Powered by Deep Web Technologies
Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gasification of Lignite Coal  

Science Conference Proceedings (OSTI)

This report on the gasification of lignite coal is presented in two parts. The first includes research into technology options for preparing low-rank fuels for gasification, gasifiers for converting the coal into synthesis gas, and technologies that may be used to convert synthesis gas into valuable chemical products. The second part focuses on performance and cost screening analyses for either Greenfield or retrofit gasification options fueled by low-rank lignite coal. The work was funded through Tailor...

2009-01-23T23:59:59.000Z

2

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

3

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

4

Coal Gasification for Power Generation, 3. edition  

SciTech Connect

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

2007-11-15T23:59:59.000Z

5

The Caterpillar Coal Gasification Facility  

E-Print Network (OSTI)

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year' in 1981 and won the 'energy conservation award' for 1983. The decision to install and operate a coal gasification plant was based on severe natural gas curtailments at York with continuing supply interruptions. This paper will present a detailed description of the equipment used in the coal gasification system and the process itself. It also includes operating and gas production information along with an economic analysis. The characteristics of producer gas and its use in the various plant applications will be reviewed and compared with natural gas. In summary, this paper deals with caterpillar's experience with coal gasification to date. Caterpillar concludes that the coal gas system has the potential to favorably affect the corporation's commitment to stimulate coal utilization. The three years' operating experience at the York plant has demonstrated the practical use of coal gas as well as the economics associated with producing gas from coal.

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

6

Coal Gasification Report.indb  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Coal Integrated Coal Gasification Combined Cycle: Market Penetration Recommendations and Strategies Produced for the Department of Energy (DOE)/ National Energy Technology Laboratory (NETL) and the Gasification Technologies Council (GTC) September 2004 Coal-Based Integrated Gasification Combined Cycle: Market Penetration Strategies and Recommendations Final Report Study Performed by:

7

Catalytic Coal Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

8

Underground gasification of coal  

DOE Patents (OSTI)

There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV); Komar, Charles A. (Uniontown, PA)

1976-01-20T23:59:59.000Z

9

PNNL Coal Gasification Research  

Science Conference Proceedings (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

10

Plasma gasification of coal in different oxidants  

Science Conference Proceedings (OSTI)

Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

11

Coal gasification vessel  

DOE Patents (OSTI)

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01T23:59:59.000Z

12

Great Plains Coal Gasification Project:  

Science Conference Proceedings (OSTI)

This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

Not Available

1988-01-29T23:59:59.000Z

13

Integrated Coal Gasification Power Plant Credit (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

14

Beluga Coal Gasification - ISER  

SciTech Connect

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

15

CFD Simulation of Underground Coal Gasification.  

E-Print Network (OSTI)

??Underground Coal Gasification (UCG) is a process in which coal is converted to syngas in-situ. UCG has gained popularity recently as it could be used… (more)

Sarraf Shirazi, Ahad

2012-01-01T23:59:59.000Z

16

ENCOAL Mild Coal Gasification Project  

DOE Green Energy (OSTI)

ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

Not Available

1992-02-01T23:59:59.000Z

17

Coal/Biomass Gasification at the Colorado School of Mines  

SciTech Connect

This program was a 2.5 year effort focused on technologies that support coal and biomass gasification. Two primary tasks were included in the effort: 1) Coal/Biomass gasification and system optimization and 2) development of high temperature microchannel ceramic heat exchangers.

Terry Parker; Robert Braun; Chris Dreyer; Anthony Dean; Mark Eberhart; Robert Kee; Jason Porter; Ivar Reimanis; Nigel Sammes

2011-02-28T23:59:59.000Z

18

Coal gasification for power generation. 2nd ed.  

SciTech Connect

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

2006-10-15T23:59:59.000Z

19

How Coal Gasification Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification » How Coal Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

20

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

22

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-Print Network (OSTI)

career on process optimization and control, fluid mechanics, the analysis of coal gasification reactors my earlier work on coal gasification reactors, polymer fiber spinning, and the activated sludge

23

Low temperature steam-coal gasification catalysts  

SciTech Connect

Shrinking domestic supplies and larger dependence on foreign sources have made an assortment of fossil fuels attractive as possible energy sources. The high sulfur and mineral coals of Illinois would be an ideal candidate as possible gasification feedstock. Large reserves of coal as fossil fuel source and a projected shortage of natural gas (methane) in the US, have made development of technology for commercial production of high Btu pipeline gases from coal of interest. Several coal gasification processes exist, but incentives remain for the development of processes that would significantly increase efficiency and lower cost. A major problem in coal/char gasification is the heat required which make the process energy intensive. Hence, there is a need for an efficient and thermally neutral gasification process. Results are described for the gasification of an Illinois No. 6 coal with transition metal catalysts and added potassium hydroxide.

Hippo, E.J.; Tandon, D. [Southern Illinois Univ., Carbondale, IL (United States)

1996-12-31T23:59:59.000Z

24

Coal gasification power plant and process  

DOE Patents (OSTI)

In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

Woodmansee, Donald E. (Schenectady, NY)

1979-01-01T23:59:59.000Z

25

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

26

Great Plains coal gasification project - historical overview and progress  

SciTech Connect

The first commercial scale coal gasification plant in the US is nearing completion in North Dakota. The plant shares the site and other facilities with the Basin Electric Power Station. The gasification plant will draw its power directly from the Basin substation and Basin will receive coal fines from the gasification plant. (Coal fines cannot be gasified in the Lurgi units.) Planning, loan guarantee commitments, scheduling of construction, labor relations, and current situation are all briefly discussed. A table of project statistics is included.

Deeths, W.R.

1984-01-01T23:59:59.000Z

27

The Role of Oxygen in Coal Gasification  

E-Print Network (OSTI)

Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts in the oxidant on gasifier and downstream production units also favor the use of oxygen in place of air. Factors that must be considered in selecting the optimum oxygen purity include: end use of the gasifier products, oxygen delivery pressure and the cost of capital and energy. This paper examines the major factors in oxygen purity selection for typical coal gasifiers. Examples demonstrating the effect of oxygen purity on several processes are presented: production of synthetic natural gas (SNG), integrated gasification combined-cycle (IGCC) power generation and methanol synthesis. The potential impact of a non-cryogenic air separation process currently under development is examined based on integration with a high temperature processes.

Klosek, J.; Smith, A. R.; Solomon, J.

1986-06-01T23:59:59.000Z

28

Improved catalysts for carbon and coal gasification  

DOE Patents (OSTI)

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25T23:59:59.000Z

29

Apparatus for solar coal gasification  

DOE Patents (OSTI)

Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

Gregg, D.W.

1980-08-04T23:59:59.000Z

30

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

Science Conference Proceedings (OSTI)

The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

2001-12-01T23:59:59.000Z

31

Coal gasification vessel. [Patent application  

DOE Patents (OSTI)

A vessel system comprises an outer shell of carbon fibers held in a binder, a coolant circulation mechanism and control mechanism and an inner shell comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism for cooling and protecting the carbon fiber and outer shell. The control mechanism is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell.

Loo, B.W.

1981-03-17T23:59:59.000Z

32

Apparatus for fixed bed coal gasification  

DOE Patents (OSTI)

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

33

Catalysts for carbon and coal gasification  

DOE Patents (OSTI)

Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

1985-01-01T23:59:59.000Z

34

Production of Hydrogen from Underground Coal Gasification  

DOE Patents (OSTI)

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

35

Underground coal gasification using oxygen and steam  

Science Conference Proceedings (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

36

WABASH RIVER COAL GASIFICATION REPOWERING PROJECT  

Science Conference Proceedings (OSTI)

The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

Unknown

2000-09-01T23:59:59.000Z

37

Pneumatic solids feeder for coal gasification reactor  

DOE Patents (OSTI)

This invention is comprised of a pneumatic feeder system for a coal gasification reactor which includes one or more feeder tubes entering the reactor above the level of the particle bed inside the reactor. The tubes are inclined downward at their outer ends so that coal particles introduced into the tubes through an aperture at the top of the tubes slides downward away from the reactor and does not fall directly into the reactor. Pressurized gas introduced into, or resulting from ignition of recycled combustible gas in a chamber adjacent to the tube ends, propels the coal from the tube into the reactor volume and onto the particle bed. Leveling of the top of the bed is carried out by a bladed rotor mounted on the reactor stirring shaft. Coal is introduced into the tubes from containers above the tubes by means of rotary valves placed across supply conduits. This system avoids placement of feeder hardware in the plenum above the particle bed and keeps the coal from being excessively heated prior to reaching the particle bed.

Notestein, J.E.; Halow, J.S.

1991-12-31T23:59:59.000Z

38

Pressure coal gasification experience in Czechoslovakia  

SciTech Connect

Czechoslovakia's large deposits of brown coal supply the country's three operating pressure gasification plants. The gas produced is suitable for further treatment to provide fuel for household and industrial consumers. Coal gasification is not new to the energy planners in Czechoslovakia. Since 1948, 56 gasifiers have been installed in the three pressure gasification plants currently in operation. The newest and biggest of these plants is at Vresova. The plant processes 5,000 tons of brown coal per day. The locally mined coal used for feed at the Vresova plant has a calorific value of 12 to 14 megajoules per kilogram (52 to 60 Btu's per pound). The gasifiers produce up to 13,000 cubic meters (459,000 cubic feet) per hour of crude gas per gasifier. Gasification technology has been under development in Czechoslovakia since 1945. The country has virtually no oil or natural gas reserves, a fact that emphasizes the importance of coal-based energy. Production of gas from coal in Czechoslovak gasifiers is based on gasification in the fixed bed of a gasifier.

Not Available

1981-03-01T23:59:59.000Z

39

Coal properties and system operating parameters for underground coal gasification  

Science Conference Proceedings (OSTI)

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

40

Fluidized bed catalytic coal gasification process  

DOE Patents (OSTI)

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wabash River Coal Gasification Repowering Project  

SciTech Connect

The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec's coal gasification facility. Destec's plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

1992-01-01T23:59:59.000Z

42

Wabash River Coal Gasification Repowering Project  

SciTech Connect

The Destec gasification process features an oxygen-blown, two stage entrained flow gasifier. PSI will procure coal for the Project consistent with the design specification ranges of Destec`s coal gasification facility. Destec`s plant will be designed to accept coal with a maximum sulfur content of 5.9% (dry basis) and a minimum energy content of 13,5000 BTU/pound (moisture and ash free basis). PSI and Destec will test at least two other coals for significant periods during the demonstration period. In the Destec process, coal is ground with water to form a slurry. It is then pumped into a gasification vessel where oxygen is added to form a hot raw gas through partial combustion. Most of the noncarbon material in the coal melts and flows out the bottom of the vessel forming slag -- a black, glassy, non-leaching, sand-like material. Particulates, sulfur and other impurities are removed from the gas before combustion to make it acceptable fuel for the gas turbine. The synthetic fuel gas (syngas) is piped to a General Electric MS 7001F high temperature combustion turbine generator. A heat recovery steam generator recovers gas turbine exhaust heat to produce high pressure steam. This steam and the steam generated in the gasification process supply an existing steam turbine-generator. The plant will be designed to outperform air emission standards established by the Clean Air Act Amendments for the year 2000.

Amick, P.; Mann, G.J.; Cook, J.J.; Fisackerly, R.; Spears, R.C.

1992-11-01T23:59:59.000Z

43

Process for fixed bed coal gasification  

SciTech Connect

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

44

Investigation of plasma-aided bituminous coal gasification  

Science Conference Proceedings (OSTI)

This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

2009-04-15T23:59:59.000Z

45

Apparatus and method for solar coal gasification  

DOE Patents (OSTI)

Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

Gregg, David W. (Moraga, CA)

1980-01-01T23:59:59.000Z

46

Exxon Catalytic Coal Gasification Process Predevelopment Program. Final project report  

SciTech Connect

This report summarizes the results of work conducted on Predevelopment Research for the Exxon Catalytic Coal Gasification Process. The eighteen-month effort (July 1976-December 1977) was a coordinated program which included operation of a continuous fluidized-bed gasifier, parallel bench-scale research, and engineering studies leading to the preparation of a commercial-scale plant study design and economics for producing SNG from Illinois coal.

Kalina, T.; Nahas, N.C.

1978-12-01T23:59:59.000Z

47

Potential of the heat pipe in coal gasification processes  

SciTech Connect

The declining production of natural gas in the United States has provided great impetus to the development of economcal methods of producing methane from coal. Coal gasification systems share in common a need for highly efficient heat transfer and energy recovery methods in order to maximize the coal-methane conversion efficiency. Characteristics of heat pipe heat transfer units that offer potential for increasing conversion efficiency and/or reducing production costs include: (1) complete physical separation of process streams, (2) capability of handling more than two process streams in a single unit, (3) heat removal at near-constant temperature, (4) high heat recovery efficiency, (5) low operating cost-with no requirement for auxiliary power, and (6) relative ease of cleaning. Design concepts incorporating heat pipes into indirect coal gasification units, methanators, and energy recovery units are presented and technological impediments that must be surmounted in the successful development of these units are discussed.

Ranken, W.A.

1976-01-01T23:59:59.000Z

48

Coal gasification apparatus. [Patent application  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, C.K.

1981-04-24T23:59:59.000Z

49

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

50

Underground Coal Gasification at Tennessee Colony  

E-Print Network (OSTI)

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet technology which was acquired under a license agreement in 1975, is a continuation of the field testing program to examine the feasibility of in situ lignite gasification in Texas which began with a 27-day test burn at a site near Fairfield in August of 1976. The objectives of the Tennessee Colony Project are to examine the economic, technological and environmental aspects of a commercial project. The Project which began in August of 1978 utilizes air as the oxidizing agent and is comprised of two channels of gasification operating simultaneously. The test is presently still in progress and producing gas with a heat content in the range of 8-100 Btu.

Garrard, C. W.

1979-01-01T23:59:59.000Z

51

Coal gasification players, projects, prospects  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been running refineries and chemical plants for decades. Power applications have dotted the globe. Two major IGCC demonstration plants operating in the United States since the mid-1900s have helped set the stage for prime time, which is now approaching. Two major reference plant designs are in the wings and at least two major US utilities are poised to build their own IGCC power plants. 2 figs.

Blankinship, S.

2006-07-15T23:59:59.000Z

52

Great Plains Coal Gasification Project: Quarterly technical progress report, third fiscal quarter 1987-1988, January-March 1988  

SciTech Connect

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-05-31T23:59:59.000Z

53

Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)  

Science Conference Proceedings (OSTI)

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-07-29T23:59:59.000Z

54

Fluidized bed gasification of extracted coal  

DOE Patents (OSTI)

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01T23:59:59.000Z

55

Fluidized bed gasification of extracted coal  

DOE Patents (OSTI)

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

1984-07-06T23:59:59.000Z

56

The Study of Coal Gasification by Molten Blast Furnace Slag  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Waste Heat Recovery. Presentation Title, The Study of Coal Gasification by ...

57

Mathematical Modeling of Coal Gasification Processes in a Well-Stirred Reactor: Effects of Devolatilization and Moisture Content  

E-Print Network (OSTI)

Mathematical Modeling of Coal Gasification Processes in a Well- Stirred Reactor: Effects in coal and biomass play an important role on the gasification performance of these fuels on the syngas composition. The coal conversion time is most sensitive to the heat transfer rates including both

Qiao, Li

58

Integrating Coal Gasification into a Rotary Kiln Electric Furnace Plant  

Science Conference Proceedings (OSTI)

Coal gasification is a potential alternative to conventional coal or natural gas- fired power plants ... Fundamentals of Spark-Plasma Sintering: Net-Shaping and Size Effects ... Investigation on a Microwave High-Temperature Air Heat Exchanger.

59

Method for in situ gasification of a subterranean coal bed  

DOE Patents (OSTI)

The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

Shuck, Lowell Z. (Morgantown, WV)

1977-05-31T23:59:59.000Z

60

Method for control of subsurface coal gasification  

SciTech Connect

The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

Komar, Charles A. (Uniontown, PA)

1976-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal gasification construction materials: an overview  

SciTech Connect

Materials performance test results are presented for two coal gasification processes, HYGAS SNG process, which converts any type of coal to substitute natural gas (SNG), and U-GAS fuel gas process, which converts coal to a low- or medium-heat value gas. A description of the pilot plant for each process and discussion of some experiences with materials and components used in plant construction is presented. Metals performance inside the gasifier reactors and in off-gas locations depended upon the character of the process. At moderate operating temperatures (427/sup 0/C), low-carbon steels are advisable. Very high-temperature environments may not only require use of exotic alloys, clads, and/or coatings but may also preclude extensive use of internal piping/valving in scale-up designs. Inconel 182, 600, and Monel 400 have all performed erratically in the plants; but in quench and purification sections, austenitic stainless steels performed well. 9 references. (BLM)

Arnold, J.M. (Inst. of Gas Tech., Chicago, IL); Laurens, R.M.; Danyluk, S.

1981-12-01T23:59:59.000Z

62

Coal Gasification Report.indb  

NLE Websites -- All DOE Office Websites (Extended Search)

Booz Allen Hamilton Booz Allen Hamilton Final Report, September 3, 2004 list of acronyms List of Acronyms AEO Annual Energy Outlook ASU Air Separation Unit BACT Best Available Control Technology BTU British Thermal Unit CCPI Clean Coal Power Initiative CFB Circulating Fluidized Bed CO Carbon Monoxide CO 2 Carbon Dioxide COE Cost of Electricity Co-Op Co-Operative CRS Congressional Research Service DG Distributed Generation

63

Wabash River coal gasification repowering project: Public design report  

SciTech Connect

The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

1995-07-01T23:59:59.000Z

64

Kinetics of catalyzed steam gasification of low-rank coals to produce hydrogen. Final report  

Science Conference Proceedings (OSTI)

The principal goal of coal char-steam gasification research is to establish the feasibility of low-rank coal gasification for hydrogen production. The program has focused on determining reaction conditions for maximum product gas hydrogen content and on evaluating process kinetics with and without catalyst addition. The high inherent reactivity of lignites and subbituminous coals, compared to coals of higher rank, make them the probable choice for use in steam gasification. An extensive matrix of char-steam gasification tests was performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C. Reaction conditions for these tests were based on the results of earlier work at UNDERC in which product gases from fixed-bed, atmospheric pressure, steam gasification at temperatures of 700/sup 0/ to 750/sup 0/C were found to contain 63 to 65 mole % hydrogen, with the remainder being carbon dioxide, carbon monoxide, and less than 1 mole % methane. Four low-rank coals and one bituminous coal were included in the TGA test matrix. Catalysts screened in the study included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and lignite ash. Results of this study showed uncatalyzed North Dakota and Texas lignites to be slightly more reactive than a Wyoming subbituminous coal, and 8 to 10 times more reactive than an Illinois bituminous coal. Several catalysts that substantially improved low-rank coal steam gasification rates included pure and mineral (trona and nahcolite) alkali carbonates. The reactivity observed when using trona and nahcolite to catalyze the steam gasification was the highest, at nearly 3.5 times that without catalysts. The use of these inexpensive, naturally-occurring, alkalis as gasification catalysts may result in elimination of the need for catalyst recovery in the hydrogen-from-coal process. 11 refs., 23 figs., 9 tabs.

Galegher, S.J.; Timpe, R.C.; Willson, W.G.; Farnum, S.A.

1986-06-01T23:59:59.000Z

65

Method for increasing steam decomposition in a coal gasification process  

SciTech Connect

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

66

Method for increasing steam decomposition in a coal gasification process  

DOE Patents (OSTI)

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

67

Catalyzed steam gasification of low-rank coals to produce hydrogen  

Science Conference Proceedings (OSTI)

Advanced coal gasification technologies using low-rank coal is a promising alternative for meeting future demand for hydrogen. Steam gasification tests conducted at temperatures between 700/sup 0/ and 800/sup 0/C and atmospheric pressure resulted in product gas compositions matching those predicted by thermodynamic equilibrium calculations, 63-65 mol% hydrogen and less than 1 mol% methane. Steam gasification tests with four low-rank coals and a single bituminous coal were performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C to evaluate process kinetics with and without catalyst addition. Catalysts screened included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and recycled lignite ash. Uncatalyzed lignites and a subbituminous coal were found to be eight to ten times more reactive with steam at 700/sup 0/ to 800/sup 0/C than an Illinois bituminous coal. This relationship, within this narrow temperature range, is important as this is the range that thermodynamically favors the production of hydrogen from steam gasification at atmospheric pressure. The reactivity of the uncatalyzed coals increased 3 to 4 times with an increase in steam gasification temperature from 700/sup 0/ to 800/sup 0/C. For the catalyzed coals during steam gasification: Reactivity increased approximately 2 times over the 700/sup 0/ to 800/sup 0/C temperature range for low-rank coals catalyzed with potassium carbonate. Sodium carbonate was found to be as effective a catalyst as potassium carbonate for the steam gasification of low-rank coal chars on a mass loading basis; and naturally occurring mineral sources of sodium carbonates/bicarbonates, trona and nahcolite, are as effective in catalyzing low-rank coal steam gasification as the pure carbonates. 18 refs., 6 figs., 2 tabs.

Sears, R.E.; Timpe, R.C.; Galegher, S.J.; Willson, W.G.

1986-04-01T23:59:59.000Z

68

Wabash River Coal Gasification Repowering Project Final Technical Report  

Office of Scientific and Technical Information (OSTI)

Wabash River Coal Gasification Wabash River Coal Gasification Repowering Project Final Technical Report August 2000 Work Performed Under Cooperative Agreement DE-FC21-92MC29310 For: The U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Morgantown, West Virginia Prepared by: The Men and Women of Wabash River Energy Ltd. For Further Information Contact: Roy A. Dowd, CHMM Environmental Supervisor Wabash River Coal Gasification Repowering Project 444 West Sandford Avenue West Terre Haute, IN 47885 LEGAL NOTICE/DISCLAIMER This report was prepared by the Wabash River Coal Gasification Repowering Project Joint Venture pursuant to a Cooperative Agreement partially funded by the U.S. Department of Energy, and neither the Wabash River Coal Gasification Repowering

69

Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal  

Science Conference Proceedings (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31T23:59:59.000Z

70

Coal Integrated Gasification Fuel Cell System Study  

DOE Green Energy (OSTI)

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31T23:59:59.000Z

71

Optimum Design of Coal Gasification Plants  

E-Print Network (OSTI)

This paper deals with the optimum design of heat recovery systems using the Texaco Coal Gasification Process (TCGP). TCGP uses an entrained type gasifier and produces hot gases at approximately 2500oF with high heat flux. This heat is removed by using a combination of radiant/convective waste heat boiler or by direct water quench before processing of the raw gas. The selection of an optimum heat recovery system is a function of the product slate, overall economics, and the technical risks associated with the heat recovery equipment. An extensive use of heat recovery equipment is not necessarily more economical than a simpler system with modest thermal efficiency. A full heat recovery mode consisting of radiant and convective boilers along with economizers is recommended for Coal Gasification Combined Cycle to maximize energy efficiency. A water quench mode is suggested for hydrogen production because of the need to adjust the H2O/CO ratio for shift conversion. A partial heat-recovery mode is recommended for power/methanol co-production plant. These heat recovery systems are discussed in detail along with the economics associated with each system.

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01T23:59:59.000Z

72

Catalyzed steam gasification of low-rank coals to produce hydrogen  

Science Conference Proceedings (OSTI)

Advance coal gasification technologies using low-rank coal is a promising alternative for meeting future demand for hydrogen. Steam gasification tests conducted at temperatures between 700/sup 0/ and 800/sup 0/C and atmospheric pressure resulted in product gas compositions matching those predicted by thermodynamic equilibrium calculations, 63-65 mol% hydrogen and less then 1 mol% methane. Steam gasification tests with four low-rank coals and a single bituminous coal were performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C to evaluate process kinetics with and without catalyst addition. Catalysts screened included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and recycled lignite ash. North Dakota and Texas lignite chars were slightly more reactive than a Wyoming subbituminous coal char and eight to ten times more reactive than an Illinois bituminous coal char. Pure and mineral (trona nd nahcolite) alkali carbonates and recycled ash from K/sub 2/CO/sub 3/-catalyzed steam gasification tests substantially improved low-rank coal steam gasification rates. The reactivities obtained using trona and nahcolite to catalyze the steam gasification were the highest, at nearly 3.5 times those without catalysts.

Sears, R.E.; Timpe, R.C.; Galegher, S.J.; Willson, W.G.

1986-01-01T23:59:59.000Z

73

CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

Advanced, clean coal technologies such as integrated gasification combined cycle (IGCC) offer societies around the world the promise of efficient, affordable power generation at markedly reduced levels of emissions8212including "greenhouse gases" linked to global climate change8212relative to today's current fleet of coal-fired power plants. To help accelerate the development, demonstration, and market introduction of IGCC and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiati...

2007-01-24T23:59:59.000Z

74

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

Science Conference Proceedings (OSTI)

The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

Vas Choudhry; Stephen Kwan; Steven R. Hadley

2001-07-01T23:59:59.000Z

75

Encoal mild coal gasification project: Commercial plant feasibility study  

SciTech Connect

In order to determine the viability of any Liquids from Coal (LFC) commercial venture, TEK-KOL and its partner, Mitsubishi Heavy Industries (MHI), have put together a technical and economic feasibility study for a commercial-size LFC Plant located at Zeigler Coal Holding Company`s North Rochelle Mine site. This resulting document, the ENCOAL Mild Coal Gasification Plant: Commercial Plant Feasibility Study, includes basic plant design, capital estimates, market assessment for coproducts, operating cost assessments, and overall financial evaluation for a generic Powder River Basin based plant. This document and format closely resembles a typical Phase II study as assembled by the TEK-KOL Partnership to evaluate potential sites for LFC commercial facilities around the world.

1997-07-01T23:59:59.000Z

76

Sintering and slagging of mineral matter in South African coals during the coal gasification process.  

E-Print Network (OSTI)

?? Coals, from mines in the Highveld coalfield, as well as gasification ash samples were characterised, in order to understand the mineralogical and chemical properties… (more)

Matjie, Ratale Henry

2008-01-01T23:59:59.000Z

77

Cyclic flow underground coal gasification process  

SciTech Connect

The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

Bissett, Larry A. (Morgantown, WV)

1978-01-01T23:59:59.000Z

78

LLNL Capabilities in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

Friedmann, S J; Burton, E; Upadhye, R

2006-06-07T23:59:59.000Z

79

Study on the Nitric Compounds during Coal Gasification  

Science Conference Proceedings (OSTI)

This investigation involved the formation and evolution of NO? HCN and NH3 during coal gasification. Since HCN and NH3 are the precursors of NOX, their summation are considered to show the characteristics of the precursors in this paper. The experiments ... Keywords: gasification, NOX precursors, particle size, agent

Jun Xiang; Qingsen Zhao; Song Hu; Lushi Sun; Sheng Su; Kai Xu; Tengfei Lu; Gang Chen

2009-10-01T23:59:59.000Z

80

The suitability of coal gasification in India's energy sector  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle (IGCC), an advanced coal-based power generation technology, may be an important technology to help India meet its future power needs. It has the potential to provide higher generating ...

Simpson, Lori Allison

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Gasification Systems - Liquid Carbon Dioxide/Coal Slurry...  

NLE Websites -- All DOE Office Websites (Extended Search)

and storage (CCS) for future coal-based power plants, and in a CCS integrated gasification plant, relatively pure, high pressure CO2 stream(s) will be available within the...

82

Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report  

Science Conference Proceedings (OSTI)

The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

1982-09-01T23:59:59.000Z

83

Coal Integrated Gasification Fuel Cell System Study  

DOE Green Energy (OSTI)

The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

2003-08-01T23:59:59.000Z

84

Two-stage coal gasification and desulfurization  

DOE Patents (OSTI)

The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover. 1 fig.

Bissett, L.A.; Strickland, L.D.

1990-08-03T23:59:59.000Z

85

Coal gasification-based integrated coproduction energy facilities  

SciTech Connect

Coal gasification has been a technological reality for over a half century, being first used in great detail in Europe as an alternative to petroleum. Several projects in the US in the last decade have led to the commercial demonstration and verification of the coal gasification process. This paper reports that, in an effort to reduce the cost of electricity from an Integrated Gasification Combined Cycle Plant, the Electric Power Research Institute embarked in a program to research, evaluate and potentially demonstrate a coal gasification-based integrated coproduction energy facility, and release an RFP in mid 1990 as Phase I of that program. Houston Lighting and Power Company responded with a proposal in its ongoing effort to study emerging technologies for electricity production. HL and P recognized the opportunities available to them in coproduction because of their close proximity to the world's largest petrochemical complex located on the Houston Ship Channel.

Baumann, P.D. (InterFact, Inc., Dallas, TX (US)); Epstein, M. (Electric Power Research Inst., Palo Alto, CA (United States)); Kern, E.E. (Houston Lighting and Power Co., TX (United States))

1992-01-01T23:59:59.000Z

86

Underground coal gasification: a brief review of current status  

SciTech Connect

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15T23:59:59.000Z

87

Update on the Great Plains Coal Gasification Project  

SciTech Connect

The Great Plains Gasification Plant is the US's first commercial synthetic fuels project based on coal conversion. The ANG Coal Gasification Company is the administer of the Great Plains Coal Gasification Project for the United States Department of Energy. The Project is designed to convert 14 M TPD of North Dakota of lignite into 137.5 MM SCFD of pipeline quality synthetic natural gas (SNG). Located in Mercer County, North Dakota, the gasification plant, and an SNG pipeline. Some 12 years passed from the time the project was conceived unit it became a reality by producing SNG into the Northern Border pipeline in 1984 for use by millions of residential, commercial, and industrial consumers. In this paper, the basic processes utilized in the plant are presented. This is followed by a discussion of the start-up activities and schedule. Finally, some of the more interesting start-up problems are described.

Imler, D.L.

1985-12-01T23:59:59.000Z

88

Solar coal gasification reactor with pyrolysis gas recycle  

DOE Patents (OSTI)

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

89

Integration of carbonate fuel cells with advanced coal gasification systems  

DOE Green Energy (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

90

Integration of carbonate fuel cells with advanced coal gasification systems  

DOE Green Energy (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

91

Great Plains: status of the Great Plains coal gasification project  

SciTech Connect

Updated information is presented on the Great Plains coal gasification project in North Dakota following the default of a $1.54 billion federal loan by the project sponsors. This report includes updated information obtained through October 31, 1985, on the loan default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, Great Plains operations, and socioeconomic issues. The new information highlights changes in the gas pricing calculations; the Department's action to pay off the defaulted loan; legal action concerning gas purchase agreements; the project sponsors' proposed settlement; September revenue, expense, and production data; coal lease payments; capital improvement projects; plant by-products; and the final results of a North Dakota task force study of the potential socioeconomic impact if the plant closes.

Not Available

1985-11-01T23:59:59.000Z

92

Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal  

Science Conference Proceedings (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eighth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of River King Illinois No. 6 bituminous coal. The period of gasification test was July 28 to August 19, 1983. 6 refs., 23 figs., 25 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01T23:59:59.000Z

93

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

94

The Great Plains coal gasification project status  

SciTech Connect

The Great Plains Gasification Project is the first commercial-sized plant to produce substitute natural gas from coal in the United States. The plant is designed to convert 14,000 tons/D of North Dakota lignite into 137.5 million standard cubic feet of gas per day. The plant construction has been successfully completed per original design, on schedule and on budget. The plant has also been successfully turned over from construction to operations, as per the original plan. With the completion of the capital projects being implemented at the plant, plans are to achieve 70 percent stream factor in the first year of production (1985). The DOE-Chicago Operations Office has been assigned the responsibility for monitoring the project's performance against baselines of cost, schedule, and technical criteria. During the startup phase of the project, significant technological advancements have been made and considerable knowledge has been gained, both by the operators and DOE (considering this to be a first of a kind plant built in the U.S.).

Bodnaruk, B.J.

1986-07-01T23:59:59.000Z

95

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

This is the progress report for the DOE grant DE-FG26-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'' for the period April 1999 to October 1999. The project is being conducted jointly by Clark Atlanta University, the University of Tennessee Space Institute and Georgia Institute of Technology. The overall objectives of the project are to identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature and system pressure) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct thorough analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. During this reporting period, free swelling index measurements of the coal, fixed-bed gasification experiments, kinetic modeling of the catalyzed gasification, and X-ray diffraction analysis of catalyst and gasified char samples were undertaken. The gasification experiments were carried out using two different eutectic salt mixtures of Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} (LNK) system and Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} (NK) system. The gasification process followed a Langmuir-Hinshelwood type model. At 10 wt% of catalyst loading, the activation energy of the ternary catalyst system (LNK) was about half (98kJ/mol) the activation energy of the single catalyst system (K{sub 2}CO{sub 3}), which is about 170 kJ/ mole. The binary catalyst system (NK) showed activation energy of about 201 kJ/mol, which is slightly higher, compared to the K{sub 2}CO{sub 3} catalyst system. The ternary catalyst system was a much better eutectic catalyst system compared to the binary or single catalyst system. In general, a eutectic with a melting point less than the gasification temperature is a better substitute to the single alkali metal salts because they have good catalyst distribution and dispersion in the carbon matrix. The free selling index of the coal was about 1.5 (1 to 2) in comparison to 2.5 (2 to 3) for the coal samples with ternary eutectic. The results for the raw coal were consistent with those from the Penn State Coal Bank. The XRD characterization showed unidentified peaks in the spectra of some of the samples and require further studies to draw any conclusions at the point.

NONE

1999-10-01T23:59:59.000Z

96

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network (OSTI)

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

97

Mass Balance Results for Pricetown I Underground Coal Gasification  

SciTech Connect

A mass balance model was applied to the Pricetown I test data. This model gave the values of various parameters such as water influx, percent devolatilization, percent gasification, amount of coal affected, thermal efficiency, etc., for the various phases of the test. Both hourly and daily values of the test data were used. At certain times, there was air loss to the coal seam or air gain from the coal seam as related to the underground reactor. Mass balances are modified accordingly. Realistic pyrolysis temperatures have been chosen for the different phases of the test based on the thermocouple responses. The nitrogen and argon balances gave similar results. The mass balance results showed that approximately 702 tons of coal was affected during the test. Approximately 232 tons of coal was completely gasified. The reverse combustion linkage through the virgin coal seam was dominated by the devolatilization and accounted for approximately 80% devoltilization whereas the same accounted for only 26% devolatilization during the gasification phase. During the enhanced linkage phase, the percent devolatilization ranged between that observed for the RCL and gasification phase. There was net influx of water and amounted to 0.59 barrels per ton of coal affected. The percent energy recovery for the gasification phase was 72% based on gas chromatographic data, and accounting the sensible heat of the gas and the latent heat of the water vapor in the gas.

Agarwal, A. K.; Seabaugh, P. W.; Zielinski, R. E.

1979-10-01T23:59:59.000Z

98

Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Herbert E. andrus, Jr. Principal Investigator ALSTOM Power 2000 Day Hill Rd. Windsor, CT 06095 860-285-4770 herbert.e.andrus@power.alstom.com Hybrid Combustion-GasifiCation CHemiCal loopinG Coal power teCHnoloGy development Description Gasification technologies can provide a stable, affordable energy supply for the nation, while also providing high efficiencies and near zero pollutants. With coal

99

Coal Fleet Integrated Gasification Combined Cycle (IGCC Permitting) Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance to owners of planned Integrated Gasification Combined Cycle (IGCC) power plants in order to assist them in permitting these advanced coal power generation facilities. The CoalFleet IGCC Permitting Guidelines summarize U.S. federal requirements for obtaining air, water, and solid waste permits for a generic IGCC facility, as described in the CoalFleet User Design Basis Specification (UDBS). The report presents characteristics of IGCC emissions that must be considered in the p...

2006-03-14T23:59:59.000Z

100

Thermogravimetric Study of Effect of Mineral Content and Maceral Composition on Illinois Coal Gasification.  

E-Print Network (OSTI)

??The effects of mineral and maceral composition on Illinois coal gasification were studied by thermogravimetric analysis and semi-batch reactor. Macerals were separated from coal samples.… (more)

Zhang, Quan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3% KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a result the technique of adding the eutectic to the raw coal was found to be better than using wet methods. Also, addition of the catalyst to the raw coal appeared to give better gasification results than addition to pyrolyzed coal. In addition, eutectic catalysts added to the coal yielded better gasification rates than rates obtained by mixing the individual salts in the eutectic ratio with the coal. These results, especially with the eutectic catalysts are very significant since the use of the low melting eutectics will reduce the severity of gasification processes.

NONE

2000-04-01T23:59:59.000Z

102

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

Science Conference Proceedings (OSTI)

This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures,'' covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3%KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a result the technique of adding the eutectic to the raw coal was found to be better than using wet methods. Also, addition of the catalyst to the raw coal appeared to give better gasification results than addition to pyrolyzed coal. In addition, eutectic catalysts added to the coal yielded better gasification rates than rates obtained by mixing the individual salts in the eutectic ratio with the coal. These results, especially with the eutectic catalysts are very significant since the use of the low melting eutectics will reduce the severity of gasification processes.

NONE

1998-10-01T23:59:59.000Z

103

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

The project, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (GT). The aims of the project are to: identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal; evaluate various impregnation or catalyst addition methods to improve catalyst dispersion; evaluate effects of major process variables (e.g., temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts in a bench-scale fixed bed reactor; and conduct thorough analysis and modeling of the gasification process to provide a better understanding of the fundamental mechanisms and kinetics of the process. The eutectic catalysts increased gasification rate significantly. The methods of catalyst preparation and addition had significant effect on the catalytic activity and coal gasification. The incipient wetness method gave more uniform catalyst distribution than that of physical mixing for the soluble catalysts resulting in higher gasification rates for the incipient wetness samples. The catalytic activity increased by varying degrees with catalyst loading. The above results are especially important since the eutectic catalysts (with low melting points) yield significant gasification rates even at low temperatures. Among the ternary eutectic catalysts studied, the system 39% Li{sub 2}CO{sub 3}-38.5% Na{sub 2}CO{sub 3}-22.5% Rb{sub 2}CO{sub 3} showed the best activity and will be used for further bench scale fixed-bed gasification reactor in the next period. Based on the Clark Atlanta University studies in the previous reporting period, the project team selected the 43.5% Li{sub 2}CO{sub 3}-31.5% Na{sub 2}CO{sub 3}-25% K{sub 2}CO{sub 3} ternary eutectic and the 29% Na{sub 2}CO{sub 3}-71% K{sub 2}CO{sub 3} binary eutectic for the fixed-bed studies at UTSI during this reporting period. Temperature was found to have a significant effect on the rate of gasification of coal. The rate of gasification increased up to 1400 F. Pressure did not have much effect on the gasification rates. The catalyst loading increased the gasification rate and approached complete conversion when 10 wt% of catalyst was added to the coal. Upon further increasing the catalyst amount to 20-wt% and above, there was no significant rise in gasification rate. The rate of gasification was lower for a 2:1 steam to char molar ratio (60%) compared to gasification rates at 3.4:1 molar ratio of steam-to-char where the conversion approached 100%. The characterization results of Georgia Tech are very preliminary and inconclusive and will be made available in the next report.

Unknown

1999-04-01T23:59:59.000Z

104

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

1986-09-01T23:59:59.000Z

105

Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2005-01-01T23:59:59.000Z

106

Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-12-01T23:59:59.000Z

107

Catalytic Gasification of Coal using Eutectic Salt Mixtures  

SciTech Connect

The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary eutectic salt mixture consisting of Li- Na- and K- carbonates has the potential as gasification catalyst. To verify the literature reported, melting points for various compositions consisting of these three salts and the temperature range over which the mixture remained molten were determined in the lab. For mixtures with different concentrations of the three salts, the temperatures at which the mixtures were found to be in complete molten state were recorded. By increasing the amount of Li2CO3, the melting temperature range was reduced significantly. In the literature, the eutectic mixtures of Li- Na- and K-carbonates are claimed to have a lower activation energy than that of K2CO3 alone and they remain molten at a lower temperature than pure K2CO3. The slow increase in the gasification rates with eutectics reported in the literature is believed to be due to a gradual penetration of the coals and coal char particles by the molten and viscous catalyst phase. The even spreading of the salt phase seems to increase the overall carbon conversion rate. In the next reporting period, a number of eutectic salts and methods of their application on the coal will be identified and tested.

Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

1998-12-04T23:59:59.000Z

108

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

109

Modeling of contaminant transport in underground coal gasification  

Science Conference Proceedings (OSTI)

In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

Lanhe Yang; Xing Zhang [China University of Mining and Technology, Xuzhou (China). College of Resources and Geosciences

2009-01-15T23:59:59.000Z

110

Proceedings of the ninth annual underground coal gasification symposium  

SciTech Connect

The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

1983-12-01T23:59:59.000Z

111

Process for control of pollutants generated during coal gasification  

DOE Patents (OSTI)

The present invention is directed to an improvement in the coal gasification process that effectively eliminates substantially all of the environmental pollutants contained in the producer gas. The raw producer gas is passed through a two-stage water scrubbing arrangement with the tars being condensed essentially water-free in the first stage and lower boiling condensables, including pollutant laden water, being removed in the second stage. The pollutant-laden water is introduced into an evaporator in which about 95 percent of the water is vaporized and introduced as steam into the gas producer. The condensed tars are combusted and the resulting products of combustion are admixed with the pollutant-containing water residue from the evaporator and introduced into the gas producer.

Frumerman, Robert (Pittsburgh, PA); Hooper, Harold M. (Sewickley, PA)

1979-01-01T23:59:59.000Z

112

Gasification of New Zealand coals: a comparative simulation study  

Science Conference Proceedings (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young [University of Auckland, Auckland (New Zealand). Department of Chemical and Materials Engineering

2008-07-15T23:59:59.000Z

113

Separating hydrogen from coal gasification gases with alumina membranes  

DOE Green Energy (OSTI)

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

1991-01-01T23:59:59.000Z

114

Steady-state model for estimating gas production from underground coal gasification  

Science Conference Proceedings (OSTI)

A pseudo-one-dimensional channel model has been developed to estimate gas production from underground coal gasification. The model incorporates a zero-dimensional steady-state cavity growth submodel and models mass transfer from the bulk gas to the coal wall using a correlation for natural convection. Simulations with the model reveal that the gas calorific value is sensitive to coal reactivity and the exposed reactive surface area per unit volume in the channel. A comparison of model results with several small-scale field trials conducted at Centralia in the U.S.A. show that the model can make good predictions of the gas production and composition under a range of different operating conditions, including operation with air and steam/oxygen mixtures. Further work is required to determine whether the model formulation is also suitable for simulating large-scale underground coal gasification field trials.

Greg Perkins; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2008-11-15T23:59:59.000Z

115

Underground coal gasification: Its potential for long-term supply of sng. Occasional pub  

Science Conference Proceedings (OSTI)

The paper examines the viability of underground coal gasification (UCU) as a future source of substitute natural gas (SNG). The economics of commercial scale UCG technology at a western site is estimated and compared with aboveground gasification and also with an extrapolation of GRI's Baseline Projection for natural gas prices. Although much technical and economic uncertainty exists regarding UCG, the potential reserve base for unmineable coals is very large, about four times that of currently mineable coals. Assuming that only 10 percent of the 1.8 trillion tons of marginal U.S. coal resources may be amendable to UCG, this represents 1000 trillion cubic feet of potential SNG production. The UCG economics of the paper are based on a techno-economic study conducted by Williams Brothers Engineering Company; the cosponsors included GRI, Amoco Production Company, Hunt Oil Company, and Williams Brothers Engineering Company.

Hill, V.L.; Burnham, K.B.; Barone, S.P.; Rosenberg, J.I.; Ashby, A.B.

1984-02-01T23:59:59.000Z

116

Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant  

E-Print Network (OSTI)

Tri-State Synfuels Company, in cooperation with the Commonwealth of Kentucky, undertook a comprehensive coal testing program to support the development of an indirect coal liquefaction project. One of the major elements of the program was a commercial scale gasification test with Kentucky 9 coal in a Lurgi Mark IV dry-bottom gasifier at the Sasol One Plant in Sasolburg, Republic of South Africa, in 1981. The test was conducted to confirm the operability of the Lurgi process on Western Kentucky coal, and to establish the design bases for the TriState Synfuels Project. Other elements of the overall program with Kentucky 9 coal included coal selection, coal characterization, stockpile weatherability, corrosion testing, by-product characterization, and wastewater treatability. The results from this testing program formed the basis for recommendations concerning technical and environmental design criteria and permit applications.

Roeger, A., III; Jones, J. E., Jr.

1983-01-01T23:59:59.000Z

117

Science and Technology Gaps in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need for better surface facilities provide a platform for rapid acceleration of coal-gas-fired electric power and other high value products. In summary, UCG has several important economic and environmental benefits relevant to India's energy goals: (1) It requires no purchase of surface gasifiers, reducing capital expense substantially. (2) It requires no ash management, since ash remains in the subsurface. (3) It reduces the cost of pollution management and emits few black-carbon particulates. (4) It greatly reduces the cost of CO2 separation for greenhouse gas management, creating the potential for carbon crediting through the Kyoto Clean Development Mechanism. (5) It greatly reduces the need to mine and transport coal, since coal is used in-situ.

Upadhye, R; Burton, E; Friedmann, J

2006-06-27T23:59:59.000Z

118

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents (OSTI)

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

119

Agglomerating combustor-gasifier method and apparatus for coal gasification  

DOE Patents (OSTI)

A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

Chen, Joseph L. P. (Murrysville, PA); Archer, David H. (Pittsburgh, PA)

1976-09-21T23:59:59.000Z

120

NETL: Gasification - Advanced Hydrogen Transport Membranes for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Hydrogen Transport Membranes for Coal Gasification Praxair Inc. Project Number: FE0004908 Project Description Praxair is conducting research to develop hydrogen transport membrane (HTM) technology to separate carbon dioxide (CO2) and hydrogen (H2) in coal-derived syngas for IGCC applications. The project team has fabricated palladium based membranes and measured hydrogen fluxes as a function of pressure, temperature, and membrane preparation conditions. Membranes are a commercially-available technology in the chemical industry for CO2 removal and H2 purification. There is, however, no commercial application of membrane processes that aims at CO2 capture for IGCC syngas. Due to the modular nature of the membrane process, the design does not exhibit economy of scale-the cost of the system will increase linearly as the plant system scale increases making the use of commercially available membranes, for an IGCC power plant, cost prohibitive. For a membrane process to be a viable CO2 capture technology for IGCC applications, a better overall performance is required, including higher permeability, higher selectivity, and lower membrane cost.

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

122

Method for gasification of deep, thin coal seams. [DOE patent  

DOE Patents (OSTI)

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, D.W.

1980-08-29T23:59:59.000Z

123

Method for gasification of deep, thin coal seams  

DOE Patents (OSTI)

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, David W. (Moraga, CA)

1982-01-01T23:59:59.000Z

124

Wabash River Coal Gasification Repowering Project: A DOE Assessment  

SciTech Connect

The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of $438 million.

National Energy Technology Laboratory

2002-01-15T23:59:59.000Z

125

Combined cycle power plant incorporating coal gasification  

DOE Patents (OSTI)

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

126

Southern cone energy network coal gasification for SNG production and pipeline system feasibility study (Brazil). Volume 2. Export trade information  

Science Conference Proceedings (OSTI)

Part I of the volume reports on the coal gasification plant study performed by the Advanced Technology Division of Fluor Engineers and Constructors, Inc., together with information on coal resources and markets, gas demand, and by-product markets provided by Jaakko Poyry. Jaakko Poyry also supported the study with site, cost, economic, and other required local Brazilian data. Part II of the volume presents the results of Fluor's study of an SNG gas transport and gas distribution system. Also included are the results of an alternate study into barging coal north to a gasification plant located in the Santos area.

Not Available

1992-08-01T23:59:59.000Z

127

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CAPITAL AND OPERATING COST OF HYDROGEN CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION Final Report April 2003 Prepared for: The United States Department of Energy National Energy Technology Laboratory (NETL) under: Contract No. DE-AM26-99FT40465 between the NETL and Concurrent Technologies Corporation (CTC) Subcontract No. 990700362 between CTC and Parsons Infrastructure & Technology Group Inc. Task 50611 DOE Task Managers: James R. Longanbach Gary J. Stiegel Parsons Project Manager: Michael D. Rutkowski Principal Investigators: Thomas L. Buchanan Michael G. Klett Ronald L. Schoff PARSONS Capital and Operating Cost of Hydrogen Production from Coal Gasification Page i April 2003 TABLE OF CONTENTS Section Title Page List of Tables iii List of Figures iii

128

Underground coal gasification field experiment in the high-dipping coal seams  

Science Conference Proceedings (OSTI)

In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W. [China University of Mining & Technology, Xuzhou (China). College of Resources & Geoscience

2009-07-01T23:59:59.000Z

129

Model-based estimation of adiabatic flame temperature during coal gasification.  

E-Print Network (OSTI)

??Coal gasification temperature distribution in the gasifier is one of the importantissues. High temperature may increase the risk of corrosion of the gasifier wall or… (more)

Sarigul, Ihsan Mert

2012-01-01T23:59:59.000Z

130

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

131

Exxon catalytic coal gasification process: predevelopment program. Quarterly technical progress report, July 1--September 30, 1976  

SciTech Connect

Predevelopment Program activities for the Exxon Catalytic Gasification Process include: recommissioning of the existing 20 lbs/hr Fluid Bed Gasifier (FBG); modifications to the FBG data acquisition system including the on-line computer program for the calculation of unit material balances from process variable data; start-up and initial operations of the 1-3 lbs/hr Continuous Gasification Unit (CGU); and computer programs development for CRT display of the CGU operating variables profile and for on-line material balance calculations. Data were obtained in the CGU for the gasification of catalyzed Illinois coal during four continuous and two captive fluid-bed yield periods. Good agreement was obtained with previous fixed bed kinetic data. This project is an ERDA-sponsored extension of previous EXXON results.

Kalina, T.

1976-11-01T23:59:59.000Z

132

Environmental Permitting of a Low-BTU Coal Gasification Facility  

E-Print Network (OSTI)

The high price of natural gas and fuel oil for steam/power generation has alerted industry's decision makers to potentially more economical ways to provide the needed energy. Low-Btu fuel gas produced from coal appears to be an attractive alternate that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification facility needs to address those items that are not only unique to the gasification process itself, but also items generic to conventional firing of coal. This paper will discuss the environmental data necessary for permitting a low-Btu gasification facility located in the State of Louisiana. An actual case study for a 500,000 lb/hr natural gas-fired process steam plant being converted to low Btu gas will be presented. Typical air, water and solid waste effluents that must be considered will also be described.

Murawczyk, C.; Stewart, J. T.

1983-01-01T23:59:59.000Z

133

NETL: Gasification Systems - Low Rank Coal Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Low Rank Coal Optimization Project No.: Adv Gas-FY131415 Task 4 NETL's in-house research team is using an integrated approach to combine theory, computational modeling,...

134

Encoal mild coal gasification project: Final design modifications report  

Science Conference Proceedings (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

135

NETL: C&CBTL - Investigation of Coal-Biomass Catalytic Gasification Using  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed and Gasification Coal/Biomass Feed and Gasification Investigation of Coal-Biomass Catalytic Gasification Using Experiments, Reaction Kinetics and Computational Fluid Dynamics Virginia Polytechnic Institute and State University Project Number: FE0005476 Project Description The objectives of the proposed study are to obtain experimental reactor data and develop kinetic rate expressions for pyrolysis and char gasification for the coal-biomass blends under conditions free from transport limitations, to develop a detailed understanding of the effect of pyrolysis conditions on the porous char structure, to build mathematical models that combine true kinetic rate expressions with transport models for predicting gasification behavior for a broad range of pressures and temperatures, and to investigate the physical and chemical parameters that might lead to synergistic effects in coal-biomass blends gasification.

136

The ENCOAL Mild Coal Gasification Project, A DOE Assessment  

Science Conference Proceedings (OSTI)

This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

National Energy Technology Laboratory

2002-03-15T23:59:59.000Z

137

Theoretical and experimental studies of fixed-bed coal gasification reactors. Final report  

Science Conference Proceedings (OSTI)

A laboratory fixed-bed gasification reactor was designed and built with the objective of collecting operational data for model validation and parameter estimation. The reactor consists of a 4 inch stainless steel tube filled with coal or char. Air and steam is fed at one end of the reactor and the dynamic progress of gasification in the coal or char bed is observed through thermocouples mounted at various radial and axial locations. Product gas compositions are also monitored as a function of time. Results of gasification runs using Wyoming coal are included in this report. In parallel with the experimental study, a two-dimensional model of moving bed gasifiers was developed, coded into a computer program and tested. This model was used to study the laboratory gasifier by setting the coal feed rate equal to zero. The model is based on prior work on steady state and dynamic modeling done at Washington University and published elsewhere in the literature. Comparisons are made between model predictions and experimental results. These are also included in this report. 23 references, 18 figures, 6 tables.

Joseph, B.; Bhattacharya, A.; Salam, L.; Dudukovic, M.P.

1983-09-01T23:59:59.000Z

138

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

2011-09-30T23:59:59.000Z

139

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GEâ??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

2011-09-30T23:59:59.000Z

140

Kinetics of catalyzed steam gasification of low-rank coals to produce hydrogen. Final report for the period ending March 31, 1986  

SciTech Connect

The principal goal of coal char-steam gasification research at the University of North Dakota Energy Research Center (UNDERC) is to establish the feasibility of low-rank coal gasification for hydrogen production. The program has focused on determining reaction conditions for maximum product gas hydrogen content and on evaluating process kinetics with and without catalyst addition. The high inherent reactivity of lignites and subbituminous coals, compared to coals of higher rank, make them the probable choice for use in steam gasification. An extensive matrix of char-steam gasification tests was performed in a laboratory-scale thermogravimetric analyzer (TGA) at temperatures of 700/sup 0/, 750/sup 0/, and 800/sup 0/C. Four low-rank coals and one bituminous coal were included in the TGA test matrix. Catalysts screened in the study included K/sub 2/CO/sub 3/, Na/sub 2/CO/sub 3/, trona, nahcolite, sunflower hull ash, and lignite ash. Results showed uncatalyzed North Dakota and Texas lignites to be slightly more reactive than a Wyoming subbituminous coal, and 8 to 10 times more reactive than an Illinois bituminous coal. Several catalysts that substantially improved low-rank coal steam gasification rates included pure and mineral (trona and nahcolite) alkali carbonates. The reactivity observed when using trona and nahcolite to catalyze the steam gasification was the highest, at nearly 3.5 times that without catalysts. The use of these inexpensive, naturally-occurring alkalis as gasification catalysts may result in elimination of the need for catalyst recovery in the hydrogen-from-coal process, thereby simplifying operation and improving process economics. The study included evaluations of temperature and catalyst loading effects, coal and catalyst screening, and determinations of the apparent activation energies of the steam gasification reaction. 11 refs., 23 figs., 9 tabs.

Galegher, S.J.; Timpe, R.C.; Willson, W.G.; Farnum, S.A.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Heat exchanger for coal gasification process  

DOE Patents (OSTI)

This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

Blasiole, George A. (Greensburg, PA)

1984-06-19T23:59:59.000Z

142

EA-1642S: Small-Scale Pilot Plant for the Gasification of Coal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

642S: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY...

143

Great Plains Coal Gasification project. Quarterly technical progress report, third quarter 1985  

Science Conference Proceedings (OSTI)

The operations of the Great Plains Gasification Plant are reported for the third quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1985-10-31T23:59:59.000Z

144

Great Plains Coal Gasification project. Quarterly technical progress report fourth quarter, 1985  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the fourth quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical service; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1986-01-31T23:59:59.000Z

145

Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities  

SciTech Connect

The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

Not Available

1980-12-01T23:59:59.000Z

146

Great Plains Coal Gasification Plant public design report. Volume I  

SciTech Connect

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume I contains: (1) introduction; (2) overview of project (plant and mine, plant facilities, Basin Electric Antelope Valley Station); and (3) plant process data (coal, oxygen and steam, gasification and gas processing). 53 refs., 80 figs., 36 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

147

Method for using fast fluidized bed dry bottom coal gasification  

DOE Patents (OSTI)

Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

148

A novel approach to highly dispersing catalytic materials in coal for gasification  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities.

Abotsi, G.M.K.; Bota, K.B.

1992-01-01T23:59:59.000Z

149

Plasma-enhanced gasification of low-grade coals for compact power plants  

Science Conference Proceedings (OSTI)

A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

Uhm, Han S. [Department of Electrophysics, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Hong, Yong C.; Shin, Dong H.; Lee, Bong J. [Convergence Plasma Research Center, National Fusion Research Institute, 113 Gwahangno, Yuseong-Gu, Daejeon 305-333 (Korea, Republic of)

2011-10-15T23:59:59.000Z

150

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect

Advanced electric power generation systems use a coal gasifier to convert coal to a gas rich in fuels such as H{sub 2} and CO. The gas stream contains impurities such as H{sub 2}S and HCl, which attack metal components of the coal gas train, causing plant downtime and increasing the cost of power generation. Corrosion-resistant coatings would improve plant availability and decrease maintenance costs, thus allowing the environmentally superior integrated gasification combined cycle plants to be more competitive with standard power-generation technologies. A startup meeting was held at the National Energy Technology Center, Pittsburgh, PA site on July 28, 2003. SRI staff described the technical approach of the project.

Gopala N. Krishnan

2004-05-01T23:59:59.000Z

151

Fixed bed gasification studies on coal-feedlot biomass and coal-chicken litter biomass under batch mode operation  

E-Print Network (OSTI)

In the U.S. alone, approximately 200 million tons of dry cattle waste are being produced annually. Recently, cattle and poultry manure have been classified as biomass fuels and have been identified as sources of renewable energy. One of the processes for energy conversion of biomass fuels is thermochemical gasification. For the current study, a laboratory scale, 10 kW[th], fixed-bed gasifier (reactor internal diameter 0.15 m, reactor height 0.30 m) facility was built at the Texas A&M University Boiler Burner Laboratory, and was fired with a) coal, b) feedlot biomass (FB), c) chicken litter biomass (LB), d) high ash feedlot biomass (HFB), e) coal: FB blend (CFB), f) coal: LB blend (CLB), g) coal: HFB blend (CHFB), and h) LB: HFB blend (LHFB). The temperature profiles, and the gas species profile in the bed are measured and the species analyzed for heat contribution. The parametric studies include the effect of fuel particle size (average particle used were 0.52 mm and 9.5 mm), and the air flow rate (45 and 60 SCFH) on the gasification characteristics of the fuels. A summary of the results is as follows: The peak temperature in the bed was about 1500 K for coal (4.28 % ash), 1350 K for FB (14.83 % ash), and 1200 K for LB (43.85 % ash), correlating the decreased peak temperature with increased ash content. The devolatilization of coal, FB, and LB yielded the following: CH? (%): 2.5, 1.8, 1.0, CO (%): 27.9, 29.1, 29.1, H?: 8.5, 8.0, 7.0. On an average, the heating value of the product gas leaving the gasifier was about 5.0 MJ/m³ for coal, 4.8 MJ/m³ for FB, and 4.5 MJ/m³ for LB. The gasification efficiency (45 SCFH) was the lowest for coal (37 %), followed by 39 % for FB, and 68.47 % for LB fuels. LB (18.9 % (Na?O + K?O) in ash) showed consistent bed agglomeration, while FB (7.03 %) showed a reduced tendency for agglomeration, and coal (1.98 %) exhibited no agglomeration in the bed. Based on the current gasification study FB is preferred compared to LB, since the former has a lesser tendency to agglomerate.

Priyadarsan, Soyuz

2002-01-01T23:59:59.000Z

152

NETL, USDA design coal-stabilized biomass gasification unit  

Science Conference Proceedings (OSTI)

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30T23:59:59.000Z

153

Experimental Study on Tar-free Gasification of Coal in a Fixed Bed  

Science Conference Proceedings (OSTI)

Throated twin-oxidation zone gasifier of coal was exploited based on the characteristic analysis on the updraft gasifier and downdraft gasifier, and tar-free gasification of coal was experimentally investigated in the throated twin-oxidation zone gasifier. ... Keywords: tar-free gasification, fixed bed, operational parameters

Wang Lianyong; Cai Jiuju

2011-01-01T23:59:59.000Z

154

High pressure rotary piston coal feeder for coal gasification applications  

DOE Patents (OSTI)

The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

Gencsoy, Hasan T. (Morgantown, WV)

1977-05-24T23:59:59.000Z

155

Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989  

DOE Green Energy (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-12-31T23:59:59.000Z

156

Improving process performances in coal gasification for power and synfuel production  

Science Conference Proceedings (OSTI)

This paper is aimed at developing process alternatives of conventional coal gasification. A number of possibilities are presented, simulated, and discussed in order to improve the process performances, to avoid the use of pure oxygen, and to reduce the overall CO{sub 2} emissions. The different process configurations considered include both power production, by means of an integrated gasification combined cycle (IGCC) plant, and synfuel production, by means of Fischer-Tropsch (FT) synthesis. The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. As a result, no or little nitrogen is present in the syngas produced by the gasifier; the required heat is transferred by using an inert solid as the carrier, which is circulated between the two modules. First, a thermodynamic study of the dual-bed gasification is carried out. Then a dual-bed gasification process is simulated by Aspen Plus, and the efficiency and overall CO{sub 2} emissions of the process are calculated and compared with a conventional gasification with oxygen. Eventually, the scheme with two reactors (gasifier-combustor) is coupled with an IGCC process. The simulation of this plant is compared with that of a conventional IGCC, where the gasifier is fed by high purity oxygen. According to the newly proposed configuration, the global plant efficiency increases by 27.9% and the CO{sub 2} emissions decrease by 21.8%, with respect to the performances of a conventional IGCC process. 29 refs., 7 figs., 5 tabs.

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana [University of Padova, Milan (Italy). Italy and Foster Wheeler Italiana Spa

2008-11-15T23:59:59.000Z

157

Wabash River Coal Gasification Repowering Project: A DOE Assessment  

Science Conference Proceedings (OSTI)

The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of $438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in December 1999. The independent evaluation contained herein is based primarily on information provided in Wabash's Final Report (Dowd 2000), as well as other references and bibliographic sources.

National Energy Technology Laboratory

2002-01-15T23:59:59.000Z

158

EA-1642S: Small-Scale Pilot Plant for the Gasification of Coal and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

642S: Small-Scale Pilot Plant for the Gasification of Coal and 642S: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY EA-1642S: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY SUMMARY This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE's proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

159

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: Alternatives/Supplements to Coal - Feedstock Flexibility Coal: Alternatives/Supplements to Coal - Feedstock Flexibility As important as coal is as a primary gasification feedstock, gasification technology offers the important ability to take a wide range of feedstocks and process them into syngas, from which a similarly diverse number of end products are possible. Gasifiers have been developed to suit all different ranks of coal, and other fossil fuels, petcoke and refinery streams, biomass including agricultural waste, and industrial and municipal waste. The flexibility stems from the ability of gasification to take any carbon and hydrogen containing feedstock and then thermochemically break down the feedstock to a gas containing simple compounds which are easy to process into several marketable products.

160

Gasification Technology Status: August 2002  

Science Conference Proceedings (OSTI)

This technical report covers the lessons learned from the integrated gasification combined cycle (IGCC) plants that are now accumulating commercial operating experience. The current gasification experience includes coal, petroleum residuals, biomass, and wastes.

2002-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Synthetic fuels: Status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01T23:59:59.000Z

162

Carbon formation and metal dusting in advanced coal gasification processes  

SciTech Connect

The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

1997-02-01T23:59:59.000Z

163

Development of an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

an Integrated an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems Background The U.S. has more coal than any other country, and it can be converted through gasification into electricity, liquid fuels, chemicals, or hydrogen. However, for coal gasification to become sufficiently competitive to benefit the U.S. economy and help reduce our dependence on foreign fuels, gasification costs must be reduced

164

Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opening New Avenues for High-Efficiency, Low-Emission Coal Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification April 10, 2012 - 1:00pm Addthis A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. Washington, DC - Gasification. It's a versatile technology that uses coal to produce power, chemicals, and fuels. Inherently low in air emissions, solid byproducts, and wastewater, commercial gasification plants have proven capable of exceeding the most stringent regulations for air- and solids-emissions. However, capital and operational costs have prohibited the widespread adoption of gasification, especially for power

165

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

1992-03-01T23:59:59.000Z

166

Final Report Environmental Footprints and Costs of Coal-Based Integrated Gasification Combined Cycle and  

E-Print Network (OSTI)

Currently, over 50 percent of electricity in the U.S. is generated from coal. Given that coal reserves in the U.S. are estimated to meet our energy needs over the next 250 years, coal is expected to continue to play a major role in the generation of electricity in this country. With dwindling supplies and high prices of natural gas and oil, a large proportion of the new power generation facilities built in the U.S. can be expected to use coal as the main fuel. The environmental impact of these facilities can only be minimized by innovations in technology that allow for efficient burning of coal, along with an increased capture of the air pollutants that are an inherent part of coal combustion. EPA considers integrated gasification combined cycle (IGCC) as one of the most promising technologies in reducing environmental consequences of generating electricity from coal. EPA has undertaken several initiatives to facilitate and incentivize development and deployment of this technology. This report is the result of one of these initiatives and it represents the combined efforts of a joint EPA/DOE team formed to advance the IGCC technology. The various offices within DOE that participated in the development/review of this report were the Office of Fossil Energy, including the Clean Coal Office and the National Energy Technology Laboratory.

Pulverized Coal; Technologies Foreword

2006-01-01T23:59:59.000Z

167

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Closely Aligned Programs Gasification Systems Technologies Closely Aligned Programs The Department of Energy's (DOE) Gasification Systems is conducted under the Clean Coal Research...

168

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX), and report on the findings of four samples: (1) Analysis of two porous coupons after exposure to the porous metal particulate filter of the coal gasification power plant at 370 C for 2140 hours revealed that corrosion takes place in the bulk of the sample while the most external zone surface survived the test. (2) Coating and characterization of several porous 409 steel coupons after being coated with nitrides of Ti, Al and/or Si showed that adjusting experimental conditions results in thicker coatings in the bulk of the sample. (3) Analysis of coupons exposed to simulated coal gas at 370 C for 300 hours showed that a better corrosion resistance is achieved by improving the coatings in the bulk of the samples.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2006-12-31T23:59:59.000Z

169

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15T23:59:59.000Z

170

Proceedings, twenty-fourth annual international Pittsburgh coal conference  

SciTech Connect

Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

NONE

2007-07-01T23:59:59.000Z

171

Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification  

DOE Green Energy (OSTI)

This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships. Specifically, we conducted a parameter sensitivity analysis of the influence of thermal and hydrological properties of the host coal, caprock, and bedrock on cavity temperature and steam production.

Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

2009-10-05T23:59:59.000Z

172

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

Science Conference Proceedings (OSTI)

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The primary activity this period was preparation and presentation of the findings on this project at the Twenty-Third annual Pittsburgh Coal Conference. Dr. Malhotra attended this conference and presented a paper. A copy of his presentation constitutes this quarterly report.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez Mariano; Angel Sanjurjo

2006-09-30T23:59:59.000Z

173

NETL: 2010 World Gasification Database Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Gasification Systems 2010 Worldwide Gasification Database Archive DOE/NETL 2010 Worldwide Gasification Database Worldwide Gasification Database Analysis The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

174

Study of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coal  

E-Print Network (OSTI)

of lignite coal Shayan Karimipour a , Regan Gerspacher b , Rajender Gupta a , Raymond J. Spiteri c. " The syngas quality was defined based on conversion, H2/CO, CH4/H2, yield, and gasifier efficiency. " Low coal 2012 Keywords: Lignite coal Gasification Fluidized bed Design of experiments a b s t r a c t A series

Spiteri, Raymond J.

175

ENCOAL mild coal gasification project public design and construction report  

SciTech Connect

This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

NONE

1994-12-01T23:59:59.000Z

176

Fate of catechols in coal gasification condensate waters  

Science Conference Proceedings (OSTI)

Even after the wastewater has been subjected to rigorous cleaning, many chemicals still remain. In order to remove these compounds, they must be identified. Catechol is a compound which appears in the condensate water and, because its concentration changes, its fate is somewhat uncertain. In recent experiments modeling the condensate water conditions, catechol solutions were aerated in the presence of ammonia. Upon acidification of the solutions, a polymer precipitates. This polymer was compared to the black compound isolated from the condensate water by spectral and elemental analyses. The structures of the two polymers were reasonably similar. The kinetics of oxidation, as determined by the uptake of oxygen, indicates that the reaction was first order in catechol and oxygen. The rate was significantly enhanced by an increase in pH. Assuming that catechol is the only subunit of the polymers isolated from the different condensate waters, calculations would indicate that the initial catechol concentration varies from 440 to 1700 ppM. An attempt is being made to account for all of the carbon that appears in the water from the gasification process. Presently, only 60% to 70% of the carbon-containing products have been identified. Part of the remaining total organic carbon can be accounted for by the catechol polymer. Studying the fate of catechol in the coal gasification condensate water will help to develop an environmentally and financially feasible treatment of the wastewater. 4 refs.

Uhrich, K.E.

1986-02-01T23:59:59.000Z

177

Great Plains Coal Gasification Plant Public Design Report. Volume II  

Science Conference Proceedings (OSTI)

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume II contains: (1) plant process data (sulfur recovery, main flare - area 8300, liquid processing, ash handling and solids disposal, other systems); (2) plant startup procedure and schedule; (3) plant and employee safety; (4) GPGP cost data; and (5) references. 53 refs., 46 figs., 38 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

178

Development of Biomass-Infused Coal Briquettes for Co-Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass-Infused Coal Briquettes for Co-Gasification Biomass-Infused Coal Briquettes for Co-Gasification CoalTek, Inc. Project Number: FE0005293 Project Description This project will demonstrate an application of a CoalTek, Inc. (CoalTek) proprietary microwave process for treating energy feedstock materials. The process combines coal and biomass to produce an economically viable and suitable single-stream feedstock for co-gasification. Phase I of the project will focus on microwave processing, batch-scale production, and laboratory characterizations of briquettes with the objective to identify the combinations of biomass and coal types that provide the most suitable briquetted product for co-gasification. Phase II will use a larger scale, continuous mode process to (1) demonstrate the performance of the co-briquetted fuels during co-gasification in two different pilot-plant designs, i.e., fixed-bed and fluidized-bed gasifiers, and (2) enable realistic cost estimates for the construction and operation of a commercial-scale biomass-coal briquetting plant based on CoalTek's proprietary microwave process.

179

The ENCOAL Mild Coal Gasification Project, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

71 71 The ENCOAL ® Mild Coal Gasification Project A DOE Assessment March 2002 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

180

Status of the Great Plains coal gasification project - Summer 1983  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 3 weeks behind schedule as of May 31, 1983, but cumulative project costs were less than originally estimated. A March 1983 analysis by Great Plains raised questions about the project's economic viability, which is closely linked to future energy prices. The estimated gas prices used in the analysis were lower than those used in January 1982 to justify construction. As a result, the project's investors are concerned about possible losses during the early years of operations. GAO's review shows, however, that Great Plains did not consider substantial tax benefits which may be available to the parent companies of the project's investors. If these benefits are considered, the project's economic viability could be more positive. Should the investors end their participation, some tax benefits previously obtained would have to be repaid.

Not Available

1983-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Status of the Great Plains coal gasification project  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 95 percent complete and only about 2 weeks behind schedule as of November 30, 1983. Cumulative project costs were less than originally estimated for this date. Due to a drop in forecasted energy prices, Great Plains, in September 1983, projected that plant operations could result in large after-tax losses and negative cash flows for the sponsors. Great Plains notified the Department of Energy that it was considering terminating its participation in the project in the absence of additional federal assistance. In this regard, additional assistance in the form of price guarantees for the project's synthetic natural gas are being considered by the US Synthetic Fuels Corporation.

Not Available

1984-03-22T23:59:59.000Z

182

Status of the Great Plains coal gasification project, August 1982  

SciTech Connect

Construction of the Great Plains coal gasification plant in Mercer County, North Dakota, is 4 to 6 weeks behind schedule, but no long-term impacts are anticipated. Cumulative project costs are lower than originally estimated. Overall, the management system established to oversee project construction appears comprehensive. However, some weaknesses exist in the computerized information system, which produces most project data. The Department of Energy complied with statutory requirements in awarding the Great Plains loan guarantee for an alternative fuel demonstration project and is actively working to fulfill its responsibilities as the project's overseer. However, the Department needs to audit the costs incurred by Great Plains to determine that funds are being used only for eligible project costs.

Not Available

1982-09-14T23:59:59.000Z

183

DOE/NETL-2002/1164 Wabash River Coal Gasification Repowering...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Wabash River Coal Gasification Repowering Project: A DOE Assessment January 2002 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry...

184

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

185

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-Print Network (OSTI)

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

186

Sulfur emissions reduction at the Great Plains coal gasification facility: Technical and economic evaluations  

SciTech Connect

This report provides an in-depth technical and economic review of over 40 sulfur control technologies that were considered for use at the Great Plains coal gasification facility in Beulah, North Dakota. The review was based on the production of substitute natural gas at rates of 152.5 {times} 10{sup 6} and 160 {times} 10{sup 6} scf/d from lignite containing 1.7% sulfur. The factors considered in evaluating each technology included the reduction of SO{sub 2} emissions, capital and operating costs, incremental cost per unit of produced gas, cost-effectiveness, and probability of success. 21 figs., 37 tabs.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy Systems Div.); Joseph, T.W. (USDOE Chicago Operations Office, Argonne, IL (USA))

1990-01-01T23:59:59.000Z

187

(Great Plains Coal Gasification Associates). Quarterly technical progress report. [Lurgi Process  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the first quarter of 1986. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-04-30T23:59:59.000Z

188

Program on Technology Innovation: Advanced Concepts in Slurry-Fed Low-Rank Coal Gasification  

Science Conference Proceedings (OSTI)

This report documents the results of a Technology Innovation screening study of concepts for improving the performance of slurry-fed gasification combined cycle power plants on low rank coals by using two innovative coal preparation technologies: coal slurries with liquid CO2 as the fluid, and hot water drying. Slurry-fed gasification technologies have a cost advantage over dry-fed systems, but they suffer a large performance penalty when used on low rank coals because of the large fraction of water and ...

2006-12-01T23:59:59.000Z

189

Coal gasification for the coproduction of electricity and fertilizer  

SciTech Connect

TVA is proposing to develop and commercially demonstrate the coproduction of electricity and fertilizer (urea) using integrated gasification/combined cycle (IGCC) technology. The coal-based coproduction demonstration project will show that the coproduction process can economically and environmentally enhance the production of both electric power and urea. As conceptualized, the proposed coproduction demonstration project facility would be designed for a nominal electrical capacity of about 250 megawatts (MW), Table I. During normal operation, the facility would produce about 150 MW of base-load electrical power and 1,000 tons per day of urea. Sulfur from the coal would be recovered as elemental sulfur. During peak power demand, the fertilizer capacity could be reduced or bypassed and the full 250 MW could be made available. This scheme would allow continuous operation of the gasifier at 100% of its rated capacity which would reduce the annual revenue requirements for power generation by permitting the production of fertilizer. As TVA's vision of this proposal matures (i.e., as consideration is given to alternative schemes, as TVA reviews its power demands, and as more detailed engineering estimates are developed), the nature and scope of cyclic-operation may be altered.

Kelly, D.A.; Nichols, D.E.; Faucett, H.L.

1992-01-01T23:59:59.000Z

190

Coal gasification for the coproduction of electricity and fertilizer  

SciTech Connect

TVA is proposing to develop and commercially demonstrate the coproduction of electricity and fertilizer (urea) using integrated gasification/combined cycle (IGCC) technology. The coal-based coproduction demonstration project will show that the coproduction process can economically and environmentally enhance the production of both electric power and urea. As conceptualized, the proposed coproduction demonstration project facility would be designed for a nominal electrical capacity of about 250 megawatts (MW), Table I. During normal operation, the facility would produce about 150 MW of base-load electrical power and 1,000 tons per day of urea. Sulfur from the coal would be recovered as elemental sulfur. During peak power demand, the fertilizer capacity could be reduced or bypassed and the full 250 MW could be made available. This scheme would allow continuous operation of the gasifier at 100% of its rated capacity which would reduce the annual revenue requirements for power generation by permitting the production of fertilizer. As TVA`s vision of this proposal matures (i.e., as consideration is given to alternative schemes, as TVA reviews its power demands, and as more detailed engineering estimates are developed), the nature and scope of cyclic-operation may be altered.

Kelly, D.A.; Nichols, D.E.; Faucett, H.L.

1992-12-01T23:59:59.000Z

191

Two-stage coal gasification and desulfurization apparatus  

DOE Patents (OSTI)

The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV)

1991-01-01T23:59:59.000Z

192

Solar coal-gasification reactor with pyrolysis-gas recycle. [Patent application  

DOE Patents (OSTI)

Coal (or other carbonaceous matter, such as biomass) is converted into a product gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor, and solar energy is directed into the reactor onto coal char, creating a gasification front and a pyrolysis front. A gasification zone is produced well above the coal level within the reactor. A pyrolysis zone is produced immediately above the coal level. Steam, injected into the reactor adjacent to the gasification zone, reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases flow from the gasification zone to the pyrolysis zone to generate hot char. Gases are withdrawn from the pyrolysis zone and reinjected into the region of the reactor adjacent the gasification zone. This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas is withdrawn from a region of the reactor between the gasification zone and the pyrolysis zone. The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, W.R.; Gregg, D.W.

1981-04-06T23:59:59.000Z

193

Great Plains Coal Gasification Plant start-up and modification report. [Lurgi Process  

SciTech Connect

This report will help in designing future coal conversion plants by documenting the areas which need additional research to obtain more reliable process data, more careful planning and equipment selection. The scope of this report is to: describe the problem with the particular process or item of equipment; identify the modification that was implemented to correct the problem; evaluate the impacts of the modification; and document the cost of the modification. Contents include the following: (1) process modifications (coal, oxygen and steam, gasification and gas processing, sulfur recovery, flare system, liquid processing, ash handling and solids disposal, other systems); (2) start-up schedule; (3) SNG production; (4) environmental data; and (5) cost data.

Miller, W.R.; Honea, F.I.; Lang, R.A.; Berty, T.E.; Delaney, R.C.; Hospodarec, R.W.; Mako, P.F.

1986-03-01T23:59:59.000Z

194

Gasification Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home Gasification Home...

195

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

the following discussion considers a comparison of coal-fired Integrated Gasification Combined Cycle (IGCC) and pulverized coal (PC) power plants, representing a balanced...

196

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW)...

197

Gasification in pulverized coal flames. Semi-annual progress report, September 1977--March 1978  

DOE Green Energy (OSTI)

This project concerns the production of power and synthesis gases from pulverized coal via suspension gasification. Cyclone and confined jet gasifier configurations with swirling flow are being investigated. Emphasis is on the final design and construction of the test facility and the two experimental reactors. Calibration procedures are presented, as are data reduction techniques and preliminary experimental results for methane and coal combustion tests.

Barnhart, J. S.; George, P. E.; Thomas, J. F.; Laurendeau, N. M.

1978-04-01T23:59:59.000Z

198

Evaluation of a Dow-Based Gasification-Combined-Cycle Plant Using Low-Rank Coals  

Science Conference Proceedings (OSTI)

This feasibility study developed performance and cost data for two different Dow-based gasification-combined-cycle (GCC) power plants, designed to fire either Texas lignite or Wyoming subbituminous coals at a Gulf Coast location. It demonstrated the cost-effectiveness and efficiency of these plants for generating power from low-rank coals.

1989-04-25T23:59:59.000Z

199

Program on Technology Innovation: Advanced Concepts in Slurry Fed Low Rank Coal Gasification  

Science Conference Proceedings (OSTI)

This document reports on experimental and theoretical analyses of low rank coal/liquid CO2 slurries (LRC/CO2(l)). The results showed that viscosities of LRC/CO2(l) were much lower than for LRC/water slurries of similar coal concentrations and higher coal concentrations could be obtained for liquid CO2 slurries than for water-based slurries at flow conditions typical of industrial scale gasification systems. ASPENplus analyses of a typical integrated gasification combined cycle (IGCC) system showed no del...

2009-04-17T23:59:59.000Z

200

Great Plains Coal Gasification Project. Technical quarterly report, 1st quarter, 1984. [Great Plains, Mercer County, North Dakota  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet the Great Plains Coal Gasification project's full gas production date. Detailed engineering is complete for the gasification plant. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the first quarter. It is currently projected that construction will be complete at the end of September, 1984. Start-Up operations are continuing at a rapid pace. Commissioning activities are proceeding very well. The only remaining plant permit is the Permit to Operate, which will be issued in late 1985. Quality Assurance/Quality Control activities included the development of welding procedures for Operations personnel, safety relief valve testing, and equipment turnover inspections. Mine development activities remain on schedule. Initial coal deliveries to GPGA commenced this quarter.

Not Available

1984-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

DOE Patents (OSTI)

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

Ghate, M.R.; Yang, R.T.

1985-10-03T23:59:59.000Z

202

Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption  

DOE Patents (OSTI)

Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

1987-01-01T23:59:59.000Z

203

A novel approach to highly dispersing catalytic materials in coal for gasification  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

Abotsi, G.M.K.; Bota, K.B.

1989-01-01T23:59:59.000Z

204

Financial status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Great Plains Gasification Associates and the Department of Energy (DOE) signed a loan guarantee agreement in January 1982 for up to $2.02 billion of the estimated $2.76 billion needed to construct a plant producing synthetic gas from coal. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional project assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity and Great Plains would repay the DOE-guaranteed loan faster and share profits with SFC. According to GAO's assessment of SFC's proposed assistance, a lower amount of assistance could achieve the same results if Great Plains' partners could fully use certain tax credits and if energy prices and other assumptions remained the same as those SFC used in April 1984. Since April 1984, however, several changes have occurred, such as a continued decline in energy prices. An August 1984 SFC analysis indicated that the decline in energy price offset the effect of the increase tax credits. Other changes have also occurred, but SFC analyses subsequent to August 1984 showing the impact of these changes were not available to GAO. If all changes since April 1984 were incorporated into GAO's analyses, the results could be different.

Not Available

1985-02-21T23:59:59.000Z

205

Synthetic fuels. Status of the Great Plains Coal Gasification Project, August 1, 1985  

Science Conference Proceedings (OSTI)

In December 1984, the Great Plains Gasification Associates had essentially finished constructing the nation's first commercial-scale coal gasification plant. As of July 31, 1985, Great Plains had contributed about $537 million in equity to the project and had borrowed $1.54 billion against a federal load guarantee made available by the Department of Energy (DOE). Since 1984 the project has faced deteriorating financial projections in the wake of declining energy prices. This is GAO's eighth semiannual report on Great Plains and covers the project's progress from January through August 1, 1985. GAO's objectives were to report on (1) the status of Great Plains' attempt to obtain additional federal financial assistance and (2) the status of the project's operational startup activities as of August 1, 1985. The Department of Energy Act of 1978 requires GAO to report on the status of the loan guarantee. Even though the Synthetic Fuels Corporation approved price guarantees in principle for Great Plains, DOE announced, on July 30, 1985, that it would not agree to restructuring its guaranteed loan. DOE rejected the proposed agreement, saying that it would not assure long-term plant operation at a reasonable cost to the taxpayers. The Great Plains sponsors then terminated their participation in the project on August 1, 1985, and defaulted on the $1.54 billion DOE-guaranteed loan. DOE directed the project administrator, ANG Coal Gasification Company, to continue plant operations pending a DOE decision about the project's future. DOE is assessing options including operating, leasing, selling, shutting down, mothballing, and scrapping the plant.

Bowsher, C.A.

1985-12-01T23:59:59.000Z

206

Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-biomass Catalytic Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics Background The U.S. Department of Energy (DOE) supports research and development efforts targeted to improve efficiency and reduce the negative environmental effects of the use of fossil fuels. One way to achieve these goals is to combine coal with biomass to create synthesis gas (syngas) for use in turbines and refineries to produce energy, fuels,

207

Impact of the Great Plains coal gasification decision on a coal gas industry  

SciTech Connect

In approving the special tariff and financing features of the Great Plains coal-gasification project, the Federal Energy Regulatory Commission took the first major federal action toward encouraging the construction of a commercial-sized synthetic-fuels facility, asserts the law firm of Morley, Caskin and Generelly. Owned by Great Plains Gasification Associates - a partnership of five pipeline companies - the commercial-sized plant qualifies for FERC approval under the commission's RD and D regulations. The special financing terms for the project will require customers of existing natural gas companies to bear the costs incurred by the project regardless of its success in operation or the amount of gas produced for the customer's utilization. This RD and D rate treatment serves to mitigate market forces and thus operates as an effective subsidy for the pipeline industry. If this or a similar regulatory subsidy is extended to other coal-gas projects, the pipeline industry could take the lead in the nation's synfuels program.

Zipp, J.F.

1980-05-08T23:59:59.000Z

208

REMOVAL AND RECOVERY OF DEPOSITS FROM COAL GASIFICATION ...  

A method is provided for on-line removal and recovery of deposits from fossil fuel gasification systems to improve plant performance and recover a valuable metalloid.

209

Hydrogen separation by ceramic membranes in coal gasification  

DOE Green Energy (OSTI)

Project objectives are to develop hydrogen-permselective ceramic membranes for water-gas shift membrane-reactor suitable for hydrogen production from coal gas, and to evaluate the technical and economic potential of the membrane-reactor. Work performed during reporting period included membrane deposition and stability testing.

Gavalas, G.R.

1992-07-08T23:59:59.000Z

210

Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration  

DOE Patents (OSTI)

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

1981-09-14T23:59:59.000Z

211

Gasification Technology Status -- December 2008  

Science Conference Proceedings (OSTI)

Over the past 5 years, several major power companies have been developing and conducting detailed design studies of commercial-sized coal-based integrated gasification combined-cycle (IGCC) and pulverized coal (PC) projects. Integrated gasification combined-cycle (IGCC) plants can meet very stringent emissions targets, including those for mercury and CO2. This report covers current IGCC designs being offered and reviews the commercial status of gasification technologies, potential improvements, and lesso...

2008-12-18T23:59:59.000Z

212

Theoretical investigation of selected trace elements in coal gasification plants. Final report Mar 78-Nov 79  

SciTech Connect

The report gives results of a theoretical investigation of the disposition of five volatile trace elements (arsenic, boron, lead, selenium, and mercury) in SNG-producing coal gasification plants. Three coal gasification processes (dry-bottom Lurgi, Koppers-Totzek, and HYGAS) were investigated to examine the possible effects of gasifier operation conditions on the speciation of the volatile trace elements. Results of this investigation suggest that none of the trace elements considered in this study will be present in the product SNG from a coal gasification plant, but will be removed from the fuel gas by various unit operations. Results also suggest that speciation of these volatile trace elements is not significantly affected by gasifier conditions.

Hill, A.H.; Anderson, G.L.; Fleming, D.K.

1983-08-01T23:59:59.000Z

213

Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990  

SciTech Connect

Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

1990-11-01T23:59:59.000Z

214

Entrained-flow dry-bottom gasification of high-ash coals in coal-water slurries  

SciTech Connect

It was shown that the effective use of dry ash removal during entrained-flow gasification of coal-water slurries consists in simplification of the ash storage system and utilization of coal ash, a decrease in the coal demand, a reduction in the atmospheric emissions of noxious substances and particulate matter, and abandonment of the discharge of water used for ash slurry. According to the results of gasification of coal-water slurries (5-10 {mu}m) in a pilot oxygen-blow unit at a carbon conversion of >91%, synthesis gas containing 28.5% CO, 32.5% H{sub 2}, 8.2% CO{sub 2}, 1.5% CH{sub 4}, the rest being nitrogen, was obtained. The fly ash in its chemical composition, particle size, and density meets the requirements of the European standard EN 450 as a cement additive for concrete manufacture.

E.G. Gorlov; V.G. Andrienko; K.B. Nefedov; S.V. Lutsenko; B.K. Nefedov [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-04-15T23:59:59.000Z

215

Removal of mineral matter including pyrite from coal  

SciTech Connect

Mineral matter, including pyrite, is removed from coal by treatment of the coal with aqueous alkali at a temperature of about 175.degree. to 350.degree. C, followed by acidification with strong acid.

Reggel, Leslie (Pittsburgh, PA); Raymond, Raphael (Bethel Park, PA); Blaustein, Bernard D. (Pittsburgh, PA)

1976-11-23T23:59:59.000Z

216

A novel approach to highly dispersing catalytic materials in coal for gasification  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalyst for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char activities. The effects of potassium impregnation conditions (pH and coal surface charge) on the reactivities, in carbon dioxide, of chars derived from demineralized lignite, subbituminous and bituminous coals have been determined. Impregnation of the acid-leached coal with potassium from strongly acidic solutions resulted in initial slow char reactivity which progressively increased with reaction time. Higher reactivities were obtained for catalyst (potassium) loaded at pH 6 or 10. The dependence of char gasification rates on catalyst addition pH increased in the order: pH 6 {approximately} pH 10 {much gt} pH 1.

Abotsi, G.M.K.; Bota, K.B.

1991-01-01T23:59:59.000Z

217

Air and steam coal partial gasification in an atmospheric fluidized bed  

Science Conference Proceedings (OSTI)

Using the mixture of air and steam as gasification medium, three different rank coal partial gasification studies were carried out in a bench-scale atmospheric fluidized bed with the various operating parameters. The effects of air/coal (Fa/Fc) ratio, steam/coal (Fs/Fc) ratio, bed temperature, and coal rank on the fuel gas compositions and the high heating value (HHV) were reported in this paper. The results show that there is an optimal Fa/Fc ratio and Fs/Fc ratio for coal partial gasification. A rise of bed temperature favors the semigasification reaction of coal, but the concentrations of carbon monoxide and methane and the HHV decrease with the rise of bed temperature, except hydrogen. In addition, the gas HHVs are between 2.2 and 3.4 MJ/Nm{sup 3}. The gas yield and carbon conversion increase with Fa/Fc ratio, Fs/Fc ratio, and bed temperature, while they decrease with the rise of the rank of coal. 7 refs., 9 figs., 2 tabs.

Hongcang Zhou; Baosheng Jing; Zhaoping Zhong; Yaji Huang; Rui Xiao [Nanjing University of Information Science & Technology, Nanjing (China). Department of Environmental Science & Engineering

2005-08-01T23:59:59.000Z

218

Analysis of pipe failure at the Great Plains Coal Gasification Plant  

SciTech Connect

The rupture of a carbon steel elbow in the methanation area of the Great Plains Coal Gasification Plant resulted in a fire and plant shutdown. Failure studies consisted of an on-site inspection and an extensive laboratory examination that included light metallography, X-ray fluorescence, X-ray diffraction, chemical analyses, and electron spectroscopy for chemical analysis. It was concluded that operation of a heat exchanger under off-specification conditions contributed to higher than design temperatures, lower than design pressures, and higher than design concentrations of carbon dioxide and water in the exit line from a condensate separator. Together, these conditions produced high levels of carbonic acid and higher than design velocities resulting in severe corrosion of the carbon steel.

Keiser, J.R.; Mayotte, J.R. (Oak Ridge National Lab., TN (United States)); Dias, O.C. (Amoco Oil Co., Texas City, TX (United States))

1994-09-01T23:59:59.000Z

219

Using rotating biological contactors for the treatment of coal gasification wastewaters  

Science Conference Proceedings (OSTI)

The objective of this research was to determine the treatability of University of North Dakota Energy Research Centers (UNDERC's) and Great Plains' coal gasification wastewaters using a bench scale four stage rotating biological contactor (RBC). The treatability testing included an evaluation of organic removal rates in the first stage and the overall rates in the last three stages using the Stover-Kincannon model. Nitrification was evaluated at various loading rates. Stage 1 accounted for most of the removal of alcohols, fatty acids, phenol, and thiocyanate from both UNDERC stripped gas liquor (SGL) and for alcohols and fatty acid removal from the Great Plains (GP) SGL. The 2, 3 and 4 stages accomplished very little additional organic removal in either system. Biodegradable organic removals remained high in the first stage of the GP SGL test run despite anaerobic conditions in the first stage. 5 refs., 12 figs., 6 tabs.

Turner, C.D.; Wernberg, K.

1986-01-01T23:59:59.000Z

220

Analysis of pipe failure for the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The rupture of a carbon steel elbow in the methanation area of the Great Plains Coal Gasification Plant resulted in a fire and plant shutdown. The failure was investigated by personnel from Oak Ridge National Laboratory and ANG Associates, the plant operators. These studies consisted of an on-site inspection and extensive laboratory examination that included optical metallography, x-ray fluorescence, x-ray diffraction, chemical analyses, and electron spectroscopy for chemical analysis (ESCA). It was concluded that operation of a heat exchanger under off-specification conditions contributed to higher than design temperatures, lower than design pressures, and higher than design concentrations of carbon dioxide and water in the exit line from a condensate separator. Together, these conditions produced high levels of carbonic acid and higher than design velocities resulting in severe corrosion of the carbon steel. 9 refs., 7 figs., 2 tabs.

Keiser, J.R.; Mayotte, J.R. (Oak Ridge National Lab., TN (USA)); Dias, O.C. (Amoco Research Center, Naperville, IL (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

DOE Green Energy (OSTI)

GEâ??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

2011-09-30T23:59:59.000Z

222

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

DOE Green Energy (OSTI)

GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

2011-09-30T23:59:59.000Z

223

ENCOAL Mild Coal Gasification Project. Annual report, October 1990--September 1991  

DOE Green Energy (OSTI)

ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

Not Available

1992-02-01T23:59:59.000Z

224

R&D to Prepare and Characterize Robust Coal/Biomass Mixtures for Direct Co-Feeding into Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

to Prepare and Characterize Robust to Prepare and Characterize Robust Coal/Biomass Mixtures for Direct Co-Feeding into Gasification Background Domestically abundant coal is a significant primary energy source and, when mixed with optimum levels of biomass, has lower carbon footprint compared to conventional petroleum fuels. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to produce liquid fuels and

225

A review of the factors influencing the physicochemical characteristics of underground coal gasification  

Science Conference Proceedings (OSTI)

In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

Yang, L.H. [China University of Mining and Technology, Jiangsu (China)

2008-07-01T23:59:59.000Z

226

NETL: Gasification Systems - Liquid Carbon Dioxide/Coal Slurry for Feeding  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Liquid Carbon Dioxide/Coal Slurry for Feeding Low-Rank Coal to Gasifiers Project Number: DE-FE0007977 There is increased interest in carbon capture and storage (CCS) for future coal-based power plants, and in a CCS integrated gasification plant, relatively pure, high pressure CO2 stream(s) will be available within the power plant. Electric Power Research Institute (EPRI) aims to help reduce the cost and improve the efficiency of integrated gasification combined cycle (IGCC) with CCS by using a portion of the high purity CO2 product stream as the carrier fluid to feed low rank coal (LRC) into the gasifier. EPRI proposes to confirm the potential advantages of LRC/liquid carbon dioxide (LCO2) slurries by: Conducting plant-wide technical and economic simulations.

227

Novel approach to coal gasification using chemically incorporated catalysts (Phase II). Appendix A-F. Final report, May 1978-June 1981  

DOE Green Energy (OSTI)

This volume contains six appendices: experimental apparatus, test conditions, and results of catalytic coal treatment; direct hydrogasification; summary of test runs for hydrogasification of BTC; summary of test runs for hydrogasification of char; summary of steam/O/sub 2/ gasification runs; and process analysis. Forty tables and nine figures are also included.

Feldmann, H.F.; Conkle, H.N.; Appelbaum, H.R.; Chauhan, S.P.

1981-01-01T23:59:59.000Z

228

Subtask 4.2 - Coal Gasification Short Course  

SciTech Connect

Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

Kevin Galbreath

2009-06-30T23:59:59.000Z

229

NETL: News Release - Coal Gasification Plant Returns $79 Million to DOE in  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2006 2, 2006 Coal Gasification Plant Returns $79 Million to DOE in Revenue-Sharing Gas Sales Plant Currently Supplies Carbon Dioxide for DOE Sequestration Project Washington, DC -A coal gasification plant purchased from the U.S. Department of Energy (DOE) in 1988 recently paid millions of dollars to DOE as part of a revenue sharing agreement and continues to be an integral part of a Department project to sequester millions of tons of carbon dioxide while doubling an oil field's recovery rate. MORE INFO Learn more about the Great Plains Synfuels Plant The Dakota Gasification Company (DGC), which purchased the Great Plains Synfuels Plant near Beulah, N.D., recently announced the payment of more than $79 million to DOE as part of a revenue-sharing agreement signed in

230

Coal gasification via the Lurgi process: Topical report: Volume 1, Production of SNG (substitute material gas)  

Science Conference Proceedings (OSTI)

A Lurgi baseline study was requested by the DOE/GRI Operating Committee of the Joint Coal Gasification Program for the purpose of updating the economics of earlier Lurgi coal gasification plant studies for the production of substitute natural gas (SNG) based on commercially advanced technologies. The current study incorporates the recent experience with large size Lurgi plants in an effort to improve capital and operating costs of earlier plant designs. The present coal gasification study is based on a mine mouth plant producing 250 billion Btu (HHV) per day of SNG using the Lurgi dry bottom coal gasification technology. A Western subbituminous coal was designated as the plant food, obtained from the Rosebud seam at Colstrip, Montana. This study presents the detailed description of an integrated facility which utilizes coal, air, and water to produce 250 billion Btu (HHV) per day of SNG. The plant consists of coal handling and preparation, twenty-six Lurgi dry bottom gasifiers, shift conversion, acid gas removal, methanation, compression and drying of product gas, sulfur recovery, phenol and ammonia recovery, as well as necessary support facilities. The plant is a grass roots, mine mouth facility located in a Western location similar to the town of Colstrip in Rosebud County, Montana. The Lurgi Corporation assisted in this study, under subcontract to Foster Wheeler, by supplying the heat and material balances, flow sheets, utilities, catalysts and chemical requirements, and cost data for Lurgi designed process sections. Details of material supplied by Lurgi Corporation are presented in Appendix A. 52 refs., 36 figs., 64 tabs.

Zahnstecher, L.W.

1984-09-01T23:59:59.000Z

231

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

Science Conference Proceedings (OSTI)

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). We report here on findings of this analysis: (1) A SS409 coupon that was coated with multilayered combined nitrides of Ti, Al, and Si showed adherent coatings on the surface; (2) A similarly coated coupon, after exposure to simulated coal gas at 900 C for 300 h, revealed that the coating has cracked during the exposure; (3) An SS409 coupon that was coated with nitrides of Ti and Si with a barrier layer of tungsten in between to improve the adhesion of the coating and to prevent outward diffusion of iron to the surface. (4) A porous coupon was coated with nitrides of Ti and Al and examination of the coupon revealed deposition of Ti at the interior surfaces. A similarly prepared coupon was exposed to simulated coal gas at 370 C for 300 h, and it showed no corrosion.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2006-06-30T23:59:59.000Z

232

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the hightemperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several 409 low alloy steel samples after coating them in our fluidized bed reactor and also after exposing them to our corrosion test. We report the following findings: 1. A protective coating was deposited inside a porous 409 steel sample to protect it from sulfidation attack. The coating was based on a combination of Si diffusion layer, Nb interlayer and nitrides of titanium and silicon. 2. Analysis of solid coupons exposed to simulated coal gas at 900 C for 300 h showed that multilayer metal/ceramic coatings provide a better protection than ceramic coatings. 3. Deposition of several ceramic/metal multilayer coatings showed that coatings with niobium and tantalum interlayers have good adhesion. However, coatings with a tungsten interlayer suffered localized delaminating and coatings with Zr interlayers showed poor adhesion. 4. Analysis of solid coupons, coated with the above-mentioned multilayer films, after exposure to simulated coal gas at 900 C for 300 h showed that niobium is the best candidate for interlayer material.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2007-03-31T23:59:59.000Z

233

Hydrogen production by high-temperature steam gasification of biomass and coal  

Science Conference Proceedings (OSTI)

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15T23:59:59.000Z

234

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

1990-12-01T23:59:59.000Z

235

Thermal energy storage for an integrated coal gasification combined-cycle power plant  

DOE Green Energy (OSTI)

This study investigates the use of molten nitrate salt thermal energy storage in an integrated gasification combined-cycle power plant allowing the facility to economically provide peak- and intermediate-load electric power. The results of the study show that an integrated gasification combined-cycle power plant with thermal energy storage can reduce the cost of coal-fired peak- or intermediate-load electric power by between 5% and 20% depending on the plants operating schedule. The use of direct-contact salt heating can further improve the economic attractiveness of the concept. 11 refs., 1 fig., 4 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.

1990-03-01T23:59:59.000Z

236

Thermal energy storage for an integrated coal gasification combined-cycle power plant  

Science Conference Proceedings (OSTI)

This study investigates the use of molten nitrate salt thermal energy storage in an integrated gasification combined-cycle power plant allowing the facility to economically provide peak- and intermediate-load electric power. The results of the study show that an integrated gasification combined-cycle power plant with thermal energy storage can reduce the cost of coal-fired peak- or intermediate-load electric power by between 5% and 20% depending on the plants operating schedule. The use of direct-contact salt heating can further improve the economic attractiveness of the concept. 12 refs., 1 fig., 5 tabs.

Drost, K.; Antoniak, Z.; Brown, D.; Somasundaram, S.

1991-10-01T23:59:59.000Z

237

Development of biological coal gasification (MicGAS Process)  

Science Conference Proceedings (OSTI)

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01T23:59:59.000Z

238

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

Science Conference Proceedings (OSTI)

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we conducted two 300-hour tests. In the first test, we exposed samples at 900 C under conditions simulating the high-temperature heat recovery unit (HTHRU). The second test was at 370 C, corresponding to the filter units following the HTHRU. The tests were showed the resilience of silicon nitride as a coating component, and the new coating procedures better penetrated the pores in sintered metal filter samples. Finally, we also received samples that were exposed in the Wabash River plant. Unfortunately, all these samples, that were prepared last year, were severely eroded and/or corroded.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2005-03-15T23:59:59.000Z

239

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

Science Conference Proceedings (OSTI)

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. In previous tests, we had frequently encountered problems with our steam generator that were exacerbated by the very low flow rates that we needed. During this period we installed a new computer-controlled system for injecting water into the steam generator that eliminated this problem. We also tested alloy coupons coated by using the improved procedures described in our last quarterly report. Most of these coatings were nitrided Ti and Ta coatings, either by themselves, or sometimes with barrier layers of Al and Si nitrides. The samples were tested for 300 h at 900 C in a gas stream designed to mimic the environment in the high temperature heat recovery unit (HTHRU). Three samples that showed least corrosion were exposed for an additional 100 h.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2006-06-01T23:59:59.000Z

240

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

Science Conference Proceedings (OSTI)

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of pretreatment and additives on boron release during pyrolysis and gasification of coal  

SciTech Connect

Boron is one of the most toxic and highly volatile elements present in coal. As part of a series of studies carried out on coal cleaning to prevent environmental problems and to promote efficient coal utilization processes, the removal of boron by leaching with water and acetic acid has been investigated. The effects of the addition of ash components, that is, SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO on the control of boron release during pyrolysis and gasification were investigated. Here, 20-70% of boron in coal was removed by leaching the coal with water and acetic acid. Boron leached by water and acetic acid was related to the volatiles released from coal in pyrolysis below 1173 K. The addition of ash components such as SiO{sub 2} and Al{sub 2}O{sub 3} was found to be effective in suppressing the release of boron during pyrolysis at temperatures below and above 1173 K, respectively. The addition of CaO to coal was effective in suppressing the release of boron during gasification at 1173 K. 26 refs., 7 figs., 3 tabs.

Yuuki Mochizuki; Katsuyasu Sugawara; Yukio Enda [Akita University, Akita (Japan). Faculty of Engineering and Resources Science

2009-09-15T23:59:59.000Z

242

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

Science Conference Proceedings (OSTI)

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31T23:59:59.000Z

243

NETL: Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Coal and Power Systems Gasification Systems Gasifier Optimization & Plant Supporting Systems Feed Systems Feed Systems Gasifier Optimization & Plant Supporting...

244

AVESTAR® - Gasification Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Meet Our Partners Simulators IGCC Gasification Combined Cycle NGCC SCOT Oxy-coal Shale Gas 3D Virtual IGCC Training How to Register for Training IGCC Gasification Combined...

245

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

runs a very active Carbon Storage Program as a companion strategic activity to gasification, under the Coal and Power Systems Program. Also, see the Carbon Sequestration...

246

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

2007-01-15T23:59:59.000Z

247

Advanced coal-gasification technical analyses. Appendix 2: coal fines disposal. Final report, December 1982-September 1985  

Science Conference Proceedings (OSTI)

This report is a compilation of several studies conducted by KRSI under the Advanced Coal Gasification Technical Analyses contract with GRI. It addresses the issue of disposal and/or utilization of the coal fines that cannot be used as feedstock for fixed-bed (i.e. Lurgi) gasifiers. Specific items addressed are: (1) Technical, legal and economic aspects of fines burial, (2) Estimation of the premium for fines-free coal delivered to an SNG plant and resulting reduction in SNG production costs, (3) Comparison of the relative advantages and limitations of Winkler and GKT gasifiers to consuming fines, (4) Review of coal-size consist curves in the GRI Guidelines to assess the fines content of ROM coals, (5) a first-pass design and cost estimate using GKT gasifiers in tandem with Lurgi gasifiers in an North Dakota lignite-to-SNG plant to consume full range of coal-size consist, (6) Evaluation of the General Electric technology for extrusion of coal fines and testing of the extrudates in a fixed-bed gasifier, and (7) Investigation of equipment and variables involved in briquetting of coal fines, such that fines could be fed to the gasifiers along with the lump coal.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

248

Novel approach to coal gasification using chemically incorporated catalysts (Phase II). Final report, May 1978-June 1981  

DOE Green Energy (OSTI)

Since 1974, Battelle has been developing a catalytic treatment process that would allow more economic, efficient and reliable utilization of the vast deposits of eastern coals in gasification systems. In order to keep the process simple and economic, a disposable catalyst lime (CaO), was employed. It was found that the effectiveness of low concentrations of CaO was greatly increased by thorough incorporation into the coal. As a result of these efforts, a catalytic treatment system has been developed that promises to allow simplifications and improvements in existing commercial gasification processes as well as advanced gasification systems. One gasification system that appears exceptionally attractive utilizing the treatment system is direct fluid-bed hydrogasification or hydropyrolysis. A simple pressurized fluid-bed steam/oxygen gasification system is also an attractive option which could be commercialized quickly. Data generated under this program demonstrated the technical and economic advantages of these approaches.

Feldmann, H.F.; Conkle, H.N.; Appelbaum, H.R.; Chauhan, S.P.

1981-01-01T23:59:59.000Z

249

Gasification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification Gasification Gasification The Wabash River Clean Coal Power Plant The Wabash River Clean Coal Power Plant Gasification Technology R&D Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products. Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean coal technology plants. Rather than burning coal directly, gasification (a thermo-chemical process) breaks down coal - or virtually any carbon-based feedstock - into its basic chemical constituents. In a modern gasifier, coal is typically exposed to steam and carefully controlled amounts of air or oxygen under high

250

CoalFleet Integrated Gasification Combined Cycle Research and Development Roadmap  

Science Conference Proceedings (OSTI)

This report is an update of EPRI technical report 1013219, “CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle (IGCC) Power Plants” that was published in January 2007. The purpose of the current study is to evaluate the state of IGCC technology, gauge technology development progress made since 2007, and discuss updated estimates on the potential for advanced technologies to improve power plant performance and economics. The report consists of the following four parts: establishme...

2011-10-31T23:59:59.000Z

251

In situ formation of coal gasification catalysts from low cost alkali metal salts  

DOE Patents (OSTI)

A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

Wood, Bernard J. (Santa Clara, CA); Brittain, Robert D. (Cupertino, CA); Sancier, Kenneth M. (Menlo Park, CA)

1985-01-01T23:59:59.000Z

252

Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39  

Science Conference Proceedings (OSTI)

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.

Anderson, C.M.; Musich, M.A.; Young, B.C. [and others

1996-07-01T23:59:59.000Z

253

The influence of CO? on the steam gasification rate of a typical South African coal / Gillis J.D. Du Toit.  

E-Print Network (OSTI)

??It is recognised that the reactions with steam and CO2 are the rate limiting step during coal gasification, and a vast number of studies has… (more)

Du Toit, Gillis Johannes Dekorte

2013-01-01T23:59:59.000Z

254

Great plains coal gasification plant: Technical lessons learned report  

SciTech Connect

In a first of a kind, grass roots plant of the complexity of the Great Plains Gasification Plant the lessons learned are numerous and encompass a wide range of items. This report documents the lessons learned from all phases of the project from preliminary design through the most recent operation of the plant. Based on these lessons learned, suggestions are made for changes and/or process improvements to future synfuel plants. In addition, recommendations are made for research and development in selected areas. 46 refs., 31 figs., 33 tabs.

Delaney, R.C.; Mako, P.F.

1988-11-01T23:59:59.000Z

255

Great Plains Coal Gasification Project. Quarterly technical progress report, second quarter 1986. [Lurgi process  

SciTech Connect

The operations of the Great Plains coal gasification plant are reported for the second quarter of 1986. The following areas are covered: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities. (AT)

Not Available

1986-07-31T23:59:59.000Z

256

Great Plains coal gasification project: Quarterly technical progress report, Third quarter 1986. [Lurgi process  

Science Conference Proceedings (OSTI)

Accomplishments for the third quarter of 1986 are presented for the Great Plains coal gasification plant. The following areas are discussed: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) onstream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-10-31T23:59:59.000Z

257

High-yield hydrogen production by catalytic gasification of coal or biomass  

DOE Green Energy (OSTI)

Gasification of coal or wood, catalyzed by soluble metallic cations to maximize reaction rates and hydrogen yields, offers a potential for large-scale, economical hydrogen production with near-commercial technology. With optimum reaction conditions and catalysts, product gas rich in both hydrogen and methane can be used in fuel cells to produce electricity at efficiencies nearly double those of conventional power plant. If plantation silvaculture techniques can produce wood at a raw energy cost competitive with coal, further enhancement of product gas yields may be possible, with zero net contribution of CO{sub 2} to the atmosphere.

Hauserman, W.B.

1992-01-01T23:59:59.000Z

258

Advanced coal-gasification technical analyses. Project summary. Final report, December 1982-September 1985  

SciTech Connect

This report summarizes the work performed by KRSI to support the GRI Fossil Fuels Gasification Program in identification and development of the most economical and technically feasible process(es) for production of SNG from coal. The work was performed under several tasks that fall under three topical categories: (1) Technology Review and Evaluations, (2) Coal Fines Disposal and (3) Technical/Economic Evaluations. The final task reports appear in the three appendices of the report. The Technology Review studies provide an overview of the coal gasification, shift/methanation, acid-gas removal, and sulfur-recovery technologies for use in coal-to-SNG plant design; Side-by-side comparisons of selected processes in each category provide background for process selection. The studies relating to Coal Fines Disposal allow comparison and guidance with regard to feedstock-management options when fixed-bed gasifiers are to be used. The first-pass designs and cost estimates prepared under Technical/Economic Evaluations compare and assess North Dakota lignite-to-SNG plants based on Lurgi, Westinghouse (now KRW) and Direct Methanation processes. A plant size vs. cost study provides an insight to selection of an economical plant size.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

259

Fixed-bed gasification research using US coals. Volume 18. Program data summary and correlations. [C/sub 2/ and C/sub 3/ hydrocarbons  

DOE Green Energy (OSTI)

A single-staged, fixed-bed, Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas Group (MIFGa). This report is the eighteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report summarizes the results of eighteen different gasification tests in which fourteen different fuels were gasified from August 1982 to August 1985. The summaries and analyses reported here include correlations of product yields and compositions with coal analyses and gasifier operating conditions. Also included here are discussions of limitations to throughput, transient response of the gasifier, the grate performance model, and a discussion of electrostatic precipitation in coal gas medium. 25 refs., 41 figs., 6 tabs.

Thimsen, D.; Maurer, R.E.; Lannto, O.; Pui, D.; Yeh, R.

1985-12-01T23:59:59.000Z

260

Flash pyrolysis and gasification of coal through laser heating  

DOE Green Energy (OSTI)

Experimental results obtained from the rapid pyrolysis of finely powdered coal are presented. The experiments are designed to provide basic information on gas yield, gas composition, optimum fluxes, and temperature history of coal samples under high intensity laser radiation. The information obtained from these experiments will be used to test concepts for the use of concentrated sunlight to produce fuel gases from coal. Heating the coal at rates of 10/sup 3/ to 10/sup 4/ C/s in an inert atmosphere of argon results in pyrolysis at temperatures between 400 and 800/sup 0/C. The gases evolved are primarily CO, H/sub 2/, and CH/sub 4/ with lesser amounts of CO/sub 2/ and other light hydrocarbons. Mass spectrometry is used to determine the composition of the evolved gases. The optimum flux for laser pyrolysis of coal was found to be 250 W/cm/sup 2/. Results from experiments wherein the char created by pyrolysis is gasified to CO in an atmosphere of CO/sub 2/ are also presented.

Beattie, W.H.; Sullivan, J.A.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier: Commercial Gasifiers Gasifier: Commercial Gasifiers Gasifiers and Impact of Coal Rank and Coal Properties The available commercial gasification technologies are often optimized for a particular rank of coal or coal properties, and in some cases, certain ranks of coal might be unsuitable for utilization in a given gasification technology. On the other hand, there is considerable flexibility in most of the common gasifiers; this is highlighted by the following table, which provides an overview of the level of experience for the various commercially available gasifiers by manufacturer for each coal type. This experience will only continue to expand as more gasification facilities come online and more demonstrations are completed. SOLID FUEL GASIFICATION EXPERIENCE1 High Ash Coals

262

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period we tested coated alloy coupons under conditions designed to mimic the conditions in the filter unit after the high-temperature heat recovery unit (HTHRU). The filter unit is another important area where corrosion has caused unscheduled downtime, and the remedy has been the use of sintered metal tubes made of expensive alloys such as inconel. The objective of our test was to determine if those coatings on 400-series steel that were not able to withstand the harsher conditions of the HTHRU, may be sufficiently resistant for use in the filter unit, at the reduced temperatures. Indeed, most of our coatings survived well; the exceptions were the coated porous samples of SS316. We continued making improvements to our coatings apparatus and the procedure began during the last quarter. As a result of these modifications, the coupons we are now producing are uniform. We describe the improved procedure for preparing diffusion coatings. Finally, because porous samples of steel in grades other than SS316 are not readily available, we also decided to procure SS409 powder and fabricate our own sintered porous coupons.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2006-01-01T23:59:59.000Z

263

Coal Gasification Research, Development and Demonstration- Needs and Opportunities  

E-Print Network (OSTI)

The resolution of the carbon/energy/environment conflict is the key issue for future coalbased power generation. Concern over CO2 emissions and their effect on global climate may lead to a more carbon constrained world and possible CO2 emissions related legislation. This adds another dimension to natural gas/coal strategic planning. Since

unknown authors

2001-01-01T23:59:59.000Z

264

Numerical study on convection diffusion for gasification agent in underground coal gasification. Part I: establishment of mathematical models and solving method  

SciTech Connect

The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.

Yang, L.H.; Ding, Y.M. [China University of Mining & Technology, Xuzhou (China). College of Resources and Geoscience

2009-07-01T23:59:59.000Z

265

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1, 1994--December 31, 1994  

SciTech Connect

This report describes research on the oxidative coupling of methane and catalysts involved in coal gasification. Topics include methane pyrolysis and catalysts, and magnetic properties of the coal gasification catalyst Ca-Ni-K-O system.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1994-12-01T23:59:59.000Z

266

A Physicochemical Evaluation of the HQ-1 Core from the Pricetown I, Underground Coal Gasification Test Site  

SciTech Connect

Core samples of coal and rock were obtained from the HQ-1 environmental test well at the Pricetown I, Underground Coal Gasification Test Site. A comprehensive analytical program was performed to characterize the coal samples. The rocks associated with the coals are composed of clay size material containing low amounts of organic matter and hydrocarbon gas relative to the coal seams. The fine grained sediment above and below the coal seams appear to be an effective gas seal. The coals were encountered in two intervals of 1 foot and 6 feet thickness separated by 2 feet of shale. The coals are classified as high volatile A or B bituminous based on vitrinite reflectance, fixed carbon, and calorific value. Coal maceral analysis shows that the coal is heterogeneous in petrographic properties. The vitrinite group is the predominant maceral constituent. Fusinite, semi-fusinite, massive micrinite, and sporinite are present in varying amounts. The distribution of porous fusinite layers within the coal seams may be important in the reverse linkage stage of the gasification process. The coal in the bottom seam contains an average of 45.6 standard cubic feet of free methane per ton of coal. This methane may assist in initiating the gasification process. Thermal Conductivity and Laser Thermal Diffusivity experiments were also performed on selected coal samples as well as on samples of the grout used in the instrumentation wells. While the thermal conductivity values were influenced by the tars and oils generated during the heating of the coal, the laser thermal diffusivity values were obtained at sufficiently low temperatures to minimize the influence of the tars and oils.

Zielinski, R. E.; Larson, R. J.

1978-09-20T23:59:59.000Z

267

Storing syngas lowers the carbon price for profitable coal gasification  

SciTech Connect

Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously but stores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO{sub 2} prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the U.S. Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 h of above-ground high-pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the U.S. generation mix by approximately 25%. 36 refs., 7 figs., 1 tab.

Adam Newcomer; Jay Apt [Carnegie Mellon University, Pittsburgh, PA (USA). Carnegie Mellon Electricity Industry Center

2007-12-15T23:59:59.000Z

268

A Brief Review of Viscosity Models for Slag in Coal Gasification  

Science Conference Proceedings (OSTI)

Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

Massoudi, Mehrdad; Wang, Ping

2011-11-01T23:59:59.000Z

269

Houston Lighting and Power Company's evaluation of coal gasification coproduction energy facilities  

SciTech Connect

In an effort to reduce the cost of electricity from Integral ed Gasification Combined Cycle (IGCC) Power Plants, the Electric Power Research Institute has embarked on a program to evaluate and potentially demonstrate a coal gasification-based coproduction energy facility. Houston Lighting Power Company (HL P) responded with a proposal in its ongoing effort to study emerging technologies for electricity production. HL P recognized the opportunities available to them in coproduction because of their close proximity to the world's largest petrochemical complex located on the Houston Ship Channel. Coparticipant utilities with HL P were Central and South West Services and TU Electric. Two sites were selected for study, a Houston Ship Channel site, utilizing barge-delivered Illinois No. 6 coal blended with petroleum coke, and to satisfy C SWS and TU needs, a central Texas site utilizing Texas lignite. Stone Webster Engineering and InterFact, Inc. were engineers and consulting partners in the study.Eight cases were developed to cover the various possibilities for coproduction. Four cases involved utilizing Texas lignite and four cases involved utilizing Illinois No. 6 as fuel blended with petroleum coke. The eight cases are described. Each of the cases utilized the Shell coal gasification process and were evaluated for either base load operation using two G.E. 7F gas turbines and a spare gasifier for chemicals production or for cyclic operationusing four G.E. 7EA gas turbines and no spare gasifier. The sum of the coproducts produced over all eight cases were electricity, methanol, ammonia, and urea, depending on location and economics.

Kern, E.E.; Havemann, S.D.; Chmielewski, R.G. (Houston Lighting and Power Co., TX (United States)); Baumann, P. (InterFact, Inc., Dallas, TX (United States)); Goelzer, A.R.; Karayel, R.; Keady, G.S.; Chernoff, B. (Stone and Webster Engineering Corp., Houston, TX (United States))

1992-12-01T23:59:59.000Z

270

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

271

Estimates of the value of carbon dioxide from the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report develops a framework and methodology for estimating the value of carbon dioxide produced by the Great Plains Coal Gasification Plant. The petroleum industry could use this CO/sub 2/ as a solvent for enhanced oil recovery. The value of CO/sub 2/ is found to be a function of the geological characteristics of the petroleum reservoirs being flooded, the cost of transporting the CO/sub 2/, and the presence or absence of competitors selling CO/sub 2/. Carbon dioxide demand curves for oil fields in Montana and North Dakota are developed for various economic conditions, and sensitivity analyses are performed. 22 refs., 4 figs., 21 tabs.

Wolsky, A.M.; Nelson, S.H.; Jankowski, D.J.

1985-07-28T23:59:59.000Z

272

Economics of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

the Great Plains project will be the Nation's first commercial-scale plant producing synthetic gas from coal. The project's first annual economic report, released in March 1983, was much less optimistic than a similar analysis prepared in January 1982 to justify construction. GAO found that: the main reason for the changed economic outlook was that the assumed synthetic gas prices used in the March analysis were significantly lower than those used previously. Great Plains did not, nor was it required to, consider tax implications to the parent companies of the project's partners. If these implications are considered, the economics could be more optimistic than the March 1983 report indicates. Should the partners end their participation, some tax benefits would have to be repaid. Although the project is a potentially attractive investment, its financial viability is extremely sensitive to the future prices of synthetic gas. Even a small deviation in prices could significantly affect its economics.

Not Available

1983-08-24T23:59:59.000Z

273

Hydrogen separation by ceramic membranes in coal gasification  

DOE Green Energy (OSTI)

Project Objectives are to develop hydrogen-permselective ceramic membranes for water-gas shift membrane-reactor suitable for hydrogen production from coal gas and evaluate the technical and economic potential of the membrane-reactor. During the reporting period exploratory experiments begun on a membrane preparation technique aimed at providing higher membrane permeance. The new preparation technique involves two stages. The first stage is the formation of a layer of silica gel by a two-phase interfacial reaction within the pores of the substrate. The gel is then dried and calcined yielding a microporous (pore diameter below 10 [Angstrom]) silica layer within the pores of the substrate tube. The second stage involves one-sided chemical vapor deposition using the SiCl[sub 4]-H[sub 2]O reaction to close up the micropores of the gel layer and produce the final hydrogen permselective membrane. Chemical reactions involved are described.

Gavalas, G.R.

1992-04-30T23:59:59.000Z

274

Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass  

DOE Green Energy (OSTI)

All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

2012-03-11T23:59:59.000Z

275

Hydrogen separation by ceramic membranes in coal gasification. Final report  

SciTech Connect

The general objective of this project was to develop hydrogen permselective membranes for hydrogen production from coal gas. The project consisted of the following tasks: (i) membrane preparation and characterization, (ii) membrane stability testing, and (iii) analysis and economic evaluation of a membrane-assisted ammonia from coal process. Several oxides (SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}) in dense (or nonporous) form were identified to be permselective to hydrogen at elevated temperatures. To obtain reasonable permeance it is necessary that the membrane consists of a thin selective layer of the dense oxide supported on or within the pores of a porous support tube (or plate). Early in the project we chose porous Vycor tubes (5mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter) supplied by Corning Inc. as the membrane support. To form the permselective layer (SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}) we employed chemical vapor deposition using the reaction of the chloride (SiCl{sub 4}, etc.) vapor and water vapor at high temperatures. Deposition of the selective layer was carried out in a simple concentric tube reactor comprising the porous support tube surrounded by a wider concentric quartz tube and placed in an electrically heated split tube furnace. In one deposition geometry (the opposing reactants or two-sided geometry) the chloride vapor in nitrogen carrier was passed through the inner tube while the water vapor also in nitrogen carrier was passed in the same direction through the annulus between the two tubes. In the other (two-sided) geometry the chloride-containing stream and the water-containing stream were both passed through the inner tube or both through the annulus.

Gavalas, G.R.

1993-08-01T23:59:59.000Z

276

2007 gasification technologies workshop papers  

Science Conference Proceedings (OSTI)

Topics covered in this workshop are fundamentals of gasification, carbon capture, reviews of financial and regulatory incentives, coal to liquids, and focus on gasification in the Western US.

NONE

2007-03-15T23:59:59.000Z

277

Gasification Systems Projects National Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Systems Projects National Map Click on a number to go to the project page. Hybrid Solar Coal Gasifier ITM Oxygen Technology for Integration in...

278

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

279

High Temperature Electrochemical Polishing of H(2)S from Coal Gasification Process Streams.  

DOE Green Energy (OSTI)

An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the exiting syngas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation.

Winnick, J.

1997-12-31T23:59:59.000Z

280

Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass  

Science Conference Proceedings (OSTI)

The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

2012-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

Science Conference Proceedings (OSTI)

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

2012-01-01T23:59:59.000Z

282

The Physical and Chemical Properties of Fly Ash from Coal Gasification and Study on Its Recycling Utilization  

Science Conference Proceedings (OSTI)

Aiming at the difficulties in utilization of fly ash from coal gasification, the physical and chemical properties of fly ash were investigated. This research studied recycling utilization on using fly ash as one of cement raw materials for cement clinker. ... Keywords: fly ash, X-ray diffraction (XRD), Scanning Electron Microscope (SEM), recycling utilization

Guohua Qiu; Weiqiang Zeng; Zhenglun Shi; Mengxiang Fang; Zhongyang Luo

2010-12-01T23:59:59.000Z

283

Feasibility study for underground coal gasification at the Krabi coal mine site, Thailand: Volume 1. Progress report, December 1--31, 1995; Export trade information  

SciTech Connect

The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.

Young, B.C.; Schmit, C.R.

1996-01-01T23:59:59.000Z

284

Combined compressed air storage-low BTU coal gasification power plant  

DOE Patents (OSTI)

An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

Kartsounes, George T. (Naperville, IL); Sather, Norman F. (Naperville, IL)

1979-01-01T23:59:59.000Z

285

Synthetic fuels. Status of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

This report includes updated information obtained through February 14, 1986, on the loan-default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, and Great Plains operations. The new information highlights changes in the gas pricing calculations; legal action concerning gas purchase agreements and mortgage foreclosure; the Department's determination of the project sponsors' outstanding liability; the Department's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues. Our November fact sheet included information on socioeconomic issues. We have not obtained any additional information on these issues and are, therefore, not repeating the socioeconomic information in this fact sheet.

Not Available

1986-02-01T23:59:59.000Z

286

Analysis of industrial markets for low and medium Btu coal gasification. [Forecasting  

SciTech Connect

Low- and medium-Btu gases (LBG and MBG) can be produced from coal with a variety of 13 existing and 25 emerging processes. Historical experience and previous studies indicate a large potential market for LBG and MBG coal gasification in the manufacturing industries for fuel and feedstocks. However, present use in the US is limited, and industry has not been making substantial moves to invest in the technology. Near-term (1979-1985) market activity for LBG and MBG is highly uncertain and is complicated by a myriad of pressures on industry for energy-related investments. To assist in planning its program to accelerate the commercialization of LBG and MBG, the Department of Energy (DOE) contracted with Booz, Allen and Hamilton to characterize and forecast the 1985 industrial market for LBG and MBG coal gasification. The study draws five major conclusions: (1) There is a large technically feasible market potential in industry for commercially available equipment - exceeding 3 quadrillion Btu per year. (2) Early adopters will be principally steel, chemical, and brick companies in described areas. (3) With no additional Federal initiatives, industry commitments to LBG and MBG will increase only moderately. (4) The major barriers to further market penetration are lack of economic advantage, absence of significant operating experience in the US, uncertainty on government environmental policy, and limited credible engineering data for retrofitting industrial plants. (5) Within the context of generally accepted energy supply and price forecasts, selected government action can be a principal factor in accelerating market penetration. Each major conclusion is discussed briefly and key implications for DOE planning are identified.

1979-07-30T23:59:59.000Z

287

Proceedings, twenty-five annual international Pittsburgh coal conference  

SciTech Connect

The conference theme was 'coal - energy, environment and sustainable development'. The topics covered energy and environmental issues, and technologies related to coal and its byproducts. These included: gasification, hydrogen from coal, combustion technologies, coal production and preparation, synthesis of liquid fuels, gas turbines and fuel cells for synthesis gas and hydrogen applications, coal chemistry and geosciences, global climate change, underground coal gasification, environmental control technologies, and coal utilization byproducts.

NONE

2008-07-01T23:59:59.000Z

288

Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, second quarter, 1984. [Mercer County, North Dakota  

SciTech Connect

Project activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Detailed engineering is complete for the gasification plant. The only remaining engineering tasks involve field support activities and special projects. Construction is nearly complete. The majority of the remaining tasks involve civil, painting and electrical work. Start-up operations are proceeding very well. Many significant achievements were accomplished during the quarter. Coal was successfully gasified with oxygen. All of the first train's seven gasifiers completed successful production test runs. The only remaining plant permit is the Permit to Operate, which is expected to be issued in late 1985. Quality assurance/quality control activities included major equipment inspections, development of welding procedures and equipment turnover inspections. Freedom Mine development activities remain on schedule.

Not Available

1984-01-01T23:59:59.000Z

289

Evaluation of cooling tower and wastewater treatment operations at the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The objective of this study was to provide a technical assessment of the Great Plains Coal Gasification Plant Wastewater Treatment System. This Scope of Work consisted of five primary tasks described as follows: Task 1 - Determine the quantity of hydantoins in the stripped gas liquor (SGL), their precursors, and the kinetics of their formation in condensed liquor for the Great Plains Gasification Associates (GPGA) gasification facility. The University of North Dakota Energy Research Center (UNDERC) has measured a high concentration of hydantoins in the gas liquor from their slagging gasifier. UNDERC has tested the use of SGL in a pilot cooling tower and they witnessed some adverse effects in the cooling tower and heat exchanger systems. Task 2 - Investigate the adverse Department of Energy (DOE) findings at UNDERC with regard to corrosion, foaming, biological and organic fouling, chemical attack on concrete and organic emissions resulting from the use of SGL in a pilot plant cooling tower. Task 3 - Validate the heat load on the cooling tower for both summer and winter operation and determine the adequacy of the surge pond to store the maximum predicted amount of excess water accumulated during winter operation. Task 4 - Assess potential fouling, foaming and organic carry-over problems associated with operability of the multiple-effect evaporator and develop recommendations on possible alternate use of evaporator condensate to alleviate possible problems in disposing of excess wastewater. Task 5 - Provide DOE with recommendations on the wastewater treatment backup design and test program already committed to by GPGA. This paper presents Fluor's findings regarding the five primary tasks. 12 refs., 4 figs., 15 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

290

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

291

FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

2005-04-29T23:59:59.000Z

292

Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

Science Conference Proceedings (OSTI)

This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energyâ??s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process â?? High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

Howard Meyer

2010-11-30T23:59:59.000Z

293

DOE/NETL-2002/1164 Wabash River Coal Gasification Repowering Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Wabash River Coal Gasification Repowering Project: A DOE Assessment January 2002 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

294

DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEIJEA-1219 DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION CAMPBELL COUNTY, WYOMING October 1997 U.S. DEPARTMENT OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process. or service by trade name, trademark, manufac-

295

Status of the Great Plains coal gasification project, May 31, 1984. [Mercer County, North Dakota  

SciTech Connect

The Great Plains coal gasification project in North Dakota was 99 percent complete and essentially on schedule on May 31, 1984. Cumulative project costs were $164 million less than originally estimated for this date, primarily due to reduced material, interest, and subcontractor costs. On the basis of reduced energy price forecasts, Great Plains in September 1983 projected large after-tax losses and negative cash flows from plant operations. To alleviate these losses, Great Plains applied to the US Synthetic Fuels Corporation for additional financial assistance. On April 26, 1984, the Corporation outlined its intentions to award Great Plains up to $790 million in assistance. As of August 10, 1984, the Corporation had not finalized the Great Plains assistance agreement.

Not Available

1984-09-18T23:59:59.000Z

296

Higgins coal gasification/repowering study, feasibility study for alternate fuels. Vol. 1. Executive summary  

SciTech Connect

Florida Power has completed a study to determine the feasibility of repowering 138 MW gross of oil-fired steam-generating capacity at its A.W. Higgins power station (Pinellas Co., Fla.) by utilizing coal-gasification combined-cycle (CGCC) technology. The repowering would add approximately 320 MW of gross electrical generation to the Higgins station through the use of combustion turbines and heat recovery equipment. This study provided Florida Power with the technical, environmental, and economic information necessary to determine the viability of using CGCC at the Higgins station. The plant would use BGC/Lurgi slagging gasifiers and the Selexol acid-gas removal system. Although this new technology represents an acceptable level of risk for the proposed project to be considered technically feasible, the capital-cost estimates were much higher than expected. Florida Power plans to continue further economic evaluations of this CGCC repowering option.

Not Available

1981-12-01T23:59:59.000Z

297

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

1997-10-01T23:59:59.000Z

298

Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

Not Available

1993-05-01T23:59:59.000Z

299

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

Science Conference Proceedings (OSTI)

Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-15T23:59:59.000Z

300

Status of the Great Plains Coal Gasification Project, December 31, 1984  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE)-sponsored construction of the Great Plains coal gasification project - designed to produce synthetic natural gas from coal in North Dakota - was completed in December 1984 on schedule. However, technical problems prevented Great Plains from meeting the inservice (commercial operation) target date of December 1, 1984. DOE believes the in-service date could occur in June 1985. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity, and Great Plains would repay the DOE-guaranteed loan faster and make profit-sharing payments to SFC. However, since SFC's tentative agreement for price guarantees, several events that could affect the project's financial outlook have occurred. For example, SFC and DOE have revised their energy price forecasts downward. In addition, Great Plains and SFC are negotiating a final agreement that could change some conditions of the tentative agreement.

Bowsher, C.A.

1985-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Novel hydrogen separation device development for coal gasification system applications. Final report  

DOE Green Energy (OSTI)

This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

Not Available

1993-08-01T23:59:59.000Z

302

Hanna, Wyoming underground coal gasification data base. Volume 2. The Hanna I field test  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Based on the recommendations of A.D. Little, Inc. in a 1971 report prepared for the US Bureau of Mines, the Hanna I test represented the first field test in reestablishing a field program by the US Bureau of Mines. The test was directed toward comparing results from a thick subbitiminous coal seam with those obtained during the field test series conducted at Gorgas, AL, in the 1940's and 1950's. Hanna I was conducted from March 1973 through February 1974. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 9 refs., 10 figs., 4 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

303

Low-rank coal research  

DOE Green Energy (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

304

NETL: Gasification Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Gasification Systems Reference Shelf - Archived Projects Archived Projects | Active Projects | All NETL Fact Sheets Feed Systems Reaction-Driven Ion Transport Membranes Gasifier Optimization and Plant Supporting Systems Coal/Biomass Gasification at Colorado School of Mines Co-Production of Electricity and Hydrogen Using a Novel Iron-Based Catalyst Co-Production of Substitute Natural Gas/Electricity via Catalytic Coal Gasification Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development

305

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

for Liquefaction and Gasification of Western Coals", in5272 (1976). COal Processing - Gasification, Liguefaction,or gaseous fuels, coal gasification has advanced furthest

Holten, R.R.

2010-01-01T23:59:59.000Z

306

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

Ferrell, G.C.

2010-01-01T23:59:59.000Z

307

NETL: Gasification Systems - Gasifier Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Optimization Small-Scale Coal-biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis Small-Scale Pilot Plant for the Gasification of Coal and Coal...

308

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

and N.M. Laurendeau, "Gasification of Pulverized Coal Withininformation on the gasification and combustion of coal with

Chin, W.K.

2010-01-01T23:59:59.000Z

309

Changes in char structure during the gasification of a Victorian brown coal in steam and oxygen at 800{degree}C  

Science Conference Proceedings (OSTI)

Char structure is an important factor influencing its reactivity during gasification. This study aims to investigate the changes in char structure during the gasification of brown coal. A Victorian brown coal was gasified in a fluidized-bed/fixed-bed reactor at 800{degree}C in atmospheres containing 15% H{sub 2}O, 2000 ppm O{sub 2}, or 15% H{sub 2}O and 2000 ppm O{sub 2}, respectively. Although the char gasification in 2000 ppm O{sub 2} was mainly rate-limited by the external diffusion of O{sub 2}, the char-H{sub 2}O reaction was mainly rate-limited by the chemical reactions. The structural features of char at different levels of char gasification conversion were examined with FT-Raman spectroscopy. Our results show that the chars from the gasification in the mixture of 2000 ppm O{sub 2} and 15% H{sub 2}O had almost the same features as the chars from the gasification in 15% H{sub 2}O alone when the same levels of char conversion were achieved. Both the thermal decomposition of char and the char gasification reactions could result in changes in char structure during gasification. 29 refs., 5 figs., 1 tab.

Xin Guo; Hui Ling Tay; Shu Zhang; Chun-Zhu Li [Monash University, Vic. (Australia). Department of Chemical Engineering

2008-11-15T23:59:59.000Z

310

NETL: Gasification Systems - A Technology to Mitigate Syngas...  

NLE Websites -- All DOE Office Websites (Extended Search)

the coal gasification process depositing on the inner walls of the tubes in the fire tube heat exchanger used in the syngas cooler. Current project plans include the development of...

311

NETL: Gasification - A Technology to Mitigate Syngas Cooler Fouling  

NLE Websites -- All DOE Office Websites (Extended Search)

the coal gasification process depositing on the inner walls of the tubes in the fire tube heat exchanger used in the syngas cooler. Current project plans include the development of...

312

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

NLE Websites -- All DOE Office Websites (Extended Search)

Mild Gasification Mild Gasification ENCOAL® Mild Coal Gasification Project - Project Brief [PDF-279KB] ENCOAL Corporation, Gillette, WY PROGRAM PUBLICATIONS Final Reports ENCOAL Mild Coal Gasification Project Final Reports [PDF-6.8MB] (Sept 1997) (Includes the following 3 reports) ENCOAL Project Final Report [PDF-460KB] (Sept 1997) Final Design Modifications Report [PDF-5.2MB] (Sept 1997) Commercial Plant Feasibility Study [PDF-1MB] (Sept 1997) Annual/Quarterly Technical Reports ENCOAL Mild Coal Gasification Project Annual Report, October 1994 - September 1995 [PDF-2.6MB] (Jan 1996) ENCOAL Mild Coal Gasification Demonstration Project, Annual Report, October 1993-September 1994 [PDF-1.5MB] (Mar 1995) ENCOAL Mild Coal Gasification Demonstration Project, Annual Report [PDF-1.6MB] (Oct 1993)

313

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Clean Coal Crosscutting Research University Coal Research University Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal...

314

Gasification Technology Status - December 2011  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coal-to-chemicals industry and plans to add major coal-to-substitute natural gas and coal-to-liquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology companies have responded to this market b...

2011-12-30T23:59:59.000Z

315

Gasification Technology Status - December 2012  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coal-to-chemicals industry and plans to add major coal–to–substitute natural gas and coal–to–liquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology companies ...

2012-12-31T23:59:59.000Z

316

Zero-order trace element distribution model for the Great Plains Coal Gasification Plant: Topical report  

SciTech Connect

The Morgantown Energy Technology Center of the US DOE is developing a series for models of environmental systems. Both zero-order and detailed models are being developed. Detailed models are based on fundamental engineering principles and the use of detailed physical and chemical property data; reliance on empirical relationships and correlations is minimized. The key advantage of detailed models is their predictive capabilities and utility in performing valid comparative analyses. An important prerequisite to the development of detailed models in the availability of representative, long-term process and environmental data. These data are needed both to develop the models as well as to validate them. Zero-order models are less rigorous and have less predictive capability than detailed models since they are based on empirical estimates and simple correlations. However, they can be developed relatively quickly and are significantly less expensive to develop and use compared to detailed models. Zero-order models are useful in identifying potential environmental or control technology problems. As such, they can help direct future research and development efforts. They can provide useful information when comprehensive data are unavailable for detailed modeling, and can be used as a screening tool to identify process alternatives which appear to warrant more detailed modeling. This report describes a zero-order trace element distribution model for the Great Plains Coal Gasification Plant located near Beulah, North Dakota. The model estimates how trace elements entering the plant in the feed coal are distributed to the plant's process and waste streams. Elements that may be introduced to the plant's waste streams from sorbents and/or catalysts (e.g., Vanadium in makeup Stretford solution) are not considered in the model. 13 refs.

Thomas, W.C.; Page, G.C.; Magee, R.A.

1987-04-01T23:59:59.000Z

317

A novel approach to highly dispersing catalytic materials in coal for gasification. First quarterly report, October 1, 1989--December 31, 1989  

SciTech Connect

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and high catalytic activity of the latter compound will produce economic benefits by reducing the amount of K{sub 2}CO{sub 3} required for high coal char reactivities. The work is focused on the elucidation of coal-catalyst precursor interactions in solution and the variables which control the adsorption and dispersion of coal gasification metal catalysts. In order to optimize coal-metal ion interactions and hence maximize catalyst activity, the study examines the surface electrochemistry of a lignite, a subbituminous, and a bituminous coals and their demineralized and oxidized derivatives prior to loading with the catalytic materials. The surface electrical properties of the coals are investigated with the aid of electrophoresis, while the effects of the surface charge on the adsorption of K{sup +} and Ca{sup 2+} are studied by agitating the coals with aqueous solutions of potassium and calcium. A zeta meter, a tube furnace, and other equipment required for the investigation have been acquired and installed. Preliminary work shows that the lignite (Psoc 1482) is negatively charged between pH 1.8 and pH 11.0 and has an isoelectric point of pH 1.8.

Abotsi, G.M.K.; Bota, K.B.

1989-12-31T23:59:59.000Z

318

Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments  

SciTech Connect

As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01T23:59:59.000Z

319

SPINEL-BASED REFRACTORIES FOR IMPROVED PERFORMANCE IN COAL GASIFICATION ENVIRONMENTS  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory, in collaboration with refractory manufacturer Minteq International, Inc., academic partner Missouri University of Science and Technology and refractory end users have developed novel refractory systems and techniques to reduce energy consumption of refractory lined vessels. The objective of this U.S. DOE funded project was to address the need for innovative refractory compositions by developing MgO-Al 2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Materials have been developed specifically for coal gasification environments and work has been performed to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the service environment and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the systematic development of these materials, laboratory testing and evaluation of these materials, and relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01T23:59:59.000Z

320

Modeling of the coal gasification processes in a hybrid plasma torch  

Science Conference Proceedings (OSTI)

The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.

Matveev, I.B.; Serbin, S.I. [Applied Plasma Technology, Mclean, VA (USA)

2007-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Gasification Technology Status – September 2004  

Science Conference Proceedings (OSTI)

Concern over the continued availability of natural gas at competitive prices has led many power companies to initiate studies and projects on clean coal technologies as a strategic hedge against over-reliance on natural gas alone to provide future power needs. Integrated gasification combined cycle (IGCC) plants can meet very stringent emissions targets, including those for mercury and carbon dioxide (CO2). Several years of commercial operation have been accumulated on coal based IGCC plants in the Unite...

2004-09-29T23:59:59.000Z

322

The role of Integrated Gasification Combined Cycle in the USDOE`s Clean Coal Research, Development and Demonstration Program  

SciTech Connect

For many years, the US Department of Energy (DOE) has been funding research, development, and demonstration (RD&D) projects to develop advanced power generation technologies. The goal of this activity is to catalyze the private sector to commercialize technologies that will provide reasonably priced electricity and still meet stringent environmental standards. Integrated Gasification Combined Cycle (IGCC) systems are emerging as one of the more attractive candidate technologies to meet this goal. The Morgantown Energy Technology Center (METC) has been assigned the responsibility for implementing IGCC projects in DOE`s Clean Coal RD&D program. The IGCC technology offers the potential for significant Improvements in environmental performance, compared to today`s coal-fired power plants. Sulfur dioxide and nitrogen oxide emissions from IGCC systems will be less than one-tenth of existing environmental standards. Thus, the IGCC technology will make coal-based plants as clean as plants that bum natural gas.

Bajura, R.A.; Schmidt, D.K.

1993-06-01T23:59:59.000Z

323

Great Plains Gasification Associates. Quarterly technical and environmental report, Great Plains coal gasification project, Mercer County, North Dakota, second quarter, 1983  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet Great Plains Gasification Associate's start-up and coal delivery dates as well as the completion of the pipeline. Home Office engineering is essentially complete for the Plant. The remaining engineering tasks will involve field support activities and special projects. A substantial amount of construction progress was achieved during the second quarter. Although construction is still slightly behind schedule for the Plant, it is currently forecasted that construction will be back on schedule by the end of October, 1983. Start-up activities are continuing at a rapid pace. The current emphasis is on precommissioning planning and the development and implementation of the computer systems required to run the plant. Mine development activities remain on schedule. Almost all of the environmental permitting for the construction phase is complete. Engineering for the pipeline is complete. Construction started this quarter and should be completed by August 15, 1983.

Not Available

1983-01-01T23:59:59.000Z

324

Great Plains gasification project  

SciTech Connect

This paper describes organizational and research work on a coal gasification project which is based on North Dakota lignite. Many design changes have been incorporated into this plant, which is now being built after years of delay due to environmental, financial, and regulatory problems. Engineering and operational details are given for a project designed for conversion of 22,000 tons/day of liquid into fuel gas and several by products. Economic considerations are included.

Kuhn, A.K.

1982-04-01T23:59:59.000Z

325

Rapid gasification of nascent char in steam atmosphere during the pyrolysis of Na- and Ca-ion-exchanged brown coals in a drop-tube reactor  

Science Conference Proceedings (OSTI)

Several recent studies on in situ steam gasification of coal suggest a possibility of extremely fast steam gasification of char from rapid pyrolysis of pulverized brown coal. The unprecedented rate of char steam gasification can be achieved by exposing nascent char, that is, after tar evolution (temperature range >600{sup o}C), but before devolatilization (coal samples, that is, H-form coal with Na/Ca contents coal with Na content = 2.8 wt % and Ca-form coal with Ca content = 3.2 wt %. These samples were pyrolyzed in an atmospheric drop-tube reactor at a temperature of 900{sup o}C, inlet steam concentration of 50 vol. %, and a particle residence times of 2.8 s. The char yields from the pyrolysis of Na-form and Ca-form coals were as low as 12 and 33% on the respective coal carbon bases, and accounted for only 18 and 53% of the char yields from the full devolatilization of the respective coals at 900{sup o}C. In addition, the pyrolysis also consumed as much as 0.7-1.1 mol of H{sub 2}O per mol of coal C. On the other hand, the nascent char from the H-form coal allowed carbon deposition from the nascent tar, resulting in a char yield as high as 115% of that from the full devolatilization. The chars from the Na-form and Ca-form coals also acted as catalysts for steam reforming of tar, which was evidenced by significant negative synergistic effects of blending of H-form coal with Na-form coal or Ca-form coal on the tar and soot yields. 57 refs., 6 figs.

Ondej Maek; Sou Hosokai; Koyo Norinaga; Chun-Zhu Li; Jun-ichiro Hayashi [Hokkaido University, Kita-ku (Japan). Center for Advanced Research of Energy Conversion Materials

2009-09-15T23:59:59.000Z

326

Gasification is used to convert a solid feedstock, such as coal...  

NLE Websites -- All DOE Office Websites (Extended Search)

can be captured and disposed of or converted to useful products more easily with gasification-based technologies compared to conventional combustion of solid feedstocks....

327

Short residence time coal liquefaction process including catalytic hydrogenation  

DOE Patents (OSTI)

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

1982-05-18T23:59:59.000Z

328

Short residence time coal liquefaction process including catalytic hydrogenation  

DOE Patents (OSTI)

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-05-18T23:59:59.000Z

329

NETL: Coal & Coal Biomass to Liquids - Project Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information CoalBiomass Feed and Gasification Development of Biomass-Infused Coal Briquettes for Co-Gasification FE0005293 Development of Kinetics and Mathematical...

330

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage in Coal to Electrical Applications Usage in Coal to Electrical Applications The Integrated Gasification Combined Cycle (IGCC) application of gasification offers some water-saving advantages over other technologies for producing electricity from coal. Regions with limited water resources, typical of many parts of the western United States, could conserve resources by meeting increasing electricity demand with IGCC generation. Many of these areas have good coal resources and a need for new generating capacity. Water use in a thermoelectric power plant is described by two separate terms: water withdrawal and water consumption. Water withdrawal is the amount of water taken into the plant from an outside source. Water consumption refers to the portion of the withdrawn water that is not returned directly to the outside source - for example, water lost to evaporative cooling.

331

Gasification system  

DOE Patents (OSTI)

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1983-01-01T23:59:59.000Z

332

Gasification system  

DOE Patents (OSTI)

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1985-01-01T23:59:59.000Z

333

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

334

Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, third quarter 1984  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet Great Plains Gasification Associates (GPGA's) full gas production date. Gasification Plant - Detailed engineering is complete. Construction is 99% complete. Start-up operations are proceeding well. SNG was delivered to the product pipeline this quarter. The only remaining plant permit is the Permit to Operate, which is expected to be issued in late 1985. Quality Assurance/Quality Control Activities included major equipment inspections, further development of welding procedures, and continuation of the corrosion control/materials evaluation program. Freedom mine development activities remain on schedule.

Not Available

1984-09-01T23:59:59.000Z

335

Advanced coal-gasification technical analyses. Appendix 3: technical/economic evaluations. Final report, December 1982-September 1985  

Science Conference Proceedings (OSTI)

This document contains the final report on four tasks performed by KRSI as part of the Advanced Coal Gasification Technical Analysis contract with GRI. It provides extensive, consistent technical and economic information regarding application of (1) Lurgi gasification, (2) Westinghouse (now KRW) gasification, and (3) Direct Methanation (with Lurgi gasifiers) processes to produce SNG from North Dakota lignite. The results of Lurgi and Westinghouse studies were used to develop a plant size vs. cost-of-SNG relationship. The report on each task consists of a block flow diagram, component material balance, process flow sheets showing operating conditions and principal equipment in each major process area, a narrative process description, utility balances, plant efficiency calculations, documentation of design and cost-estimation basis and an economic analysis performed in accordance with the GRI Guidelines. Economic analysis consisted of capital-cost breakdown according to plant areas, variable operating and maintenance costs, and calculation of levelized, constant-dollar cost-of-gas with and without process development allowances (PDA). The sensitivities of the gas cost to major variables are presented in graphical form. For the plant size vs. cost-of-SNG task, similar information is provided at eight different plant capacities based on both Lurgi or Westinghouse gasifiers.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

336

High Temperature Electrochemical Polishing of H(2)S from Coal Gasification. Quarterly progress report, April 1-June 30, 1997  

DOE Green Energy (OSTI)

An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the exiting syngas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation.

Winnick, J.

1997-12-31T23:59:59.000Z

337

Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal  

SciTech Connect

The fate of carbon particles during entrained-flow gasification of coal in the slagging regime is analyzed. More specifically, the study addresses the relevance of segregation of carbon particles in a near-wall region of the gasifier to coal conversion. Segregation of carbon particles is analyzed considering the effects of turbulence- and swirl-promoted particle migration toward the wall, interaction of the impinging particles with the wall ash layer, coverage of the slag layer by refractory carbon particles, accumulation of carbon particles in a dense-dispersed phase near the wall of the gasifier. Operating conditions of the gasifier and slag properties may be combined so as to give rise to a variety of conversion regimes characterized by distinctively different patterns of carbon particles segregation. A simple 1D model of an entrained-flow gasifier has been developed based on the conceptual framework of carbon particle segregation. The model aims at providing a general assessment of the impact of the different patterns of carbon particle segregation on the course and extent of carbon gasification. A sensitivity analysis with reference to selected model parameters is performed to identify key processes controlling carbon segregation and their impact on the gasifier performance. (author)

Montagnaro, Fabio [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, 80126 Napoli (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II and Istituto di Ricerche sulla Combustione, CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

2010-05-15T23:59:59.000Z

338

Higgins coal gasification/repowering study: feasibility study for alternate fuels. [Higgins power plant, Pinellar County, Florida  

Science Conference Proceedings (OSTI)

In 1978, FPC determined that repowering the existing 138 MW Higgins power plant would provide the most economical means for meeting immediate additional power requirements. The use of an integrated coal gasification combined cycle power plant offered the opportunity to revive the Higgins repowering concept without potential Fuel Use Act restrictions. The existing Higgins power plant is located at the north end of Tampa Bay on Booth Point, near the City of Oldsmar in Pinellas County, Florida. The basis for this feasibility study is to prepare a preliminary facility design for repowering the existing Higgins plant steam turbine generators utilizing coal gasification combined cycle (CGCC) technology to produce an additional 300 MW of power. The repowering is to be accomplished by integrating British Gas/Lurgi slagging gasifiers with combined cycle equipment consisting of new combustion turbines and heat recovery steam generators (HRSGs), and the existing steam turbines. The proposed CGCC facility has been designed for daily cyclic duty. However, since it was anticipated that the heat rate would be lower than at other existing FPC units, the CGCC facility has also been designed with base load operation capabilities.

Not Available

1981-12-01T23:59:59.000Z

339

Clean Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Clean Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and...

340

THE EFFECT OF COAL CHAR ON THE CORROSION OF 304 SS  

E-Print Network (OSTI)

of Materials for Coal Gasification Applications". of Highcommercially proven coal gasification processes exist. Theseprocesses. more efficient gasification Much of this work is

Foerster, Thomas Friedrich Wilhelm

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

COAL LIQUEFACTION USING ZINC CHLORIDE CATALYST IN AN EXTRACTING SOLVENT MEDIUM  

E-Print Network (OSTI)

Conference on Coal Gasification, Lique- faction, andInternational Symposium on Gasification and Liquefaction,coal, go to a gasification facility for conversion to

Gandhi, Shamim Ahmed

2013-01-01T23:59:59.000Z

342

Cost of New Integrated Gasification Combined Cycle (IGCC) Coal Electricity Generation...................... 17  

E-Print Network (OSTI)

Abstract: Future demand for electricity can be met with a range of technologies, with fuels including coal, nuclear, natural gas, biomass and other renewables, as well as with energy efficiency and demand management approaches. Choices among options will depend on factors including capital cost, fuel cost, market and regulatory uncertainty, greenhouse gas emissions, and other environmental impacts. This paper estimates the costs of new electricity generation. The approach taken here is to provide a transparent and verifiable analysis based mainly on recent data provided

Seth Borin; Todd Levin; Valerie M. Thomas; Seth Borin; Todd Levin; Valerie M. Thomas

2010-01-01T23:59:59.000Z

343

A new approach to the application of the classic methods of physicochemical kinetics in the analysis of the efficiency of plasma technology of coal gasification  

SciTech Connect

This work is devoted to the problem of improving the efficiency of new plasma technologies of coal combustion that have minimum negative environmental impact. In particular, the authors consider a general method of formulating and solving the inverse kinetic problem to elucidate advantages of plasma gasification.

Karpenko, E.I.; Devyatov, B.N. [Kutateladze Inst. of Thermal Physics, Novosibirsk (Russian Federation)

1995-07-01T23:59:59.000Z

344

Technical and economic assessment of the IGT peat-gasification process. Engineering support services for the DOE/GRI Coal Gasification Research Program  

SciTech Connect

Kellogg has completed a moderately detailed design and cost estimate of a 250 billion Btu/Day grass-roots SNG plant using the Peatgas process. Results indicate that the cost of SNG would be $4.40/MM Btu, using a cost of $1.50/MM Btu for peat feedstock at 50% moisture. The SNG cost is reasonably competitive with that currently estimated for SNG from coal, and Kellogg would anticipate that capital cost reductions, via design optimization, could reduce the NSG cost to a level which is quite competitive. The cost of peat feedstock is a critical area of concern in evaluating economics of the Peatgas process. The value chosen for the base-case economics ($1.50/MM Btu) is in the higher portion of the price range considered typical by most investigators; the price of $1.50/MM Btu was chosen arbitrarily to represent a 50% increase over the cost of coal ($1.00/MM Btu) used by Kellogg in parallel studies, to reflect higher costs for land use and reclamation and for harvesting and dewatering of peat. In a study concurrent with that reported here, Kellogg found that one method of wet harvesting and mechanical/thermal dewatering yields a peat (50% moisture) cost which is unfavorably high and was therefore rejected for use as a base-case cost since much cheaper feedstock is apparently available by other harvesting/dewatering methods. The base-case cost of SNG is moderate somewhat by the values placed on the benzene and oil coproducts (i.e., $1.10 and $0.75 per gallon, respectively). The total of such credits amounts to about 39% of the gross operating cost; a reduction in value of the coproducts would adversely affect the cost of SNG. Certain technical factors are discussed: materials handling problems, high reactivity, low sulfur content, and limited gasification data.

Bostwick, L.E.; Hubbard, D.A.; Laramore, R.W.; Senules, E.A.; Shah, K.V.

1981-04-01T23:59:59.000Z

345

Gasification Users Association Update Newsletter: June 2009 Issue  

Science Conference Proceedings (OSTI)

The GUA Update is published quarterly. The following articles are featured in this issue of Gasification Users Association (GUA) Update: US Energy & Climate AgendaStimulus Package Ongoing US Energy Program Updates European Union Plans Support of Multiple CCS Projects US IGCC and Gasification Project Updates International IGCC and Gasification Projects US Coal to SNG Projects Coal to Liquids (CTL) Underground Coal Gasification

2009-07-27T23:59:59.000Z

346

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOE Patents (OSTI)

A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

McIntosh, Michael J. (Bolingbrook, IL); Arzoumanidis, Gregory G. (Naperville, IL)

1997-01-01T23:59:59.000Z

347

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOE Patents (OSTI)

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

McIntosh, M.J.; Arzoumanidis, G.G.

1997-09-02T23:59:59.000Z

348

A method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOE Patents (OSTI)

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

McIntosh, M.J.; Arzoumanidis, G.G.

1995-12-31T23:59:59.000Z

349

NETL: Gasifipedia - What is Gasification?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Background Gasification Background Drivers for Gasification Technology The need for low-cost power produced in an environmentally sound way is certain, even if the future of regulations limiting the emission and/or encouraging the capture of CO2, and the price and availability of natural gas and oil are not. Gasification is not only capable of efficiently producing electric power, but a wide range of liquids and/or high-value chemicals (including diesel and gasoline for transportation) can be produced from cleaned syngas, providing the flexibility to capitalize on a range of dynamic changes to either domestic energy markets or global economic conditions. Polygeneration-plants that produce multiple products-is uniquely possible with gasification technologies. Continued advances in gasification-based technology will enable the conversion of our nation's abundant coal reserves into energy resources (power and liquid fuels), chemicals, and fertilizers needed to displace the use of imported oil and, thereby, help mitigate its high price and security supply concerns and to support U.S. economic competitiveness with unprecedented environmental performance.

350

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

351

Gasification Â… Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

th th Annual International Colloquium on Environmentally Preferred Advanced Power Generation, Costa Mesa, CA, February 7, 2012 An Overview of U.S. DOE's Gasification Systems Program Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 U.S. Coal Resources Low rank: lignite and sub-bituminous coal - About 50% of the U.S. coal reserves - Nearly 50% of U.S. coal production - Lower sulfur Bituminous coal

352

Coal Gasification - section in Kirk-Othmer Concise Encyclopedia of Chemical Technology, 5th Edition, 2-vol. set, July 2007, ISBN 978-0-470-04748-4, pp. 580-587  

Science Conference Proceedings (OSTI)

Coal gasification is the process of reacting coal with oxygen, steam, and carbon dioxide to form a product gas containing hydrogen and carbon monoxide. Gasification is essentially incomplete combustion. The chemical and physical processes are quite similar, the main difference being the nature of the final products. From a processing point of view the main operating difference is that gasification consumes heat evolved during combustion. Under the reducing environment of gasification the sulfur in the coal is released as hydrogen sulfide rather than sulfur dioxide and the coal's nitrogen is converted mostly to ammonia rather than nitrogen oxides. These reduced forms of sulfur and nitrogen are easily isolated, captured, and utilized, and thus gasification is a clean coal technology with better environmental performance than coal combustion. Depending on the type of gasifier and the operating conditions, gasification can be used to produce a fuel gas suitable for any number of applications. A low heating value fuel gas is produced from an air blown gasifier for use as an industrial fuel and for power production. A medium heating value fuel gas is produced from enriched oxygen blown gasification for use as a synthesis gas in the production of chemicals such as ammonia, methanol, and transportation fuels. A high heating value gas can be produced from shifting the medium heating value product gas over catalysts to produce a substitute or synthetic natural gas (SNG).

Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

2007-07-01T23:59:59.000Z

353

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifipedia > Feedstock Flexibility > Refinery Streams Gasifipedia > Feedstock Flexibility > Refinery Streams Gasifipedia Coal: Feedstock Flexibility Refinery Streams Gasification is a known method for converting petroleum coke (petcoke) and other refinery waste streams and residuals (vacuum residual, visbreaker tar, and deasphalter pitch) into power, steam and hydrogen for use in the production of cleaner transportation fuels. The main requirement for a gasification feedstock is that it contains both hydrogen and carbon. Below is a table that shows the specifications for a typical refinery feedstock. Specifications for a typical refinery feedstock A number of factors have increased the interest in gasification applications in petroleum refinery operations: Coking capacity has increased with the shift to heavier, more sour crude oils being supplied to the refiners.

354

Thermo-gravimetric analysis of CO? induced gasification upon selected coal/biomass chars and blends.  

E-Print Network (OSTI)

??The objective of the study was to gasify coal and biomass chars alone and to gasify mixtures of 10:90 and 30:70 biomass to coal ratios.… (more)

Parenti, Joshua A.

2009-01-01T23:59:59.000Z

355

Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Fourth quarter progress report, July 1-September 30, 1982  

Science Conference Proceedings (OSTI)

The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Technical progress summaries and reports are presented for the following tasks: (1) process development unit (PDU) test operations and results (gasifier test TP-033-1 and maintenance and modifications); (2) process analysis (environmental characterization results, coal gas combustion results, and fines elutriation and consumption results); (3) cold flow scaleup (modifications and maintenance, operations, and data analysis); (4) process and component engineering and design (hot fines recycle modifications, and hot recycled fines); (5) laboratory support studies (gas-solids flow modeling and coal/ash behavior). 23 figures, 23 tables.

None

1983-02-17T23:59:59.000Z

356

CoalFleet Integrated-Gasification-Combined-Cycle (IGCC) Permitting Guidelines  

Science Conference Proceedings (OSTI)

EPRIs CoalFleet for Tomorrow Program was formed to accelerate the deployment and commercialization of clean, efficient, advanced coal-fired power systems. During the planning and construction of these power systems, facility owners must obtain permits for plant construction and operation, discharge of pollutants to air and water, land and water use, and other areas of regulatory control. Such permits must be negotiated with regulators who are often not familiar with advanced coal technologies. These Coal...

2007-12-20T23:59:59.000Z

357

The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

Mastellone, Maria Laura, E-mail: mlaura.mastellone@unina2.it [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy); Zaccariello, Lucio; Santoro, Donato; Arena, Umberto [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy)

2012-04-15T23:59:59.000Z

359

Hanna, Wyoming underground coal gasification data base. Volume 4. Hanna II, Phases II and III field test research report  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phases II and III, were conducted during the winter of 1975 and the summer of 1976. The two phases refer to linking and gasification operations conducted between two adjacent well pairs as shown in Figure 1 with Phase II denoting operations between Wells 5 and 6 and Phase III operations between Wells 7 and 8. All of the other wells shown were instrumentation wells. Wells 7 and 8 were linked in November and December 1975. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 16 refs., 21 figs., 17 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

360

Phased Construction of Natural Gas Combined-Cycle Plants with Coal Gasification and CO2 Recovery  

Science Conference Proceedings (OSTI)

This report is a brief review of technologies and key issues involved in a phased construction approach for a low-emission integrated-gasification-combined-cycle (IGCC) plant where carbon dioxide (CO2) removal for use or sequestration can be added at a later date.

2002-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evaluation of the Stretford Unit at the Great Plains Coal Gasification Plant  

SciTech Connect

This report gives the results of an evaluation of the design and operational characteristics of the Stretford Sulfur Recovery Unit installed in the Great Plains Gasification Project, Beulah, North Dakota. The report contains discussion of the H/sub 2/S removal capability of the unit, the potential of solids deposition and the expected solution losses. 11 refs., 7 figs., 2 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

362

Gasification Users Association (GUA) Update, September 2011  

Science Conference Proceedings (OSTI)

The Gasification Users Association (GUA) Update is published quarterly. The following articles are featured in this issue: Quarterly Summary Ongoing U.S. Energy Program Updates European Union Plans Support of Multiple CCS Projects News Items on Operating IGCC Plants U.S. IGCC Project Updates International IGCC Project Updates International Gasification Projects for Chemicals Biomass and Waste Gasification Projects Coal to SNG Coal to Liquids (CTL) Gas to Liquids (GTL) Underground Coal Gasification (U...

2011-10-07T23:59:59.000Z

363

Gasification Users Association - Technology Status - December 2011  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China where national policy has established a major coal-to-chemicals industry and plans to add major plants for coal-to-substitute natural gas (SNG) and coal-to-liquid transportation fuels in the next five-year plan. Gasification is also being deployed to some extent in other Asian countries (for example, Korea and India) and elsewhere. Gasification tech...

2011-12-30T23:59:59.000Z

364

Gasification Users Association: Technology Status - December 2012  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coal–to–chemicals industry and plans to add major coal–to–substitute natural gas and coal–to–liquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology ...

2012-12-31T23:59:59.000Z

365

Behavior of mineral matters in Chinese coal ash melting during char-CO{sub 2}/H{sub 2}O gasification reaction  

SciTech Connect

The typical Chinese coal ash melting behavior during char-CO{sub 2}/H{sub 2}O gasification reaction was studied by using TGA, XRD, and SEM-EDX analysis. It was found that ash melting behavior during char gasification reaction is quite different from that during coal combustion process. Far from the simultaneously ash melting behavior during coal combustion, the initial melting behavior of ash usually occurs at a middle or later stage of char-CO{sub 2}/H{sub 2}O reaction because of endothermic reaction and more reactivity of char gasification reaction as compared with that of mineral melting reactions in ash. In general, the initial melting temperature of ash is as low as 200-300 K below the deformation temperature (T{sub def}) of ash with ASTM test. The initial molten parts in ash are mainly caused by iron bearing minerals such as wustite and iron-rich ferrite phases under gasification condition. Along with the proceeding of ash melting, the melting behavior appears to be accelerated by the presence of calcium to form eutectic mixtures in the FeO-SiO{sub 2}-Al{sub 2}O{sub 3} and CaO-SiO{sub 2}-Al{sub 2}O{sub 3} system. The different states of iron are the dominant reason for different melting behaviors under gasification and combustion conditions. Even under both reducing conditions, the ash fusion temperature (AFT) of coal under char-CO{sub 2} reaction is about 50-100 K lower than that under char-H{sub 2}O reaction condition. The main reason of that is the higher content of CO under char-CO{sub 2} reaction, which can get a lower ratio of Fe{sup 3+}/{Sigma}Fe in NaO-Al{sub 2}O{sub 3}-SiO{sub 2}-FeO melts. 38 refs., 8 figs., 4 tabs.

Xiaojiang Wu; Zhongxiao Zhang; Guilin Piao; Xiang He; Yushuang Chen; Nobusuke Kobayashi; Shigekatsu Mori; Yoshinori Itaya [University of Shanghai for Science & Technology, Shanghai (China). Department of Power Engineering

2009-05-15T23:59:59.000Z

366

ASPEN physical property evaluation for Great Plains simulation. Great Plains ASPEN model development. [Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report documents the steps taken to evaluate the pure component properties in the ASPEN data bank for those compounds required to simulate the Great Plains Coal Gasification Plant where the compounds are also available in the DIPPR (Design Institute for Physical Property Data) data bank. DIPPR is a cooperative effort of industry, institutes and federal agencies interested in the compilation, measurement and evaluation of physical property data for industrially important compounds. It has been found that the ASPEN data bank is for the most part reliable, its main problem being lack of documentation. In the few instances where values were found to be either missing or to be unacceptable, recommended constants or equation parameters are presented in this report along with associated literature citations. In the cases where temperature dependent data were regressed to obtain new equation parameters, the detailed methods employed are also presented.

Millman, M.C.

1983-08-04T23:59:59.000Z

367

CoalFleet User Design Basis Specification for Coal-Based Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

The Duke Edwardsport integrated gasification combined-cycle (IGCC) power plant started up in 2012, and Mississippi Power’s Kemper County IGCC plant is in construction. The capital cost of these initial commercial scale IGCC plants is high. The industry needs specifications that encourage greater standardization in IGCC design in order to bring down the investment cost for the next generation of plants. Standardization also supports repeatable, reliable performance and reduces the time and cost ...

2012-12-12T23:59:59.000Z

368

Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983  

Science Conference Proceedings (OSTI)

KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

None

1987-07-31T23:59:59.000Z

369

Sustainable development with clean coal  

SciTech Connect

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

370

Options for Removing Multiple Pollutants Including CO2 at Existing Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This report is a technical review of the fuel changes and technology options for existing coal-fired power plants in response to potential new requirements for increasingly stringent multi-pollutant air emissions reductions, possibly including carbon dioxide (CO2). Preliminary costing of the major options is included. A database of the U.S. coal-fired power plants has been developed for further, more specific analyses.

2002-10-08T23:59:59.000Z

371

Kinetic analysis of coal and biomass co-gasification with carbon dioxide.  

E-Print Network (OSTI)

??Based on Thermogravimetric Analysis (TGA) experimental data, a kinetic analysis of the Boudouard reaction was studied for three different coal chars, three different biomass chars,… (more)

Bu, Jiachuan.

2009-01-01T23:59:59.000Z

372

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

373

CE IGCC repowering project: Materials for coal gasification environment. Topical report, June 1993  

Science Conference Proceedings (OSTI)

A task to develop material requirements and a materials testing strategy was established with the Materials and Water Chemistry Department of the ABB Power plant Laboratories. This involved examining the requirements for each system under ABB CE scope. The basis for the material recommendations was largely based on in-house test programs under DOE contract and ABB CE experience. Consultants were utilized in a parallel task to assist in the design and material specification for the solids handling systems. ABB CE experience includes operating data from a former process development unit (PDU) located in Windsor, Connecticut. The unit gasified Pittsburgh seam coal at a nominal firing rate of 120 tons per day. The objectives of the program were to produce clean, low-Btu gas from coal, and to provide the design information for scale-up to commercial-size plants. The results of the task were used to specify and, depending on scope, design the equipment used in the plant. A detailed document was developed and used to generate a Metallurgical Flow Diagram. Specifications were developed from this diagram. For the equipment designed, these selections were provided to representatives of cognizant design and manufacturing departments. In addition, where appropriate, recommendations were made for operating procedures and for design changes. Specified materials will be again evaluated during detailed engineering. In some areas the results of the task were not conclusive. Additional investigation will be required. These areas are the types of approaches which can be taken to accommodate product gas sulfidation resistance and solids transport erosion.

Gibbons, T.B.; O`Neill, J.K.; Plumley, A.L.; Thibeault, P.R.; Waryasz, R.W.

1993-10-01T23:59:59.000Z

374

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network (OSTI)

from combustion and gasification of coal – an equilibriumHolysh, M. 2005. Coke Gasification: Advanced technology forfrom a Coal-Fired Gasification Plant. Final Report, December

Apps, J.A.

2006-01-01T23:59:59.000Z

375

Case-study of a coal gasification-based energy supply system for China  

E-Print Network (OSTI)

for biogas or DME, so we assumed the same values for biogas as for coke oven gas (i.e., town gas coal, washed coal and coke, 75 % for petroleum products and town gas, and 90 % for heat. We also synthesis gas and elec- tricity, high-value-added chemicals, high-value-added fu- els for vehicles

376

NETL: Gasification Systems - Gas Cleaning  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

377

Combustion Engineering Integrated Gasification Combined Cycle (IGCC) Repowering Project -- Clean Coal II Project. Annual report, November 20, 1990--December 31, 1991  

SciTech Connect

The IGCC system will consist of CE`s air-blown, entrained-flow, two-stage, pressurized coal gasifier; an advanced hot gas cleanup process; a combustion turbine adapted to use low-Btu coal gas; and all necessary coal handling equipment. The IGCC will include CE`s slogging, entrained-flow, gasifier operating in a pressurized mode and using air as the oxidant. The hot gas will be cleaned of particulate matter (char) which is recycled back to the gasifier. After particulate removal, the product gas will be cleaned of sulfur prior to burning in a gas turbine. The proposed project includes design and demonstration of two advanced hot gas cleanup processes for removal of sulfur from the product gas of the gasifier. The primary sulfur removal method features a newly developed moving-bed zinc ferrite system downstream of the gasifier. The process data from these pilot tests is expected to be sufficient for the design of a full-scale system to be used in the proposed demonstration. A second complementary process is in situ desulfurization achieved by adding limestone or dolomite directly to the coal feed. The benefit, should such an approach prove viable, is that the downstream cleanup system could be reduced in size. In this plant, the gasifier will be producing a low-Btu gas (LBG). The LBG will be used as fuel in a standard GE gas turbine to produce power. This gas turbine will have the capability to fire LBG and natural gas (for start-up). Since firing LBG uses less air than natural gas, the gas turbine air compressor will have extra capacity. This extra compressed air will be used to pressurize the gasifier and supply the air needed in the gasification process. The plant is made of three major blocks of equipment as shown in Figure 2. They are the fuel gas island which includes the gasifier and gas cleanup, gas turbine power block, and the steam turbine block which includes the steam turbine and the HRSG.

1993-03-01T23:59:59.000Z

378

Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications  

DOE Green Energy (OSTI)

Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1, and the H2/CO2 separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H2 with high selectivity; and it was thermally stable. However, silylation decreased H2 permeance more than one order of magnitude. Increasing the membrane feed pressure increased the H2 flux and the H2 mole fraction in the permeate stream for both H2/CO2 and H2/CH4 mixtures. The H2 separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO2/H2 separation selectivities of a SAPO-34 membrane were greater than 100 with CO2 permeances of about 3 x 10-8 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H2 recompression because H2 remained in the retentate stream at a higher pressure. The CO2/H2 separation selectivity exhibited a maximum with CO2 feed concentration possibly caused by a maximum in the CO2/H2 sorption selectivity with increased CO2 partial pressure. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size so its diffusivity (ABSTRACT TRUNCATED)

Mei Hong; Richard Noble; John Falconer

2007-09-24T23:59:59.000Z

379

Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler  

Science Conference Proceedings (OSTI)

This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal sensing to optimize the plant operation during startup pre-heating as well as steady state and transient operation under normal high-pressure conditions, e.g. part-load, base-load, load transition and fuel changes. The MPC simulation studies showed significant improvements both for startup pre-heating and for normal operation. Finally, the EKF and MPC solutions were coupled to achieve the integrated sensing and control solution and its performance was studied through extensive steady state and transient simulations in the presence of sensor and modeling errors. The results of each task in the program and overall conclusions are summarized in this final report.

Aditya Kumar

2010-12-30T23:59:59.000Z

380

Gasification Users Association Update Newsletter: Sept 2009 Issue  

Science Conference Proceedings (OSTI)

The GUA Update is published quarterly. The following articles are featured in this issue of Gasification Users Association (GUA) Update: International Support for CO2 Capture & Sequestration (CCS) Ongoing US Energy Program Updates European Union Plans Support of Multiple CCS Projects US IGCC and Gasification Project Updates US Biomass and Waste Gasification Projects International IGCC and Gasification Projects US Coal to SNG Projects Coal to Liquids (CTL) Underground Coal Gasification New IGCC/Ga...

2009-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of high energy density fuels from mild gasification of coal. Final report  

SciTech Connect

METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

Not Available

1991-12-01T23:59:59.000Z

382

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

383

Great Plains coal gasification project. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, September 12, 1988  

Science Conference Proceedings (OSTI)

The hearing was called to review the announcement by the Department of Energy that it has selected Basin Electric Power Cooperative of Bismarck, North Dakota, as the preferred buyer for the Great Plains Coal Gasification Plant. The plant produces 142 billion standard cubic feet of synthetic natural gas per day from lignite coal plus several byproducts which are marketed. The hearing examines the bids of the finalists, the composition of the trust funds, the status of the siting permits, questions of air quality, employee retirement funds and employee benefits, and the ability of the successful bidder to pursue byproduct development and marketing. Testimony was heard from 7 witnesses.

Not Available

1989-01-01T23:59:59.000Z

384

Advanced Concepts in Slurry-Fed Low-Rank Coal Gasification  

Science Conference Proceedings (OSTI)

After an initial scouting study (described in Electric Power Research Institute [EPRI] Technical Update 1014432) revealed that using liquid CO2 in place of water in coal slurries could have several beneficial effects on integrated-gasificationcombined-cycles (IGCCs) employing CO2 capture, EPRI's Program on Technology Innovation funded additional work on this subject. This report summarizes the results of rheological testing performed with slurries made from liquid CO2 and two types of subbituminous coal ...

2008-09-14T23:59:59.000Z

385

Coal gasification system with a modulated on/off control system  

DOE Patents (OSTI)

A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

386

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wabash River Coal Gasification Repowering Project - Project Brief PDF-250KB Wabash River Coal Gasification Repowering Project Joint Venture West Terre Haute, IN Program...

387

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mild Gasification ENCOAL Mild Coal Gasification Project - Project Brief PDF-279KB ENCOAL Corporation, Gillette, WY PROGRAM PUBLICATIONS Final Reports ENCOAL Mild Coal...

388

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

389

FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first two projects years, significant progress was made on most of the tasks, as described in detail in the two previous annual reports. In the current third annual report, we report in detail on the BYU task on the properties and intrinsic reactivities of chars prepared at high-pressure. A flat-flame burner was used in a high pressure laminar flow facility to conduct high temperature, high heating rate coal pyrolysis experiments. Heating rates were approximately 10{sup 5} K/s, which is higher than in conventional drop tube experiments. Char samples from a Pitt No.8 coal and lignite were collected at 1300 C at 1, 6, 10, and 15 atm. Swelling ratios of the lignite were less than 1.0, and only about 1.3 for the Pitt No.8 coal. All coals showed slight increases in swelling behavior as pressure increased. The swelling behavior observed for the Pitt No.8 coal at each pressure was lower than reported in high pressure drop tube experiments, indicating the effect of heating rate on particle swelling. This heating rate effect was similar to that observed previously at atmospheric pressure. SEM photos revealed that bituminous coal has large physical structure transformations, with popped bubbles due to the high heating rate. TGA char oxidation reactivities were measured at the same total pressure as the char preparation pressure. The general trend was that the TGA reactivity on a gram per gram available basis decreased for both Pitt No.8 and Knife River lignite coal chars with increasing char formation pressure. The Pitt No.8 char intrinsic activation energy and oxygen reaction order remained relatively constant with increasing pressure. This new data provides some of the only information available on the morphology, structure, and reactivity of chars prepared in high pressure flames.

Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

2004-01-01T23:59:59.000Z

390

Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer  

E-Print Network (OSTI)

Concentrated animal feeding operations such as cattle feedlots and dairies produce a large amount of manure, cattle biomass (CB), which may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. However, the concentrated production of low quality CB at these feeding operations serves as a good feedstock for in situ gasification for syngas (CO and H2) production and subsequent use in power generation. A small scale (10 kW) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were also studied for comparison purposes. In addition, chlorinated char was also produced via pure pyrolysis of DB using N2 and N2-steam gas mixtures. The chlorinated char is useful for enhanced capture of Hg in ESP of coal fired boilers. Two main parameters were investigated in the gasification studies with air-steam mixtures. One was the equivalence ratio ER (the ratio of stochiometric air to actual air) and the second was the steam to fuel ratio (S:F). Prior to the experimental studies, atom conservation with i) limited product species and ii) equilibrium modeling studies with a large number of product species were performed on the gasification of DB to determine suitable range of operating conditions (ER and S:F ratio). Results on bed temperature profile, gas composition (CO, CO2, H2, CH4, C2H6, and N2), gross heating value (HHV), and energy conversion efficiency (ECE) are presented. Both modeling and experimental results show that gasification under increased ER and S:F ratios tend to produce rich mixtures in H2 and CO2 but poor in CO. Increased ER produces gases with higher HHV but decreases the ECE due to higher tar and char production. Gasification of DB under the operating conditions 1.59less than0.8 yielded gas mixtures with compositions as given below: CO (4.77 - 11.73 %), H2 (13.48 - 25.45%), CO2 (11-25.2%), CH4 (0.43-1.73 %), and C2H6 (0.2- 0.69%). In general, the bed temperature profiles had peaks that ranged between 519 and 1032 degrees C for DB gasification.

Gordillo Ariza, Gerardo

2009-08-01T23:59:59.000Z

391

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

DOE Green Energy (OSTI)

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

2009-09-30T23:59:59.000Z

392

Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy  

Science Conference Proceedings (OSTI)

Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2009-03-15T23:59:59.000Z

393

Integrated Gasification Combined Cycle (IGCC) Design Considerations for CO2 Capture and Storage (CCS)  

Science Conference Proceedings (OSTI)

The objectives of this research were to assess the performance and costs of coal-fired integrated gasification combined cycle (IGCC) power plants with Greenfield and retrofitted carbon dioxide (CO2) capture. The study is part of the CoalFleet Program, a collaborative research and development program that promotes deployment of advanced coal technologies, including IGCC, ultrasupercritical pulverized, oxy-fuel combustion, and supercritical circulating fluidized bed technologies. Two types of coalPittsburg...

2010-10-01T23:59:59.000Z

394

Proceedings: Conference on Coal Gasification Systems and Synthetic Fuels for Power Generation, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

The international effort to develop synthetic fuels and advanced power systems for the commercial generation of electric power from coal, oil shale, and tar sands has been an outstanding technical success. This conference highlighted the work that brought new fuels and power generation systems to reality.

1986-01-01T23:59:59.000Z

395

Novel Low-Cost Process for the Gasification of Biomass and Low-Rank Coals  

DOE Green Energy (OSTI)

Farm Energy envisaged a phased demonstration program, in which a pilot-scale straw gasifier will be installed on a farm. The synthesis gas product will be used to initially (i) generate electricity in a 300 kW diesel generator, and subsequently (ii) used as a feedstock to produce ethanol or mixed alcohols. They were seeking straw gasification and alcohol synthesis technologies that may be implemented on farm-scale. The consortium, along with the USDA ARS station in Corvallis, OR, expressed interest in the dual-bed gasification concept promoted by WRI and Taylor Energy, LLC. This process operated at atmospheric pressure and employed a solids-circulation type oxidation/reduction cycle significantly different from traditional fluidized-bed or up-draft type gasification reactors. The objectives of this project were to perform bench-scale testing to determine technical feasibility of gasifier concept, to characterize the syngas product, and to determine the optimal operating conditions and configuration. We used the bench-scale test data to complete a preliminary design and cost estimate for a 1-2 ton per hour pilot-scale unit that is also appropriate for on-farm scale applications. The gasifier configuration with the 0.375-inch stainless steel balls recirculating media worked consistently and for periods up to six hours of grass feed. The other principle systems like the boiler, the air pump, and feeder device also worked consistently during all feeding operations. Minor hiccups during operation tended to come from secondary systems like the flare or flammable material buildup in the exit piping. Although we did not complete the extended hour tests to 24 or 48 hours due to time and budget constraints, we developed the confidence that the gasifier in its current configuration could handle those tests. At the modest temperatures we operated the gasifier, slagging was not a problem. The solid wastes were dry and low density. The majority of the fixed carbon from the grass ended up in the solid waste collected in the external cyclone. The volatiles were almost all removed in the gasifier. While the average gas heating value of the collected gas products was 50 BTUs/scf or less, addition a of the second gas exit for combustion gases would increase that value by a factor of two or three. Other changes to the current design such as shortening the gasifier body and draft tube would lead to lower air use and shorter heating times. There was no evidence of steam reforming at the current operating temperature. Likewise there was no indication of significant tar production. Reconfiguration of the gasifier at the on farm site may yet yield more significant results that would better qualify this gasifier for small scale biomass operations.

Thomas Barton

2009-03-05T23:59:59.000Z

396

CORROSION OF Fe-10Al-Cr ALLOYS BY COAL CHAR  

E-Print Network (OSTI)

are problems in coal-gasification because at the reactionthe particulate by-product of gasification is char, a light.

Gordon, B.A.

2011-01-01T23:59:59.000Z

397

2010 Worldwide Gasification Database  

DOE Data Explorer (OSTI)

The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers. [Copied from http://www.netl.doe.gov/technologies/coalpower/gasification/worlddatabase/index.html

398

Materials Testing in a Syngas Cooler of a Coal Gasification Plant  

Science Conference Proceedings (OSTI)

As part of an ongoing study of the corrosion of metallic alloys, several steels and protective coatings were exposed for up to 17,000 hrs in a syngas cooler of a coal-slurry-fed, entrained slagging gasifier. The materials suffered from corrosion during high-temperature service as well as during shutdown. Stainless steels containing molybdenum and low-alloy steels protected by a silicon-carbide refractory showed promising low corrosion rates, which decreased with increasing service time.

1996-05-03T23:59:59.000Z

399

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioning Conditioning Sulfur Recovery and Tail Gas Treating Sulfur is a component of coal and other gasification feed stocks. Sulfur compounds need to be removed in most gasification applications due to environmental regulations or to avoid catalyst poisoning. Whether it is electricity, liquid fuels, or some other product being output, sulfur emissions are regulated, and sulfur removal is important for this reason, along with the prevention of downstream component fouling. In addition to these constraints, recovering saleable sulfur is an important economic benefit for a gasification plant. To illustrate the previous point, in 2011 8.1 million tons of elemental sulfur was produced, with the majority of this coming from petroleum refining, natural gas processing and coking plants. Total shipments were valued at $1.6 billion, with the average mine or plant price of $200 per ton, up from $70.48 in 2010. The United States currently imports sulfur (36% of consumption, mostly from Canada), meaning the market can support more domestic sulfur production.

400

Hydrometallurgical recovery of germanium from coal gasification fly ash. Solvent extraction method  

Science Conference Proceedings (OSTI)

This article is concerned with a simple hydrometallurgical method for the selective recovery of germanium from fly ash (FA) generated in an integrated gasification with combined cycle (IGCC) process. The method is based on the leaching of FA with water and a subsequent concentration and selective separation of germanium by a solvent method. Regarding the leaching step, the different operational conditions studied were liquid/solid (L/S) ratio and time of contact. The solvent extraction method was based on germanium complexation with catechol (CAT) in an aqueous solution followed by the extraction of the Ge-CAT complex with an extracting organic reagent diluted in an organic solvent. The main factors examined during the extraction tests were aqueous phase/organic phase (AP/OP) volumetric ratio, aqueous phase pH, amounts of reagents, and time of contact. Germanium extraction yields were higher than 90%. Alkaline and acid stripping of organic extracts were studied obtaining the best results with 1M NaOH (85%). A high-purity germanium solution was obtained. Experimental data presented in this work show that the extraction of germanium by the solvent method designed can be selective toward germanium, and this element can be effectively separated from arsenic, molybdenum, nickel, antimony, vanadium, and zinc.

Arroyo, F.; Fernandez-Pereira, C. [University of Seville, Seville (Spain)

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "includes coal gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation  

Science Conference Proceedings (OSTI)

In this article, a hydrometallurgical method for the selective recovery of germanium from fly ash (FA) has been tested at pilot plant scale. The pilot plant flowsheet comprised a first stage of water leaching of FA, and a subsequent selective recovery of the germanium from the leachate by solvent extraction method. The solvent extraction method was based on Ge complexation with catechol in an aqueous solution followed by the extraction of the Ge-catechol complex (Ge(C{sub 6}H{sub 4}O{sub 2}){sub 3}{sup 2-}) with an extracting organic reagent (trioctylamine) diluted in an organic solvent (kerosene), followed by the subsequent stripping of the organic extract. The process has been tested on a FA generated in an integrated gasification with combined cycle (IGCC) process. The paper describes the designed 5 kg/h pilot plant and the tests performed on it. Under the operational conditions tested, approximately 50% of germanium could be recovered from FA after a water extraction at room temperature. Regarding the solvent extraction method, the best operational conditions for obtaining a concentrated germanium-bearing solution practically free of impurities were as follows: extraction time equal to 20 min; aqueous phase/organic phase volumetric ratio equal to 5; stripping with 1 M NaOH, stripping time equal to 30 min, and stripping phase/organic phase volumetric ratio equal to 5. 95% of germanium were recovered from water leachates using those conditions.

Arroyo, F.; Fernandez-Pereira, C.; Olivares, J.; Coca, P. [University of Seville, Seville (Spain)

2009-04-15T23:59:59.000Z

402

Exxon catalytic coal gasification process: predevelopment program. Monthly report, July 1977  

SciTech Connect

Operation of the catalyst recovery unit continued and water soluble potassium was recovered and recycled to the catalyst addition unit. The recovery of water soluble potassium increased to 94.0%. Approximately 324 hours of material-balanced operations were logged with excellent closures. The longest continuous run lasted over 290 hours. Carbon and steam conversions remained essentially the same as for the June material balance periods. Construction of a digestion unit for secondary catalyst recovery was completed. Bench scale studies of catalyst recovery via water washing were continued. Data confirmed the discovery that exposure of char to air adversely affects catalyst recovery. The effect of residence time on catalyst recovery by water-washing was also investigated. Over the range of conditions investigated, recovery of water-soluble catalyst is independent of residence time. Work continued on the use of Ca(OH)/sub 2/ digestion to recover water-insoluble potassium from gasifier ash/char residue. Recoveries of water-insoluble potassium from unwashed char decreased with a decrease in liquid/char ratio. A simulation of digestion using solutions of recovered catalyst was conducted. Recoveries from these recycle runs are in the same range as recoveries obtained in runs made under the same conditions with fresh 15% KOH solution. Work has continued on the development of the process basis for the Catalytic Gasification Study Design.

Kalina, T.

1977-08-26T23:59:59.000Z

403

Gasification Â… Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Clearwater Clean Coal Conference, Clearwater, Florida, June 5 to 9, 2011 Clearwater Clean Coal Conference, Clearwater, Florida, June 5 to 9, 2011 Gasification Technologies Advances for Future Energy Plants Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 Oxygen Membrane - APCI - 25% capital cost reduction - 5.0% COE reduction Warm Gas Cleaning - RTI in combination with H 2 /CO 2 Membrane - Eltron - 2.9 % pt efficiency increase - 12% COE decrease Oxygen CO 2 H 2 rich stream Water Gas Shift*

404

Power Systems Development Facility Gasification Test Campaign TC22  

SciTech Connect

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

Southern Company Services

2008-11-01T23:59:59.000Z

405

ANNUAL REPORT OCTOBER 1, 1979-SEPTEMBER 30, 1980 CHEMISTRY AND MORPHOLOGY OF COAL LIQUEFACTION  

E-Print Network (OSTI)

effect on its behavior during gasification and liquefactionand observation of the gasification reactions in-situ in anfrom coal instead of gasification to CO and H 2 • Since

Heinemann, Heinz

2013-01-01T23:59:59.000Z

406

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

DOE Green Energy (OSTI)

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30T23:59:59.000Z

407

NETL: Gasification Systems - Advanced Hydrogen Transport Membranes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hydrogen Transport Membranes for Coal Gasification Project No.: DE-FE0004908 Membranes shown (from top to bottom): ceramic support, activated and coated with palladium...

408

NETL: Gasification - Advanced Hydrogen Transport Membranes for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Advanced Hydrogen Transport Membranes for Coal Gasification Praxair Inc. Project Number: FE0004908 Project Description Praxair is conducting research to...

409

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

Fernández-Juricic, Esteban

410

NETL: Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Brochures Gasification Systems Reference Shelf - Brochures The Gasification Technology brochures are as follows: Gasification Plant Databases (Aug 2013) Gasification Systems...

411

Engineering support services for the DOE/GRI Coal Gasification Research Program  

SciTech Connect

The objective of this contract is to provide technical support. During this report period, the support consisted of project management services and the monitoring and evaluation of Foster Wheeler's study on the bioconversion of synthesis gas. The status of this project is summarized in one section of the paper. The Foster Wheeler process involves the bioconversion of coal synthesis gas to SNG or to hydrogen. The design and cost estimation of plants for the SNG process are given. 4 refs., 5 figs., 4 tabs. (CK)

Mazzella, G.

1990-01-01T23:59:59.000Z

412

An evaluation of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 1, Base case studies: Final report  

SciTech Connect

An evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD) is provided. A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and cost data obtained through participation of equipment vendors and process developers. Consequently, the IGCC designs presented in this study use the most recent data available from Texaco's ongoing international coal gasification development program and General Electric's continuing gas turbine development efforts. The Texaco-based IGCC has advantages over the conventional PCFS technology with regard to environmental emissions and natural resource requirements. SO/sub 2/, NOx, and particulate emissions are lower. Land area and water requirements are less for IGCC concepts. Coal consumption is less due to the higher plant thermal efficiency attainable in the IGCC plant. The IGCC plant also has the capability to be designed in several different configurations, with and without the use of natural gas or oil as a backup fuel. This capability may prove to be particularly advantageous in certain utility planning and operation scenarios. 107 figs., 114 tabs.

Pietruszkiewicz, J.; Milkavich, R.J.; Booras, G.S.; Thomas, G.O.; Doss, H.

1988-09-01T23:59:59.000Z

413

An evaluaton of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 2, Sensitivity studies and appendixes: Final report  

SciTech Connect

The Electric Power Research Institute contracted with Bechtel Group, Inc., to provide an evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD). A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and cost data obtained through participation of equipment vendors and process developers. Consequently, the IGCC designs presented in this study use the most recent data available from Texaco's ongoing international coal gasification development program and General Electric's continuing gas turbine development efforts. The study confirms that the Texaco-based IGCC has advantages over the conventional PCFS technology with regard to environmental emissions and natural resource requirements. SO/sub 2/, NOx, and particulate emissions are lower. Land area and water requirements are less for IGCC concepts. In addition, coal consumption is less due to the higher plant thermal efficiency attainable in the IGCC plant. The IGCC plant also has the capability to be designed in several different configurations, with and without the use of natural gas or oil as a backup fuel. This capability may prove to be particularly advantageous in certain utility planning and operation scenarios.

Pietruszkiewicz, J.; Milkavich, R.J.; Booras, G.S.; Thomas, G.O.; Doss, H.

1988-09-01T23:59:59.000Z

414

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Power: Typical IGCC Configuration Power: Typical IGCC Configuration Major Commercial Examples of IGCC Plants While there are many coal gasification plants in the world co-producing electricity, chemicals and/or steam, the following are four notable, commercial-size IGCC plants currently in operation solely for producing electricity from coal and/or coke. Tampa Electric, Polk County 250 MW GE Gasifier Wabash, West Terre Haute 265 MW CoP E-Gas(tm) Gasifier Nuon, Buggenum 250 MW Shell Gasifier Elcogas, Puertollano 300 MW Prenflo Gasifier All of the plants began operation prior to 2000 and employ high temperature entrained-flow gasification technology. GE (formerly Texaco-Chevron) and ConocoPhillips (CoP) are slurry feed gasifiers, while Shell and Prenflo are dry feed gasifiers. None of these plants currently capture carbon dioxide (CO2). A simplified process flow diagram of the 250-MW Tampa Electric IGCC plant is shown in Figure 1 to illustrate the overall arrangement of an operating commercial scale IGCC plant. The Tampa Electric plant is equipped with both radiant and convective coolers for heat recovery, generating high pressure (HP) steam.

415

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

416

Materials of Gasification  

DOE Green Energy (OSTI)

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

417

Hydrogen from Coal Edward Schmetz  

E-Print Network (OSTI)

gasification technology assumes advanced E-gas gasification. · RD&D is estimated to reduce the cost of hydrogenGenFutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells-production plant · Hydrogen from Coal Program will coordinate with associated DOE programs in Gasification, Fuel

418

NETL: Coal and Coal/Biomass to Liquids - Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

by Gasification. Small-Scale Coal-biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis; FE0010231 Small-Scale Pilot Plant for the Gasification of Coal...

419

Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process  

DOE Green Energy (OSTI)

Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

Not Available

1980-01-01T23:59:59.000Z

420