documentation to show performance against energy goals in support of end-user applications for incentives, which addresses the cost obstacle. Utilities and Energy Effiency Program Sponsors (EEPS) benefit by having actionable guidance for customers and energy analysis sufficient to create programs designed around kWh rather than LPD or component-based rebates. The program is organized around the major commercial market sectors: retail, commercial real estate (e.g., offices, developers, lodging), and institutional (e.g., healthcare, education). This allows design solutions to be developed specifically for each sector with the input of the appropriate end users. The partnership model for the program is robust (including end users, design professionals, manufacturers, Non-Governmental Organizations (NGOs), and EEPS) and provides the network by which feedback is gathered, lighting solutions are deployed, and performance is measured.

  1. Industry Research and Recommendations for New Commercial Buildings

    SciTech Connect (OSTI)

    Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

    2014-05-01

    Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

  2. Topic A Note: Includes STEPS Subtopic

    Energy Savers [EERE]

    Top Better Buildings Beat Articles for February Top Better Buildings Beat Articles for February March 4, 2016 - 9:54am Addthis Top Better Buildings Beat Articles for February By Monica Kanojia You want a rundown of the Better Buildings Beat blog's commercial sector-relevant, and we've got them. Check out February's list of Beat articles to get caught up on the progress being made by Better Buildings Partners in the market toward breaking various barriers to energy efficiency. Florida Better

  3. Commercial Buildings Consortium

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  4. Commercialization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization Commercialization <a href="http://energy.gov/node/307033/">See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries</a>. See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. Commercialization is the process by which technologies and innovations developed in the lab make their way to market. By licensing patents or using Energy Department facilities, researchers from the

  5. Transforming the Commercial Building Operations (subcontract...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings without BAS Primary attention has been focused on office buildings and higher education, but re-tuning is applicable to all commercial buildings Audience includes ...

  6. Commercial Grade Dedication Survey and Training | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Survey and Training Commercial Grade Dedication Survey and Training The following is a sample plan to perform a CGD survey. The checklist items are included. In addition to,...

  7. Avista Utilities (Gas)- Prescriptive Commercial Incentive Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including...

  8. Georgia Power- Small Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Georgia Power offers Small Commercial rebates to customers on qualifying rates. See program web site for additional details including eligibility information.

  9. Agriculture, land use, and commercial biomass energy

    SciTech Connect (OSTI)

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  10. Process Intensification - Chemical Sector Focus

    Energy Savers [EERE]

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. ......... 5 5 2.1 Chemical Industry Focus ......

  11. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  12. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    SciTech Connect (OSTI)

    Belzer, David B.

    2004-09-04

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  13. Commercial Kitchen & Food Service Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EE Sectors Expand EE Sectors Technology & Innovation Expand Technology & Innovation Utility Resources Expand Utility Resources News & Events Expand News & Events Skip...

  14. Commercial | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  15. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  16. Behavioral Assumptions Underlying California Residential Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy ...

  17. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  18. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  19. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-12-31

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) todetermine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e. ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB?s assumed utilization is far higher than is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inlandareas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27 percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  20. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  1. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  2. Commercial Refrigeration Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural, and institutional buildings. 

  3. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  4. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, ... Commercial Buildings Integration Program Mission Accelerate voluntary uptake of ...

  5. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  6. Commercial SNF Accident Release Fractions

    SciTech Connect (OSTI)

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the container that confines the fuel assemblies could provide an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. This analysis, however, does not take credit for the additional barrier and establishes only the total release fractions for bare unconfined intact commercial SNF assemblies, which may be conservatively applied to confined intact commercial I SNF assemblies.

  7. Number of Customers by State by Sector, 1990-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Customers by State by Sector, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",281438,51017,1287,0,"NA",333742 2014,"AL","Total Electric Industry",2169790,360901,7236,0,"NA",2537927 2014,"AR","Total Electric

  8. Symbiosis Biofeedstock Conference: Expanding Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase Feedstock Production Symbiosis Biofeedstock Conference: Expanding Commercialization of ...

  9. Commercial Building Asset Rating Program

    Broader source: Energy.gov [DOE]

    Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

  10. Characterization of the U.S. Industrial/Commercial Boiler Population- Final Report, May 2005

    Broader source: Energy.gov [DOE]

    The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in...

  11. Commercialization Programs | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercialization Programs Through our commercialization programs, the Innovation and Entrepreneurship Center (IEC) helps accelerate the transfer of renewable energy and energy efficiency technologies into the marketplace. Colorado Center for Renewable Energy Economic Development Formerly the Colorado Cleantech Initiative program, the Colorado Center for Renewable Energy Economic Development (CREED) is a joint effort between NREL, the State of Colorado, and affiliated stakeholders to provide

  12. Commercial Building Energy Asset Score- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Nora Wang, Pacific Northwest National Laboratory One of the primary market barriers to enhancing energy efficiency in the commercial building sector is that building owners and investors lack a reliable and low cost source to understand a building’s as-built efficiency and identify opportunities for cost-effective improvements.

  13. Commercial Items Test Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached for your information is a copy of Civilian Agency Acquisition Council (CAAC) Letter 2009-04. It advises that the National Defense Authorization Act for Fiscal Year 201 0, Section 8 16 authorizes extension of the Commercial Items Test Program from January 1,20 10 to January 1,20 12 and that an expedited FAR Case is being processed to insert the new date at FAR 13.500(d). Also attached is a class deviation authorizing the use of simplified acquisition procedures for commercial items up to $5.5 million [$I1 million for acquisitions of commercial items under FAR 13.500(e)

  14. DOE Five Year Commercialization Support Plan

    Broader source: Energy.gov [DOE]

    On July 2, 2007, Marc Ledbetter, Pacific Northwest National Laboratory, provided an overview of DOE's Commercialization Support Plan. Key elements of the Plan include buyer guidance such as ENERGY...

  15. Advancing Private Sector Investment in Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Private Sector Investment in Clean Energy Advancing Private Sector Investment in Clean Energy April 14, 2016 - 3:36pm Addthis The past year has seen several major announcements in public and private clean energy investment, including the launch of Mission Innovation and the Breakthrough Energy Coalition at COP 21 in Paris. | Energy Department photo by Matt Dozier. The past year has seen several major announcements in public and private clean energy investment, including the launch of

  16. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  17. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. ...

  18. Commercial Grade Dedication Guidance

    Broader source: Energy.gov [DOE]

    This Guide provides an acceptable process (Commercial Grade Dedication [CGD]) for EM facilities and projects to dedicate an itemor service that performs a nuclear safety function that was not...

  19. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5.2 152.6 160.5 54.6 Assembly Health Care Lodging Office 0 20 40 60 80 100 120 140 160 180 Energy Information Administration Energy Consumption Series: Lighting in Commercial...

  20. Commercial PACE Financing

    Broader source: Energy.gov [DOE]

    Senate Bill 221 of 2013 authorizes local governments to adopt Commercial* Property Assessed Clean Energy (C-PACE) financing programs. C-PACE allows property owners to finance energy efficiency and...

  1. Commercial Grade Dedication RM

    Broader source: Energy.gov [DOE]

    The objective of this Standard Review Plan (SRP) on Commercial Grade Dedication (CGD) is to provide guidance for a uniform review of the CGD activities for office of Environmental Management...

  2. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  3. ISO 50001 for Commercial Buildings: Lessons Learned From U.S. DOE Pilot Project: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Field, K.; Punjabi, S.

    2014-08-01

    In the U.S., the ISO 50001 Standard, which establishes energy management systems (EnMSs) and processes, has shown uptake primarily in the industrial sector. The U.S. Department of Energy (DOE) undertook a pilot program to explore ISO 50001 implementation in commercial buildings. Eight organizations participated as pilots, with technical assistance provided by DOE, the National Renewable Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), and the Georgia Institute of Technology (Georgia Tech). This paper shares important lessons learned from the pilot. Staff time was the most critical resource required to establish effective EnMSs in commercial buildings. The pilot also revealed that technical support and template/example materials were essential inputs. Crucial activities included evaluating performance, identifying goals, making connections, communicating operational controls, and tracking/reviewing progress. Benefits realized included enhanced intra-organizational connections, greater energy awareness, increased process efficiencies, and improved ability to make business cases. Incremental benefits for ISO 50001 certification were greater accountability, assurance of best practices, public relations opportunities, and potential to unlock verified savings credits or incentive money. Incremental certification costs included more staff/consultant time, money for certification, and a tendency to limit EnMS scope in order to ensure favorable audit results. Five best practices were identified - utilizing expert technical assistance, training, and other resources; focusing on implementation over documentation; keeping top management involved; considering organizational structure when selecting EnMS scope; and matching the implementation level to an EnMS's scope and scale. The last two practices are particularly relevant to the commercial buildings sector.

  4. Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

  5. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect (OSTI)

    Szybist, James P.; Curran, Scott

    2015-05-01

    Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However, using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.

  6. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  7. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  8. Energy Sector Cybersecurity Framework Implementation Guidance

    Energy Savers [EERE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector ...

  9. Lighting in Commercial Buildings, 1986

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting in Commercial Buildings --1986 Overview Full Report and Tables Detailed analysis of energy consumption for lighting for U.S. commercial buildings. previous page...

  10. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  11. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  12. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  13. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  14. Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",2043614,2761518,1359680,0,"NA",6164812 2014,"AL","Total Electric

  15. EY and LANL make new cybersecurity tools available to private sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EY, LANL make new cybersecurity tools available to private sector EY, LANL make new cybersecurity tools available to private sector Ernst & Young LLP and Los Alamos National Laboratory have formed a strategic alliance to deliver some of the most advanced behavioral cybersecurity tools available to the commercial market. August 25, 2015 Los Alamos National Laboratory, Los Alamos, NM Los Alamos National Laboratory, Los Alamos, NM Contact Los Alamos National Laboratory Nancy Ambrosiano

  16. Third Party Financing and Power Purchasing Agreements for Public Sector PV Projects

    Broader source: Energy.gov [DOE]

    This webinar, held on May 27, 2009, covers third-party financing and power purchase agreement for public sector photovoltaic projects, including economic and legal information.

  17. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  18. Characterization of commercial building appliances. Final report

    SciTech Connect (OSTI)

    Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

    1993-08-01

    This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

  19. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  20. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  1. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  2. Ames Electric Department- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Ames Electric Department provides free energy audits and multiple energy efficiency rebates for commercial and industrial customers. The rebate programs available include: The Appliance Rebate...

  3. DOE Publishes Notice of Proposed Rulemaking for Commercial Refrigerati...

    Broader source: Energy.gov (indexed) [DOE]

    test procedures for commercial refrigeration equipment. 78 FR 64295 (October 28, 2013). Find more information on the rulemaking, including milestones, statutory authority,...

  4. Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives...

    Broader source: Energy.gov (indexed) [DOE]

    stores, refrigerated warehouses or spaces, and commercial kitchens, including refrigeratorfreezer lighting and controls, and automatic door closers. These are designed to...

  5. Tacoma Power- Commercial and Industrial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Tacoma Power’s New Construction Program is designed for commercial and business customers including industrial facilities, major remodels, offices, schools, hospitals, retail, non-profits and...

  6. Alameda Municipal Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power offers financial incentives for its commercial customers to install a range of energy efficient equipment and measures. HVAC rebates include efficient variable frequency...

  7. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data 9 CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures

  8. Commercial and institutional kitchen exhaust systems

    SciTech Connect (OSTI)

    McGuire, A.B. )

    1993-05-01

    This article addresses design requirements for commercial and institutional kitchen exhaust systems. The topics of the article include design considerations, toilet exhaust, dishwasher exhaust, grease hood exhaust, codes and standards, design concerns, common problems, and fire suppression. A side bar on ducts, plenums and housings is also included.

  9. California commercial building energy benchmarking

    SciTech Connect (OSTI)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

  10. The commercialization of magnetohydrodynamic electric power plants

    SciTech Connect (OSTI)

    Weinstein, R.E.

    1993-12-31

    The successful development of Magnetohydrodynamics (MHD) will provide an ultra clean, highly efficient alternative to other methods of coal-fired electric Power generation. A development path that could bring coal-fired MHD electric power plants to competitive commercial status is described in this paper. The paper discusses the scale-ups, the timing, and technical hurdles that face this technology as it progresses from its present status of small-scale demonstrations and begins its competition for electric utility acceptance. Coal-fired MHD power has at least four major markets: (1) New utility generation. (2) Utility retrofit/repowering applications. (3) New independent power production (IPP). (4) Large industrial cogeneration application. Of these, the largest market for MHD is expected to be the new electric utility/IPP generation market, those new units required to supply growth in power demand and to replace retired capacity. This market sector is the focus of this discussion. This paper describes the commercial pressures and inertias that motivate the entry of any new technology into the generation supply market. It then shows a development path that could bring coal-fired MHD electric power plants to competitive commercial status in the electric power industry.

  11. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  12. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  13. Residential and commercial buildings data book: Third edition

    SciTech Connect (OSTI)

    Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

    1988-02-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

  14. Commercial national accounts program is a gas industry revenue builder

    SciTech Connect (OSTI)

    Moskitis, T.L.

    1984-04-01

    The need for gas distributors to implement revenue-generating strategies is clearly evident in the commercial sector - their fastest growing market. One strategy is A.G.A.'s commercial national accounts marketing program, designed to establish working relationships with national and regional food, hotel, and retail chains and with the firms that design energy systems for them. The program supplies these chains with information on gas industry services and research aimed at increasing energy utilization efficiency. Regular communications and coordinated sales calls by gas utility executives on chain headquarters often produce increased gas sales, even of traditionally all-electric chains, as illustrated by several case histories.

  15. Sector Profiles of Significant Large CHP Markets, March 2004

    Broader source: Energy.gov [DOE]

    Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

  16. Establish the Commercial Pacakge Air Conditioners and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercial package air conditioners, heat pumps, and commercial warm air furnaces is an action issued by the Department of Energy. Though it is not intended or expected, should any...

  17. Commercial Vehicle Safety Alliance Commercial Vehicle Safety Alliance

    Office of Environmental Management (EM)

    Past Projects » Commercial Reference Buildings Commercial Reference Buildings The U.S. Department of Energy (DOE), in conjunction with three of its national laboratories, developed commercial reference buildings, formerly known as commercial building benchmark models. These reference buildings play a critical role in the program's energy modeling software research by providing complete descriptions for whole building energy analysis using EnergyPlus simulation software. There are 16 building

  18. Thermal energy storage for cooling of commercial buildings

    SciTech Connect (OSTI)

    Akbari, H. ); Mertol, A. )

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  19. Local Option- Commercial PACE Financing

    Office of Energy Efficiency and Renewable Energy (EERE)

    In June 2012, Connecticut passed legislation enabling Commercial Property Assessed Clean Energy financing (C-PACE), targeting commercial, industrial and multifamily property owners.  C-PACE is a ...

  20. Overview of Commercial Buildings, 2003

    Reports and Publications (EIA)

    2008-01-01

    The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States.

  1. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  2. Aerocapacitor commercialization plan

    SciTech Connect (OSTI)

    1995-09-12

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  3. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  4. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  5. Infrastructure opportunities in South America: Energy sector. Export trade information

    SciTech Connect (OSTI)

    1995-06-01

    The report, conducted by CG/LA, Inc., was funded by the U.S. Trade and Development Agency. The report was assembled for the South American Infrastructure Conference held in New Orleans. It contains a regional overview of infrastructure activities in ten countries represented at the conference. Also covered are project listings in five sectors, including Energy, Transportation, Environment, Telecommunications, and Industry. The study covers TDA case studies as well as project financeability. The ten countries covered in the report include the following: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. This volume focuses on the Energy Sector in South America.

  6. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  7. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Author Paul Brophy Conference World Geothermal Energy Summit; Jakarta, Indonesia; 20120706...

  8. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  9. Covered Product Category: Commercial Gas Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  10. Competitive implications of government-assisted commercialization programs

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The purpose of the Conference was to discuss government efforts to assist in the commercialization of new products and processes and the effect of such efforts on competition. Specifically, the appropriate role of the Federal Trade Commission (FTC) in assessing the relationship between commercialization and competition is discussed. Summaries are presented of research and/or experiences of private sector participants' presentations. Summaries are also presented of government participants' statements. An attempt is made to clarify the role of antitrust in support of innovative activity. Examples of the effect of government commercialization efforts on the market are briefly discussed. The competitive dangers concerning the size of the firm are described. A summary of the broad themes - the appropriate goal for government, competition in emerging industries, and the FTC role - is presented. (MCW)

  11. Hidden sector DM models and Higgs physics

    SciTech Connect (OSTI)

    Ko, P.

    2014-06-24

    We present an extension of the standard model to dark sector with an unbroken local dark U(1){sub X} symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1){sub X} case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1){sub X} is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.

  12. Energy Efficiency and the Finance Sector | Open Energy Information

    Open Energy Info (EERE)

    and the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector AgencyCompany Organization United Nations Environment Programme Sector Energy...

  13. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  14. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  15. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.

  16. Vermont Gas- Commercial Energy Efficiency Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Vermont Gas (VGS) offers rebates for commercial customers who install high efficiency equipment in existing buildings. The Commercial Equipment Replacement Program is designed for commercial and...

  17. Webtrends Archives by Fiscal Year - Commercialization | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization Webtrends Archives by Fiscal Year - Commercialization From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Commercialization site by ...

  18. Electric energy sector in Argentina

    SciTech Connect (OSTI)

    Bastos, C.M.

    1994-06-01

    This article describes how the organization of the electric energy sector in Argentina has changed dramatically from a sector in which state-owned companies worked under a central planning to one in which private companies make their own decisions. The way that the electrical system used to work can be shown by these statements: demand growth estimated by central planning team; projects to be developed and the timetable determined by the same team; unit operations ruled by central dispatch, and under state-owned companies responsibility; integration with neighbor countries focused on physical projects, such as Salto Grande with Uruguay and Yacyreta with Paraguay. Today the electrical system works under these rules: the system has been vertically separated and the companies cannot be integrated; electric energy is considered as an ordinary wealth and the value that consumers give it is taken into account, (the distribution companies pay consumers a penalty for the energy that they cannot supply, the penalty is worth the economic damage consumers suffer due to its lack); producers have to compete for demand. They can sell in two ways: sell under private agreements or sell to the system. Both ways of selling compete with each other because the system buys giving priority to lower costs and, as a consequence, some of the producers do not sell at all.

  19. Commercialization and Deployment at NREL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to STEAB Commercialization and Deployment at NREL Casey Porto, Senior Vice President, Commercialization and Deployment June 8, 2011 National Renewable Energy Laboratory Innovation for Our Energy Future Outreach, Planning, and Analysis B. Garrett Sr. Vice President Science and Technology D. Christensen Dep. Lab. Director / CRO Operations W. Glover Dep. Lab. Director / COO Commercialization and Deployment C. Porto Sr. Vice President National Renewable Energy Laboratory D. Arvizu

  20. NREL Commercialization & Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Commercialization & Technology Transfer State Energy Advisory Board June 8, 2010 Bill Farris, V.P. Commercialization and Technology Transfer NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory Innovation for Our Energy Future NREL Mission It is NREL's mission to ... commercialization activities that enable widespread adoption of renewable

  1. SF 6432-CI Commercial Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    150,000 APPLY TO ALL CONTRACTS EXCEEDING 5,000,000 Control : SF 6432-CI Title: Standard Terms and Conditions for Commercial Items Owner: Procurement Policy Department...

  2. SF6432-CS Commercial Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the Directorate of Defense Trade Control : SF 6432-CS Title: Standard Terms and Conditions for Commercial Services Owner: Procurement Policy & Quality Dept Release Date:...

  3. Commercial Building Energy Asset Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Score 2014 Building Technologies Office Peer Review Nora ... (MA DOER) and Northeast Energy Efficiency Partnership (NEEP) Building Owners...

  4. Covered Product Category: Commercial Griddles

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial griddles, which is a product category covered by the ENERGY STAR program

  5. Covered Product Category: Commercial Fryers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial fryers, which is a product category covered by the ENERGY STAR program.

  6. Commercialization | OpenEI Community

    Open Energy Info (EERE)

    and ensure a safe and reliable energy future. Links: Check out the EDI on the EDG Big Data Commercialization Data Jam Datapalooza EDI Innovation Open Data Success Stories...

  7. Commercial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for ENERGY STAR certified fryers, griddles, convection ovens, and steam cookers. Custom rebates for other types of commercial cooking equipment may be available...

  8. Commercial & Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  9. Portland's Commercial Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permits to install a solar energy system on a new or existing commercial building.

  10. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  11. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Commercial Buildings Energy 101: Energy Efficient Commercial Buildings

  12. Market Assessment of Distributed Energy in New Commercial and Institutional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building and Critical Infrastructure Facilities, September 2006 | Department of Energy Market Assessment of Distributed Energy in New Commercial and Institutional Building and Critical Infrastructure Facilities, September 2006 Market Assessment of Distributed Energy in New Commercial and Institutional Building and Critical Infrastructure Facilities, September 2006 Potential benefits of distributed energy, or distributed generation, include reduced grid congestion, increased overall

  13. Symbiosis Conference: Expanding Commercialization of Mutualistic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference: Expanding Commercialization of Mutualistic Microbes to Increase Bioenergy Crop Production Agenda Symbiosis Conference: Expanding Commercialization of Mutualistic ...

  14. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and Commercialization of Alternative ...

  15. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology ...

  16. Overview of Commercial Buildings, 2003 - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of...

  17. Trends in Commercial Buildings--Overview

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The Commercial Buildings Energy...

  18. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    4 Normalized Annual End Uses of Water in Select Supermarkets in Western United States (1) Fixture/End Use Toilets/Urinals Other/Misc. Indoor (2) Cooling Total Building Size (SF) Benchmarking Values for Supermarkets (3) N Indoor Use with Cooling, gal./SF/year 38 Indoor Use with Cooling, gal./SF/daily transaction 38 Note(s): Source(s): 25th Percentile of Users 52 - 64 9 - 16 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for

  19. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    5 Normalized Annual End Uses of Water in Select Hotels in Western United States (Gallons per Room per Year) (1) Fixture/End Use Bathtub (2) Faucets Showers Toilets Leaks Laundry Ice making (3) Other/misc. indoor Total Indoor Use Number of Rooms Logged average daily use, kgal: Peak instantaneous demand, gpm: Benchmarking Values for Hotels N Indoor Use, gal./day/occupied room 98 Cooling Use, gal./year/occupied room 97 Note(s): Source(s): 25th Percentile of Users 60 - 115 7,400 - 41,600 Based on

  20. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    6 Normalized Annual End Uses of Water in Two California High Schools Fixture/End Use Toilet Urinal Faucet Shower Kitchen Misc. uses (2) Cooling Leaks Swimming Pool Total Use Benchmarking Values for Schools (3) N Indoor Use, Gal./sq. ft./year 142 Indoor Use, Gal./school day/student 141 Cooling Use, Gal./sq. ft./year 35 Note(s): Source(s): 8 - 20 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other

  1. Dissemination of Climate Model Output to the Public and Commercial Sector

    SciTech Connect (OSTI)

    Robert Stockwell, PhD

    2010-09-23

    Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature and precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of aerosol, and land alteration. A particular concern is that atmospheric levels of CO{sub 2} may be rising faster than at any time in Earth's history, except possibly following rare events like impacts from large extraterrestrial objects (AMS, 2007). Atmospheric CO{sub 2} concentrations have increased since the mid-1700s through fossil fuel burning and changes in land use, with more than 80% of this increase occurring since 1900. The increased levels of CO{sub 2} will remain in the atmosphere for hundreds to thousands of years. The complexity of the climate system makes it difficult to predict specific aspects of human-induced climate change, such as exactly how and where changes will occur, and their magnitude. The Intergovernmental Panel for Climate Change (IPCC) was established by World Meteorological Organization (WMO) and the United Nations in 1988. The IPCC was tasked with assessing the scientific, technical and socioeconomic information needed to understand the risk of human-induced climate change, its observed and projected impacts, and options for adaptation and mitigation. The IPCC concluded in its Fourth Assessment Report (AR4) that warming of the climate system is unequivocal, and that most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increased in anthropogenic greenhouse gas concentrations (IPCC, 2007).

  2. From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector

    SciTech Connect (OSTI)

    Busch, J.F. Jr.

    1990-08-01

    This document contains Appendix A, B, and C. In Appendix A, we are working as part of a research project with King Monkut's Institute of Technology, Thonburi, and the University of California, Berkeley (USA) to determine how people respond to the thermal environment inside buildings. We have prepared a short questionnaire which will survey thermal comfort. Our plan is to survey each building during each of three seasons over this year (e.g. hot, rainy, and cool seasons). Appendix B contains supporting technical documentation on conservation potential and Appendix C contains documentation on utility impacts.

  3. Chapter 2: Energy Sectors and Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  4. Energy Analysis by Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use and trends by sector. Manufacturing Energy and Carbon Footprints Static Manufacturing Energy Sankey Diagrams Dynamic Manufacturing Energy Sankey Tool Energy & Environmental Profiles Bandwidth Studies Large Energy User Manufacturing Facilities by State MANUFACTURING ENERGY and carbon

  5. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security

  6. AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications

    Broader source: Energy.gov [DOE]

    The AMO seeks information on mid-Technology Readiness Level R&D needs, market challenges, supply chain challenges, and shared facility needs addressing clean energy manufacturing topics, including the fuel cell and hydrogen sectors.

  7. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In February 2014, the National Institute of Standards and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the ...

  8. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  9. Category:Public Sectors | Open Energy Information

    Open Energy Info (EERE)

    no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Feedback Contact needs updating Image needs updating...

  10. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework...

  11. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October...

  12. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014. The draft document...

  13. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert Westby, National Renewable Energy Laboratory, at the Waste-to-Energy Using ...

  14. Table 3. Distribution of total U.S. greenhouse gas emissions by sector, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of total U.S. greenhouse gas emissions by sector, 2009 " "Greenhouse Gas and Source","Sector" ,"Residential","Commercial","Industrial","Transportation","Total" "Carbon Dioxide" " Energy-Related",1172.297835,1012.323586,1417.683142,1757.250685,5359.555248 " Industrial Processes",,,87.282832,,87.282832 "Total CO2",1172.297835,1012.323586,1504.965974,1757.250685,5446.83808

  15. Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Five Retailers of Electricity, with End Use Sectors, 2014" "Alaska" "megawatthours" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Golden Valley Elec Assn Inc","Cooperative",1219363,276627,129773,812963,0 2,"Chugach Electric Assn Inc","Cooperative",1134527,513748,563581,57198,0 3,"Anchorage Municipal

  16. Small Buildings Small Portfolio Commercial Upstream Incentive Project: Regional Roll-Out- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Todd Levin, Argonne National Laboratory To cost-effectively spur energy efficiency improvements in the small buildings and small portfolios (SBSP) sector, this project is evaluating how to expand commercial upstream incentive approaches to a level that will be nationally replicated.

  17. Commercialization plan laser-based decoating systems

    SciTech Connect (OSTI)

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

  18. 1999 Commercial Buildings Characteristics--Trends in Commercial...

    U.S. Energy Information Administration (EIA) Indexed Site

    and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty...

  19. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  20. Xcel Energy (Electric)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Xcel Energy offers rebate programs for Colorado commercial and industrial customers for a wide range of energy efficiency technologies including but not limited to heating and cooling, motors, l...

  1. Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lewis County PUD offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial processes upgrades include premium...

  2. Texas Gas Service- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Texas Gas Service (TGS) offers a range of financial incentives to commercail customers who purchase and install energy efficient commercial equipment. Eligible equipment includes water heaters,...

  3. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    SciTech Connect (OSTI)

    none,

    2010-11-01

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

  4. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect (OSTI)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  5. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  6. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  7. Citizens Gas- Commercial Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to commercial customers for the installation of numerous types of efficient natural gas appliances, equipment upgrades, and tune-up services. These rebates...

  8. Washington Gas- Commercial Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas as a part of the Maryland EmPOWER program offers incentives to its commercial customer for making energy efficiency improvements. Rebates are available for qualifying water heaters,...

  9. Commercialization and Deployment at NREL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization and Deployment at NREL June 8, 2010 Casey Porto, Sr V.P. National Renewable Energy Laboratory Innovation for Our Energy Future How NREL is Organized Alliance for Sustainable Energy, LLC Chair, J. Spigarelli Vice Chair, J. Wadsworth Outreach, Planning, and Analysis B. Garrett Sr. Vice President Science and Technology Open Position Dep. Lab. Director / CRO Operations W. Glover Dep. Lab. Director / COO Commercialization and Deployment C. Porto Sr. Vice President National

  10. Residential and commercial buildings data book. Second edition

    SciTech Connect (OSTI)

    Crumb, L.W.; Bohn, A.A.

    1986-09-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

  11. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    SciTech Connect (OSTI)

    Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul; Margolis, Robert

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  12. Third Party Financing and Power Purchasing Agreements for Public Sector PV Projects

    Broader source: Energy.gov [DOE]

    Provides information on third-party financing and Power Purchase Agreements for public sector PV projects presented at the TAP Web Seminar on May 27, 2009, includes economic and legal information.

  13. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    SciTech Connect (OSTI)

    S.O. Bader

    1999-10-18

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be conservatively applied to confined CSNF assemblies.

  14. Taiwan: An energy sector study

    SciTech Connect (OSTI)

    Johnson, T.; Fridley, D.; Kang, Wu

    1988-03-01

    A study on the economy of Taiwan, with special reference to the energy sector, revealed the following: Taiwan's rapid export-driven economic growth in the 1970s and 1980s has earned them the rank of ''Newly Industrialized Countries.'' Coal reserves measure less than 1 billion tons, and annual output has declined to below 2 million tons per year. Marginal amounts of crude are produced. Natural gas resources have been exploited both on- and offshore, through production amounts to little more than 1 billion cubic meters per year. Domestic hydrocarbon production is forecast to decline. Taiwan prssesses an estimated 5300 mW of exploitable hydropower capacity, of which 2564 mW had been installed by 1986. Taiwan has undertaken a massive program of nuclear power construction in response to the rapid rise in oil prices during the 1970s. Energy demand has risen an average of 9.0 percent per year since 1954, while real GNP has grown 8.6 percent per year. Sine 1980, oil has provided a lower share of total energy demand. Oil demand for transport has continued to grow rapidly. Declining production of domestic natural gas has led Taiwan to initiate LNG imports from Indonesia beginning in 1990. Coal has regained some of its earlier importance in Taiwan's energy structure. With declining domestic production, imports now provide nearly 90 percent of total coal demand. Taiwan is basically self-sufficient in refining capacity. Energy demand is expected to grow 5.4 percent per year through the yeat 2000. With declining output of domestic resources, energy dependency on imports will rise from its current 90 percent level. Government policy recognizes this external dependency and has directed it efforts at diversification of suppliers. 18 refs., 11 figs., 40 tabs.

  15. Commercial Building Partnerships Replication and Diffusion

    SciTech Connect (OSTI)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  16. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    SciTech Connect (OSTI)

    McNeil, MIchael; Letschert, Virginie; Shen, Bo; Sathaye, Jayant; de la Ru du Can, Stephane

    2011-01-12

    The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side management or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1.7 thousand TWh or 21percent of the 2030 projected base case electricity demand. Electricity savings potential ranges from a high of 38percent in India to a low of 9percent in Korea for the two sectors. Lighting, fans, and TV sets and lighting and refrigeration are the largest contributors to residential and commercial electricity savings respectively. This work presents a first estimates of the savings potential of DSM programs in APP countries. While the resulting estimates are based on detailed end-use data, it is worth keeping in mind that more work is needed to overcome limitation in data at this time of the project.

  17. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1990 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-06-01

    This report officially releases the compilation of regional 1990 retail customer sector sales data by the Bonneville Power Administration. The report is intended to enable detailed examination of annual regional electricity consumption. It also provides observations based on statistics covering the 1983--1990 time period, and gives statistics covering the time period 1970--1990. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell annually to four sectors. Data is provided on each retail customer sector and also on the customers Bonneville serves directly: residential, commercial, industrial, direct-service industrial, and irrigation. 21 figs., 40 tabs.

  18. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Arkansas Inc","Investor-owned",21049257,8069917,6170936,6808318,86 2,"Southwestern Electric Power Co","Investor-owned",4018839,1121436,1354356,1543047,0 3,"Mississippi County Electric

  19. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-owned",28671219,9008526,12886370,6712282,64041 2,"City of Colorado Springs - (CO)","Public",4477715,1425423,1097160,1955132,0 3,"Intermountain Rural Elec

  20. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",104431096,55224658,46172611,2942385,91442 2,"Duke Energy Florida, Inc","Investor-owned",37240099,19002681,14970106,3267312,0 3,"Tampa Electric

  1. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Georgia Power Co","Investor-Owned",83740365,27132065,32894391,23548775,165134 2,"Jackson Electric Member Corp - (GA)","Cooperative",5201199,3003210,1476773,721216,0 3,"Cobb Electric Membership

  2. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Hawaiian Electric Co Inc","Investor-owned",6781665,1611149,2270495,2900021,0 2,"Maui Electric Co Ltd","Investor-owned",1132056,381979,373947,376130,0 3,"Hawaii Electric Light Co

  3. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Commonwealth Edison Co","Investor-owned",18061768,9114941,7890441,1056386,0 2,"Constellation Energy Services, Inc.","Investor-owned",10686139,5208659,5477480,0,0 3,"Homefield

  4. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Louisiana LLC","Investor-owned",32904509,9047299,6757407,17099803,0 2,"Entergy Gulf States - LA LLC","Investor-owned",20822523,5368421,5529206,9924896,0 3,"Cleco Power

  5. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Baltimore Gas & Electric Co","Investor-owned",12270475,8927905,3147168,195402,0 2,"WGL Energy Services, Inc.","Investor-owned",7202209,1077458,6124751,0,0 3,"Potomac Electric Power

  6. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"DTE Electric Company","Investor-owned",41923906,14932840,16790364,10199382,1320 2,"Consumers Energy Co","Investor-owned",33253922,12593983,11045552,9614387,0 3,"Constellation Energy Services,

  7. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NH","Investor-owned",3799020,2390026,1240068,168926,0 2,"Constellation Energy Services, Inc.","Investor-owned",1008956,3870,1005086,0,0 3,"Constellation NewEnergy,

  8. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",24307160,8652606,9472917,6181637,0 2,"Public Service Co of Oklahoma","Investor-owned",17947669,6320906,6389387,5237376,0 3,"Grand River Dam

  9. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owned",22374515,8155692,7985229,6233594,0 2,"Duke Energy Carolinas, LLC","Investor-owned",21202789,6633843,5727023,8841923,0 3,"South Carolina Public Service

  10. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",2056587,714040,997932,344615,0 2,"NorthWestern Energy - (SD)","Investor-owned",1579926,582064,711070,286792,0 3,"Black Hills Power

  11. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",4281682,1551471,1572378,1157833,0 2,"Vermont Electric Cooperative, Inc","Cooperative",446870,222366,122807,101697,0 3,"City of Burlington Electric -

  12. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Virginia Electric & Power Co","Investor-owned",75562974,29406355,39038242,6916360,202017 2,"Appalachian Power Co","Investor-owned",15954286,6461192,4013267,5479827,0 3,"Rappahannock Electric

  13. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Appalachian Power Co","Investor-owned",14185260,5721741,3637041,4826478,0 2,"Monongahela Power Co","Investor-owned",11426122,3814821,2840690,4770611,0 3,"The Potomac Edison

  14. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Wisconsin Electric Power Co","Investor-owned",23909329,7778541,8832104,7298684,0 2,"Wisconsin Power & Light Co","Investor-owned",10646058,3533105,2424249,4688704,0 3,"Wisconsin Public Service

  15. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",104431096,55224658,46172611,2942385,91442 2,"Georgia Power Co","Investor-owned",83740365,27132065,32894391,23548775,165134 3,"Southern California Edison

  16. High Performance Commercial Buildings Technology Roadmap | Open...

    Open Energy Info (EERE)

    Company Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset...

  17. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  18. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  19. Commercial Grade Dedication Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Grade Dedication Resources Commercial Grade Dedication Resources Resource List Commercial Grade Dedication at NRC Commercial-Grade Dedication of Software, June 12, 2014 NRC Vendor Workshop Software Dedication Using the ASME NQA-1 Approach Plant Engineering: Guideline for the Acceptance of Commercial-Grade Design and Analysis Computer Programs Used in Nuclear Safety-Related Applications: EPRI report # 1025243 NQA-1 Commercial Grade Dedication Requirements Subpart 2.14, NQA-1a-2009, and

  20. Commercial Grade Dedication Survey and Training

    Office of Environmental Management (EM)

    Commercial Grade Dedication Resources Commercial Grade Dedication Resources Resource List Commercial Grade Dedication at NRC Commercial-Grade Dedication of Software, June 12, 2014 NRC Vendor Workshop Software Dedication Using the ASME NQA-1 Approach Plant Engineering: Guideline for the Acceptance of Commercial-Grade Design and Analysis Computer Programs Used in Nuclear Safety-Related Applications: EPRI report # 1025243 NQA-1 Commercial Grade Dedication Requirements Subpart 2.14, NQA-1a-2009, and

  1. Antineutrino Oscillations in the Atmospheric Sector

    SciTech Connect (OSTI)

    Himmel, Alexander I.; /Caltech

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for {nu}{sub {mu}} {yields} {bar {nu}}{sub {mu}} transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |{Delta}{bar m}{sub atm}{sup 2}| = (3.36{sub -0.40}{sup +0.46}(stat) {+-} 0.06(syst)) x 10{sup -3} eV{sup 2} and sin{sup 2}(2{bar {theta}}{sub 23}) = 0.860{sub -0.12}{sup +0.11}(stat) {+-} 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  2. Energy Information Administration (EIA)- About the Commercial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the ...

  3. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Gasoline and Diesel Fuel Update (EIA)

    Pick a date range: From: To: Go Commercial Buildings Available formats 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary Released: March 18, 2016 EIA has ...

  4. Energy Intensity Indicators: Commercial Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Source Energy Consumption Energy Intensity Indicators: Commercial Source Energy Consumption Figure C1 below reports as index numbers over the period 1970 through 2011: ...

  5. Poudre Valley REA- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  6. 1999 Commercial Buildings Characteristics--HVAC Conservation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Those commercial buildings that used HVAC conservation features...

  7. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

  8. Austin Energy- Commercial Energy Management Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives for commercial customers to increase the energy efficiency of facilities through the Commercial Rebate Program. Rebates are available for qualified HVAC equipment,...

  9. Idaho Power- Large Commercial Custom Efficiency Program

    Broader source: Energy.gov [DOE]

    Large commercial and industrial Idaho Power customers that reduce energy usage through more efficient electrical commercial and industrial processes may qualify for an incentive that is the lesser...

  10. New Energy Efficiency Standards for Commercial Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

  11. Sawnee EMC- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for commercial customers who wish to upgrade the energy efficiency of eligible facilities. If recommended by a Sawnee Commercial Marketing Representative ...

  12. Overview of Commercial Buildings, 2003 - Major Characteristics

    U.S. Energy Information Administration (EIA) Indexed Site

    commercial floorspace. Figure 7. Floorspace in office, mercantile, warehousestorage, and education buildings accounts for 60 percent of total commercial floorspace. Source: Energy...

  13. Commercial Building Energy Alliance Exterior Lighting Scoping...

    Office of Scientific and Technical Information (OSTI)

    Commercial Building Energy Alliance Exterior Lighting Scoping Study Citation Details In-Document Search Title: Commercial Building Energy Alliance Exterior Lighting Scoping Study ...

  14. Commercialization Plan Worksheet | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercialization Plan Worksheet A Microsoft Word template for potential licensees to use in preparing a proposed commercialization plan for an Argonne technology File...

  15. Commercial Refrigeration Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards. File Commercial Refrigeration Equipment -- v2.0 More Documents & Publications Beverage Vending Machines Commercial Refrigeration Equipment Fluorescent Lamp Ballasts

  16. International Fuel Services and Commercial Engagement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation ...

  17. List of Commercial Refrigeration Equipment Incentives | Open...

    Open Energy Info (EERE)

    Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility...

  18. A Look at Commercial Buildings in 1995

    U.S. Energy Information Administration (EIA) Indexed Site

    site. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > A Look at Commercial...

  19. El Paso Electric Company- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) Commercial Efficiency Program pays incentives to commercial and industrial customers who install energy efficiency measures in facilities located within EPE's New Mexico...

  20. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  1. Commercial Buildings Integration Program Overview - 2013 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 BTO Peer Review Commercial Buildings Integration Program Overview - 2013 BTO Peer Review Commercial Buildings Integration Program Presentation for the 2013 Building Technologies ...

  2. Commercial Building Energy Alliances (CBEA) Fact Sheet

    SciTech Connect (OSTI)

    2008-05-01

    This fact sheet provides an overview of the Commercial Building Energy Alliances and also spotlights the Commercial Lighting Solutions web tool.

  3. Transmission Services Commercial Systems Support and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Systems Support and Development Customer Conference Call Agenda This customer conference call will provide updates concerning BPA Transmission Services' commercial...

  4. 1999 Commercial Buildings Characteristics--Census Region

    U.S. Energy Information Administration (EIA) Indexed Site

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  5. 1999 Commercial Buildings Characteristics--Year Constructed

    U.S. Energy Information Administration (EIA) Indexed Site

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  6. 1999 Commercial Buildings Characteristics--Building Size

    U.S. Energy Information Administration (EIA) Indexed Site

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  7. 1999 Commercial Buildings Characteristics--Disaggregated Principal...

    U.S. Energy Information Administration (EIA) Indexed Site

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  8. Small Buildings Small Portfolio Commercial Upstream Incentive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Portfolio Commercial Upstream Incentive Project: Regional Roll-Out - 2014 BTO Peer Review Small Buildings Small Portfolio Commercial Upstream Incentive Project: Regional ...

  9. OTEC- Commercial Lighting Retrofit Rebate Program

    Broader source: Energy.gov [DOE]

    The Oregon Trail Electric Consumers Cooperative (OTEC) offers a commercial lighting retrofit program that provides rebates for commercial businesses that change existing lighting to more energy...

  10. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  11. Federal Sector Renewable Energy Project Implementation: "What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: "What's Working and Why" Implementation: What s Working and Why DOD-DOE Waste-to- Energy and Fuel Cell Workshop January 13, ...

  12. DOE Issues Energy Sector Cyber Organization NOI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. ...

  13. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect (OSTI)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  14. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... New Jersey to the SS&TP. EMCORE Photovoltaics employs approximately 300 people at the SS&TP in the design and manufacture of products for both space and terrestrial solar ...

  15. Energy Sector Cybersecurity Framework Implementation Guidance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Cybersecurity Framework Implementation Guidance Energy Sector Cybersecurity Framework Implementation Guidance On January 8, 2015, the Energy Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by the National Institutes of Standards and Technology (NIST) in February 2014. The voluntary Cybersecurity Framework consists of standards, guidelines, and

  16. 2015 Energy Sector-Specific Plan | Department of Energy

    Energy Savers [EERE]

    Energy Sector-Specific Plan 2015 Energy Sector-Specific Plan The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas

  17. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  18. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  19. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  20. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's ...