National Library of Energy BETA

Sample records for includes commercial combined-heat-and-power

  1. The market and technical potential for combined heat and power in the commercial/institutional sector

    SciTech Connect (OSTI)

    None, None

    2000-01-01

    Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

  2. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  3. The Market and Technical Potential for Combined Heat and Power in the Commercial/Institutional Sector, January 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

  4. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff

  5. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative

  6. Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Combined Heat and Power overview ........................................................................................... 2 5 1.2 Benefits of CHP for the Nation ...................................................................................................... 4 6 1.3 Benefits of CHP for

  7. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect (OSTI)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by

  8. Assessment of Combined Heat and Power Premium Power Applications in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, September 2008 | Department of Energy Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 This 2008 report analyzes the economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities in California.Through a series of three case studies, key trade-offs are analyzed with regard to the

  9. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power (CHP) Technical Potential in the United States March 2016 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  10. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of

  11. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  12. Pacific Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  13. Combined Heat and Power (CHP) Grant Program

    Broader source: Energy.gov [DOE]

    Maryland CHP grant program provides grants for construction of new Combined Heat and Power (CHP) systems in industrial and critical infrastructure facilities in Maryland. Applications for the...

  14. Northwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  15. Northeast Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  16. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  17. Midwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. 

  18. New Release -- U.S. DOE Analysis: Combined Heat and Power (CHP...

    Energy Savers [EERE]

    The "Combined Heat and Power (CHP) Technical Potential in the United States" market analysis report provides data on the technical potential in industrial facilities and commercial ...

  19. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  20. Engine Driven Combined Heat and Power: Arrow Linen Supply, December...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008 Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008 This paper describes the Arrow ...

  1. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  2. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

  3. Energy Department Actions to Deploy Combined Heat and Power,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 -...

  4. Guide to Using Combined Heat and Power for Enhancing Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings During ...

  5. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

  6. How Combined Heat and Power Can Support State Climate and Energy Planning |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Combined Heat and Power Can Support State Climate and Energy Planning How Combined Heat and Power Can Support State Climate and Energy Planning Provides states and their stakeholders with a short synopsis for what it would look like to include combined heat and power in their climate and energy plans, including current activity at the national and state levels, best practices, energy savings examples, cost-effectiveness, EM&V and DOE support. How Combined Heat and

  7. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Storey and Tim Theiss Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. 

  8. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  9. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  10. Alaska Gateway School District Adopts Combined Heat and Power

    Broader source: Energy.gov [DOE]

    Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

  11. Combined Heat And Power Installation Market Analysis | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Analysis Home There are currently no posts in this category. Syndicate...

  12. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  13. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect (OSTI)

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  14. How Combined Heat and Power Can Support State Climate and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Combined Heat and Power Can Support State Climate and Energy Planning Provides states and their stakeholders with a short synopsis for what it would look like to include ...

  15. Combined Heat and Power with Your Local Utility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) and its uses, configurations, considerations, and more.

  16. Combined Heat and Power System Enables 100% Reliability at Leading...

    Office of Environmental Management (EM)

    - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading ... uninterrupted energy services to TECO customers in the event of a prolonged grid outage. ...

  17. The Market and Technical Potential for Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This January 2000 ONSITE SYCOM Energy Corporation (OSEC) report provides information on the potential for cogeneration or combined heat and power (CHP) in the industrial market. As ...

  18. ITP Industrial Distributed Energy: Combined Heat and Power: Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the ...

  19. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...lishmentsbooklet.pdf More Documents & Publications High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Combined Heat and Power - A Decade of Progress, A ...

  20. Combined Heat and Power (CHP) Resource Guide for Hospital Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007 guidebook is to ...

  1. Mid-Atlantic Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  2. Integrated Combined Heat and Power/Advanced Reciprocating Internal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

  3. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  4. Industrial Energy Efficiency and Combined Heat and Power Fact Sheet

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2012-07-16

    Provides an overview of the State and Local Energy Efficiency Action Network's (SEE Action) Industrial Energy Efficiency and Combined Heat and Power Working Group.

  5. Combined Heat and Power Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Webinar PDF icon 06092010CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, ...

  6. Combined Heat and Power System Enables 100% Reliability at Leading...

    Broader source: Energy.gov (indexed) [DOE]

    and 330,000 pounds of steam per hour; * A 75,000 ... TECO plant peak electrical load and 100% of TECO customers' ... the combined heat and power plant at the Texas Medical ...

  7. Combined Heat and Power (CHP): Essential for a Cost Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for a Cost Effective Clean Energy Standard, April 2011 Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April 2011 In March 2011, a federal ...

  8. Testimonials - Partnerships in Combined Heat and Power Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Inc. | Department of Energy Combined Heat and Power Technologies - Cummins Inc. Testimonials - Partnerships in Combined Heat and Power Technologies - Cummins Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Kevin Keene, Project Director, Cummins" and footage of a man. Kevin Keene: Working with the Department of Energy has been

  9. Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and Urban Development (HUD) and the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) developed preliminary feasibility (Level 1) screening software and enlisted the DOE CHP Regional Application Centers (RACs) to help run utility data and estimate paybacks. This paper

  10. ITP Industrial Distributed Energy: Combined Heat and Power: Effective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solutions for a Sustainable Future | Department of Energy ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future chp_report_12-08.pdf (3.22 MB) More Documents & Publications CHP: A Clean Energy Solution,

  11. New Release-- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical Potential in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    The “Combined Heat and Power (CHP) Technical Potential in the United States” market analysis report provides data on the technical potential in industrial facilities and commercial buildings for ...

  12. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    Turner, E. Bruce; Brown, Tim; Mardiat, Ed

    2011-12-31

    outages. TECO's operation is the largest Chilled Water District Energy System in the United States. The company used DOE's funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMC's growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nation's healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

  13. Anaerobic Digestion and Combined Heat and Power Study

    SciTech Connect (OSTI)

    Frank J. Hartz; Rob Taylor; Grant Davies

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

  14. Combined Heat and Power: Expanding CHP in Your State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Expanding CHP in Your State December 4, 2013 Molly Lunn U.S. DOE's State and Local Technical Assistance Program 1 | Energy Efficiency and Renewable Energy eere.energy.gov DOE's State & Local Technical Assistance Program * Strategic Energy Planning * Program & Policy Design and ImplementaJon * Financing Strategies * Data Management and EM&V * EE & RE Technologies Priority Areas * General EducaOon (e.g., fact sheets, 101s) * Case Studies * Tools for

  15. Combined Heat and Power Technology Fact Sheets Series: Steam Turbines

    Broader source: Energy.gov (indexed) [DOE]

    Steam Turbines Steam turbines are a mature technology and have been used since the 1880s for electricity production. Most of the electricity generated in the United States is produced by steam turbines integrated in central station power plants. In addition to central station power, steam turbines are also commonly used for combined heat and power (CHP) instal- lations (see Table 1 for summary of CHP attributes). Applications Based on data from the CHP Installation Database, 1 there are 699

  16. Standby Rates for Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Sedano, Richard; Selecky, James; Iverson, Kathryn; Al-Jabir, Ali

    2014-02-01

    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

  17. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study ...

  18. Combined Heat and Power - A Decade of Progress, A Vision for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined...

  19. Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation overview the arrow linen supply combined heat and power, its cost savings, success factors, and impacts

  20. Combined Heat and Power: A Decade of Progress, A Vision for the Future

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Over the past 10 years, DOE has built a solid foundation for a robust CHP marketplace. We have aligned with key partners to produce innovative technologies and spearhead market-transforming projects. Our commercialization activities and Clean Energy Regional Application Centers have expanded CHP across the nation. More must be done to tap CHP’s full potential. Read more about DOE’s CHP Program in “Combined Heat and Power: A Decade of Progress, A Vision for the Future.”

  1. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  2. Opportunities for Combined Heat and Power in Data Centers, March 2009 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Combined Heat and Power in Data Centers, March 2009 Opportunities for Combined Heat and Power in Data Centers, March 2009 This report analyzes the opportunities for combined heat and power (CHP) technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure.

  3. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  4. 1-10 kW Stationary Combined Heat and Power Systems Status and Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential: Independent Review | Department of Energy -10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  5. Combined Heat and Power: Expanding CHP in Your State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Combined Heat and Power: Expanding CHP in Your State Presentation (17.61 MB) Transcript (130 KB) More Documents & Publications expanding_chp_in_your_state.doc Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) -

  6. Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    EPA CHP Partnership’s white paper provides information on energy portfolio standards and how they promote combined heat and power.

  7. Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study

    SciTech Connect (OSTI)

    2013-03-29

    Case study of Thermal Energy Corporation (TECO) demonstrating a high-efficiency combined heat and power (CHP) system at Texas Medical Center in Houston, Texas

  8. Top 10 Things You Didn't Know About Combined Heat and Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

  9. Combined Heat and Power - A Decade of Progress, A Vision for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Combined Heat and Power: A Decade of Progress, A Vision for the Future, August 2009 More Documents & Publications High Efficiency Microturbine with Integral Heat Recovery ...

  10. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review This independent review ...

  11. Combined Heat and Power. Enabling Resilient Energy Infrastructure for Critical Facilities

    SciTech Connect (OSTI)

    Hampson, Anne; Bourgeois, Tom; Dillingham, Gavin; Panzarella, Isaac

    2013-03-01

    This report provides context for combined heat and power (CHP) in critical infrastructure applications, as well as case studies and policies promoting CHP in critical infrastructure.

  12. Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

  13. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    SciTech Connect (OSTI)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits

  14. Assessment of Combined Heat and Power Premium Power Applications...

    Broader source: Energy.gov (indexed) [DOE]

    intolerant commercial facilities in California.Through a series of three case studies, ... located at the case study sites. chpcaliforniapremiumpower.pdf (1.13 MB) More ...

  15. Assessment of Large Combined Heat and Power Market, April 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined heat and power (CHP) market and near-term opportunities for a fixed set of CHP technologies. This size range has been the biggest contributor to the traditional inside-the-fence CHP market to date. chp_large.pdf (514.4 KB) More Documents & Publications CHP Assessment, California Energy Commission,

  16. Combined Heat and Power: A Vision for the Future of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for the Future of CHP in the United States in 2020, June 1999 Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999 The U.S. ...

  17. National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

  18. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Broader source: Energy.gov (indexed) [DOE]

    It is part of a suite of publications offered by the Department of Energy to improve steam system performance. Guide to Combined Heat and Power Systems for Boiler Owners and ...

  19. Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help...

  20. FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency

    Broader source: Energy.gov [DOE]

    Underscoring President Obama’s Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology.

  1. Survey of Emissions Models for Distributed Combined Heat and Power Systems,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 | Department of Energy Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models surveyed in this study vary in design, scope, and detail, but they all seek to capture the functions of an energy economy and use knowledge of economic interactions to simulate the effects of economic and policy changes. In this 2007 document, Integrated Planning Model (IPM), Average Displaced

  2. National CHP Roadmap: Doubling Combined Heat and Power Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States by 2010, March 2001 | Department of Energy CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 The National CHP Roadmap document is the culmination of more than 18 state, regional, national, and international workshops, and numerous discussions, planning studies, and assessments. The origin of these activities was a conference held

  3. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    Replace Fossil Fuels, Final Technical Report (Technical Report) | SciTech Connect Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Citation Details In-Document Search Title: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a

  4. Development of an Advanced Combined Heat and Power (CHP) System Utilizing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Gas from Coke Calcination - Fact Sheet, 2014 | Department of Energy an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 The Gas Technology Institute-in collaboration with Superior Graphite Company and SCHMIDTSCHE SCHACK, a division of ARVOS Group, Wexford business unit (formerly Alstom Power Energy

  5. Assessing the Benefits of On-Site Combined Heat and Power During the August

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14, 2003, Blackout, June 2004 | Department of Energy Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 On August 14, 2003, large portions of the Midwest and Northeast United States and Ontario, Canada, experienced an electric power outage. This study focused on identifying facilities located in the August 2003 blackout area (United

  6. The Market and Technical Potential for Combined Heat and Power in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Sector, January 2000 | Department of Energy Industrial Sector, January 2000 The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000 This January 2000 ONSITE SYCOM Energy Corporation (OSEC) report provides information on the potential for cogeneration or combined heat and power (CHP) in the industrial market. As part of this effort, OSEC has characterized typical technologies used in industrial CHP, analyzed existing CHP capacity in

  7. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Office | Department of Energy Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study about Verizons Communications, who installed a 14-MW phosphoric acid fuel cell system at its Central Office in Garden City, New York, in 2005 and is now reaping environmental benefits and demonstrating the viaility of fuel cells in a commerical, critical telecommunications

  8. Combined Heat and Power: Is It Right For Your Facility? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Power: Is It Right For Your Facility? Combined Heat and Power: Is It Right For Your Facility? This presentation provides an overview of CHP technologies and how they can be used in industrial manufacturing plants to increase productivity and reduce energy and costs. Combined Heat and Power: Is It Right For Your Facility? (May 14, 2009) (634.74 KB) More Documents & Publications HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 New and Emerging

  9. Combined Heat and Power System Achieves Millions in Cost Savings...

    Broader source: Energy.gov (indexed) [DOE]

    a new energy future." 2 - Former U.S. Congressman Chet Edwards Texas A&M's CHP system includes a gas turbine generator, heat recovery steam generator, and steam turbine generator. ...

  10. Opportunities for Combined Heat and Power in Data Centers

    SciTech Connect (OSTI)

    Darrow, Ken; Hedman, Bruce

    2009-03-01

    Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and the tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and types of

  11. Combined Heat and Power: A Clean Energy Solution, August 2012

    SciTech Connect (OSTI)

    2012-08-30

    This paper provides a foundation for national discussions on effective ways to reach the 40 gigawatts (GW) target, and includes an overview of the key issues currently impacting CHP deployment and the factors that need to be considered by stakeholders participating in the dialogue.

  12. Combined Heat and Power Technology Fact Sheets Series: Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Turbines Gas turbines are available in sizes ranging from approxi- mately one to more than 300 megawatts (MW) and are used to meet diverse power needs, including propulsion (e.g., aircraft, ships, and trains), direct drive (e.g., pumps and com- pressors) and stationary electricity generation. For electric- ity generation, gas turbines are available in a wide range of capacities and configurations, ranging from relatively small microturbines (described in a separate fact sheet 1 ) to very large

  13. Effects of a carbon tax on microgrid combined heat and power adoption

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

    2004-11-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

  14. THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACILITIES | Department of Energy THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to

  15. Combined Heat and Power - A Decade of Progress, A Vision for the Future,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2009 | Department of Energy Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined heat and power (CHP) technology holds enormous potential to improve the nation's energy security and reduce greenhouse gas (GHG) emissions. This paper describes DOE's success in building a solid foundation for a robust CHP marketplace over the period of a decade, as well as what can and must be done

  16. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004 report was to determine the best opportunity fuel(s) for distributed energy resources and combined heat and power (DER/CHP) applications, examine the DER/CHP technologies that can use them, and assess the potential market impacts of opportunity fueled DER/CHP applications. chp_opportunityfuels.pdf (2.56 MB) More

  17. Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study

    SciTech Connect (OSTI)

    2013-05-29

    Texas A&M University is operating a high-efficiency combined heat and power (CHP) system at its district energy campus in College Station, Texas. Texas A&M received $10 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009 for this project. Private-sector cost share totaled $40 million.

  18. EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This Project has been cancelled.

  19. Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings

    Broader source: Energy.gov [DOE]

    During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

  20. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial

  1. Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard, April 2011 | Department of Energy : Essential for a Cost Effective Clean Energy Standard, April 2011 Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April 2011 In March 2011, a federal Clean Energy Standard (CES) was put forth as an approach to advancing a new national energy policy. This white paper discusses the CES concept. chp_clean_energy_std.pdf (973.28 KB) More Documents & Publications The International CHP/DHC Collaborative -

  2. Survey of Emissions Models for Distributed Combined Heat and Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Survey of Emissions Models for Distributed Combined Heat and Power Systems Will Gans, Anna Monis Shipley, and R. Neal Elliott January 2007 Report Number IE071 ©American Council for an Energy-Efficient Economy 1001 Connecticut Avenue, N.W., Suite 801, Washington, D.C. 20036 (202) 429-8873 phone, (202) 429-2248 fax, http://aceee.org Web site Survey of Emissions Models for CHP, ACEEE CONTENTS

  3. Combined Heat and Power System Enables 100% Reliability at Leading Medical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campus - Case Study, 2013 | Department of Energy Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Thermal Energy Corporation (TECO), in collaboration with Burns & McDonnell Engineering Co., Inc., operates the largest chilled water district energy system in the United States at the Texas Medical Center, the largest medical center in the world. TECO installed a new

  4. How Combined Heat and Power Can Support State Climate and Energy Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Can Support State Climate and Energy Planning energy.gov/eere/slsc/EEopportunities March 18, 2016 2 About this Presentation Slide Overview * Summary * Purpose and Benefits * Current Status * State and Local Role * Best Practices in Implementation * Partners * National Savings Estimates * Expansion Potential: Examples from States * Cost-Effectiveness * Evaluation, Measurement, & Verification * DOE Support * On the Horizon This short presentation is intended give states

  5. ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future December 1, 2008 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000

  6. Combined Heat and Power (CHP): Is It Right For Your Facility?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership with the US DOE Combined Heat and Power (CHP) Is It Right For Your Facility U.S. DOE Industrial Technologies Program Webcast Series May 14 th , 2009 John J. Cuttica Cliff Haefke 312/996-4382 312/355-3476 cuttica@uic.edu chaefk1@uic.edu In Partnership with the US DOE Mid Atlantic www.chpcenterma.org Midwest www.chpcentermw.org Pacific www.chpcenterpr.org Northwest Region www.chpcenternw.org Northeast www.northeastchp.org Intermountain www.IntermountainCHP.org Gulf Coast

  7. Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020

    SciTech Connect (OSTI)

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

    2007-07-31

    The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

  8. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric

  9. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    SciTech Connect (OSTI)

    Norwood, Zack; Lipman, Tim; Marnay, Chris; Kammen, Dan

    2008-09-30

    This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities. Through a series of three case studies, key trade-offs are analyzed with regard to the provision of black-out ridethrough capability with the CHP systems and the resutling ability to avoid the need for at least some diesel backup generator capacity located at the case study sites. Each of the selected sites currently have a CHP or combined heating, cooling, and power (CCHP) system in addition to diesel backup generators. In all cases the CHP/CCHP system have a small fraction of the electrical capacity of the diesel generators. Although none of the selected sites currently have the ability to run the CHP systems as emergency backup power, all could be retrofitted to provide this blackout ride-through capability, and new CHP systems can be installed with this capability. The following three sites/systems were used for this analysis: (1) Sierra Nevada Brewery - Using 1MW of installed Molten Carbonate Fuel Cells operating on a combination of digestor gas (from the beer brewing process) and natural gas, this facility can produce electricty and heat for the brewery and attached bottling plant. The major thermal load on-site is to keep the brewing tanks at appropriate temperatures. (2) NetApp Data Center - Using 1.125 MW of Hess Microgen natural gas fired reciprocating engine-generators, with exhaust gas and jacket water heat recovery attached to over 300 tons of of adsorption chillers, this combined cooling and power system provides electricity and cooling to a data center with a 1,200 kW peak electrical load. (3) Kaiser Permanente Hayward Hospital - With 180kW of Tecogen natural gas fired reciprocating engine-generators this CHP system generates steam for space heating, and hot water for a city hospital. For all sites, similar assumptions are made about the economic and technological constraints of the

  10. 1990,"AK","Combined Heat and Power, Commercial Power","All Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ducers","Petroleum",,,102.5,95.33 1990,"CA","Electric Generators, Independent Power Producers","Solar Thermal and Photovoltaic",,10,360.2,310.68 1990,"CA","Electric Generators, ...

  11. Combined heat and power systems that consist of biomass fired fluidised bed combustors and modern steam engines

    SciTech Connect (OSTI)

    Joseph, S.D.; Errey, S.; Thomas, M.; Kruger, P.

    1996-12-31

    Biomass energy is widely used in many processing industries in the ASEAN region. The residue produced by agricultural and wood processing plant is either inefficiently combusted in simple furnaces or in the open, or disposed of in land fill sites or in rivers. Many of these industries are paying high prices for electricity in rural areas and/or supply is unreliable. An ASEAN/Australian cooperation program has been under way for the last ten years to introduce clean burning biomass fired heat and/or combined heat and power equipment. It aims to transfer Australian know how in the design and manufacture of fluidised bed CHP technology to the ASEAN region. The main participants involved in the program include SIRIM and UKM in Malaysia, PCIERD, FPRI and Asia Ratan in the Philippines, King Monkutt Institute of Technology (KMITT) in Thailand, LIPI and ITB in Indonesia, and the University of Singapore. In this paper an outline of the program will be given including results of market research and development undertaken into fluidised bed combustion, the proposed plant design and costings, and research and development undertaken into modem steam engine technology. It will be shown that all of the projects to be undertaken are financially viable. In particular the use of simple low cost high efficient steam engines ensures that the smaller CHP plant (50-100 kWe) can be viable.

  12. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM"PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    SciTech Connect (OSTI)

    Norwood, Zack; Lipman, Timothy; Stadler, Michael; Marnay, Chris

    2010-06-01

    The effectiveness of combined heat and power (CHP) systems for power interruption intolerant,"premium power," facilities is the focus of this study. Through three real-world case studies and economic cost minimization modeling, the economic and environmental performance of"premium power" CHP is analyzed. The results of the analysis for a brewery, data center, and hospital lead to some interesting conclusions about CHP limited to the specific CHP technologies installed at those sites. Firstly, facilities with high heating loads prove to be the most appropriate for CHP installations from a purely economic standpoint. Secondly, waste heat driven thermal cooling systems are only economically attractive if the technology for these chillers can increase above the current best system efficiency. Thirdly, if the reliability of CHP systems proves to be as high as diesel generators they could replace these generators at little or no additional cost if the thermal to electric (relative) load of those facilities was already high enough to economically justify a CHP system. Lastly, in terms of greenhouse gas emissions, the modeled CHP systems provide some degree of decreased emissions, estimated at approximately 10percent for the hospital, the application with the highest relative thermal load in this case

  13. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  14. Distributed energy resources customer adoption modeling with combined heat and power applications

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-07-01

    In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

  15. Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Hudson II, Carl Randy

    2004-09-01

    Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

  16. Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2011-06-01

    Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

  17. Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I) Susanne Brooks, Brent Elswick, and R. Neal Elliott March 2006 Report Number IE062 ©American Council for an Energy-Efficient Economy 1001 Connecticut Avenue, NW, Suite 801, Washington, D.C. 20036 (202) 429-8873 phone, (202) 429-2248 fax, http://aceee.org Web site CHP: Connecting the Gap, ACEEE Contents

  18. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications Michael Ulsh National Renewable Energy Laboratory Douglas Wheeler DJW Technology Peter Protopappas Sentech Technical Report NREL/TP-5600-52125 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  19. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Ms. Anna; Hampson, Anne; Hedman, Mr. Bruce; Garland, Patricia W; Bautista, Paul

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  20. 1…10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -10 kW Stationary Combined Heat and Power Systems Status and Technical Potential National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program

  1. Transcript for the U.S. Department of Energy TAP Webinar - Combined Heat and Power: Expanding CHP in Your State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amy Hollander: I'd like to welcome you to today's webinar, titled "Combined Heat and Power: Expanding CHP in Your State." This webinar is sponsored by the US Department of Energy Weatherization and Intergovernmental Program. We have an excellent webinar on CHP today, with four speakers from around the nation. We'll give folks a few more minutes to call in and log on, so while we wait, I will go over some logistics, and then we'll get going on today's webinar. Please note, this webinar

  2. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect (OSTI)

    none,

    2015-10-14

    commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system

  3. Development of a Packaged and Integrated Microturbine/ Chiller Combined Heat and Power (CHP) System

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to define, develop, integrate, and validate at full scale the technology for a 1 MWe, microturbine-driven CHP packaged system for industrial or large commercial applications.

  4. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    Broader source: Energy.gov [DOE]

    This guide presents useful information for evaluating the viability of cogeneration for new or existing industrial, commercial, or institutional (ICI) boiler installations. It is part of a suite of publications offered by the Department of Energy to improve steam system performance.

  5. Combined heat and power generation with a HCPV system at 2000 suns

    SciTech Connect (OSTI)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio; Salinari, Piero; Agnello, Simonpietro; Gelardi, Franco M.; Sciortino, Luisa; Cannas, Marco; Bonsignore, Gaetano; Barbera, Marco; Collura, Alfonso; Lo Cicero, Ugo

    2015-09-28

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  6. Effects of a carbon tax on combined heat and power adoption by a microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

    2002-10-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid ((mu)Grid) consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A (mu)Grid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The (mu)Grid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without CHP equipment, such as water- and space-heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the (mu)Grid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean generation in California.

  7. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  8. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  9. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  10. An engineering-economic analysis of combined heat and power technologies in a (mu)grid application

    SciTech Connect (OSTI)

    Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

    2002-03-01

    This report describes an investigation at Ernesto Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) of the potential for coupling combined heat and power (CHP) with on-site electricity generation to provide power and heating, and cooling services to customers. This research into distributed energy resources (DER) builds on the concept of the microgrid (mGrid), a semiautonomous grouping of power-generating sources that are placed and operated by and for the benefit of its members. For this investigation, a hypothetical small shopping mall (''Microgrid Oaks'') was developed and analyzed for the cost effectiveness of installing CHP to provide the mGrid's energy needs. A mGrid consists of groups of customers pooling energy loads and installing a combination of generation resources that meets the particular mGrid's goals. This study assumes the mGrid is seeking to minimize energy costs. mGrids could operate independently of the macrogrid (the wider power network), but they are usually assumed to be connected, through power electronics, to the macrogrid. The mGrid in this study is assumed to be interconnected to the macrogrid, and can purchase some energy and ancillary services from utility providers.

  11. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  12. Market Assessment of Distributed Energy in New Commercial and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of providing electrical and thermal energy through combined heat and power (CHP); reduced losses from ... energy technologies and systems in new commercial and ...

  13. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    SciTech Connect (OSTI)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude

  14. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... However, as natural gas prices have decreased and in many regions and ... The chemical manufacturing sector is the second largest consumer of energy in the industrial market. ...

  15. Combined Heat and Power (CHP

    Broader source: Energy.gov (indexed) [DOE]

    ... Combined cycles 23 make up only 12% of industrial CHP installations; however, they make up the majority of industrial CHP capacity at 58%. Boilersteam turbine systems, which ...

  16. Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

  17. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  18. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    SciTech Connect (OSTI)

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  19. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  1. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  2. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  3. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S.

  4. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  5. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  7. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  8. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  9. Combined Heat and Power System Increases Reliability

    Energy Savers [EERE]

    ... The three boilers were over thirty years old, and if one boiler needed service, the remaining two boilers could no longer meet the plant's peak steam load. The CHP system can now ...

  10. Industrial Utility Webinar: Combined Heat and Power

    SciTech Connect (OSTI)

    2010-06-09

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  11. Combined Heat and Power (CHP) Technology Development

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. ...

  12. Combined Heat and Power Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    CHP technologies are eligible for either a grant, loan or power purchase incentive under the initial round of solicitations for new renewable energy generating equipment  up to five megawatts at ...

  13. Combined Heat and Power Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    CHP technologies are eligible for either a grant, loan or power purchase incentive under the initial round of solicitations for new renewable energy generating equipment  up to five megawatts at ...

  14. Combined Heat and Power | Department of Energy

    Energy Savers [EERE]

    Advanced Reciprocating Engine Systems (ARES) An advanced natural gas enginegenerator system ... avoid complicated and costly system integration and installation but still maximize ...

  15. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... estimates IGATE-E IAC, ESA,and MNI Databases Database Schema** 45 tables-MySQL ... system (DBMS) and refers to the organization of data as a blueprint of how a database is ...

  16. Conversion of geothermal waste to commercial products including silica

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow S.

    2003-01-01

    A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.

  17. Utility Incentives for Combined Heat and Power | Open Energy...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentutility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental...

  18. The Market and Technical Potential for Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The industrial sector is characterized by approximately the same total electricity consumption ... developers hoping to reach the large number of customers in this small-end market. ...

  19. Low-Cost Packaged Combined Heat and Power System | Department...

    Office of Environmental Management (EM)

    ... to an estimated 36% reduction in the end-user's fuel consumption compared to a standard Cummins ... to separate generation of electricity and heat, given 8,000 hours ...

  20. ITP Distributed Energy: Combined Heat and Power Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    * IndustrialAgriculturalWater End Use Energy Efficiency * Renewable Energy ... A-1&1; APPENDIX B: Electricity Consumption per Employee Estimates ......

  1. The Market and Technical Potential for Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ONSITE SYCOM Energy Corporation (OSEC) assisted the U.S. Department of Energy's Energy Information Administration in determining the potential for cogeneration or combined heat and ...

  2. Combined Heat and Power Technology Fact Sheet Series: Microturbines

    Broader source: Energy.gov (indexed) [DOE]

    Microturbines Microturbines are relatively small combustion turbines that can use gaseous or liquid fuels. While large gas turbines (described in a separate fact sheet 1 ) have been used for CHP applications for several decades, microturbines emerged as a CHP option in the 1990s. Individual microturbines range in size from 30 to 330 kilowatts (kW) and can be integrated to provide modular packages with capacities exceeding 1,000 kW. Table 1 provides a summary of microturbine attributes.

  3. Combined Heat and Power Technology Fact Sheets Series: Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Cells Fuel cells use an electrochemical process to convert the chemical energy in a fuel to electricity. In contrast to recipro- cating engines and gas turbines, fuel cells generate electric- ity without combusting the fuel. The first practical applica- tion for fuel cells emerged in the 1950s when fuel cells were used to provide onboard power for spacecraft. Fuel cells continue to be used in space exploration, but over the past few decades the technology has migrated to other applica- tions,

  4. Combined Heat and Power Technology Fact Sheets Series: Reciprocating Engines

    Broader source: Energy.gov (indexed) [DOE]

    Heat and Power Technology Fact Sheet Series Reciprocating Engines Reciprocating internal combustion engines are a mature tech- nology used for power generation, transportation, and many other purposes. Worldwide production of reciprocating internal combustion engines exceeds 200 million units per year. 1 For CHP installations, reciprocating engines have capacities that range from 10 kW to 10 MW. Multiple engines can be inte- grated to deliver capacities exceeding 10 MW in a single plant. Several

  5. Promoting Combined Heat and Power (CHP) for Multifamily Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This paper describes the software and provides case studies of CHP installed in multi-family housing (e.g. Cambridge, Mass.; Danbury, Conn.). chpmultifamilyproperties.pdf (617.06 ...

  6. HUD Combined Heat and Power (CHP) Guide #3, September 2010 |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This 2010 guide provides an introduction to the software program, with a description of its development and advice on how it can be used. chpguide3.pdf (766.62 KB) More Documents & ...

  7. Testimonials - Partnerships in Combined Heat and Power Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the screen, followed by "Kevin Keene, Project Director, Cummins" and footage of a man. ... Footage of two men in a lab working on a computer, followed by footage of a man pointing ...

  8. Development of an Advanced Combined Heat and Power (CHP) System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ex-Situ Catalytic Fast Pyrolysis Technology Pathway Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) In-Situ Catalytic Fast ...

  9. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large cooling loads. ...

  10. AMO Industrial Distributed Energy: Combine Heat and Power: A...

    Broader source: Energy.gov (indexed) [DOE]

    ... That steam is fed to a steam turbine, generating mechanical power or electricity, before exiting the turbine at lower pressure and temperature and used for process or heating ...

  11. Combined Heat and Power System Achieves Millions in Cost Savings...

    Broader source: Energy.gov (indexed) [DOE]

    natural gas-fired CHP system consisting of a 34 MW combustion turbine, a 210,000-pound-per-hour (pph) heat recovery steam generator, and an 11 MW steam turbine generator. ...

  12. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  13. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    savings, Tok School has been able to rehire three staff members for the school: music teacher, counselor, and boiler operator. Once more savings are realized and biomass...

  14. The Influence of Building Location on Combined Heat and Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat & Power Hydrogen Production Cost Model Allows ... Fuel Cell with CHP Electricity Natural Gas Power Heat Natural Gas or Biogas Hydrogen National Renewable Energy ...

  15. Combined Heat and Power Systems Technology Development and Demonstrati...

    Office of Scientific and Technical Information (OSTI)

    heating and more electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of 600 per kW, the system would represent a step change in the...

  16. Combined Heat and Power: A Federal Manager's Resource Guide,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This 2000 report identifies the short-, medium-, and long-term potential of internal combustion engines, combustion turbines, fuel cells, and micro-turbines for Federal facilities. ...

  17. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER...

    Office of Scientific and Technical Information (OSTI)

    ... CONVERSION; ENGINES; EXPLORATION; FUEL CELLS; GAS TURBINES; GREENHOUSE GASES; HOT WATER; INTERNAL COMBUSTION ENGINES; NATURAL GAS; THERMAL RECOVERY; TURBINES; WASTE HEAT; WASTES

  18. Combined Heat and Power: Enabling Resilient Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ......... 32 Emergency Planning and Risk Mitigation with CHP ... poorly maintained, so they can encounter problems during an actual emergency. ...

  19. Guide to Using Combined Heat and Power for Enhancing Reliability...

    Broader source: Energy.gov (indexed) [DOE]

    ... the development of this resource and ensure its inclusion in the emergency planning process. ... infrastructure problems, providing more than 40% of the campus' electricity needs. ...

  20. Combined Heat and Power: Connecting the Gap Between Markets and...

    Broader source: Energy.gov (indexed) [DOE]

    ... ACEEE learned in terms of perspective and breadth of detail. ... to be invaluable in the search of utilities and contacts ... local governments to enter into energy efficiency ...

  1. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CHP and Bioenergy for Landfills and Wastewater Treatment ... at Biorefineries CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants

  2. Benefits of Combined Heat and Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    business competitiveness by increasing energy efficiency and managing costs Increase resiliency of our energy infrastructure by limiting congestion and offsetting transmission ...

  3. ITP Distributed Energy: 2008 Combined Heat and Power Baseline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The main types of CHP system "prime mover" technologies ... kW 5 kW - 7 MW 500 kW - 25 MW <1 kW - 25 kW 1 kW - 10 MW Fuel ... savings: 1,500,000yr generator and hot water loop ...

  4. Performance based incentive for Combined Heat and Power Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    CHP technologies are eligible for either a grant, loan or power purchase incentive under the initial round of solicitations for new renewable energy generating equipment  up to five megawatts at ...

  5. Combined Heat and Power (CHP) Integrated with Burners for Packaged...

    Office of Environmental Management (EM)

    ... a spark spread defined by 0.16kWh for price of electricity and 5 MMBtu for natural gas). ... Developing a new ULNB that considers the optimum integration of the SCMT equipment and ...

  6. Public Sector Combined Heat and Power Pilot Program

    Broader source: Energy.gov [DOE]

    The Illinois DCEO programs are subject to the State appropriation process, and while the Department can accept and review applications, it will not be able to award funding, issue Notices to...

  7. ITP Industrial Distributed Energy: Combined Heat and Power Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The waste can be dried and cut into chips to be fired in a boiler (similar to coal). Cofiring is usually preferred, as it reduces the emissions in a coal-fired plant and no boiler ...

  8. Combined Heat and Power Basics | Department of Energy

    Energy Savers [EERE]

    of electricity or mechanical power and useful thermal energy (heating andor cooling) from a single source of energy. A type of distributed generation, which, unlike central ...

  9. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Commercial Incentive Pilot Program (CIPP). Final Impact Evaluation Report. Cambridge Systematics. (1292) Commercial Incentives Pilot Program (CIPP) Database for the...

  10. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large efficiency program in Commercial and Industrial Lighting. BPA continues to invest in improving the lighting program as a critical component to achieving regional...

  11. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  12. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs has facilitated teaming with them on Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) efforts that develop cutting-edge technology in the areas of precision pointing and inertial measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my

  13. Energy-Efficient Commercial Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses energy-efficient technologies such as boilers, air conditioners, heat pumps, humidity controls, combined heat and power (CHP), and more.

  14. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power...

    Office of Scientific and Technical Information (OSTI)

    ... use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in ...

  15. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems

    Broader source: Energy.gov [DOE]

    Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011.

  16. Assessing the Benefits of On-Site Combined Heat and Power During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On August 14, 2003, large portions of the Midwest and Northeast United States and Ontario, Canada, experienced an electric power outage. This study focused on identifying ...

  17. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a CHP project and focuses on technical subjects associated with the integration of cogeneration technology into new and existing ICI boiler installations. chpboilersguide.pdf ...

  18. Combined Heat and Power: A Federal Manager's Resource Guide, March 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report providing guidance to Federal Energy Managers regarding the potential of CHP technologies in Federal facilities.

  19. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Broader source: Energy.gov [DOE]

    With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

  20. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power- Fact Sheet, 2015

    Broader source: Energy.gov [DOE]

    Factsheet describing project objective to develop a new, high-capacity, expendable sorbent to remove sulfur species from anaerobic digester gas

  1. SEE Action IEE-CHP Webinar 1: Combined Heat and Power: A Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and oxidation catalysts for CO and organic HAPs control 4 Potential Opportunity for CHP? Compliance with MACT limits will be expensive for many coal and oil units - some...

  2. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Systems

    Office of Environmental Management (EM)

    (CHP) Systems - Fact Sheet, 2015 | Department of Energy Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 University of California, Irvine, in collaboration with Siemens Corporate Research, developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 5 MW. The control

  3. Combined Heating and Power Using Microturbines in a Major Urban Hotel

    SciTech Connect (OSTI)

    Sweetser, Richard; Wagner, Timothy; Leslie, Neil; Stovall, Therese K

    2009-01-01

    This paper describes the results of a cooperative effort to install and operate a Cooling, Heating and Power (CHP) System at a major hotel in San Francisco, CA. The packaged CHP System integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller was directly energized by the recycled hot exhaust from the microturbines, and could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 Refrigeration Tons (RT) of chilled water at a 59oF (15oC) ambient temperature. For the year, the CHP efficiency was 54 percent. Significant lessons learned from this test and verification project are discussed as well as measured performance and economic considerations.

  4. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect (OSTI)

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  5. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    SciTech Connect (OSTI)

    Shipley, Anna; Hampson, Anne; Hedman, Bruce; Garland, Patti; Bautista, Paul

    2008-12-01

    This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future—as an: environmental solution, significantly reducing CO2 emissions through greater energy efficiency; competitive business solution, increasing efficiency, reducing business costs, and creating green-collar jobs; local energy solution, deployable throughout the United States; and infrastructure modernization solution, relieving grid congestion and improving energy security.

  6. Combined Heat and Power (CHP) - CHP Supplies Clean and Reliable Energy

    SciTech Connect (OSTI)

    2008-10-01

    Overview of the CHP benefits, opportunity, barriers to deployment, technology development and validation.

  7. Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings

    SciTech Connect (OSTI)

    Hampson, Anne; Rackley, Jessica

    2013-09-01

    To assist State and local officials and others involved in the Hurricane Sandy rebuilding process, DOE, HUD, and the EPA developed this guide.

  8. Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency

    Broader source: Energy.gov [DOE]

    DOE released an independent review of Wind Powering America that assessed the impacts of the WPA activity both in general and in the states where the initiative was active.

  9. Thermoeconomic analysis method for optimization of combined heat and power systems

    SciTech Connect (OSTI)

    Silveira, J.L.; Tuna, C.E.

    1999-07-01

    In this paper, a thermoeconomic analysis method based on the second Law of Thermodynamics and applied to analyze four cogeneration system is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely Exergetic Manufacturing Cost (EMC), assuming a fixed rate of electricity production and process steam in exergy base. In this study a comparison is made between four configurations. The cogeneration system consisted of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EMC.

  10. State opportunities for action: Update of states' combined heat and power activities

    SciTech Connect (OSTI)

    Brown, Elizabeth; Elliott, R. Neal

    2003-10-01

    This report updates the review of state policies with regard to CHP that the American Council for and Energy Efficient Economy completed in 2002. It describes the current activities of states with programs during the initial survey and also reviews new programs offered by the states.

  11. Low-Cost Packaged Combined Heat and Power System with Reduced Emissions

    SciTech Connect (OSTI)

    2010-10-01

    Fact sheet overviewing how this project will develop a flexible, packaged CHP system that increases efficiency and reduces emissions and cost.

  12. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The rules set limits on the amount of air pollution that may be released by a major source. Meeting the emission limits could be achieved by either (1) installing emission control ...

  13. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power...

    Office of Scientific and Technical Information (OSTI)

    to unfiltered coal combustion and are directly tied to the biodiesel production method. ... a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. ...

  14. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Fuel Cell Technologies Publication and Product Library (EERE)

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

  15. Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide presents useful information for evaluating the viability of cogeneration for new or existing ICI boiler installations.

  16. Combined Heat and Power System Achieves Millions in Cost Savings at Large University- Case Study, 2013

    Broader source: Energy.gov [DOE]

    Case study about the CHP system at the Texas A&M district energy campus in College Station, TX funded by the Recovery Act

  17. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    SciTech Connect (OSTI)

    2010-12-01

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the company's energy use, and reduce costs in an environmentally responsible manner.

  18. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central

  19. Guide to the Successful Implementation of State Combined Heat and Power Policies

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2013-03-11

    Provides utility regulators and other policymakers with actionable information based on effective state strategies for implementing CHP policies

  20. 5 Questions for an Expert: Bob Gemmer on Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to its use makes CHP a reliable source of power for hospitals, schools, office buildings, apartment complexes, and other large buildings that require around-the-clock electricity. ...

  1. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-12-31

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) todetermine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e. ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB?s assumed utilization is far higher than is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at

  2. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2009-03-10

    Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York, (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage, and (3) to make an initial effort towards adding consideration of power quality and reliability (PQR) to the capabilities of DER-CAM. All of these objectives have been pursued via analysis of the attractiveness of a Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate 100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous inverter-based variable speed internal combustion engine genset with combined heat and power (CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts added to the on-board power electronics of any microgrid device enables stable and safe islanded operation without the need for complex fast supervisory controls. This approach allows plug and play development of a microgrid that can potentially provide high PQR with a minimum of specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model enhancement.

  3. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and

  4. Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999

    Broader source: Energy.gov [DOE]

    This report is a summary document based on discussions at the CHP Vision Workshop held in Washington, DC, June 8-9, 1999

  5. CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kurmit Rockwell:Welcome.  I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program.  In this presentation we will introduce you to the basics of combined heat and...

  6. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to reduce the energy and carbon intensity of the calcined coke production process.

  7. National Account Energy Alliance Final Report for the Ritz Carlton, San Francisco Combined Heat and Power Project

    SciTech Connect (OSTI)

    Rosfjord, Thomas J

    2007-11-01

    Under collaboration between DOE and the Gas Technology Institute (GTI), UTC Power partnered with Host Hotels and Resorts to install and operate a PureComfort 240M Cooling, Heating and Power (CHP) System at the Ritz-Carlton, San Francisco. This packaged CHP system integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller, directly energized by the recycled hot exhaust from the microturbines, could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 RT of chilled water at a 59F ambient temperature.

  8. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    Broader source: Energy.gov [DOE]

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

  9. Manufacturing Process Modeling of 100-400 kWe Combined Heat and Power Stationary Fuel Cells

    SciTech Connect (OSTI)

    Warren, Joshua A; Das, Sujit; Zhang, Wei

    2012-07-01

    Both technical reviewers are external and Phyllis Daley is serving as proxy. A non-disclosure form is not needed for this report.

  10. ITP Industrial Distributed Energy: Combined Heat and Power- A Decade of Progress, A Vision for the Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of CHP, DOE's CHP program, accomplishments, progress, technology R&D, marketplace transformation, partnerships, strategies, future goals

  11. Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production

    SciTech Connect (OSTI)

    Chen, Y.; Lundqvist, Per; Pridasawas, Wimolsiri

    2010-07-15

    Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system. In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 and Engineering Equation Solver (EES) using co-solving technique. Both daily performance and yearly performance of the proposed system have been simulated. Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions. Besides the power being produced, the system can also produce about 10 times much thermal energy, which can be used for space heating, domestic hot water supply or driving absorption chillers. The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system. (author)

  12. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  13. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    Broader source: Energy.gov [DOE]

    Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

  14. A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power

    SciTech Connect (OSTI)

    Tapia-Ahumada, K.; Pérez-Arriaga, I. J.; Moniz, Ernest J.

    2013-10-01

    Co-generation at small kW-e scale has been stimulated in recent years by governments and energy regulators as one way to increasing energy efficiency and reducing CO2emissions. If a widespread adoption should be realized, their effects from a system's point of view are crucial to understand the contributions of this technology. Based on a methodology that uses long-term capacity planning expansion, this paper explores some of the implications for an electric power system of having a large number of micro-CHPs. Results show that fuel cells-based micro-CHPs have the best and most consistent performance for different residential demands from the customer and system's perspectives. As the penetration increases at important levels, gas-based technologies - particularly combined cycle units - are displaced in capacity and production, which impacts the operation of the electric system during summer peak hours. Other results suggest that the tariff design impacts the economic efficiency of the system and the operation of micro-CHPs under a price-based strategy. Finally, policies aimed at micro-CHPs should consider the suitability of the technology (in size and heat-to-power ratio) to meet individual demands, the operational complexities of a large penetration, and the adequacy of the economic signals to incentivize an efficient and sustainable operation. Highlights: Capacity displacements and daily operation of an electric power system are explored; Benefits depend on energy mix, prices, and micro-CHP technology and control scheme; Benefits are observed mostly in winter when micro-CHP heat and power are fully used; Micro-CHPs mostly displace installed capacity from natural gas combined cycle units; and, Tariff design impacts economic efficiency of the system and operation of micro-CHPs.

  15. ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) invests in a diverse portfolio of energy technologies in order to achieve a stronger economy, a cleaner environment, and greater energy independence for America. The Industrial Technologies Program (ITP), part of EERE, works in collaboration with U.S. industry to develop technologies and practices that improve industrial energy efficiency and environmental performance. ITP's work to further the reach of

  16. High Efficiency Microturbine Leads to Increased Market Share...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of...

  17. Boiler MACT | Department of Energy

    Office of Environmental Management (EM)

    Boiler MACT Boiler MACT DOE currently provides technical assistance on combined heat and power (CHP) technologies to commercial and industrial facilities through its seven ...

  18. IID Energy- Commercial Rebate Program

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District (IID) offers incentives to its commercial customers to encourage the adoption of energy efficient technologies, including commercial heating and cooling equipment,...

  19. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  20. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  1. Advanced Commercial Buildings Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Current cost share percentage is 56%. Budget History Oct 1, 2014- FY2014 (past) FY2015 ... and GoNo-Go Criteria including: * Benchmarking existing small commercial buildings * ...

  2. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

  3. Department of Energy Announces 18 New Projects to Accelerate Technologies for Efficient Residential Combined Heat and Power Generation and Bioenergy Crop Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department’s Advanced Research Projects Agency-Energy (ARPA-E) today announced $55 million in funding for 18 innovative projects as part of ARPA-E’s two newest programs: GENerators for Small Electrical and Thermal Systems (GENSETS) and Transportation Energy Resources from Renewable Agriculture (TERRA).

  4. PACKAGE INCLUDES:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PACKAGE INCLUDES: Airfare from Seattle, 4 & 5 Star Hotels, Transfers, Select Meals, Guided Tours and Excursions DAY 01: BANGKOK - ARRIVAL DAY 02: BANGKOK - SIGHTSEEING DAY 03: BANGKOK - FLOATING MARKET DAY 04: BANGKOK - AT LEISURE DAY 05: BANGKOK - CHIANG MAI BY AIR DAY 06: CHIANG MAI - SIGHTSEEING DAY 07: CHIANG MAI - ELEPHANT CAMP DAY 08: CHIANG MAI - PHUKET BY AIR DAY 09: PHUKET - PHI PHI ISLAND BY FERRY DAY 10: PHUKET - AT LEISURE DAY 11: PHUKET - CORAL ISLAND BY SPEEDBOAT DAY 12: PHUKET

  5. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  6. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  7. Word Pro - S2.lwp

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Energy Consumption by Source and Sector, 2012 (Quadrillion Btu) 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solar/photovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial

  8. Market Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » Market Analyses Market Analyses Need information on the market potential for combined heat and power (CHP) in the U.S.? These assessments and analyses cover a wide range of markets including commercial and institutional buildings and facilities, district energy, and industrial sites. The market potential for CHP at federal sites and in selected states/regions is also examined. Commercial CHP and Bioenergy Systems for Landfills and Wastewater Treatment

  9. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  10. Designing Effective State Programs for the Industrial Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to approximately 6,420 trillion British thermal units of primary energy (including combined heat and power), according to a comprehensive 2009 analysis by McKinsey & Company. ...

  11. Alternative Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    The “alternative energy generating sources” include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that generate us...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    most energy efficiency measures, including energy recovery and combined heat and power (CHP) systems,... Eligibility: Schools, State Government Savings Category: Solar - Passive,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy generating sources" include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from taxation by the state, and any type of renewable energy system and most energy efficiency measures, including energy recovery and combined heat and power (CHP)...

  15. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  16. Word Pro - S2.lwp

    Gasoline and Diesel Fuel Update (EIA)

    Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  17. Safety, Codes, and Standards Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for diverse applications including specialty vehicles, combined heat and power (CHP), stationary, backup, and portable power. The number of fuel cell deployments continues to...

  18. Safety, Codes, and Standards Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for diverse applications including spe- cialty vehicles, combined heat and power (CHP), stationary, backup, and portable power. The number of fuel cell deploy- ments continues to...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    system and most energy efficiency measures, including energy recovery and combined heat and power (CHP) systems,... Eligibility: Schools, State Government Savings Category:...

  20. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    Percent 1949 2015 a Includes combined-heat-and-power plants and a small number of electricity-only plants. Web Page: http:www.eia.govtotalenergydatamonthlypetroleum. ...

  1. DOE Releases 2013 Fuel Cell Technologies Market Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Releases 2013 Fuel Cell Technologies Market Report DOE Releases 2013 Fuel Cell Technologies Market Report November 12, 2014 - 11:13am Addthis The Energy Department today released the 2013 Fuel Cell Technologies Market Report, detailing trends in the U.S. fuel cell and hydrogen technologies market. The report highlights continued growth in fuel cell commercial deployments, including material handling equipment such as forklifts as well as combined heat and power systems and back-up and

  2. DOE SSL Postings: July 19, 2016, issue

    Energy Savers [EERE]

    Energy DOE Releases 2013 Fuel Cell Technologies Market Report DOE Releases 2013 Fuel Cell Technologies Market Report November 12, 2014 - 11:13am Addthis The Energy Department today released the 2013 Fuel Cell Technologies Market Report, detailing trends in the U.S. fuel cell and hydrogen technologies market. The report highlights continued growth in fuel cell commercial deployments, including material handling equipment such as forklifts as well as combined heat and power systems and back-up

  3. Commercial Current Promotions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture This page features all current special promotions for commercial programs....

  4. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Lai, Judy; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal

    2010-06-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial-sector distributed energy resources (DER) with combined heat and power (CHP) in greenhouse gas emissions (GHG) reductions. Historically, relatively little attention has been paid to the potential of medium-sized commercial buildings with peak electric loads ranging from 100 kW to 5 MW. In our research, we examine how these medium-sized commercial buildings might implement DER and CHP. The buildings are able to adopt and operate various technologies, e.g., photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, batteries and thermal storage systems. We apply the Distributed Energy Resources Customer Adoption Model (DER-CAM), which is a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs and/or CO2 emissions. Using 138 representative mid-sized commercial sites in California, existing tariffs of major utilities, and expected performance data of available technologies in 2020, we find the GHG reduction potential for these buildings. We compare different policy instruments, e.g., a CO2 pricing scheme or a feed-in tariff (FiT), and show their contributions to the California Air Resources Board (CARB) goals of additional 4 GW CHP capacities and 6.7 Mt/a GHG reduction in California by 2020. By applying different price levels for CO2, we find that there is competition between fuel cells and PV/solar thermal. It is found that the PV/solar thermal adoption increases rapidly, but shows a saturation at high CO2 prices, partly due to limited space for PV and solar thermal. Additionally, we find that large office buildings are good hosts for CHP in general. However, most interesting is the fact that fossil-based CHP adoption also increases with increasing CO2 prices. We will show service territory specific results since the

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864...

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,109 11,224 12,435 1970's 14,500 16,073 17,005 15,420 16,247 15,928 16,694 16,813 16,940 16,830...

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35,295 37,886 39,962 1970's 39,169 30,832 32,457 33,789 31,040 33,291 34,011 33,913 34,612 33,442 1980's 30,690 28,282 29,438 27,739 28,995 26,731 24,949 24,603 27,457 27,271 1990's 25,129 25,986 25,314 28,998 27,407 27,409 31,006 29,441 28,062 27,898 2000's 33,180 32,031 32,928 31,746 29,821 31,521 31,286 32,187 36,924 36,373 2010's 40,232 39,986 41,435 47,636

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 184,630 189,903 206,861 1970's 209,945 239,685 231,536 232,774 228,988 240,239 219,840 227,543 221,441 258,490 1980's 258,151 236,910 236,202 215,918 191,838 205,044 182,794 212,904 248,397 259,118 1990's 285,090 287,608 285,008 250,283 261,989 278,761 235,068 253,923 282,153 244,701 2000's 246,439 245,795 238,308 232,912 231,597 233,082 244,432 251,024 251,045

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 39,942 47,287 52,256 1970's 59,081 62,805 63,154 69,844 68,322 76,288 75,959 72,597 71,422 74,831 1980's 66,952 58,913 66,991 64,615 71,890 68,975 61,620 64,355 68,515 67,477 1990's 66,290 68,938 66,420 71,647 65,870 66,639 68,914 69,074 63,132 59,346 2000's 60,874 65,011 66,939 62,616 61,956 62,099 59,851 63,231 65,806 62,441 2010's 57,658 55,843 51,795 58,787

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,968 2,084 2,526 1970's 2,804 3,010 3,205 3,093 3,169 2,964 3,078 2,815 3,005 2,842 1980's 3,246 3,783 3,577 3,428 3,827 3,412 3,514 3,741 4,041 4,184 1990's 4,042 4,253 4,965 5,195 5,459 5,743 6,694 6,608 5,590 6,119 2000's 5,125 5,680 7,477 8,437 8,465 8,383 8,134 8,628 8,868 11,684 2010's 12,193 10,478 10,034 11,170 11,882 11,189

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,501 21,890 24,721 1970's 26,914 25,478 23,243 24,315 22,527 31,745 39,681 41,236 35,386 36,638 1980's 30,182 33,702 29,788 29,228 30,481 30,674 35,829 37,492 37,834 35,105 1990's 36,306 39,264 41,727 41,151 39,935 40,383 41,810 36,700 37,659 36,269 2000's 47,904 49,286 55,803 54,283 56,321 57,690 50,625 51,097 50,901 50,371 2010's 54,065 53,532 54,659 59,971

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,202 36,034 39,020 1970's 38,726 41,881 44,992 47,253 44,317 49,438 46,351 55,268 60,266 62,437 1980's 58,763 57,139 54,718 56,280 55,909 51,519 50,405 54,592 55,963 53,089 1990's 49,486 51,036 53,861 57,525 54,051 56,536 61,377 57,220 55,419 43,581 2000's 58,793 50,645 48,631 50,273 55,047 52,902 48,137 48,591 51,518 53,627 2010's 60,153 56,602 51,918 57,195

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Hawaii (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,715 1,610 1,607 1,548 1,328 1,858 1,883 2,019 2,049 2,129 1990's 2,223 2,148 2,144 2,123 2,200 2,199 2,132 1,751 1,747 1,749 2000's 1,771 1,749 1,720 1,751 1,803 1,838 1,813 1,836 1,769 1,752 2010's 1,777 1,768 1,850 1,873 1,931 1,908

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,972 6,374 6,613 1970's 5,851 8,232 10,712 9,387 8,040 12,177 8,742 8,405 5,503 6,923 1980's 5,756 5,422 5,729 5,758 8,493 8,999 8,543 7,618 8,252 9,024 1990's 8,535 9,582 8,932 10,675 10,088 10,360 11,506 11,433 11,676 12,618 2000's 13,414 13,623 13,592 12,019 12,995 13,231 13,573 14,274 16,333 15,740 2010's 15,033 16,855 15,838 18,485 16,963 16,171

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 175,281 174,565 189,006 1970's 193,434 210,424 224,488 218,530 216,114 215,718 246,659 243,686 251,895 237,199 1980's 228,178 223,427 218,751 204,834 232,170 213,528 204,979 191,047 215,257 196,171 1990's 200,267 193,844 196,964 203,157 197,558 203,802 218,054 202,850 174,687 188,520 2000's 201,768 189,160 204,570 211,710 204,039 201,882 196,361 203,368 222,382

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 37,141 46,232 54,062 1970's 52,632 56,246 61,286 52,674 53,461 51,705 57,310 51,815 64,532 60,931 1980's 58,880 52,036 55,470 52,535 57,516 56,522 55,730 53,609 61,120 58,554 1990's 56,045 58,571 53,973 56,023 52,253 53,122 57,229 41,482 41,788 38,952 2000's 40,297 37,560 38,802 37,781 36,779 29,616 27,505 30,546 33,531 32,512 2010's 31,799 32,117 25,452 33,198

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 32,313 36,089 41,934 1970's 42,461 42,352 42,843 45,797 42,320 38,497 57,203 50,170 46,647 40,509 1980's 39,359 36,379 35,260 34,111 36,138 33,758 32,666 33,298 35,718 36,148 1990's 31,806 33,700 35,419 37,817 36,744 38,610 40,972 38,627 32,464 35,798 2000's 38,669 35,255 35,942 38,212 36,989 36,894 32,590 34,386 37,167 35,438 2010's 36,818 34,592 30,771 37,422

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 51,062 56,937 54,010 1970's 70,321 67,515 66,331 59,518 58,097 50,662 43,567 44,563 65,300 115,743 1980's 39,996 39,507 33,729 34,906 33,088 30,228 27,985 27,845 27,475 27,156 1990's 24,937 25,452 28,445 25,157 24,184 23,833 25,746 25,613 24,042 24,559 2000's 25,687 24,604 25,540 25,161 24,700 25,085 22,240 23,863 22,869 23,672 2010's 27,009 25,925 26,294 28,875

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864 1,043 1,192 1,124 1,124 1,139 1,214 1,250 1,461 1,660 1990's 1,678 1,860 2,209 2,311 2,381 2,426 2,566 2,713 2,456 2,547 2000's 2,770 2,642 5,167 4,781 4,811 4,792 4,701 5,749 5,878 5,541 2010's 5,830 6,593 7,313 8,146 9,030 9,795

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maryland (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,154 30,419 34,674 1970's 37,529 40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635 44,136 46,874 45,842 49,802 57,370 58,103 2000's 55,669 59,802 63,999 70,557 70,195 69,718 62,868 70,852 70,411 69,119 2010's 67,555 67,505 64,146 71,145

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 24,737 25,396 29,821 1970's 35,356 36,994 36,778 39,288 37,384 37,812 37,763 40,598 45,657 46,701 1980's 53,462 50,131 61,286 39,640 41,271 41,382 43,661 46,522 48,915 51,508 1990's 50,618 53,188 64,352 65,429 84,534 82,270 96,187 105,813 90,092 65,136 2000's 63,793 61,677 64,763 62,590 56,879 56,665 52,283 61,504 72,303 71,546 2010's 72,053 81,068 73,040

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 16,547 18,297 17,667 1970's 23,846 25,853 24,604 23,701 25,504 23,922 20,214 19,304 21,312 27,224 1980's 20,886 19,267 17,213 17,158 17,860 16,591 16,891 17,922 18,108 17,568 1990's 17,548 17,743 17,942 19,199 19,232 19,904 22,225 22,070 21,358 20,208 2000's 21,673 21,585 21,221 22,933 22,130 20,882 19,425 20,774 20,181 19,095 2010's 21,179 20,247 17,834

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,524 79,821 79,019 1970's 87,644 89,534 97,506 91,038 90,291 90,719 98,435 93,323 98,680 94,629 1980's 76,054 68,455 69,913 66,106 67,218 60,345 61,890 58,205 63,839 63,039 1990's 59,387 63,191 60,963 69,670 66,196 65,086 72,802 69,829 61,995 63,100 2000's 62,673 64,924 61,897 61,516 61,755 60,369 56,722 59,224 64,993 61,433 2010's 61,194 62,304 54,736 64,522

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,516 13,651 16,593 1970's 18,564 18,109 19,151 19,143 16,602 18,654 17,831 16,706 17,766 17,396 1980's 14,265 13,725 15,987 13,534 14,256 14,820 12,536 10,989 12,041 13,141 1990's 12,164 12,846 11,557 13,880 12,981 13,489 14,823 13,911 12,952 12,088 2000's 13,533 13,245 14,704 15,119 13,407 13,136 13,181 13,223 14,340 23,575 2010's 20,459 22,336 19,205 20,971

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,443 41,765 46,041 1970's 46,824 47,261 45,518 38,690 42,298 43,117 48,713 46,989 40,736 43,507 1980's 43,356 40,612 43,022 39,055 41,900 39,404 36,357 34,205 39,388 37,351 1990's 36,489 40,291 34,490 34,745 38,946 40,044 40,833 33,853 28,911 27,586 2000's 28,907 27,792 28,185 28,368 29,858 27,401 28,087 30,067 34,813 31,790 2010's 31,993 32,115 26,503 32,214

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,164 6,997 8,204 1970's 9,633 11,014 12,755 13,144 14,078 14,965 18,389 17,436 19,940 19,638 1980's 10,207 8,294 8,449 11,758 12,012 12,232 11,451 13,747 14,879 15,116 1990's 15,073 16,960 16,101 17,549 18,694 18,703 20,421 21,958 23,314 22,710 2000's 25,586 22,912 22,685 24,099 26,862 26,552 28,046 28,224 28,920 29,531 2010's 29,475 30,763 28,991 31,211 29,105

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Jersey (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,656 32,546 34,510 1970's 55,953 60,230 62,917 61,846 58,210 53,346 90,463 53,896 48,005 52,314 1980's 60,481 74,627 78,750 79,624 83,906 83,467 85,775 94,459 101,325 117,385 1990's 115,591 121,240 130,891 128,942 132,008 138,965 150,432 168,760 146,653 163,759 2000's 158,543 131,417 146,176 159,647 168,768 169,857 152,501 168,778 168,574 180,404 2010's

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 27,447 30,713 28,680 1970's 33,035 33,760 32,354 25,569 25,221 22,800 33,708 25,476 25,706 26,371 1980's 24,505 20,446 21,715 22,413 22,947 16,733 20,642 19,939 31,032 28,459 1990's 23,694 24,993 27,884 27,898 24,964 23,934 26,466 27,403 27,206 27,103 2000's 27,009 27,133 25,476 23,745 25,458 24,186 23,404 24,876 25,183 24,701 2010's 25,155 25,035 24,898 26,790

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New York (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 122,050 122,885 128,282 1970's 139,498 145,458 147,326 142,736 136,332 128,273 143,530 130,898 142,988 143,512 1980's 161,813 167,253 164,784 161,770 170,365 165,498 167,503 167,178 188,037 196,380 1990's 194,990 199,598 217,214 220,729 223,256 231,352 253,075 320,862 335,343 360,188 2000's 365,879 347,253 362,247 339,371 359,070 275,721 259,972 285,030 290,150

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Carolina (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,100 20,624 24,524 1970's 21,532 26,331 24,200 23,044 21,002 21,615 20,042 18,303 20,366 23,916 1980's 26,172 26,367 24,891 24,705 26,174 25,029 25,474 30,010 32,464 33,145 1990's 31,277 34,313 36,418 37,370 38,940 37,362 40,467 38,021 36,427 38,019 2000's 43,113 38,583 40,198 44,262 45,383 47,696 46,321 45,434 48,567 51,303 2010's 56,225 49,898 48,951

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,059 7,072 7,444 1970's 8,315 9,059 9,874 9,875 11,528 12,425 12,202 11,234 11,845 12,044 1980's 11,026 9,419 11,361 9,828 9,961 10,118 9,084 7,908 9,827 10,609 1990's 10,236 10,732 9,759 10,642 10,783 11,644 12,150 10,870 10,082 10,023 2000's 11,060 10,456 11,675 10,952 10,473 9,903 9,355 10,296 11,101 10,987 2010's 10,302 10,973 10,364 13,236 13,999 12,334

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 153,376 165,414 175,372 1970's 183,412 189,791 208,068 196,663 192,497 169,357 179,392 149,011 172,429 158,117 1980's 166,210 161,110 157,664 143,568 155,350 143,311 139,119 146,983 158,790 161,516 1990's 143,503 150,339 160,645 164,044 166,798 175,160 189,966 183,838 156,630 167,573 2000's 177,917 172,555 163,274 179,611 170,240 166,693 146,930 160,580 167,070

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 38,459 42,751 41,151 1970's 43,921 41,978 43,852 40,403 41,074 41,806 44,862 48,253 45,729 52,036 1980's 47,135 40,833 45,664 44,177 44,423 40,791 36,517 32,428 47,870 38,509 1990's 37,208 39,588 35,190 40,766 36,504 39,639 46,152 45,086 43,800 39,565 2000's 43,125 40,558 40,229 37,472 37,103 39,359 35,492 40,846 40,772 41,421 2010's 41,822 40,393 36,106 44,238

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,961 7,874 9,965 1970's 11,360 13,563 14,530 13,722 13,401 15,896 13,995 10,861 12,124 13,820 1980's 15,171 14,922 16,330 15,143 17,012 19,043 16,843 16,718 18,406 20,249 1990's 20,449 22,328 19,570 24,047 22,960 22,419 25,597 25,465 25,986 28,510 2000's 28,589 27,884 27,714 26,110 26,214 27,631 27,844 29,007 30,444 29,744 2010's 27,246 30,359 28,805 30,566 28,377

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Pennsylvania (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,702 87,620 95,720 1970's 99,339 110,014 122,518 116,265 102,495 98,991 124,517 111,885 110,620 111,498 1980's 118,462 128,561 125,557 115,222 126,211 115,329 114,442 114,800 127,382 132,421 1990's 125,673 125,546 134,254 131,776 138,473 143,735 154,642 144,084 130,996 143,256 2000's 145,319 136,468 136,202 149,458 142,608 144,971 130,328 145,852 144,603

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,142 3,416 3,850 1970's 5,064 4,530 4,734 4,648 4,397 4,233 2,895 3,019 4,783 6,169 1980's 6,751 6,867 7,156 6,976 7,466 7,590 6,718 9,395 8,352 8,767 1990's 8,071 8,269 9,080 9,205 12,049 12,064 12,298 12,303 11,477 11,804 2000's 12,974 12,808 11,468 11,391 11,289 11,043 9,950 11,247 10,843 10,725 2010's 10,458 10,843 10,090 11,633 13,178 11,734

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Carolina (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,840 10,544 12,938 1970's 13,850 14,371 14,137 16,053 14,820 17,202 35,062 32,117 24,681 17,943 1980's 22,885 19,436 15,560 16,548 16,635 15,270 15,894 17,195 17,472 16,525 1990's 15,394 15,796 16,644 17,014 17,870 18,868 20,328 19,560 19,828 20,566 2000's 22,105 20,743 21,029 22,365 22,255 22,048 20,691 20,927 22,283 21,953 2010's 24,119 22,113 21,416

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,444 10,723 11,201 1970's 11,361 10,592 11,204 10,568 11,671 11,488 15,344 14,786 13,547 9,951 1980's 8,507 8,188 9,384 8,651 9,128 9,987 9,166 8,199 8,396 8,826 1990's 8,555 9,473 9,122 10,696 10,274 10,685 11,598 10,422 9,264 9,564 2000's 10,119 9,711 10,258 10,375 9,958 9,819 9,525 10,337 11,362 11,563 2010's 11,025 11,101 9,330 12,151 12,310 10,497

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Tennessee (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,380 38,325 41,069 1970's 42,720 44,062 45,704 45,974 44,651 42,488 38,244 35,127 30,917 42,714 1980's 44,048 42,686 38,697 42,903 46,544 43,399 42,589 44,144 45,852 47,513 1990's 43,552 45,953 46,532 50,754 50,760 51,235 58,497 55,117 52,394 52,572 2000's 53,365 53,010 53,710 56,576 54,201 54,264 51,537 51,056 54,094 51,879 2010's 56,194 52,156 44,928 53,888

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 139,727 139,442 140,854 1970's 146,090 142,423 141,128 155,070 134,418 116,749 135,452 158,683 168,946 233,758 1980's 168,513 157,199 189,447 157,481 165,700 151,774 146,972 156,509 175,368 182,670 1990's 172,333 180,973 184,673 175,988 180,232 209,584 178,549 216,333 169,610 171,714 2000's 190,453 171,847 226,274 218,565 192,901 159,972 147,366 161,255 167,129

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,905 8,114 9,443 1970's 10,180 8,504 7,933 8,997 5,806 6,055 14,681 9,661 8,430 6 1980's 330 343 21,831 7,986 8,569 8,505 4,636 14,811 17,911 16,522 1990's 16,220 19,276 16,584 22,588 26,501 26,825 29,543 31,129 30,955 30,361 2000's 31,282 30,917 33,501 30,994 31,156 34,447 34,051 34,447 37,612 37,024 2010's 38,461 40,444 35,363 41,398 38,156 35,552

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Vermont (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 828 831 853 856 1,467 1,575 1,688 1,833 1,941 2,081 1990's 2,049 2,058 2,319 2,382 2,669 2,672 2,825 3,051 2,979 2,309 2000's 2,595 2,473 2,470 2,757 2,724 2,610 2,374 2,631 2,495 2,483 2010's 2,384 2,479 2,314 4,748 4,830 5,949

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,756 24,594 27,155 1970's 30,090 34,672 34,176 37,632 35,281 32,358 34,887 34,685 43,064 33,946 1980's 38,467 35,255 38,157 38,457 34,825 33,975 35,453 39,401 42,013 44,181 1990's 41,038 44,077 50,757 52,880 52,944 56,948 59,262 61,895 58,283 61,516 2000's 66,098 59,809 62,699 64,004 64,518 65,838 62,352 66,444 67,006 67,709 2010's 68,911 64,282 60,217 68,126

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Washington (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,133 16,244 17,166 1970's 18,490 20,612 23,254 32,333 33,221 31,988 31,652 29,946 25,330 33,369 1980's 30,754 28,629 30,559 28,728 32,371 35,459 32,022 32,366 36,674 38,502 1990's 38,671 41,738 37,800 43,620 42,982 42,568 48,139 46,686 45,561 50,735 2000's 50,462 57,160 46,455 47,845 48,455 49,745 51,292 53,689 56,205 55,697 2010's 51,335 56,487 53,420 55,805

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18,511 20,402 21,534 1970's 21,678 23,106 26,654 25,854 24,586 24,776 20,462 19,556 22,501 22,337 1980's 21,980 22,191 20,548 18,771 18,780 17,224 15,995 16,792 22,416 23,258 1990's 21,391 21,043 24,419 24,381 24,979 25,872 28,025 25,913 24,986 27,301 2000's 26,167 27,737 24,729 26,681 25,177 25,084 23,477 22,633 25,299 23,761 2010's 24,907 24,094 22,634

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wisconsin (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 33,610 36,067 52,315 1970's 54,555 47,662 43,753 55,012 65,705 67,485 57,702 61,280 77,890 80,756 1980's 77,107 68,075 69,694 68,020 70,230 72,803 55,275 57,750 66,939 70,090 1990's 66,339 71,516 71,314 77,079 78,609 84,888 93,816 88,729 81,316 81,689 2000's 81,139 76,095 85,811 87,131 82,187 86,086 86,342 89,016 97,137 91,459 2010's 82,204 87,040 76,949 99,434

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,865 11,637 14,069 1970's 14,026 14,072 17,287 13,206 13,241 10,253 9,152 8,767 8,100 8,211 1980's 4,980 4,511 10,098 9,182 9,431 9,139 8,045 8,443 8,700 8,551 1990's 8,440 9,101 8,009 10,268 9,231 9,833 9,721 10,754 10,414 9,838 2000's 9,752 9,535 10,414 9,986 9,916 9,184 9,500 9,442 10,180 10,372 2010's 11,153 11,680 10,482 12,013 12,188 12,498

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the District of Columbia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,752 14,993 15,881 15,945 11,680 11,921 11,934 13,999 15,012 15,741 1990's 13,473 15,550 16,103 16,229 14,742 17,035 16,347 18,012 16,862 17,837 2000's 17,728 16,546 18,332 17,098 17,384 17,683 17,107 19,297 18,411 18,705 2010's 18,547 16,892 15,363 17,234 17,498 15,79

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    144,844 183,603 204,793 220,747 230,099 241,802 285,213 323,054 347,818 1950's 387,838 464,309 515,669 530,650 584,957 629,219 716,871 775,916 871,774 975,107 1960's 1,020,222...

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    21,979 2008 24,390 22,834 18,534 10,680 9,169 6,082 8,246 8,425 7,661 12,575 16,948 23,030 2009 28,831 22,774 20,061 12,767 9,617 8,062 8,926 9,970 9,486 12,390 14,237 23,283...

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    66,915 64,734 60,519 49,200 58,308 1980's 50,588 46,804 51,536 46,854 48,104 47,643 43,709 38,057 44,955 46,142 1990's 43,953 46,615 46,095 50,337 47,922 50,325 54,571 50,191...

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    63,224 70,083 74,231 1980's 70,048 71,178 71,900 65,409 71,819 69,641 64,821 64,903 71,709 73,625 1990's 67,223 68,383 72,720 78,047 75,819 82,726 87,456 81,753 73,117 73,643...

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,647 1990 4,168 3,115 3,057 2,477 1,557 1,131 1,049 961 1,016 1,095 1,686 2,738 1991 5,709 5,334 4,545 3,320 2,108 1,602 1,545 1,465 1,486 2,289 3,582 5,132 1992 6,323 6,382...

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,401 34,749 37,275 1970's 36,254 36,657 37,389 33,126 35,349 33,439 34,450 34,303 29,649 36,717 1980's 28,525 26,860 25,876 26,665 27,567 25,836 25,128 22,384 25,562 26,469 1990's 24,287 23,711 25,232 25,723 25,526 26,228 29,000 32,360 25,705 27,581 2000's 25,580 26,391 25,011 25,356 26,456 25,046 24,396 23,420 25,217 24,293 2010's 27,071 25,144 21,551 25,324

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,722 4,713 11,018 1970's 12,519 14,256 16,011 12,277 13,106 14,415 14,191 14,564 15,208 15,862 1980's 16,513 16,149 24,232 24,693...

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,715 1,610 1,607 1,548 1,328 1,858 1,883 2,019 2,049 2,129 1990's 2,223 2,148 2,144 2,123 2,200...

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the U.S. (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 392,315 394,281 310,799 231,943 174,258 135,165 107,728 105,681 103,831 126,540 216,762 297,734 1974 406,440 335,562 301,588 243,041 165,233 128,032 109,694 107,828 106,510 143,295 199,514 308,879 1975 346,998 345,520 312,362 289,341 164,629 119,960 107,077 104,332 106,655 133,055 179,518 298,845 1976 405,483 364,339 285,912 221,383 169,209 129,058 112,070 113,174 113,284 145,824 252,710

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,335 23,389 24,501 1970's 22,705 25,604 26,905 31,812 32,742 32,638 36,763 34,076 29,581...

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 27,838 29,591 25,963 15,899 ... 7,970 15,118 19,910 29,245 1991 35,376 26,327 22,768 13,059 8,214 5,162 6,031 5,693 7,979 ...

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 107,796 117,124 130,062 1970's 132,708 146,217 159,970 180,274 189,192 181,949 178,220 131,266 ...

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 ...

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,434 3,514 3,395 2,369 1,720 1,215 1,673 1,117 1,189 1,382 1,955 3,507 1990 4,550 3,040 2,645 2,167 1,626 984 1,157 1,164 1,195 1,353 1,921 2,487 1991 3,334 3,576 2,761 1,886 1,332 1,149 1,128 1,052 1,093 1,311 2,120 2,968 1992 3,739 3,833 2,671 2,287 1,513 1,225 1,108 1,078 1,136 1,320 1,983 3,338 1993 3,532 3,599 3,655 2,569 1,551 1,179 1,084 1,070 1,111 1,259 2,073 3,041 1994 4,325

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alaska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,500 2,691 2,258 1,949 1,569 1,287 1,042 1,091 1,202 1,577 2,144 2,429 1990 2,447 2,584 2,429 1,809 1,456 1,134 1,061 1,077 1,148 1,554 2,106 2,818 1991 2,579 2,388 2,149 1,896 1,576 1,171 1,069 1,073 1,198 1,561 1,930 2,308 1992 2,414 2,372 2,319 1,935 1,597 1,206 1,084 1,013 1,252 1,790 1,928 2,390 1993 2,487 2,471 2,051 1,863 1,441 1,055 917 957 1,112 1,563 1,785 2,301 1994 2,367 2,156

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arizona (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,945 3,572 2,845 2,275 1,994 1,951 1,805 1,579 1,597 1,634 2,296 3,108 1990 3,706 3,577 3,165 2,338 2,174 1,854 1,686 1,580 1,610 1,555 2,018 3,139 1991 3,716 3,091 2,935 2,785 2,039 1,637 1,669 1,722 1,375 1,609 1,941 3,077 1992 3,647 3,011 2,898 2,352 1,620 1,754 1,690 1,505 1,601 1,580 1,858 3,573 1993 3,422 2,954 3,056 2,408 1,851 2,035 1,654 1,601 1,521 1,551 2,100 3,416 1994 3,689

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,522 10,845 9,208 6,135 4,160 3,082 2,328 2,119 2,303 3,232 5,441 8,102 1990 10,718 9,546 8,633 6,902 5,116 3,122 2,167 2,127 2,069 2,918 5,301 7,682 1991 12,120 9,991 7,910 6,328 4,849 2,826 2,180 2,040 2,087 3,017 6,096 9,494 1992 10,794 9,450 7,609 5,965 3,631 3,055 2,430 2,183 2,312 3,078 5,594 10,319 1993 11,775 10,132 9,435 6,499 4,292 3,119 2,445 2,357 3,012 3,108 6,080 9,396

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Connecticut (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358 1,315 1,352 1,603 2,456 3,534 1991 4,341 3,973 3,566 2,352 1,462 1,030 995 1,020 884 1,423 2,396 3,396 1992 4,417 4,374 3,940 2,941 1,779 1,149 1,046 1,061 1,075 1,562 2,623 3,871 1993 4,666 4,995 4,461 3,038 1,583 1,161 1,122 1,070 1,121 1,789 2,896 3,525 1994 5,882

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 632 605 624 398 249 166 128 133 144 182 294 630 1990 784 530 530 419 239 174 139 138 136 163 309 480 1991 677 653 579 414 237 161 146 142 145 203 354 541 1992 744 755 686 537 308 198 166 152 162 240 395 622 1993 739 818 858 574 284 140 165 155 155 229 412 666 1994 945 1,076 856 510 259 209 157 156 172 221 345 554 1995 829 935 854 527 341 223 182 168 205 209 417 851 1996 1,099 1,181 885

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,127 7,499 5,163 3,921 2,982 2,340 2,411 2,360 2,589 3,475 4,834 8,389 1990 8,162 5,935 5,172 3,960 2,844 2,498 2,359 2,535 2,416 3,098 4,228 6,280 1991 7,680 6,782 5,905 3,348 2,820 2,387 2,381 2,482 2,346 3,082 5,153 6,670 1992 8,066 6,952 5,778 4,381 3,103 2,596 2,536 2,503 2,462 3,201 4,640 7,642 1993 7,627 7,915 7,796 4,837 3,069 2,544 2,570 2,481 2,440 3,312 5,214 7,719 1994 9,543

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Hawaii (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 187 178 174 175 181 175 182 173 175 179 172 177 1990 190 188 188 180 181 188 195 180 180 183 184 185 1991 192 177 169 187 173 173 187 172 179 177 178 185 1992 190 180 174 183 177 184 174 173 178 168 178 184 1993 185 190 179 177 168 183 174 170 168 173 183 172 1994 195 176 190 185 181 184 177 178 184 177 189 185 1995 200 180 185 183 185 188 186 178 179 179 178 177 1996 200 192 184 190 172

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Indiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 11,170 11,376 9,613 5,768 3,297 1,904 1,579 1,659 2,217 3,850 7,577 13,614 1990 11,991 9,374 7,958 6,087 3,191 1,963 1,658 1,860 1,991 4,087 6,640 10,462 1991 13,081 10,656 8,567 4,535 2,546 1,648 1,613 1,710 2,358 3,614 7,821 10,233 1992 12,060 10,265 8,437 6,172 3,400 2,004 1,811 1,955 2,131 4,253 8,135 12,097 1993 12,941 12,125 10,972 6,557 2,866 2,100 1,819 1,838 2,442 4,559 8,381

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Iowa (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,372 7,466 6,928 4,133 2,216 1,380 1,190 1,234 1,247 179 3,738 7,110 1990 8,087 6,374 5,719 4,261 2,409 1,602 1,226 1,204 1,302 2,087 3,726 5,955 1991 9,237 6,828 5,412 3,305 1,993 1,308 1,090 1,198 1,308 2,482 5,287 7,167 1992 7,145 6,709 4,949 3,883 1,877 1,427 1,100 1,257 1,433 2,645 5,843 7,827 1993 8,688 7,779 6,773 4,316 2,029 1,481 1,214 1,214 1,637 2,869 5,694 6,642 1994 9,353 8,260

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,155 7,697 6,870 5,433 3,660 2,547 3,366 4,812 3,081 2,785 4,386 6,763 1990 8,061 6,230 5,114 4,800 3,112 2,848 4,906 4,462 3,836 2,893 3,877 5,907 1991 10,250 7,397 5,694 4,278 3,082 2,657 4,321 3,994 2,629 2,656 6,075 5,538 1992 6,844 5,862 4,372 4,571 3,736 2,814 3,609 3,462 3,132 3,162 4,867 7,543 1993 8,768 7,385 7,019 4,938 2,840 2,559 3,348 3,324 2,395 2,469 4,413 6,565 1994 8,139

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kentucky (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,139 5,507 4,546 2,840 1,766 1,167 1,099 991 1,147 954 3,327 6,648 1990 5,355 4,280 3,496 2,702 1,576 1,129 1,037 1,077 1,025 2,050 3,194 4,884 1991 6,313 5,098 3,647 1,925 1,198 1,029 941 991 1,338 1,862 4,197 5,161 1992 6,191 4,758 3,874 2,612 1,600 1,132 1,066 1,158 1,209 2,237 4,064 5,519 1993 5,878 5,863 5,207 2,934 1,330 1,449 1,029 1,060 1,220 2,417 3,997 5,433 1994 8,181 6,018

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,399 3,365 3,462 2,362 1,790 1,479 1,399 1,340 1,433 1,568 2,035 3,524 1990 4,528 2,757 2,490 2,135 1,628 1,499 1,361 1,238 1,275 1,487 2,082 2,491 1991 3,639 3,555 2,713 1,974 1,539 1,418 1,504 1,253 1,229 1,440 2,347 2,842 1992 4,060 4,003 2,743 2,367 1,769 1,564 1,556 1,431 1,508 1,577 2,295 3,574 1993 3,260 3,207 3,075 2,376 1,742 1,454 1,267 1,277 1,290 1,346 2,091 2,771 1994 3,925

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 229 226 221 160 106 63 51 50 60 96 128 269 1990 268 227 211 175 108 70 52 47 62 83 157 219 1991 282 265 236 180 101 73 65 65 59 103 152 278 1992 322 318 315 229 157 80 79 52 67 116 188 285 1993 356 364 291 192 107 80 71 67 77 166 224 316 1994 458 364 302 181 128 79 63 71 84 135 207 309 1995 350 373 288 211 128 77 70 71 86 129 254 389 1996 413 386 356 208 132 82 74 75 78 172 280 310 1997 433

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,394 6,984 7,234 5,392 3,703 2,150 1,726 1,894 1,799 2,720 3,647 6,864 1990 8,247 6,548 6,367 5,235 3,381 2,491 2,009 2,040 1,906 2,416 4,275 5,704 1991 7,617 7,579 6,948 5,504 3,772 2,466 2,435 2,188 1,939 2,666 4,048 6,027 1992 8,184 8,736 8,217 7,049 4,450 2,768 3,072 2,884 2,753 3,776 5,530 6,933 1993 8,556 9,118 9,026 6,491 4,195 3,184 2,692 2,802 2,766 3,878 5,622 7,098 1994

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Minnesota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 13,112 13,607 11,411 6,916 3,980 2,416 2,112 2,011 2,475 4,718 8,764 13,661 1990 12,696 11,412 9,846 6,734 4,032 2,369 2,100 2,060 2,342 4,865 7,491 12,066 1991 15,649 11,426 10,026 6,092 4,220 2,541 2,315 2,304 2,930 5,399 10,392 12,580 1992 13,000 11,075 10,134 7,517 3,602 2,467 2,244 2,296 2,631 5,092 9,526 12,795 1993 14,685 12,874 11,396 7,267 3,588 2,549 2,190 2,207 2,952 5,614

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,372 2,502 2,411 1,407 947 739 718 701 754 939 1,350 2,727 1990 3,199 2,007 1,675 1,541 1,070 884 819 818 841 1,137 1,508 2,050 1991 2,704 2,572 1,977 1,291 901 875 806 834 865 989 1,721 2,208 1992 2,817 2,595 1,758 1,473 994 888 885 867 847 942 1,489 2,387 1993 2,663 2,583 2,559 1,756 1,108 925 904 864 843 985 1,710 2,298 1994 3,417 2,993 2,136 1,456 1,012 942 992 973 1,000 1,050

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,118 10,280 9,192 5,246 2,799 2,359 1,829 1,780 2,021 2,798 4,716 9,903 1990 11,634 7,979 6,849 5,622 3,309 2,310 2,034 1,971 2,083 2,863 4,811 7,921 1991 12,748 9,932 7,479 4,261 2,760 2,181 1,853 1,896 2,056 2,689 6,471 8,864 1992 10,201 9,060 6,835 5,601 3,144 2,547 1,849 1,993 2,024 2,728 5,335 9,646 1993 12,062 10,467 10,336 6,750 3,580 2,266 2,066 1,959 2,222 2,864 5,974 9,124

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,029 1,923 1,841 1,208 687 478 330 381 442 806 1,235 1,781 1990 1,912 1,705 1,402 998 766 487 323 348 347 782 1,206 1,889 1991 2,425 1,435 1,450 1,053 843 431 357 341 438 724 1,559 1,790 1992 1,726 1,464 1,099 930 568 377 365 331 523 810 1,271 2,095 1993 2,465 1,705 1,741 1,137 682 434 437 416 535 819 1,508 1,999 1994 1,844 1,936 1,465 1,100 699 452 362 348 423 860 1,447 2,043 1995 2,085

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,202 4,825 4,252 2,505 1,648 1,757 3,381 4,240 1,634 2,109 2,602 4,196 1990 4,765 4,019 3,355 2,799 1,480 1,325 4,837 2,596 2,333 2,334 2,552 4,094 1991 5,452 4,111 3,382 2,193 1,771 1,779 5,675 4,406 1,961 2,056 3,468 4,037 1992 4,332 3,760 2,970 2,411 1,781 1,330 2,366 2,393 1,710 2,508 3,988 4,941 1993 5,784 3,806 4,611 3,119 1,629 1,388 1,324 1,828 1,333 2,164 3,495 4,263 1994 5,469

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New York (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 25,565 24,630 25,344 18,494 12,079 8,747 8,382 8,305 8,812 11,741 16,631 27,650 1990 24,659 23,697 22,939 17,706 11,586 10,272 9,602 9,683 10,261 12,661 17,210 24,715 1991 28,442 25,685 23,462 17,684 11,669 9,641 10,331 9,764 9,195 11,571 17,033 25,121 1992 29,246 29,912 27,748 23,039 13,518 9,915 9,327 9,456 9,582 12,860 16,804 25,808 1993 28,857 29,740 28,926 20,266 11,667 11,221 10,477

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,789 1,669 1,514 1,027 508 335 269 238 340 464 951 1,506 1990 1,666 1,457 1,243 1,048 616 383 315 298 370 561 916 1,363 1991 1,917 1,394 1,253 847 629 320 302 314 348 633 1,241 1,535 1992 1,489 1,380 1,082 937 529 298 279 262 363 576 1,015 1,549 1993 1,911 1,477 1,339 925 477 347 317 294 381 629 1,068 1,478 1994 2,016 1,812 1,339 932 526 302 284 288 315 530 1,241 1,198 1995 1,807

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oklahoma (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,884 3,283 2,761 1,724 1,140 989 823 804 882 972 1,624 2,363 1990 2,984 3,031 2,562 1,550 1,268 1,157 821 769 823 1,050 1,697 2,737 1991 4,074 2,764 2,407 2,048 1,610 1,274 902 812 855 927 1,898 2,758 1992 3,231 2,465 1,925 1,542 1,171 884 784 782 863 1,105 1,652 3,166 1993 4,148 3,370 2,880 1,927 1,448 1,010 915 840 934 1,099 1,918 3,557 1994 3,388 3,166 2,480 1,836 1,234 1,078 865 801

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,339 1,454 1,253 776 413 276 203 197 255 434 851 1,374 1990 1,398 1,234 1,064 769 537 306 230 223 239 459 825 1,269 1991 1,723 1,243 1,076 713 543 303 263 251 309 588 1,176 1,286 1992 1,314 1,174 1,007 828 460 303 291 284 324 558 1,104 1,476 1993 1,847 1,496 1,344 995 531 342 315 291 392 632 1,083 1,429 1994 1,738 1,695 1,285 846 524 347 239 322 329 531 946 1,472 1995 1,619 1,491

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Tennessee (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,960 6,840 6,382 4,054 2,529 1,916 1,802 1,659 1,843 2,355 3,769 7,404 1990 8,672 5,800 4,578 3,811 2,474 1,988 1,652 1,791 1,597 2,276 3,426 5,490 1991 7,499 7,400 5,761 3,131 2,231 1,829 1,640 1,708 1,837 2,454 4,304 6,158 1992 7,343 6,834 5,069 4,205 2,436 2,016 1,838 1,681 1,933 2,368 3,963 6,846 1993 7,296 7,526 7,354 4,605 2,613 1,992 1,884 1,811 1,992 2,565 4,648 6,470 1994 9,690

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Texas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 21,163 22,930 20,215 15,779 11,310 10,731 12,786 11,350 9,367 10,345 12,823 23,871 1990 21,376 16,323 17,118 14,054 12,299 14,204 14,184 11,592 9,448 9,571 12,192 19,981 1991 26,377 18,723 16,796 15,181 11,439 10,763 12,769 11,125 8,843 11,156 17,192 20,608 1992 22,907 19,049 15,866 14,174 12,557 10,879 13,768 12,966 11,356 11,672 17,386 22,093 1993 21,489 18,444 16,162 14,455 12,175 12,943

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Utah (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Vermont (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 315 300 283 199 105 66 57 57 73 130 189 307 1990 338 288 269 196 116 68 46 62 84 127 195 261 1991 335 311 259 187 105 61 55 58 82 133 188 284 1992 366 354 320 231 118 75 79 75 77 144 211 269 1993 347 368 350 199 124 80 62 67 83 143 235 324 1994 476 455 341 269 150 90 65 69 88 144 187 334 1995 388 406 352 277 140 89 70 72 95 130 242 410 1996 458 445 381 279 153 97 67 69 90 162 276 348 1997

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,164 6,056 5,721 4,051 2,446 2,129 1,866 1,485 1,985 2,192 3,612 6,474 1990 6,162 5,181 5,100 4,541 2,412 1,831 1,802 1,772 1,671 2,233 3,251 5,081 1991 6,667 5,956 5,270 3,581 2,481 2,159 1,867 2,057 1,860 2,625 3,855 5,701 1992 7,072 6,690 5,985 4,523 3,289 2,271 2,085 2,055 1,903 3,275 4,714 6,895 1993 7,432 7,800 7,347 4,850 2,842 2,177 1,987 2,033 2,106 3,073 4,355 6,877 1994 8,677

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Washington (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,343 5,561 5,424 3,672 2,194 1,851 1,671 1,548 1,357 2,083 3,366 4,433 1990 5,136 5,666 4,496 3,289 2,728 1,951 1,639 1,476 1,575 2,249 3,444 5,071 1991 6,279 5,277 4,597 4,047 3,025 2,400 1,831 1,635 1,689 2,099 3,802 5,057 1992 5,564 4,840 3,855 3,179 2,343 1,830 1,575 1,514 1,734 2,240 3,418 5,709 1993 7,058 5,670 5,157 3,785 2,774 1,905 1,801 1,750 1,829 2,236 3,639 6,016 1994

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in West Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,177 3,265 2,807 2,041 1,476 881 785 853 859 1,373 2,036 3,704 1990 3,701 2,707 2,391 2,064 1,224 924 889 845 862 1,237 1,963 2,585 1991 3,061 2,971 2,522 1,725 1,068 810 848 823 915 1,365 2,169 2,767 1992 3,659 3,565 2,986 2,322 1,341 999 812 855 910 1,482 2,092 3,396 1993 3,123 3,522 3,444 2,169 1,218 992 818 914 983 1,510 2,404 3,286 1994 4,653 3,681 3,246 2,031 1,437 982 812 973

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wisconsin (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,596 10,988 10,169 6,662 3,882 2,012 1,562 1,499 1,718 3,437 6,386 11,183 1990 11,878 9,411 8,746 5,436 3,701 2,130 1,686 1,617 1,786 3,865 6,030 10,074 1991 13,062 10,137 8,785 5,471 3,084 1,643 1,853 1,415 2,229 4,335 8,565 10,938 1992 11,235 10,037 9,113 6,870 3,632 1,986 1,759 1,615 1,954 4,108 7,918 11,087 1993 12,658 11,647 10,442 7,011 3,438 2,418 1,843 1,719 2,326 4,637 7,976

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the District of Columbia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 842 753 771 551 339 188 154 140 176 248 393 817 1990 899 803 618 518 307 221 153 153 170 265 380 585 1991 795 798 672 484 ...

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,116 4,376 4,414 4,437 4,100 4,955 4,438 4,601 5,034 5,371 1990's 5,073 5,028 5,862 6,142 6,412 ...

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    16,571 1991 21,026 18,276 16,026 10,882 5,835 4,162 3,760 3,859 4,580 7,438 12,251 17,451 1992 21,204 19,482 17,679 12,210 6,793 4,520 4,046 4,132 4,579 8,439 12,784 18,385 1993 ...

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 63,740 65,536 70,232 1970's 76,585 76,441 79,987 80,219 90,412 89,651 76,981 67,839 81,121 ...

  9. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    77.5 67.3 65.2 65.8 65.8 65.9 1987-2015 Alabama 79.3 78.9 76.2 76.6 78.4 77.6 1990-2015 Alaska 87.7 88.6 94.9 94.5 94.5 98.1 1990-2015 Arizona 88.7 87.8 86.6 85.5 84.4 83.8 1990-2015 Arkansas 55.6 51.5 40.2 43.7 45.5 42.5 1990-2015 California 54.1 54.3 50.0 49.9 48.4 50.0 1990-2015 Colorado 94.6 93.8 92.2 94.7 94.5 NA 1990-2015 Connecticut 65.4 65.4 65.1 57.9 67.2 76.2 1990-2015 Delaware 49.8 53.4 43.7 45.0 46.2 45.7 1990-2015 District of Columbia 100.0 16.9 17.9 19.1 19.9 21.4 1990-2015 Florida

  10. ERC commercialization activities

    SciTech Connect (OSTI)

    1995-08-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MW power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full-sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MW Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  11. Advancing Commercialization of Algal Biofuels through Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Commercialization of Algal Biofuels through Increased Biomass Productivity ... including: NAABB, Cornell's Marine Algal Biofuels Consortium, ATP3. * Participation in ...

  12. New Commercial Program Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Beginning in spring of 2015, the BPA Commercial Team will be working with utilities...

  13. Southface Advanced Commercial Buildings Initiative (ABCI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Atlanta: Development of Commercial Benchmarking ordinance to include small commercial ... with the Boys and Girls Club. Budget History Q3FY2013 - FY2013 (past) FY2014 (current) ...

  14. Commercial Grade Dedication Record (ANL-746 Revised) | Department...

    Energy Savers [EERE]

    Record (ANL-746 Revised) Commercial Grade Dedication Record (ANL-746 Revised) A sample of a process to recorddocument CGD activities. Forms are included. Commercial Grade...

  15. Word Pro - S4

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Table 4.3 Natural Gas Consumption by Sector (Billion Cubic Feet) End-Use Sectors Electric Power Sector f,g ... combined-heat-and-power (CHP) and commercial electricity-only plants. ...

  16. 1999 Commercial Buildings Characteristics

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption SurveyCommercial Buildings Characteristics Released: May 2002 Topics: Energy...

  17. Georgia Power- Small Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Georgia Power offers Small Commercial rebates to customers on qualifying rates. See program web site for additional details including eligibility information.

  18. Commercial Grade Dedication Survey and Training | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Survey and Training Commercial Grade Dedication Survey and Training The following is a sample plan to perform a CGD survey. The checklist items are included. In addition to,...

  19. Avista Utilities (Gas)- Prescriptive Commercial Incentive Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including...

  20. Commercial Miscellaneous Electric Loads Report: Energy Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    loads account for an increasingly large portion of commercial electricity consumption. ... This includes analysis of their unit energy consumption and annual electricity consumption ...

  1. Commercialization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization Commercialization <a href="http://energy.gov/node/307033/">See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries</a>. See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. Commercialization is the process by which technologies and innovations developed in the lab make their way to market. By licensing patents or using Energy Department facilities, researchers from the

  2. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  3. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Association of State Energy Officials ...owners, the commercial real estate community, financial ... * Milestone: create marketing and deployment plan for ...

  4. Commercialization Assistance Program | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  5. AMO Weekly Announcements 3/25 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 AMO Weekly Announcements 3/25 March 25, 2016 - 2:44pm Addthis The Advanced Manufacturing Office Releases the "Combined Heat and Power (CHP) Technical Potential in the United States" Study The Department of Energy's (DOE) Advanced Manufacturing Office (AMO) has released the "Combined Heat and Power (CHP) Technical Potential in the United States" market analysis report. This study provides data on the technical potential in industrial facilities and commercial buildings for

  6. Utilizing Supplemental Ultra-Low-NO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Ultra-Low-NO x Burner Technology to Meet Emissions Standards and Improve System Efficiency This project developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates new burner technology into a 65-kilowatt (kW) microturbine and 100-horsepower (HP) heat recovery boiler. Introduction A combined heat and power (CHP) system can be a fnancially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country

  7. Commercializing solar hydrogen production

    SciTech Connect (OSTI)

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  8. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  9. Optical modulator including grapene

    DOE Patents [OSTI]

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  10. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from

  11. Commercial Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology...

  12. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with industry: Better Buildings Alliance, federal and other partners 2. Developing core tools, guides and products * Energy data access and analysis: Commercial Building Asset ...

  13. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  14. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  15. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  16. NREL Commercialization & Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The NREL Industry Growth Forum accelerates the commercialization of clean energy technologies by: * Fostering hands-on-management and coaching for evolving clean energy companies * ...

  17. Commercial Refrigeration Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural, and institutional buildings. 

  18. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  19. Commercial SNF Accident Release Fractions

    SciTech Connect (OSTI)

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the

  20. Symbiosis Biofeedstock Conference: Expanding Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase Feedstock Production Symbiosis Biofeedstock Conference: Expanding Commercialization of ...

  1. Guide to Commercial Property Assessed Clean Energy Financing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Guide to Commercial Property Assessed Clean Energy Financing Guide to Commercial Property Assessed Clean Energy Financing Provides a detailed guide to property assessed clean energy (PACE) financing, including the PACE process, regulatory issues, frameworks, and other considerations. Author: U.S. Department of Energy Guide to Commercial PACE Financing (544.83 KB) More Documents & Publications Commercial Property Assessed Clean Energy Primer Commercial Property Assessed Clean

  2. Databases

    Broader source: Energy.gov [DOE]

    DOE has supported the development of several combined heat and power (CHP) and distributed energy databases that have proven to be "go-to" resources for end users. These resources include an...

  3. Annual Energy Review 2008 - Released June 2009

    Gasoline and Diesel Fuel Update (EIA)

    0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarPV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  4. Clean Energy Revenue Bond Program

    Broader source: Energy.gov [DOE]

    The bonds are exempt from taxation by the state, and any type of renewable energy system and most energy efficiency measures, including energy recovery and combined heat and power (CHP) systems,...

  5. Appropriations Act Provides Nearly $2 Billion in New Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including 7.5 million for energy-saving technologies for the steel, glass, and metal-casting industries and 25 million to support distributed energy, combined heat and power,...

  6. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Rule 569 applies to all qualifying facilities (QFs) under the federal Public Utility Regulatory Policies Act, which generally includes all renewable energy systems and combined heat and power (CH...

  7. Catalog of CHP Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This 2015 Catalog of CHP Technologies provides an overview of how combined heat and power systems work and the key concepts of efficiency and power-to-heat ratios. The report also includes...

  8. Tax Deductions for Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Deductions for Commercial Buildings Promoting Energy Savings for Businesses S igned by President Bush on August 8, 2005, the Energy Policy Act (EPACT) lays the foundation for the new Federal tax incentives for consumers and businesses that pursue energy efficiency and the use of renewable energy. For updated information about the tax incentives, see www.energy.gov. This web- site also describes other EPACT provisions of interest to businesses, including incen- tives for distributed

  9. Commercial Items Test Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached for your information is a copy of Civilian Agency Acquisition Council (CAAC) Letter 2009-04. It advises that the National Defense Authorization Act for Fiscal Year 201 0, Section 8 16 authorizes extension of the Commercial Items Test Program from January 1,20 10 to January 1,20 12 and that an expedited FAR Case is being processed to insert the new date at FAR 13.500(d). Also attached is a class deviation authorizing the use of simplified acquisition procedures for commercial items up to $5.5 million [$I1 million for acquisitions of commercial items under FAR 13.500(e)

  10. Commercial Grade Dedication RM

    Broader source: Energy.gov [DOE]

    The objective of this Standard Review Plan (SRP) on Commercial Grade Dedication (CGD) is to provide guidance for a uniform review of the CGD activities for office of Environmental Management...

  11. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5.2 152.6 160.5 54.6 Assembly Health Care Lodging Office 0 20 40 60 80 100 120 140 160 180 Energy Information Administration Energy Consumption Series: Lighting in Commercial...

  12. Commercial PACE Financing

    Broader source: Energy.gov [DOE]

    Senate Bill 221 of 2013 authorizes local governments to adopt Commercial* Property Assessed Clean Energy (C-PACE) financing programs. C-PACE allows property owners to finance energy efficiency and...

  13. Technical Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Technical Reports A wide range of resources addressing the many benefits of combined heat and power (CHP) is available, including the technical reports below. For example, Assessing the Benefits of On-Site Combined Heat and Power (CHP) During the August 14, 2003, Blackout highlights facilities that were able to remain operational during the 2003 blackout due to backup generators or distributed generation (DG) resources, including CHP. Assessing the Benefits of On-Site CHP During the

  14. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey (CBECS) About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, including their energy-related building characteristics and energy usage data (consumption and expenditures). Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential,

  15. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  16. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  17. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S.

  18. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S.

  19. Webcasts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcasts Webcasts End users interested in combined heat and power (CHP) can participate in free webcasts made available to them through various resources, including those listed below. View presentations and documents from previous webinars and webcasts "Combined Heat and Power: Expanding CHP in Your State" was held on December 4, 2013. View the archived webinar. "CHP: Enabling Resilient Energy Infrastructure" was held on April 3, 2013. Access the presentations. View the

  20. Commercial Building Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Demonstration and Deployment 2014 Building Technologies Office Peer ... April 23 rd 11:15-11:30 Commercial DemonstrationDeployment Overview Kristen Taddonio, ...

  1. Lighting in Commercial Buildings, 1986

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting in Commercial Buildings --1986 Overview Full Report and Tables Detailed analysis of energy consumption for lighting for U.S. commercial buildings. previous page...

  2. SBSP Commercial Upstream Incentive Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and commercial sales) 1. EIA Commercial Buildings Energy Consumption Survey (2003) 2. Industry Research and Recommendations for Small Buildings and Small Portfolios, NREL 2013. ...

  3. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Efficiency Commercial Buildings Commercial Buildings At an estimated cost of 38 ... questions -- from how to lower your cooling costs to ways ...

  4. Commercial-Scale Renewable Energy Projects - Considerations and Transmission Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMMERCIAL SCALE RENEWABLE ENERGY PROJECTS CONSIDERATIONS AND TRANSMISSION POTENTIAL Scott Clow Environmental Programs Director DOE-WAPA Webinar March 30, 2016 Commercial Scale Feasibility Studies Undertaken to Date * Commercial Scale Solar Site Feasibility - GIS assessment model including available information on cultural resources, water resources, visual resources, road access, proximity to transmission, slope, aspect, exclusion areas and additional related projects - Transmission

  5. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  6. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  7. Characterization of commercial building appliances. Final report

    SciTech Connect (OSTI)

    Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

    1993-08-01

    This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

  8. NorthWestern Energy- Commercial Rebate Program (Gas)

    Broader source: Energy.gov [DOE]

    Rebate categories include insulation and controls to commercial food preparation equipment. All installments must meet certain energy efficiency standards to qualify. Receipts must be turned in...

  9. Alameda Municipal Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power offers financial incentives for its commercial customers to install a range of energy efficient equipment and measures. HVAC rebates include efficient variable frequency...

  10. Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives...

    Broader source: Energy.gov (indexed) [DOE]

    stores, refrigerated warehouses or spaces, and commercial kitchens, including refrigeratorfreezer lighting and controls, and automatic door closers. These are designed to...

  11. DOE Publishes Notice of Proposed Rulemaking for Commercial Refrigerati...

    Broader source: Energy.gov (indexed) [DOE]

    test procedures for commercial refrigeration equipment. 78 FR 64295 (October 28, 2013). Find more information on the rulemaking, including milestones, statutory authority,...

  12. Tacoma Power- Commercial and Industrial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Tacoma Power’s New Construction Program is designed for commercial and business customers including industrial facilities, major remodels, offices, schools, hospitals, retail, non-profits and...

  13. Ames Electric Department- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Ames Electric Department provides free energy audits and multiple energy efficiency rebates for commercial and industrial customers. The rebate programs available include: The Appliance Rebate...

  14. Orlando Utilities Commission- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Orlando Utilities Commission (OUC) offers rebates on a variety of energy efficient improvements for commercial customers.Prescriptive and custom incentives are available. Eligible measures include:

  15. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  16. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  17. Energy Information Administration (EIA)- Commercial Buildings Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Survey (CBECS) Data 9 CBECS Survey Data 2012 | 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures

  18. Commercial and institutional kitchen exhaust systems

    SciTech Connect (OSTI)

    McGuire, A.B. )

    1993-05-01

    This article addresses design requirements for commercial and institutional kitchen exhaust systems. The topics of the article include design considerations, toilet exhaust, dishwasher exhaust, grease hood exhaust, codes and standards, design concerns, common problems, and fire suppression. A side bar on ducts, plenums and housings is also included.

  19. California commercial building energy benchmarking

    SciTech Connect (OSTI)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and

  20. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  1. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  2. Customer adoption of small-scale on-site power generation

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-04-01

    The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

  3. CHP Fuel Cell Durability Demonstration - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (μ-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: • Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. • Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  4. Establish the Commercial Pacakge Air Conditioners and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercial package air conditioners, heat pumps, and commercial warm air furnaces is an action issued by the Department of Energy. Though it is not intended or expected, should any...

  5. DOE Awards $63 Million to Advance Clean Energy Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 63 Million to Advance Clean Energy Commercialization DOE Awards $63 Million to Advance Clean Energy Commercialization September 22, 2010 - 11:00am Addthis DOE announced on September 15 its award of more than $63 million to support the commercialization of clean energy technologies, including $57 million for small businesses and $5.3 million for universities. The awards to small businesses include nearly $11 million provided through the American Recovery and Reinvestment

  6. Overview of Commercial Buildings, 2003

    Reports and Publications (EIA)

    2008-01-01

    The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States.

  7. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  8. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  9. Aerocapacitor commercialization plan

    SciTech Connect (OSTI)

    1995-09-12

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  10. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  11. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  12. Covered Product Category: Commercial Gas Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  13. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  14. Transforming Commercial Building Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... training tools and material 2. Enhance and update re-tuning training materials, including web-based online interactive re-tuning training 3. Work with other deployment ...

  15. International Fuel Services and Commercial Engagement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation (INEPC) primary mission is to oversee and manage the Department's international commercial nuclear fuel management initiatives, and to support Departmental/USG initiatives supporting advocacy for U.S. nuclear exports, including the Team USA initiative. INEPC also supports advancing international civil nuclear

  16. DOE Five Year Commercialization Support Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcasts » DOE Five Year Commercialization Support Plan DOE Five Year Commercialization Support Plan On July 2, 2007, Marc Ledbetter, Pacific Northwest National Laboratory, provided an overview of DOE's Commercialization Support Plan. Key elements of the Plan include buyer guidance such as ENERGY STAR® criteria for SSL products, design competitions, technology demonstrations and procurements, product testing, technical information dissemination, and standards and test procedure support. View

  17. Vermont Gas- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Vermont Gas (VGS) offers rebates for commercial customers who install high efficiency equipment in existing buildings. The Commercial Equipment Replacement Program is designed for commercial and...

  18. Commercialization and Deployment at NREL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to STEAB Commercialization and Deployment at NREL Casey Porto, Senior Vice President, Commercialization and Deployment June 8, 2011 National Renewable Energy Laboratory Innovation for Our Energy Future Outreach, Planning, and Analysis B. Garrett Sr. Vice President Science and Technology D. Christensen Dep. Lab. Director / CRO Operations W. Glover Dep. Lab. Director / COO Commercialization and Deployment C. Porto Sr. Vice President National Renewable Energy Laboratory D. Arvizu

  19. Commercialization | OpenEI Community

    Open Energy Info (EERE)

    and ensure a safe and reliable energy future. Links: Check out the EDI on the EDG Big Data Commercialization Data Jam Datapalooza EDI Innovation Open Data Success Stories...

  20. Covered Product Category: Commercial Griddles

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial griddles, which is a product category covered by the ENERGY STAR program

  1. Covered Product Category: Commercial Fryers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial fryers, which is a product category covered by the ENERGY STAR program.

  2. Commercial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for ENERGY STAR certified fryers, griddles, convection ovens, and steam cookers. Custom rebates for other types of commercial cooking equipment may be available...

  3. Commercial & Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  4. Portland's Commercial Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permits to install a solar energy system on a new or existing commercial building.

  5. SF 6432-CI Commercial Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    150,000 APPLY TO ALL CONTRACTS EXCEEDING 5,000,000 Control : SF 6432-CI Title: Standard Terms and Conditions for Commercial Items Owner: Procurement Policy Department...

  6. SF6432-CS Commercial Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the Directorate of Defense Trade Control : SF 6432-CS Title: Standard Terms and Conditions for Commercial Services Owner: Procurement Policy & Quality Dept Release Date:...

  7. Commercial Grade Dedication Guidance

    Office of Environmental Management (EM)

    ... item is expected to meet during its lifetime in the plant (e.g., temperature, ... Examples could include start up and loading time for an emergency diesel generator, closing ...

  8. Webtrends Archives by Fiscal Year - Commercialization | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Corporate sites, Webtrends archives for the Commercialization site by fiscal year. Commercialization FY09 (2.49 MB) Commercialization FY10 (2.41 MB) Commercialization FY11 (2.81 ...

  9. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Commercial Buildings Energy 101: Energy Efficient Commercial Buildings

  10. MHK technology developments include current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology developments include current energy conversion (CEC) devices, for example, hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering, design, and analysis of wind power technologies, and its vast research complex, including high- performance computing (HPC), advanced materials and coatings, nondestructive

  11. Market Assessment of Distributed Energy in New Commercial and Institutional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building and Critical Infrastructure Facilities, September 2006 | Department of Energy Market Assessment of Distributed Energy in New Commercial and Institutional Building and Critical Infrastructure Facilities, September 2006 Market Assessment of Distributed Energy in New Commercial and Institutional Building and Critical Infrastructure Facilities, September 2006 Potential benefits of distributed energy, or distributed generation, include reduced grid congestion, increased overall

  12. Trends in Commercial Buildings--Overview

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The Commercial Buildings Energy...

  13. Overview of Commercial Buildings, 2003 - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of...

  14. Commercial Building Demonstration and Deployment Overview - 2014...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office's Commercial Building Demonstration and Deployment activities. ... View the Presentation Commercial Building Demonstration and Deployment Overview - 2014 BTO ...

  15. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology ...

  16. 2016-04-15 Energy Conservation Program for Certain Commercial...

    Energy Savers [EERE]

    Commercial and Industrial Equipment: Test Procedure for Commercial Water Heating ... Commercial and Industrial Equipment: Test Procedure for Commercial Water Heating ...

  17. Commercialization plan laser-based decoating systems

    SciTech Connect (OSTI)

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

  18. Gas conversion opportunities in LILCO's commercial sector

    SciTech Connect (OSTI)

    Pierce, B.

    1993-03-01

    This report presents the results of a preliminary investigation into opportunities for gas conservation in Long Island Lighting Company's commercial sector. It focusses on gas-fired heating equipment. Various sources of data are examined in order to characterize the commercial buildings and equipment in the service territory. Several key pieces of information necessary to predict savings potential are identified. These include the efficiencies and size distribution of existing equipment. Twenty-one specific conservation measures are identified and their applicability is discussed in terms of equipment size. Recommendations include improving the characterization of existing buildings and equipment, and developing a greater understanding of the savings and costs of conservation measures, and their interactions, especially in the middle size range of buildings and equipment.

  19. 1999 Commercial Buildings Characteristics--Trends in Commercial...

    U.S. Energy Information Administration (EIA) Indexed Site

    and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty...

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5b Consumption of Combustible Fuels for Electricity Generation by Sector, 2011 Coal Natural Gas Petroleum Wood and Waste U.S. Energy Information Administration / Annual Energy Review 2011 237 7.3 0.6 0.0 Electric Power Industrial² Commercial² 0 2 4 6 8 Trillion Cubic Feet -CHP¹ (ss) 1 Combined-heat-and-power plants. ² Combined-heat-and-power and electricity-only plants. (s)=Less than 0.5 million short tons. (ss)=Less than 0.05 trillion cubic feet. (sss)=Less than 0.5 million barrels.

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Existing Capacity by Producer Type, 2014 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,510 675,675.4 616,631.5 637,857.0 Independent Power Producers, Non-Combined Heat and Power Plants 6,975 423,782.6 387,561.6 401,581.5 Independent Power Producers, Combined Heat and Power Plants 559 37,890.2 33,362.6 35,972.8 Total 17,044 1,137,348.2 1,037,555.7 1,075,411.3 Commercial and

  2. Texas Gas Service- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Texas Gas Service (TGS) offers a range of financial incentives to commercail customers who purchase and install energy efficient commercial equipment. Eligible equipment includes water heaters,...

  3. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    SciTech Connect (OSTI)

    none,

    2010-11-01

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

  4. Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lewis County PUD offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial processes upgrades include premium...

  5. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect (OSTI)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  6. Washington Gas- Commercial Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas as a part of the Maryland EmPOWER program offers incentives to its commercial customer for making energy efficiency improvements. Rebates are available for qualifying water heaters,...

  7. Citizens Gas- Commercial Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to commercial customers for the installation of numerous types of efficient natural gas appliances, equipment upgrades, and tune-up services. These rebates...

  8. Commercial Building Partnerships Replication and Diffusion

    SciTech Connect (OSTI)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  9. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    SciTech Connect (OSTI)

    S.O. Bader

    1999-10-18

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be

  10. Overview of Commercial Buildings, 2003 - Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    Trends in Commercial Buildings Sector-1979 to 2003 Since the first CBECS in 1979, the commercial buildings sector has increased in size. From 1979 to 2003: The number of commercial...

  11. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both existing and new commercial buildings. The DOE Building Technologies Office strives to reduce energy consumption across the commercial building sector by developing, demonstrating and deploying cost-effective solutions. Commercial Buildings Initiative: http://www1.eere.energy.gov/buildings/commercial/index.html

  12. Commercial Grade Dedication Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Grade Dedication Resources Commercial Grade Dedication Resources Resource List Commercial Grade Dedication at NRC Commercial-Grade Dedication of Software, June 12, 2014 NRC Vendor Workshop Software Dedication Using the ASME NQA-1 Approach Plant Engineering: Guideline for the Acceptance of Commercial-Grade Design and Analysis Computer Programs Used in Nuclear Safety-Related Applications: EPRI report # 1025243 NQA-1 Commercial Grade Dedication Requirements Subpart 2.14, NQA-1a-2009, and

  13. DOE acceptance of commercial mixed waste -- Studies are under way

    SciTech Connect (OSTI)

    Plummer, T.L.; Owens, C.M.

    1993-03-01

    The topic of the Department of Energy acceptance of commercial mixed waste at DOE facilities has been proposed by host States and compact regions that are developing low-level radioactive waste disposal facilities. States support the idea of DOE accepting commercial mixed waste because (a) very little commercial mixed waste is generated compared to generation by DOE facilities (Department of Energy--26,300 cubic meters annually vs. commercial--3400 cubic meters annually); (b) estimated costs for commercial disposal are estimated to be $15,000 to $40,000 per cubic foot; (c) once treatment capability becomes available, 70% of the current levels of commercial mixed waste will be eliminated, (d) some State laws prohibit the development of mixed waste disposal facilities in their States; (e) DOE is developing a nationwide strategy that will include treatment and disposal capacity for its own mixed waste and the incremental burden on the DOE facilities would be minuscule, and (6) no States are developing mixed waste disposal facilities. DOE senior management has repeatedly expressed willingness to consider investigating the feasibility of DOE accepting commercial mixed waste. In January 1991, Leo Duffy of the Department of energy met with members of the Low-Level Radioactive Waste Forum, which led to an agreement to explore such an arrangement. He stated that this seems like a cost-effective way to solve commercial mixed waste management problems.

  14. 1999 Commercial Buildings Characteristics--HVAC Conservation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Those commercial buildings that used HVAC conservation features...

  15. El Paso Electric Company- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) Commercial Efficiency Program pays incentives to commercial and industrial customers who install energy efficiency measures in facilities located within EPE's New Mexico...

  16. Technology Commercialization Fund | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Commercialization Fund Technology Commercialization Fund A core responsibility of the Office of Technology Transitions, and the Technology Transfer Coordinator, is to ...

  17. Overview of Commercial Buildings, 2003 - Major Characteristics

    U.S. Energy Information Administration (EIA) Indexed Site

    commercial floorspace. Figure 7. Floorspace in office, mercantile, warehousestorage, and education buildings accounts for 60 percent of total commercial floorspace. Source: Energy...

  18. Poudre Valley REA- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  19. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

  20. A Look at Commercial Buildings in 1995

    U.S. Energy Information Administration (EIA) Indexed Site

    site. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > A Look at Commercial...