Powered by Deep Web Technologies
Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs  

SciTech Connect (OSTI)

The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research.

T.M. Lillo; R.L. Williamson; T.R. Reed; C.B. Davis; D.M. Ginosar

2005-09-01T23:59:59.000Z

2

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Broader source: Energy.gov [DOE]

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

3

NREL: Learning - Solar Process Heat  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process Heat Process Heat Photo of part of one side of a warehouse wall, where a perforated metal exterior skin is spaced about a foot out from the main building wall to form part of the transpired solar collector system. A transpired collector is installed at a FedEx facility in Denver, Colorado. Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling. Space Heating Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. But a

4

Waste Heat Management Options for Improving Industrial Process...  

Broader source: Energy.gov (indexed) [DOE]

of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems...

5

Cryostat including heater to heat a target  

DOE Patents [OSTI]

A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

Pehl, R.H.; Madden, N.W.; Malone, D.F.

1990-09-11T23:59:59.000Z

6

Waste Heat Recovery from Industrial Process Heating Equipment -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

7

Including radiative heat transfer and reaction quenching in modeling a Claus plant waste heat boiler  

SciTech Connect (OSTI)

Due to increasingly stringent sulfur emission regulations, improvements are necessary in the modified Claus process. A recently proposed model by Nasato et al. for the Claus plant waste heat boiler (WHB) is improved by including radiative heat transfer, which yields significant changes in the predicted heat flux and the temperature profile along the WHB tube, leading to a faster quenching of chemical reactions. For the WHB considered, radiation accounts for approximately 20% of the heat transferred by convection alone. More importantly, operating the WHB at a higher gas mass flux is shown to enhance reaction quenching, resulting in a doubling of the predicted hydrogen flow rate. This increase in hydrogen flow rate is sufficient to completely meet the hydrogen requirement of the H[sub 2]S recovery process considered, which would eliminate the need for a hydrogen plant.

Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-11-01T23:59:59.000Z

8

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. Özil

1987-01-01T23:59:59.000Z

9

Process Heating Systems | Department of Energy  

Office of Environmental Management (EM)

Efficiency in Process Heating Systems Roadmap for Process Heating Technology Reduce Natural Gas Use in Your Industrial Process Heating Systems Save Energy Now in Your Process...

10

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

11

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

12

Project Management Business Process Project Delivery Processes Includes VE Budget  

E-Print Network [OSTI]

Project Management Business Process Project Delivery Processes Includes VE Budget Schedule Activities that do/could feed into PMBP LEGEND VE Cost Avoidance Program Coverage Document Results (Before, could use the value methodology to facilitate after action review. The project manager is responsible

US Army Corps of Engineers

13

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalProcessHeat&oldid267198" Category: Articles with outstanding TODO tasks...

14

Waste Heat Management Options: Industrial Process Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

15

Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c  

SciTech Connect (OSTI)

This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

16

Extension of the semi-empirical correlation for the effects of pipe diameter and internal surface roughness on the decompression wave speed to include High Heating Value Processed Gas mixtures  

Science Journals Connector (OSTI)

Abstract The decompression wave speed, which is used throughout the pipeline industry in connection with the Battelle two-curve method for the control of propagating ductile fracture, is typically calculated using GASDECOM (GAS DECOMpression). GASDECOM, developed in the 1970's, idealizes the decompression process as isentropic and one-dimensional, taking no account of pipe wall frictional effects or pipe diameter. Previous shock tube tests showed that decompression wave speeds in smaller diameter and rough pipes are consistently slower than those predicted by GASDECOM for the same conditions of mixture composition and initial pressure and temperature. Previous analysis based on perturbation theory and the fundamental momentum equation revealed a correction term to be subtracted from the ‘idealized’ value of the decompression speed calculated by GASDECOM. One parameter in this correction term involves a dynamic spatial pressure gradient of the outflow at the rupture location. While this is difficult to obtain without a shock tube or actual rupture test, data from 14 shock tube tests, as well as from 14 full scale burst tests involving a variety of gas mixture compositions, were analyzed to correlate the variation of this pressure gradient with two characteristics of the gas mixture, namely; the molecular weight and the higher heating value (HHV). For lean to moderately-rich gas mixes, the developed semi-empirical correlation was found to fit very well the experimentally determined decompression wave speed curve. For extremely rich gas mixes, such as High Heating Value Processed Gas (HHVPG) mixtures of HHV up to 58 MJ/m3, it was found that it overestimates the correction term. Therefore, additional shock tube tests were conducted on (HHVPG) mixes, and the previously developed semi-empirical correlation was extended (revised) to account for such extremity in the richness of the gas mixtures. The newly developed semi-empirical correlation covers a wider range of natural gas mixtures from as lean as pure methane up to HHVPG mixtures of HHV = 58 MJ/m3.

K.K. Botros; L. Carlson; M. Reed

2013-01-01T23:59:59.000Z

17

Training: Process Heating Systems | Department of Energy  

Office of Environmental Management (EM)

Process Heating System Assessment - 1-day workshop Availability: Onsite instructor-led and online self-paced workshop This workshop provides an introduction to process...

18

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

19

Seven Ways to Optimize Your Process Heat System | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Optimize Your Process Heat System This brief outlines the seven Best Bets for Process Heating System Savings and Improvements. Seven Ways to Optimize Your Process Heat System...

20

Process Heating Assessment and Survey Tool  

Broader source: Energy.gov [DOE]

The Process Heating Assessment and Survey Tool (PHAST) introduces methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity, and identifies the most energy-intensive equipment. The tool can be used to perform a heat balance that identifies major areas of energy use under various operating conditions and test "what-if" scenarios for various options to reduce energy use.

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Process Integration of Industrial Heat Pumps  

E-Print Network [OSTI]

, COP Carnot T W---i Figure 6. Grand composite curve with electric drive system The COP for a prime heat system assumes the exhaust heat from the driver is used in the process. The COP is then the ratio of total heat delivered (Q4 + QZ.... Nomenclature is as given in Figures 6-8. The electric drive heat pump is the most widely understood system. It has the advantage of simplic ity and requires little disruption of the process. However, an electric drive may upset the utility power/heat...

Priebe, S. J.; Chappell, R. N.

22

The term "Heat Stress" refers to a group of heat related illnesses that include heat cramps, heat exhaustion and heat stroke. This safety meeting will review the hazards and symptoms of  

E-Print Network [OSTI]

It's Hot The term "Heat Stress" refers to a group of heat related illnesses that include heat cramps, heat exhaustion and heat stroke. This safety meeting will review the hazards and symptoms of working in the heat. Also, how to reduce risks of working in hot temperatures and respond to danger

Li, X. Rong

23

Ocean heat uptake processes: a model intercomparison  

Science Journals Connector (OSTI)

We compare the quasi-equilibrium heat balances, as well as their responses to 4×CO2 perturbation, among three global climate models with the aim to identify and explain inter-model differences in ocean heat uptake (OHU) processes. We find that, in ...

Eleftheria Exarchou; Till Kuhlbrodt; Jonathan M. Gregory; Robin S. Smith

24

Compositions produced using an in situ heat treatment process  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX); Munsterman, Erwin Henh (Amsterdam, NL); Van Bergen, Petrus Franciscus (Amsterdam, NL); Van Den Berg, Franciscus Gondulfus Antonius (Amsterdam, NL)

2009-10-20T23:59:59.000Z

25

Compositions produced using an in situ heat treatment process  

DOE Patents [OSTI]

Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

2013-05-28T23:59:59.000Z

26

Storage in Solar Process Heat Applications  

Science Journals Connector (OSTI)

Abstract The subject of this paper is the integration of solar energy into industrial heat supply systems – focusing on the use of solar tanks. Within the framework of the project “Solar Process Heat Standards” funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) load profiles of electroplating processes were measured, a typical load profile was described and simulations were done regarding the dimensioning of the solar tank volume. Depending on the load profile and process temperature, either a large tank volume or a tank-less system leads to the highest solar yields. Furthermore, a new concept of hydraulic tank integration is presented. It facilitates the quick supply of high solar temperatures which are often demanded for solar process heat applications. State of the art tank integration makes the solar system thermally inert, while simulations and measurements have already proven a considerable advantage of the new alternative. Moreover four solar process heat applications are analyzed; three belong to the electroplating industry while the fourth uses solar energy for heating water in the food industry (193 – 570 m2). Especially two of the four solar process heat plants presented severe operating errors and a high optimizing potential. One solar plant was improved in order to facilitate the new storage concept. This modification ensures the possibility of shifting between the conventional storage integration and the innovative approach for a comparative evaluation.

Sebastian Schramm; Mario Adam

2014-01-01T23:59:59.000Z

27

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

28

Reduce Natural Gas Use in Your Industrial Process Heating Systems...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Use in Your Industrial Process Heating Systems Reduce Natural Gas Use in Your Industrial Process Heating Systems This fact sheet describes ten effective ways to save...

29

Improving Process Heating System Performance: A Sourcebook for...  

Broader source: Energy.gov (indexed) [DOE]

Process Heating System Performance: A Sourcebook for Industry, Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This...

30

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

31

Process Heating Assessment and Survey Tool Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet describes how industrial plants can improve their process heating system performance using AMO's Process Heating Assessment and Survey Tool (PHAST)

32

NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010  

SciTech Connect (OSTI)

This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

Charles V Park

2011-01-01T23:59:59.000Z

33

PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications  

SciTech Connect (OSTI)

The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

Correia, Michael; Greyvenstein, Renee [PBMR - Pty Ltd., 1279 Mike Crawford Avenue, Centurion, 0046 (South Africa); Silady, Fred; Penfield, Scott [Technology Insights, 6540 Lusk Blvd, Suite C-102, San Diego, California 92121 (United States)

2006-07-01T23:59:59.000Z

34

Economics of Nuclear Process Heat Applications  

SciTech Connect (OSTI)

Attractive applications for nuclear process heat are driven primarily by the opportunity to displace natural gas and other premium fuels, and to respond to incentives to reduce CO{sub 2} emissions. Using high temperature process heat to provide the heat of reaction in steam reforming of natural gas is one of the most promising applications and serves to maximize the production of synthesis gas from available methane. High temperature water-splitting technologies are also being developed that can reduce the amount of electricity needed and maximize the role of thermal energy that can be provided by a high-temperature gas-cooled reactor (HTGR). Production of steam for oil sands and viscous liquids recovery represents another opportunity for nuclear process heat to displace natural gas. This paper presents the results of conceptual design work and economics developed for these applications, and highlights the levels of investment that will be required and the sensitivities to key drivers like the future price of natural gas and other fuels, and the values placed on CO{sub 2} emissions. (authors)

Kuhr, Reiner W. [Stone and Webster Management Consultants, Inc., One Main Street, Cambridge MA 02142 (United States); Bolthrunis, Charles; Corbett, Michael [Shaw Stone and Webster Process, One Main Street, Cambridge MA 02142 (United States)

2006-07-01T23:59:59.000Z

35

Process simulation of refinery units including chemical reactors  

Science Journals Connector (OSTI)

Process simulation methods for design and operation of refinery units are well established as long as no chemical reactors are included. The feedstocks are divided into pseudo-components which enables calculation of phase equilibria and transport properties. When chemical reactors are present some chemical conversion takes place which obviously affects the nature of the pseudo-components and their properties. The stream leaving the reactor will not only be of a different composition than the stream entering the reactor but in addition, the pseudo-components making up the outlet stream will also have other physical properties than the ones in the inlet stream. These changes affect not only the reactor unit but also the simulation of the whole flow-sheet. The paper presents a detailed model for an adiabatic distillate hydrotreater which takes into account the elemental composition of the feed. A special simulation strategy has been developed to incorporate such reactor units into process simulators. Finally, the simulation strategy is illustrated for a hydrotreating plant.

Jens A. Hansen; Barry H. Cooper

1992-01-01T23:59:59.000Z

36

The Big Picture on Process Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Publications Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems...

37

Analysis of the Thermonuclear Instability including Low-Power ICRH Minority Heating in IGNITOR  

E-Print Network [OSTI]

The nonlinear thermal balance equation for classical plasma in a toroidal geometry is analytically and numerically investigated including ICRH power. The determination of the equilibrium temperature and the analysis of the stability of the solution are performed by solving the energy balance equation that includes the transport relations obtained by the kinetic theory. An estimation of the confinement time is also provided. We show that the ICRH heating in the IGNITOR experiment, among other applications, is expected to stabilize the power of the thermonuclear burning by automatic regulation of the RF coupled power. Here a scenario is considered where IGNITOR is led to operate in a slightly sub-critical regime by adding a small fraction of ${}^3He$ to the nominal 50-50 Deuterium-Tritium mixture. The difference between power lost and alpha heating is compensated by additional ICRH heating, which should be able to increase the global plasma temperature via collisions between ${}^3He$ minority and the background...

Cardinali, Alessandro

2014-01-01T23:59:59.000Z

38

The Homopolar Pulse Billet Heating Process  

E-Print Network [OSTI]

The use of homopolar generators operated in the pulse mode to heat forging billets offers several possible advantages over present heating methods. Because heating is uniform throughout the entire cross section, billets can safely be heated...

Keith, R. E.; Weldon, W. F.

1982-01-01T23:59:59.000Z

39

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

40

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Waste Heat Management Options: Industrial Process Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

itself * Waste heat recovery or auxiliary or adjoining systems within a plant * Waste heat to power conversion Recycle Copyrighted - E3M Inc. August 20, 2009 Arvind Thekdi, E3M...

42

Articles which include chevron film cooling holes, and related processes  

DOE Patents [OSTI]

An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

Bunker, Ronald Scott; Lacy, Benjamin Paul

2014-12-09T23:59:59.000Z

43

In situ heat treatment process utilizing a closed loop heating system  

DOE Patents [OSTI]

Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

2010-12-07T23:59:59.000Z

44

Short residence time coal liquefaction process including catalytic hydrogenation  

DOE Patents [OSTI]

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-05-18T23:59:59.000Z

45

Short residence time coal liquefaction process including catalytic hydrogenation  

DOE Patents [OSTI]

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

1982-05-18T23:59:59.000Z

46

Industrial Process Heat Pumps--Some Unconventional Wisdom  

E-Print Network [OSTI]

INDUSTRIAL PROCESS HEAT PUMPS--SOME UNCONVENTIONAL WISDOM ALAN KARP Project Manager Electric Power Research Institute Palo Alto, California ABSTRACT Recent research on the cost-effective use of industrial process heat pumps challenges... integration insights. BUilding on previously formulated prin ciples of "appropriate placement," a generic metho dology has been developed for examining heat pump ing as an alternative to increased heat integration in any process. PC-based software...

Karp, A.

47

Solar Water Heating and Design Processes  

Science Journals Connector (OSTI)

Solar energy has been used to heat water for many years, and the design requirements of solar water heating equipment have been studied for ... because that upto this time other sources of energy have been more economical

H. P. Garg

1987-01-01T23:59:59.000Z

48

Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor  

SciTech Connect (OSTI)

The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

2011-04-01T23:59:59.000Z

49

Gas injection to inhibit migration during an in situ heat treatment process  

DOE Patents [OSTI]

Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

Kuhlman, Myron Ira (Houston, TX); Vinegar; Harold J. (Bellaire, TX); Baker, Ralph Sterman (Fitchburg, MA); Heron, Goren (Keene, CA)

2010-11-30T23:59:59.000Z

50

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Broader source: Energy.gov (indexed) [DOE]

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

51

Process Heating Assessment and Survey Tool (PHAST) Introduction...  

Broader source: Energy.gov (indexed) [DOE]

and helps plant personnel identify the most energy-intensive equipment. Process Heating Assessment and Survey Tool Introduction (January 30, 2007) More Documents & Publications...

52

Save Energy Now in Your Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

Not Available

2006-01-01T23:59:59.000Z

53

Save Energy Now in Your Process Heating Systems  

Broader source: Energy.gov [DOE]

This fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

54

Using Waste Heat for External Processes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Consider Installing a Condensing Economizer...

55

A 2D finite element with through the thickness parabolic temperature distribution for heat transfer simulations including welding  

Science Journals Connector (OSTI)

Abstract The arc welding process involves thermal cycles that cause the appearance of undesirable residual stresses. The determination of this thermal cycle is the first step to a thermomechanical analysis that allows the numerical calculation of residual stresses. This study describes the formulation of a 2D finite element with through the thickness parabolic temperature distribution, including an element estabilization procedure. The 2D element described in this paper can be used to perform thermal analysis more economically than 3D elements, especially in plates, because the number of degrees of freedom through the thickness will always be three. A numerical model of a tungsten arc welding (GTAW) setup was made based on published experimental results. Size and distribution of the heat source input, thermal properties dependent on temperature, surface heat losses by convection and latent heat during phase change were considered. In parallel the same setup was modeled using ANSYS software with 3D elements (SOLID70) to compare against 2D numerical results. The results obtained by 2D model, 3D model and experimental data showed good agreement.

Darlesson Alves do Carmo; Alfredo Rocha de Faria

2015-01-01T23:59:59.000Z

56

Some aspects of the computer simulation of conduction heat transfer and phase change processes  

SciTech Connect (OSTI)

Various aspects of phase change processes in materials are discussd including computer modeling, validation of results and sensitivity. In addition, the possible incorporation of cognitive activities in computational heat transfer is examined.

Solomon, A. D.

1982-04-01T23:59:59.000Z

57

Fluidized bed steam reactor including two horizontal cyclone separators and an integral recycle heat exchanger  

SciTech Connect (OSTI)

A reactor is described comprising: a vessel; a first furnace section disposed in said vessel; a second furnace section disposed in said vessel; means in each of said furnace sections for receiving a combustible fuel for generating heat and combustion gases; a first heat recovery area located adjacent said furnace sections; a second heat recovery area located adjacent said furnace sections; means for passing said combustion gases from said first furnace section to said first heat recovery area; and means for passing said combustion gases from said second furnace section to said second heat recovery area.

Gorzegno, W.P.

1993-06-15T23:59:59.000Z

58

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......energy efficiency in the heating processes. The heat...chamber and lead to shorter heating time to achieve the objective...chamber as a part of oil quenching heat treatment...energy efficiency in the heating processes. The heat...The rising of fuel prices and the increasing requirements......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

59

Heat exchanger for coal gasification process  

DOE Patents [OSTI]

This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

Blasiole, George A. (Greensburg, PA)

1984-06-19T23:59:59.000Z

60

Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes  

SciTech Connect (OSTI)

The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff; Michael G. McKellar; Ronald E. Mizia

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heating hydrocarbon containing formations in a line drive staged process  

DOE Patents [OSTI]

Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

Miller, David Scott (Katy, TX)

2009-07-21T23:59:59.000Z

62

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief  

Broader source: Energy.gov [DOE]

This technical brief is a guide to selecting high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support, and heater tubes, etc.

63

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network [OSTI]

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

64

Designing Optimal Heat and Power Systems for Industrial Processes  

E-Print Network [OSTI]

Industrial heat and power systems are complex and not fully understood as integrated systems. Within the context of the overall manufacturing process, they represent enormous capital investments and substantially contribute to the total operating...

Rutkowski, M. A.; Witherell, W. D.

65

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

66

Process Heating Assessment and Survey Tool User Manuals  

Broader source: Energy.gov [DOE]

PHAST 3.0 User Manuals are available for Electrotechnology and Fuel Fired Technology (for US and International units). The PHAST tool can be used to assess energy use and estimate energy use reduction for industrial process heating equipment.

67

Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling--Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid  

E-Print Network [OSTI]

Microgravity Fluid Physics and Heat Transfer, 62-71. 47.that included the heat transfer between the fluid and solidflux, only one fluid—water—showed significant heat transfer

Aktinol, Eduardo

2014-01-01T23:59:59.000Z

68

Electric Driven Heat Pumps in Distillation Processes  

E-Print Network [OSTI]

PROCESSES The first candidate process evaluated was the propane-propylene splitter. The vapor recompression cycle appropriate for that column was previously given in Figure 2. The equipment specifications and operating conditions are given in Table I..., the estimates of cost are given in Table II, and an example of the revenue calculations are given in Table III. PROPANE/PRopn~E SPLlrrEA SPECIFICATIONS ColWZln: C",paei ty = 38,300 Ib/hr (eqoiv. to 200 J: 10' Ib/yr propylene) AT ~ 10?F Reflex Ratio. 16...

Harris, G. E.

1983-01-01T23:59:59.000Z

69

Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry  

SciTech Connect (OSTI)

We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipation performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.

Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun; Di, Jianglei; Chen, Xin; Liu, Junjiang [Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072 (China)

2013-11-21T23:59:59.000Z

70

Ebeam Resist Processes at ISNCEbeam Resist Processes at ISNC This file includes  

E-Print Network [OSTI]

Prebake: 180 0C, 15mins hotplate Exposure: @100kV, 600µC/cm21500µC/cm2 Develop: MIBK/IPA=1/3, 45secs (30secs2mins range); IPA rinse, 30secs; N2 blow dry 2) Double Layer PMMA Process First Layer Resist (Under Exposure: @100kV, 600µC/cm21500µC/cm2 Develop: MIBK/IPA=1/3, 1mins (30secs2mins range); IPA rinse, 30secs

Jalali. Bahram

71

Low temperature barriers with heat interceptor wells for in situ processes  

DOE Patents [OSTI]

A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

McKinzie, II, Billy John (Houston, TX)

2008-10-14T23:59:59.000Z

72

Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings  

SciTech Connect (OSTI)

Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

Not Available

1980-02-01T23:59:59.000Z

73

Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration  

SciTech Connect (OSTI)

Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.

J'Tia Patrice Taylor; David E. Shropshire

2009-09-01T23:59:59.000Z

74

In situ conversion process utilizing a closed loop heating system  

DOE Patents [OSTI]

An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

Sandberg, Chester Ledlie (Palo Alto, CA); Fowler, Thomas David (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Schoeber, Willen Jan Antoon Henri (Houston, TX)

2009-08-18T23:59:59.000Z

75

Combined heat and mass transfer device for improving separation process  

SciTech Connect (OSTI)

A two-phase small channel heat exchange matrix for providing simultaneous heat transfer and mass transfer at a single, predetermined location within a separation column, whereby the thermodynamic efficiency of the separation process is significantly improved. The small channel heat exchange matrix is comprised of a series of channels having a hydraulic diameter no greater than 5.0 mm. The channels are connected to an inlet header for supplying a two-phase coolant to the channels and an outlet header for receiving the coolant horn the channels. In operation, the matrix provides the liquid-vapor contacting surfaces within a separation column, whereby liquid descends along the exterior surfaces of the cooling channels and vapor ascends between adjacent channels within the matrix. Preferably, a perforated and concave sheet connects each channel to an adjacent channel, such that liquid further descends along the concave surfaces of the sheets and the vapor further ascends through the perforations in the sheets. The size and configuration of the small channel heat exchange matrix allows the heat and mass transfer device to be positioned within the separation column, thereby allowing precise control of the local operating conditions within the column and increasing the energy efficiency of the process.

Tran, Thanh Nhon

1997-12-01T23:59:59.000Z

76

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

77

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

Broader source: Energy.gov [DOE]

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

78

Process Heating Roadmap to Help U.S. Industries Be Competitive  

Broader source: Energy.gov [DOE]

This brief summarizes the development of a comprehensive plan for meeting industrial process heating needs started by the Industrial Heating Equipment Association (IHEA) and DOE in 1999.

79

High Magnetic Field Processing - A Heat-Free Heat Treating Method  

SciTech Connect (OSTI)

The High and Thermal Magnetic Processing/Electro-magnetic Acoustic Transducer (HTMP/EMAT) technology has been shown to be an enabling disruptive materials processing technology, that can achieve significant improvements in microstructure and consequently material performance beyond that achievable through conventional processing, and will lead to the next generation of advanced performance structural and functional materials. HTMP exposure increased the reaction kinetics enabling refinement of microstructural features such as finer martensite lath size, and finer, more copious, homogeneous dispersions of strengthening carbides leading to combined strength and toughness improvements in bainitic steels. When induction heating is applied in a high magnetic field environment, the induction heating coil is configured so that high intensity acoustic/ultrasonic treatment occurs naturally. The configuration results in a highly effective electromagnetic acoustical transducer (EMAT). HTMP combined with applying high-field EMAT, produce a non-contact ultrasonic treatment that can be used to process metal alloys in either the liquid state resulting in significant microstructural changes over conventional processing. Proof-of-principle experiments on cast irons resulted in homogeneous microstructures in small castings along with improved casting surface appearance. The experiment showed that by exposing liquid metal to the non-contact acoustic/ultrasonic processing technology developed using HMFP/EMAT wrought-like microstructures were developed in cast components. This Energy Intensive Processes (EIP) project sponsored by the DOE EERE Advanced Manufacturing Office (AMO) demonstrated the following: (1) The reduction of retained austenite in high carbon/high alloy steels with an ambient temperature HTMP process, replacing either a cryogenic or double tempering thermal process normally employed to accomplish retained austenite transformation. HTMP can be described as a 'heat-free', heat treating technology. Lower residual stresses in HTMP treated materials are anticipated since no thermal strains are involved in inducing the transformation of retained austenite to martensite in high alloy steel. (2) The simultaneous increase of 12% in yield strength and 22% in impact energy in a bainitic alloy using HTMP processing. This is a major breakthrough in materials processing for the next generation of structural materials since conventionally processed materials show a reduction in impact toughness with an increase in yield strength. HTMP is a new paradigm to beneficially increase both yield strength and impact energy absorption simultaneously. (3) HTMP processing refined both the martensite lath population and the carbide dispersion in a bainitic steel alloy during Gausstempering. The refinement was believed to be responsible for the simultaneous increase in strength and toughness. Hence, HTMP significantly impacts nucleation and growth phenomenon. (4) HTMP processing developed comparable ultimate tensile strength and twice the impact energy in a lower cost, lower alloy content ({approx}8% alloy content) steel, compared to highly alloyed, (31% alloy elements involving Ni, Co, and Mo) 250-grade margining steel. Future low-cost HTMP alloys appear viable that will exceed the structural performance of highly alloyed materials that are conventionally processed. This economic benefit will enable U.S. industry to reduce cost (better more competitive worldwide) while maintaining or exceeding current performance. (5) EMAT processed cast iron exhibits significantly higher hardness (by 51% for a 9T condition) than a no-field processed sample. (6) EMAT produced microstructures in cast iron resulted in an unique graphite nodule morphology, a modified pearlite content, and unique carbide types, that formed during solidification and cooling. (7) EMAT processed nanoparticle dispersions in Mg resulted in a very fine, unagglomerated distribution of the nanoparticles in the magnesium matrix. This provides a breakthrough technology to make the next generation of

Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kenik, Edward A [ORNL; Parish, Chad M [ORNL; Rios, Orlando [ORNL; Rogers, Hiram [ORNL; Manuel, Michele [University of Florida, Gainesville; Kisner, Roger A [ORNL; Watkins, Thomas R [ORNL; Murphy, Bart L [ORNL

2012-08-01T23:59:59.000Z

80

Potential for Heat Pumps in the U.S. Process Industries  

E-Print Network [OSTI]

POTENTIAL FOR HEAT PUMPS IN THE U. S. PROCESS INDUSTRIES A.P. ROSSITER, R.V. SEETHARAM AND S.M. RANADE TENSA Services Houston, ABSTRACT Two major criteria for successful heat pump installations in process plants are the "appropriate... placement" and "appropriate sizing" of the heat pump, consistent with the thermodynamics of the process. Failure to fulfil these conditions will result in the heat pump not achieving the anticipated savings and may even cause a net increase in process...

Rossiter, A. P.; Seetharam, R. V.; Ranade, S. M.

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A high liquid yield process for retorting various organic materials including oil shale  

DOE Patents [OSTI]

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

Coburn, T.T.

1988-07-26T23:59:59.000Z

82

High liquid yield process for retorting various organic materials including oil shale  

DOE Patents [OSTI]

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

Coburn, Thomas T. (Livermore, CA)

1990-01-01T23:59:59.000Z

83

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

84

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

85

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

Not Available

2011-10-01T23:59:59.000Z

86

Large Deviations in Stochastic Heat-Conduction Processes Provide a Gradient-Flow Structure for Heat Conduction  

E-Print Network [OSTI]

We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter $m$, a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP$(m)$ and the KMP, and a nonlinear heat equation for the GBEP($a$). We prove the hydrodynamic limit rigorously for the BEP$(m)$, and give a formal derivation for the GBEP($a$). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form $-\\log \\rho$; they involve dissipation or mobility terms of order $\\rho^2$ for the linear heat equation, and a nonlinear function of $\\rho$ for the nonlinear heat equation.

Mark A. Peletier; Frank Redig; Kiamars Vafayi

2014-03-19T23:59:59.000Z

87

Environmental assessment for radioisotope heat source fuel processing and fabrication  

SciTech Connect (OSTI)

DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

Not Available

1991-07-01T23:59:59.000Z

88

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......predicted and measured data. The CFD simulations...methods to improve the heat transfer rate and provide quantitative data which can be used...important in the combustion and the heat transfer processes...models on hydrogen-hydrocarbon combustion modelling......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

89

Process Waste Heat Recovery in the Food Industry - A System Analysis  

E-Print Network [OSTI]

An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

Lundberg, W. L.; Mutone, G. A.

1983-01-01T23:59:59.000Z

90

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network [OSTI]

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

91

Applications of COMSOL Multiphysics Software to Heat Transfer Processes.  

E-Print Network [OSTI]

??This thesis used the study of Heat Transfer and COMSOL Multiphysics software as a reference which was made for the purpose of future education in… (more)

Xiong, Wei

2010-01-01T23:59:59.000Z

92

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

93

Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition  

SciTech Connect (OSTI)

This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

Not Available

2008-02-01T23:59:59.000Z

94

Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

Not Available

2008-12-01T23:59:59.000Z

95

Fundamental heat transfer processes related to phase change thermal storage media  

SciTech Connect (OSTI)

Research on fundamental heat transfer processes which occur in phase-change thermal storage systems is described. The research encompasses both melting and freezing, and includes both experiment and analysis. The status of four research problems is discussed. One of the freezing problems was focused on investigating, via experiment, the extent to which freezing can be enhanced by the attachment of fins to the external surface of a cooled vertical tube situated in a liquid phase-change medium. Very substantial enhancements were encountered which neutralize the degradation of freezing due to the thermal resistance of the frozen layer and to natural convection in the liquid phase. The second of the freezing problems was analytical in nature and sought to obtain solutions involving both the phase-change medium and the heat transfer fluid used either to add heat to or extract heat from the medium. For freezing on a plane wall, it was possible to obtain a closed-form analytical solution, while for freezing about a coolant-carrying circular tube, a new numerical methodology was devised to obtain finite-difference solutions. For melting, quantitative design-quality heat transfer coefficients were determined experimentally for melting adjacent to a heated vertical tube. These experiments explored the effects of solid-phase subcooling and of open versus closed top containment on the coefficients. A dimensionless correlation enables these results to be used for a wide range of phase-change media. Studies on melting of a phase-change material situated within a circular tube are in progress.

Sparrow, E. M.; Ramsey, J. W.

1981-01-01T23:59:59.000Z

96

HTGR process heat program design and analysis. Semiannual progress report, October 1, 1979-March 28, 1980  

SciTech Connect (OSTI)

This report summarizes the results of concept design studies implemented at General Atomic Company (GA) during the first half of FY-80. The studies relate to a plant design for an 842-MW(t) High-Temperature Gas-Cooled Reactor utilizing an intermediate helium heat transfer loop to provide high temperature thermal energy for the production of hydrogen or synthesis gas (H/sub 2/ + CO) by steam-reforming a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. Work tasks conducted during this period included the 842-MW(t) plant concept design and cost estimate for an 850/sup 0/C reactor outlet temperature. An assessment of the main-loop cooling shutdown system is reported. Major component cost models were prepared and programmed into the Process Heat Reactor Evaluation and Design (PHRED) code.

Not Available

1980-10-01T23:59:59.000Z

97

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network [OSTI]

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1984-01-01T23:59:59.000Z

98

Numerical investigation of transient hydrothermal processes around intrusions: heat-transfer and fluid-  

E-Print Network [OSTI]

Numerical investigation of transient hydrothermal processes around intrusions: heat the intrusion. Keywords: Hydrothermal processes, numerical modelling, magmatic intrusion, permeability- depth around magmatic intrusions have been obtained through coupled hydrothermal numerical modelling that takes

Paris-Sud XI, Université de

99

Certification and Accreditation Process for Information Systems Including National Security Systems  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Notice ensures the effectiveness of security controls on DOE Federal information systems including national security systems. The Notice will also ensure compliance with the requirements of DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, and protect DOE information and information systems from unauthorized access, use, disclosure, modification, or destruction. No cancellations. DOE N 205.15, dated 3-18-05, extends this directive until 3-18-06.

2004-02-19T23:59:59.000Z

100

Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings  

DOE Patents [OSTI]

Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

Ellingson, William A. (Naperville, IL); Forster, George A. (Westmont, IL)

1999-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fracture Modeling of Crack Propagation in Wood and Wood Composites Including Crack Tip Processes and Fiber Bridging Mechanics  

E-Print Network [OSTI]

1 Fracture Modeling of Crack Propagation in Wood and Wood Composites Including Crack Tip Processes and Fiber Bridging Mechanics J. A. Nairn, N. Matsumoto Wood Science & Engineering, Oregon State University wood and wood composites develop process zones often consisting of fibers bridging the crack surfaces

Nairn, John A.

102

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

103

Generalized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate  

Science Journals Connector (OSTI)

Abstract Based on constructal theory, generalized constructal optimization of a solidification heat transfer process of slab continuous casting is carried out by taking a complex function as optimization objective. The complex function is composed of the functions of the heat loss rate and surface temperature gradient of the slab subjected to the constraints of shell thickness, surface temperature and liquid core length of the slab. For the specified total water flow rate, the “optimal construct” of the water distribution in the secondary cooling zone is obtained. Comparing the optimal results with the initial ones, it is shown that the complex function, the functions of the heat loss rate and the surface temperature gradient after optimization are decreased by 35.04%, 2.14% and 59.48%, respectively. Therefore, the scheme of the “optimal construct” of the water distribution reduces the heat loss rate and surface temperature gradient of the slab simultaneously, that is, improves its energy retention and quality simultaneously. The optimization results obtained in this paper can provide some guidelines for parameter designs and dynamic operations of the solidification heat transfer process of slab continuous casting.

Huijun Feng; Lingen Chen; Zhihui Xie; Zemin Ding; Fengrui Sun

2014-01-01T23:59:59.000Z

104

Economics of power plant district and process heating in Richland, Washington  

SciTech Connect (OSTI)

The economic feasibility of utilizing hot water from nuclear reactors to provide district heating for private residences in Richland, Washington, and space and process heating for nearby offices, part of the Hanford Reservation, and the Lamb-Weston potato processing plant is assessed. Specifically, the practicality of using hot water from the Washington Public Power Supply System's WNP-1 reactor, which is currently under construction on the Hanford Reservation, just north of the City of Richland is established. World-wide experience with district heating systems and the advantages of using these systems are described. The GEOCITY computer model used to calculate district heating costs is described and the assumptions upon which the costs are based are presented. District heating costs for the city of Richland, process heating costs for the Lamb-Weston potato processing plant, district heating costs for the Horn Rapids triangle area, and process heating costs for the 300 and 3000 areas are discussed. An economic analysis is discussed and institutional restraints are summarized. (MCW)

Fassbender, L.L.; Bloomster, C.H.

1981-04-01T23:59:59.000Z

105

SELF-HEATING PROCESS IN MICROWAVE TRANSISTORS Anthony E. Parker(1) and James G. Rathmell(2)  

E-Print Network [OSTI]

by the complex signals used in communication systems. Self-heating [1] and charge-trapping related to impactSELF-HEATING PROCESS IN MICROWAVE TRANSISTORS Anthony E. Parker(1) and James G. Rathmell(2) (1 of Electrical and Information Engineering, The University of Sydney, AUSTRALIA 2006, mailto: jimr

106

A DISCUSSION OF HEAT MIRROR FILM: PERFORMANCE, PRODUCTION PROCESS, AND COST ESTIMATES  

E-Print Network [OSTI]

transfer thnough a window by using Intrex film as a heatwindow construction will be PROCESS DESCRIPTION Intrex filmWindows and Lighting Program Building 90, Room 2056 Lawrence Berkeley Laboratory Berkeley, California -ii- A DISCUSSION OF HEAT MIRROR FILM:

Levin, B. P.

2011-01-01T23:59:59.000Z

107

Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock  

E-Print Network [OSTI]

1 Energy Efficient Process Heating: Insulation and Thermal Mass Kevin Carpenter and Kelly Kissock-0210 Phone: (937) 229-2852 Fax: (937) 229-4766 Email: Kelly.Kissock@notes.udayton.edu ABSTRACT Open tanks

Kissock, Kelly

108

Plasma processing of spent nuclear fuel by two-frequency ion cyclotron resonance heating  

Science Journals Connector (OSTI)

A previously developed method for analyzing the plasma processing of spent nuclear fuel is generalized to a plasma containing multicharged fuel ions. In such a plasma, ion cyclotron resonance heating of nuclear a...

A. V. Timofeev

2009-11-01T23:59:59.000Z

109

The redox nature of copper is utilized in a large number of enzymatic processes, including that catalysed by mitochondrial  

E-Print Network [OSTI]

The redox nature of copper is utilized in a large number of enzymatic processes, including that catalysed by mitochondrial cytochrome c oxidase, which makes copper an essential element for all aerobic organisms (Soloman and Lowery, 1993). However, the redox properties of copper can cause rapid generation

Grosell, Martin

110

Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition  

Broader source: Energy.gov [DOE]

This sourcebook describes basic process heating applications and equipment, and outlines opportunities for energy and performance improvements. It also discusses the merits of using a systems approach in identifying and implementing these improvement opportunities. It is not intended to be a comprehensive technical text on improving process heating systems, but serves to raise awareness of potential performance improvement opportunities, provides practical guidelines, and offers suggestions on where to find additional help.

111

Heat and Power Systems Design  

E-Print Network [OSTI]

HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

Spriggs, H. D.; Shah, J. V.

112

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

113

Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis  

Science Journals Connector (OSTI)

Abstract Power-to-Substitute Natural Gas processes are investigated to offer solutions for renewable energy storing or transportation. In the present study, an original Power-to-SNG process combining high-temperature steam electrolysis and CO2 methanation is implemented and simulated. A reference process is firstly defined, including a specific modelling approach of the electrolysis and a methanation modelling including a kinetic law. The process also integrates a unit to clean the gas from residual CO2, H2 and H2O for gas network injection. Having set all the units, simulations are performed with ProsimPlus 3™ software for a reference case where the electrolyser and the methanation reactors are designed. The reference case allows to produce 67.5 Nm3/h of SNG with an electrical energy consumption of 14.4 kW h/Nm3. The produced SNG satisfies specifications required for network injection. From this reference process, two sensitivity analyses on electrolysis and methanation working points and on external parameters and constraints are considered. As a main result, we observe that the reference case maximises both process efficiency and SNG production when compared with other studied cases.

Myriam De Saint Jean; Pierre Baurens; Chakib Bouallou

2014-01-01T23:59:59.000Z

114

Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process  

SciTech Connect (OSTI)

The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

Piyush Sabharwall; Eung Soo Kim

2012-07-01T23:59:59.000Z

115

Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling--Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid  

E-Print Network [OSTI]

boiling. ” Journal of heat transfer, 124(4), 4. Basu, N. ,development. ” Journal of Heat Transfer, 127(2), 5. CareyA Review. ” Journal of Heat Transfer, 135(6), 061502. 10.

Aktinol, Eduardo

2014-01-01T23:59:59.000Z

116

Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling--Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid  

E-Print Network [OSTI]

flow boiling. ” Journal of heat transfer, 124(4), 4. Basu,Dhir, V. K. (2005). “Wall heat flux partitioning duringdevelopment. ” Journal of Heat Transfer, 127(2), 5. Carey

Aktinol, Eduardo

2014-01-01T23:59:59.000Z

117

Alternate energy source usage for in situ heat treatment processes  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.

Stone, Jr., Francis Marion (Cut-N-Shoot, TX); Goodwin, Charles R. (League City, TX); Richard, Jr., James (Kingwood, TX)

2011-03-22T23:59:59.000Z

118

Site selection and preliminary evaluation of potential solar-industrial-process-heat applications for federal buildings in Texas  

SciTech Connect (OSTI)

The potential for solr process heat applications for federal buildings in Texas is assessed. The three sites considered are Reese Air Force Base, Lubbock; Fort Bliss, El Paso; and Dyess Air Force Base, Abilene. The application at Lubbock is an electroplating and descaling facility for aircraft maintenance. The one at El Paso is a laundry facility. The Abilene system would use solar heat to preheat boiler feedwater makeup for the base hospital boiler plant. The Lubbock site is found to be the most appropriate one for a demonstration plant, with the Abilene site as an alternate. The processes at each site are described. A preliminary evaluation of the potential contribution by solar energy to the electroplating facility at Reese AFB is included. (LEW)

Branz, M A

1980-09-30T23:59:59.000Z

119

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems  

Broader source: Energy.gov [DOE]

Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

120

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers  

DOE Patents [OSTI]

An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Shively, John E. (Arcadia, CA); Li, Lin (Monrovia, CA)

2009-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Introduction to Energy Savings in Process Heating for the Corn Refining  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savings in Process Heating for the Corn Savings in Process Heating for the Corn Refining Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

122

Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii  

SciTech Connect (OSTI)

This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

None

1980-08-01T23:59:59.000Z

123

Strengthening the applicability of self-heating retorting process to oil shale via co-retorting  

Science Journals Connector (OSTI)

Abstract Recently a facile low-energy-input retorting route but without marked loss in the shale-oil yield is developed, which is achieved by a self-heating effect, that is, spontaneously increasing retorting temperature in the absence of external heat provision (Guo et al., 2013, 2014). In this work, the applicability of self-heating retorting (SHR) process to three Chinese oil shales from different places (i.e., Longkou, Huadian and Fushun) is studied. Of these three oil shales, Fushun oil shale is associated with coal and was previously abandoned during coal mining due to its not high kerogen or oil content. The results show that it’s hard for Fushun oil shale to obtain satisfying self-heating effect, while Longkou or Huadian oil shale with higher kerogen or oil content shows satisfactory SHR. However, by adding suitable amounts of Longkou or Huadian oil shale into Fushun oil shale, a satisfying self-heating effect can be obtained as well. Thus, the relatively low-grade Fushun oil shale can also be well utilized to produce shale oil via this facile SHR route. Moreover, to utilize Fushun oil shale with a greener SHR process, the process can be performed by co-retorting Fushun oil shale with pine needles, a kind of renewable biomass. This finding also provides a new starting point for exploring plentiful biomass resources to utilize low-grade oil shale to produce oil in the future work.

Hongfan Guo; Yindong Yang; Kuikui Wang; Yansong Pei; Qicheng Wu; Yunyi Liu

2015-01-01T23:59:59.000Z

124

Computational fluid dynamic modelling of enhanced heat transfer in tubes with inserts.  

E-Print Network [OSTI]

??Heat transfer is an important process in many different industrial processes including oil refming and energy generation. A shell and tube heat exchanger is one… (more)

Osley, William Gruffydd

2014-01-01T23:59:59.000Z

125

Plasma processing of spent nuclear fuel by two-frequency ion cyclotron resonance heating  

SciTech Connect (OSTI)

A previously developed method for analyzing the plasma processing of spent nuclear fuel is generalized to a plasma containing multicharged fuel ions. In such a plasma, ion cyclotron resonance heating of nuclear ash ions should be carried out in two monochromatic RF fields of different frequencies, provided that the fraction of {xi} multicharged ions is small, {xi} {<=} 0.1, a condition that substantially restricts the productivity of systems for processing spent nuclear fuel. Ways of overcoming this difficulty are discussed.

Timofeev, A. V. [Russian Research Centre Kurchatov Institute, Nuclear Fusion Institute (Russian Federation)

2009-11-15T23:59:59.000Z

126

Oxygen transport membrane system and method for transferring heat to catalytic/process reactors  

DOE Patents [OSTI]

A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

2014-01-07T23:59:59.000Z

127

association of companies and the Edison Electric Institute (1953). Their final report cites investigations from 1945 through 1953 and includes correlated information on coil data, heat  

E-Print Network [OSTI]

. The house has passive solar features consisting of south-facing glass with manually operable insulated to determine the heat pump capacity. The heating capacity of the heat pump in use is 34,100 Btu/hr (10 kw) at TEVAP = 35.6 F (2'C) and TCOND = 86.0 F (30°C). The cooling capacity of the heat pump was determined

Oak Ridge National Laboratory

128

Melting processes of oligomeric ? and ? isotactic polypropylene crystals at ultrafast heating rates  

SciTech Connect (OSTI)

The melting behaviors of ? (stable) and ? (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of ?- and ?-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for ?- and ?-iPP are significantly different. The apparent melting points of ?- and ?-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of ?-iPP crystal is always higher than that of ?-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect ?- and ?-iPP crystals are finally predicted and it shows a good agreement with experimental result.

Ji, Xiaojing [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)] [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)] [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [School of Material, Tianjin University, Tianjin 300072 (China)] [School of Material, Tianjin University, Tianjin 300072 (China)

2014-02-07T23:59:59.000Z

129

Numerical-simulation and experimental-validation of the largest Egyptian solar process-heat system  

Science Journals Connector (OSTI)

El-Nasr pharmaceutical solar process heat project is considered as the largest industrial system installed and working in east Cairo Egypt 30°N. It was simply constructed from a one-axis tracking parabolic-trough collector that can produce about 1.3 ton/h saturated steam to feed the industrial processes in the company. Twenty-three bar compressed water is heated inside 1958.4 m2 collectors and later on it is flashed in a steam flash-drum to produce saturated steam at 8 bars and 175 °C that is fed to the process heat. A mathematical model was developed for the system components to simulate annual performance of the system. The simulation results were verified successfully by the measured data that are monitoring the system performance. First each component of the mathematical model was experimentally validated separately. Accordingly the whole mathematical model was validated under different weather conditions along the year. The validated numerical model was optimized. The optimal number of collectors connected in series was obtained as three collectors not 36 as installed. An economical study of the installed system was provided. The optimal design of the system was economically estimated. The optimal collector area is less than that installed it equals about 538 m2. Annual performance of the system is presented indicating the seasonal variation. It was found that the optimized system can produce about 2 ton/h in average. Moreover that value is more than that was proposed by the system design.

Adel M. Abdel-Dayem

2011-01-01T23:59:59.000Z

130

Pyrolysis Using Microwave Heating: A Sustainable Process for Recycling Used Car Engine Oil  

Science Journals Connector (OSTI)

Pyrolysis Using Microwave Heating: A Sustainable Process for Recycling Used Car Engine Oil ... A reaction temperature of 600 °C provided the greatest yield of commercially valuable products: the recovered liquid oils were composed of light paraffins and aromatic hydrocarbons that could be used as industrial feedstock; the remaining incondensable gases comprised light hydrocarbons that could potentially be used as a fuel source to power the process. ... The pyrolysis products leave the reactor and pass through a system of three water-cooled Liebig condensers [5, 6, 7], which collect condensed hydrocarbons in main and secondary collection flasks [8, 9]. ...

Su Shiung Lam; Alan D. Russell; Howard A. Chase

2010-06-18T23:59:59.000Z

131

In situ heat treatment of a tar sands formation after drive process treatment  

DOE Patents [OSTI]

A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

Vinegar, Harold J. (Bellaire, TX); Stanecki, John (Blanco, TX)

2010-09-21T23:59:59.000Z

132

E-Print Network 3.0 - advanced heat process Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Performance... ) Heat Transfer Solid Mechanics Energy Systems Air-Conditioner Performance Evaluations Alternate... and Diagnostic Center...

133

Theoretical thermodynamic analysis of a closed-cycle process for the conversion of heat into electrical energy  

E-Print Network [OSTI]

) Abstract We analyse a device aimed at the conversion of heat into electrical energy, based on a closed Conversion and Management August 19, 2013 #12;1. Introduction The free energy contained in solutionsTheoretical thermodynamic analysis of a closed-cycle process for the conversion of heat

Carati, Andrea

134

Energy Distribution of Heating Processes in the Quiet Solar Sam Krucker 1;2 and Arnold O. Benz 1  

E-Print Network [OSTI]

heating model. An obvious requirement is that the energy input observed in the emission measure by intergrating in energy the rate of flare energy release, f(E), observed at the energy E per unit area. ThusEnergy Distribution of Heating Processes in the Quiet Solar Corona S¨am Krucker 1;2 and Arnold O

135

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect (OSTI)

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

136

FAST TRACK PROCESS FOR IRB REVIEW This document describes the process for IRB review only and does not include other institutional  

E-Print Network [OSTI]

1 FAST TRACK PROCESS FOR IRB REVIEW 10/16/2013 I. Scope This document describes the process reasons for a Fast Track request will be reviewed on a case-by-case basis by the Executive Director completed study documents, using IRB templates as appropriate. IV. Cost Once eligibility for this process

137

Analysis of energy saving for ammonium sulfate solution processing with self-heat recuperation principle  

Science Journals Connector (OSTI)

Abstract As an important production process, the evaporative concentration of the inorganic salt solution is extensively applied in the industry, and it is significant to investigate the energy saving potential of such evaporation systems. In the paper, taking the ammonium sulfate solution for example, the self-heat recuperation technology (SHRT) is utilized to design two mechanical vapor recompression (MVR) systems, and the relevant energy saving performance is analyzed. It is found that the designed systems, which are satisfied with SHTR, enable the recovery of the sensible and latent heat of the emission solution without any additional heat, and compared to the conventional three-effect evaporation system, the energy saving performance are more prominent. However, in view of the existence of the boiling point elevation (BPE) for the inorganic salt solution, a maximum reduction amplitude of 40% of the energy saving performance for the double-stage MVR system is obtained compared with the single-stage MVR system. As a result, it is concluded that the only satisfaction to the SHRT is not enough, and the pattern of the MVR system should also be considered to ensure a prominent energy saving performance.

Dong Han; Weifeng He; Chen Yue; Wenhao Pu; Lin Liang

2014-01-01T23:59:59.000Z

138

Simulation of processes in natural-circulation circuits of heat-recovery boilers of combined cycle power plants  

Science Journals Connector (OSTI)

Mathematical fundamentals of development of models of natural-circulation circuits of heat-recovery boilers are considered. Processes in the high-pressure circuit of a P-96 boiler are described.

E. K. Arakelyan; A. S. Rubashkin; A. S. Obuvaev; V. A. Rubashkin

2009-02-01T23:59:59.000Z

139

Compact design improves efficiency and CAPEX -- combining plate heat exchangers and gas-liquid separators for gas processing savings  

SciTech Connect (OSTI)

This paper presents the unique combination of two well proven technologies: a compact large scale welded plate heat exchanger with a gas-liquid separator within the same pressure vessel. Explained are the benefits for raw gas processing on production sites where cost, weight and efficiency are of particular importance. Application of this Combined Heat Exchanger-Separator is presented for various gas processing schemes: Turbo Expander, Mechanical Refrigeration and Joule-Thompson.

Waintraub, L.; Sourp, T. [Proser (France)

1998-12-31T23:59:59.000Z

140

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy storage for desalination processes powered by renewable energy and waste heat sources  

Science Journals Connector (OSTI)

Abstract Desalination has become imperative as a drinking water source for many parts of the world. Due to the large quantities of thermal energy and high quality electricity requirements for water purification, the desalination industry depends on waste heat resources and renewable energy sources such as solar collectors, photovoltaic arrays, geothermal and wind and tidal energy sources. Considering the mismatch between the source supply and demand and intermittent nature of these energy resources, energy storage is a must for reliable and continuous operation of desalination facilities. Thermal energy storage (TES) requires a suitable medium for storage and circulation while the photovoltaic/wind generated electricity needs to be stored in batteries for later use. Desalination technologies that utilize thermal energy and thus require storage for uninterrupted process operation are multi-stage flash distillation (MSF), multi-effect evaporation (MED), low temperature desalination (LTD) and humidification–dehumidification (HD) and membrane distillation (MD). Energy accumulation, storage and supply are the key components of energy storage concept which improve process performance along with better resource economics, and minimum environmental impact. Similarly, the battery energy storage (BES) is essential to store electrical energy for electrodialysis (ED), reverse osmosis (RO) and mechanical vapor compression (MVC) technologies. This research-review paper provides a critical review on current energy storage options for different desalination processes powered by various renewable energy and waste heat sources with focus on thermal energy storage and battery energy storage systems. Principles of energy storage (thermal and electrical energy) are discussed with details on the design, sizing, and economics for desalination process applications.

Veera Gnaneswar Gude

2014-01-01T23:59:59.000Z

142

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, April--June 1993  

SciTech Connect (OSTI)

Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is essential to the fundamental determination of kinetic parameters of coal devolatilization. These same properties are also needed to refine existing devolatilization sub-models utilized in large-scale modeling of coal combustion systems. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. The coal ranks to be investigated will include a high volatile A bituminous (PSOC 1451 D) and a low volatile bituminous (PSOC 1516D). An anthracite (PSOC 1468) will be used as a non-volatile coal reference. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars.

Proscia, W.M.; Freihaut, J.D.

1993-08-01T23:59:59.000Z

143

A coal-fired combustion system for industrial process heating applications  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

144

Development of a new flat stationary evacuated CPC-collector for process heat applications  

SciTech Connect (OSTI)

For the economical supply of solar process heat at temperatures between 120 and 150 C a new non-tracking, flat, low-concentrating collector has been developed. The new collector is an edge ray collector with a concentration of 1.8 and inert gas filling, existing of parallel mounted absorber-reflector units, aligned in east-west direction. The basic concept is the integration of an absorber tube and reflectors inside a low pressure enclosure. Asymmetrical reflectors below the headers with a concentration of 0.6X provide extra radiation and prevent longitudinal radiation losses. To suppress heat losses due to gas-convection inside, air or inert gas like krypton at a pressure below 10 mbar is used. A prototype, with an aperture area of 2.0 m{sup 2}, was tested in Munich and showed efficiencies of about 50% for krypton at 0.01 bar at a temperature of 150 C with a radiation of 1000 W/m{sup 2} (900 W/m{sup 2} direct, ambient temperature 20 C). (author)

Buttinger, Frank; Beikircher, Thomas; Proell, Markus; Schoelkopf, Wolfgang [Bavarian Center for Applied Energy Research (ZAE Bayern), Technology for Energy Systems and Renewable Energies, Walther-Meissner-Str. 6, 85748 Garching (Germany)

2010-07-15T23:59:59.000Z

145

Modeling and co-simulation of a parabolic trough solar plant for industrial process heat  

Science Journals Connector (OSTI)

In the present paper a tri-dimensional non-linear dynamic thermohydraulic model of a parabolic trough collector was developed in the high-level acausal object-oriented language Modelica and coupled to a solar industrial process heat plant modeled in TRNSYS. The integration is performed in an innovative co-simulation environment based on the TLK interconnect software connector middleware. A discrete Monte Carlo ray-tracing model was developed in SolTrace to compute the solar radiation heterogeneous local concentration ratio in the parabolic trough collector absorber outer surface. The obtained results show that the efficiency predicted by the model agrees well with experimental data with a root mean square error of 1.2%. The dynamic performance was validated with experimental data from the Acurex solar field, located at the Plataforma Solar de Almeria, South-East Spain, and presents a good agreement. An optimization of the IST collector mass flow rate was performed based on the minimization of an energy loss cost function showing an optimal mass flow rate of 0.22 kg/s m2. A parametric analysis showed the influence on collector efficiency of several design properties, such as the absorber emittance and absorptance. Different parabolic trough solar field model structures were compared showing that, from a thermal point of view, the one-dimensional model performs close to the bi-dimensional. Co-simulations conducted on a reference industrial process heat scenario on a South European climate show an annual solar fraction of 67% for a solar plant consisting on a solar field of 1000 m2, with thermal energy storage, coupled to a continuous industrial thermal demand of 100 kW.

R. Silva; M. Pérez; A. Fernández-Garcia

2013-01-01T23:59:59.000Z

146

Optimization and heat integration of hollow fiber based thermal swing adsorption process for CO2 capture from flue gas  

Science Journals Connector (OSTI)

Abstract This work studies the optimization of a hollow fiber contactor operated in a rapid temperature swing adsorption (RTSA) mode for CO2 capture from flue gas. A hollow fiber contactor enables rapid heat and mass transfer and an efficient heat integration whereby parasitic loads on power plants can be reduced significantly compared to the traditional thermal swing adsorption processes. In this paper we employ a dynamic optimization strategy to predict the optimal operating conditions of a hollow fiber RTSA process for different process design objectives. The objective function considered was to maximize the feed throughput of the process with constraints for the required CO2 purity and recovery. Furthermore, the external heat and cold utilities must be minimized. The optimization requires a dynamic heat integration i.e. redistributing the hot and cold stream outlet between different parts of a cycle which is challenging and unconventional. This has been performed using a binary decision variable which switches the outlet water stream between hot and cold tanks. We also show that a multi- objective optimization approach can be employed to determine the optimal trade-off between heat duty and process throughput. Optimization was performed using a single discretization approach within gPROMS.

Subramanian Swernath; Fateme Rezaei; Jayashree Kalyanaraman; Ryan. P. Lively; Matthew J. Realff; Yoshiaki Kawajiri

2014-01-01T23:59:59.000Z

147

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Journals Connector (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcalá; Jorge Casillas; Oscar Cordón; Antonio González; Francisco Herrera

2005-04-01T23:59:59.000Z

148

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

149

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

1983-09-21T23:59:59.000Z

150

Potential Assessment in Mexico for Solar Process Heat Applications in Food and Textile Industries  

Science Journals Connector (OSTI)

Abstract Industrial sector of Mexico is the second energy consumer, approximately 28% of the national consumption, according to the National Balance of Energy. A potential study carried out within the micro and small food and textile industries has established that they are using 68% of the total energy consumption as thermal energy, most supplied by liquefied gas and followed by natural gas and diesel. The processes use water, low and medium pressure steam mainly at temperatures from 60 to 180 °C. In this context, solar concentrators, especially parabolic troughs, could give an important portion of the required thermal energy. The introduction in the country of a strategy change in the use of the energy is a formidable challenge. Beginning in the country with the erection of small parabolic trough plants in such industries could allow a technical and economic advancement of the technology and the benefits could be presented almost immediately. The methodology for the potential assessment for solar process heat applications in food and textile industries was based on statistical information from the National Balance of Energy, the National Directory of Economic Units and together with questionnaires, phone calls, workshops and in some cases personal interviews. According to such considerations, three scenarios were established and will be described within this paper in terms of the potential of the parabolic trough technology applied in the appropriated industries.

C. Ramos; R. Ramirez; J. Beltran

2014-01-01T23:59:59.000Z

151

Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed.

Pruess, K.; Tsang, Y.

1993-01-01T23:59:59.000Z

152

Barriers to solar process heat projects: Fifteen highly promising (but cancelled) projects  

SciTech Connect (OSTI)

We analyzed technical, economic, and institutional barriers encountered by the solar industry in penetrating the market of solar thermal systems as applied in industry, commerce, and government. The barriers discussed are not theoretical or developed by conducting marketing research surveys of potential users. Rather, they are barriers that precluded implementing actual solar projects for 15 ``highly promising`` prospective users. The efforts to determine their technical and economic feasibility were funded by the US Department of Energy (DOE) Solar Process Heat (SPH) program. Each year, the SPH program conducts a prefeasibility studies activity -- an engineering assessment of the technical and economic feasibility of a solar system for a specific application for a specific end-user. These studies also assess institutional issues that impact the feasibility of the proposed project and develop an action plan for the project`s implementation. In FY 1991 and FY 1992, the program funded a total of 11 studies in which solar projects were investigated for 21 potential users. Of these 21 potential users, only three have made firm commitments to acquire solar systems, yielding a 14% success rate (decisions by three other companies are still pending). The low success rate is disappointing because the solar companies had complete freedom to select ``highly promising`` potential users. We therefore evaluated the reasons for the low success rate and the implications for market penetration.

Carwile, C. [USDOE, Washington, DC (United States). Office of Industrial Technologies] [USDOE, Washington, DC (United States). Office of Industrial Technologies; Hewett, R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

1994-10-01T23:59:59.000Z

153

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

154

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect (OSTI)

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

155

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

156

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

157

Methods for microwave heat treatment of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

Ripley, Edward B. (Knoxville, TN)

2010-08-03T23:59:59.000Z

158

Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization  

Science Journals Connector (OSTI)

The performance of Natural Gas Processing Plants (NGPPs) can be enhanced with the integration of Combined Cooling, Heating and Power (CCHP) generation schemes. This paper analyzes the integration of a trigeneration scheme within a NGPP, that utilizes waste heat from gas turbine exhaust gases to generate process steam in a Waste Heat Recovery Steam Generator (WHRSG). Part of the steam generated is used to power double-effect water–lithium bromide (H2O–LiBr) absorption chillers that provide gas turbine compressor inlet air-cooling. Another portion of the steam is utilized to meet part furnace heating load, and supplement plant electrical power in a combined regenerative Rankine cycle. A detailed techno-economic analysis of scheme performance is presented based on thermodynamic predictions obtained using Engineering Equation Solver (EES). The results indicate that the trigeneration system could recover 79.7 MW of gas turbine waste heat, 37.1 MW of which could be utilized by three steam-fired H2O–LiBr absorption chillers to provide 45 MW of cooling at 5 °C. This could save approximately 9 MW of electric energy required by a typical compression chiller, while providing the same amount of cooling. In addition, the combined cycle generates 22.6 MW of additional electrical energy for the plant, while process heating reduces furnace oil consumption by 0.23 MSCM per annum. Overall, the trigeneration scheme would result in annual natural gas fuel savings of approximately 1879 MSCM, and annual operating cost savings of approximately US$ 20.9 million, with a payback period of 1 year. This study highlights the significant economical and environmental benefits that could be achieved through implementation of the proposed integrated cogeneration scheme in NGPPs, particularly in elevated ambient temperature and humidity conditions such as encountered in Middle East facilities.

Sahil Popli; Peter Rodgers; Valerie Eveloy

2012-01-01T23:59:59.000Z

159

Solar pond technology for large-scale heat processing in a Chilean mine  

Science Journals Connector (OSTI)

Coppermining is the largest industrial activity in Northern Chile a region that relies mostly on imported energy resources thus making the mining sector vulnerable to the rising cost of fuel oil and electricity. The extraction of copper is mostly accomplished by hydrometallurgy a three-step low energy process consisting of heap leaching concentration by solvent extraction and metal recovery by electro-winning. Since the content of copper in its ore tends to degrade as the mining operation proceeds higher leaching temperatures would be needed along with increasing energy requirements. In order to address this demand and considering that the region has one of the highest levels of solar radiation and clear skies the authors assessed the solar pond technology for rising the temperature of the leaching stream. The working principle of such technology is presented as well as its mathematical formulation restrictions and assumptions aiming to simulate the performance of a solar pond and to size a suitable setup. The results indicate that this technology can provide sufficient heat to raise the temperature to a range of 50 to 70?°C throughout the year with an annual gross thermal supply of 626?GWh. In order to minimize the loss of water and salt from the pond a closed salt cycle is suggested. Savings of up to 59 000 tons of diesel oil per year and the avoidance of 164 000 tons of CO2 per year could be achieved with a solar pond effective area of 1.43 km2 reaching an average efficiency of 19.4%. Thus solar pond technology is suitable for attaining the goal of increasing the leaching temperature while diminishing fuel costs and greenhouse emissions.

F. Garrido; R. Soto; J. Vergara; M. Walczak; P. Kanehl; R. Nel; J. García

2012-01-01T23:59:59.000Z

160

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris  

DOE Patents [OSTI]

An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Grace, Karen M. (Los Alamos, NM); Grace, Wynne K. (Los Alamos, NM); Shreve, Andrew P. (Santa Fe, NM)

2009-06-02T23:59:59.000Z

162

Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating  

SciTech Connect (OSTI)

The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850��������C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys���¢�������� weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t

Kumar Sridharan; Mark Anderson; Todd Allen; Michael Corradini

2012-01-30T23:59:59.000Z

163

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

164

Heat transfer process under a film-cooled surface with presence of weak swirling flow in the mainstream  

SciTech Connect (OSTI)

Experiments have been performed in a relatively large circular pipe to study and obtain the heat transfer data over a film-cooled surface, with the presence of weak swirling flow in the mainstream. The swirling flow is generated by a flat-vaned swirler situated upstream. A cooling film is injected from an annular slot formed by the pipe wall and the circular cover plate. The radial temperature distribution measurements at several axial locations were used to infer the film jet structure and the rate of mixing of the film jet with the swirling flow. The nondimensional parameters governing the heat transfer process under the film are derived from the system of governing equations. Experiments demonstrate that the swirl number, increasing with turbulence intensity and swirl velocity in the mainstream, can rapidly destroy the film jet structure and enhance the heat transfer process. During the course of the experiments, the blowing parameter ranged from 0.5 to 2 and the swirl number ranged from 0 to 0.6. Correlations for the Nusselt number which account for the effect of swirling flow are presented. (author)

Yang, C.S. [Department of Computer Science and Information Engineering, Far East University, Tainan (China); Kung, T.L.; Gau, C. [Institute of Aeronautics and Astronautics, Center for Micro/Nano Science and Technology, National Cheng Kung University (China)

2007-11-15T23:59:59.000Z

165

Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis  

SciTech Connect (OSTI)

Thermal decomposition of 25.4 mm diameter dry wood spheres is studied both experimentally and theoretically. Wood spheres were pyrolyzed in a vertical tube furnace at temperatures ranging from 638 K to 879 K. Mass loss and temperatures of the sample were measured during pyrolysis. Center temperature measurements showed two distinct thermal events consisting of sequential endothermic and exothermic reactions. A numerical investigation of these endo/exothermic reactions using various pyrolysis kinetics models was conducted to determine the pyrolysis mechanism and the heats of the pyrolysis reactions. A comparison of the experimental and numerical results showed that (i) Contrary to the suggestions in the literature, the contributions of the secondary tar decomposition and lignin decomposition to the center temperature exothermic peak are small. (ii) Exothermic decomposition of the intermediate solid is responsible for the center temperature peak. (iii) The center temperature plateau is caused by the endothermic decomposition of cellulose. (iv) Internal pressure generation was found to be quite important because it controls the pyrolyzate mass transfer and thus affects both the heat transfer and the residence time of the pyrolysis gases for secondary decomposition. Based on the experimental and numerical results, a new wood pyrolysis model is proposed. The model consists of three endothermic parallel reactions producing tar, gas and intermediate solid and subsequent exothermic decomposition of the intermediate solid to char and exothermic decomposition of tar to char and gas. The proposed pyrolysis model shows good agreement with the experiments. Pressure calculations based on the new pyrolysis model revealed that high pressure is generated inside the biomass particle during pyrolysis and sample splitting was observed during the experiments. The splitting is due to both weakening of the structure and internal pressure generation during pyrolysis. At low heating rates, structural weakness is the primary factor, whereas at high heating rates, internal pressure is the determining factor. It is expected that moisture, while not considered in this work will have a similar effect, but at lower temperatures. (author)

Park, Won Chan; Atreya, Arvind [Department of Mechanical Engineering, University of Michigan, 2158 GGBL 2350 Hayward St., Ann Arbor, MI 48109 (United States); Baum, Howard R. [Department of Fire Protection Engineering, University of Maryland, 3106-D J.M. Patterson Building, College Park, MD 20742 (United States)

2010-03-15T23:59:59.000Z

166

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report  

SciTech Connect (OSTI)

The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

1993-08-01T23:59:59.000Z

167

Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources  

SciTech Connect (OSTI)

This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

Not Available

2008-06-01T23:59:59.000Z

168

Waste heat utilization. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recovery and use of waste heat in power plants, industrial processes, and commercial buildings. Topics include the use of industrial process heat in district heating studies, greenhouse heating with power plant waste heat, and materials considerations for heat exchange equipment. The use of heat pumps in the recovery of low-grade industrial heat is discussed. Citations pertaining specifically to government policies and total energy systems in commercial buildings are excluded. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-04-01T23:59:59.000Z

169

Waste heat utilization. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recovery and use of waste heat in power plants, industrial processes, and commercial buildings. Topics include the use of industrial process heat in district heating studies, greenhouse heating with power plant waste heat, and materials considerations for heat exchange equipment. The use of heat pumps in the recovery of low-grade industrial heat is discussed. Citations pertaining specifically to government policies and total energy systems in commercial buildings are excluded. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

170

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

171

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Journals Connector (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

172

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

between alternative solar storage system designs; almost allThe behavior of the storage solar receiver-reactor is baseddaytime (charging) storage process Boeing solar receiver [5J

Dayan, J.

2011-01-01T23:59:59.000Z

173

Carbothermic reduction with parallel heat sources  

DOE Patents [OSTI]

Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

Troup, Robert L. (Murrysville, PA); Stevenson, David T. (Washington Township, Washington County, PA)

1984-12-04T23:59:59.000Z

174

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

175

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network [OSTI]

. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW...

Meacher, J. S.

1981-01-01T23:59:59.000Z

176

Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats...

177

Apparatus with moderating material for microwave heat treatment of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

Ripley, Edward B. (Knoxville, TN)

2011-05-10T23:59:59.000Z

178

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

179

A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

180

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network [OSTI]

I.2. Solar Trigeneration System and Process Integration?????. 3 I.3. Integration of Refrigeration Cycles???????????? 9 I.4. Overall Objective of the Dissertation and Research Challenges??????????????????..??? 11 I.5. Problem... Decomposition????????????????. 12 I.6. Dissertation Overview????????????????? 12 II BACKGROUND AND LITERATURE REVIEW????????? 14 II.1. Solar Collectors???????????????????.. 14 II.2. Performance of the Concentrating Collectors???????? 25 II.3. Solar...

Tora, Eman

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Simultaneous Process Synthesis, Heat and Power Integration in a Sustainable Integrated Biorefinery  

Science Journals Connector (OSTI)

An integrated biorefinery is a processing facility that converts biomass feedstocks into a wide range of value added products (e.g., biofuels, specialty chemicals) via multiple technologies. ... features is the ability to handle a wide variety of biomass feedstocks and the capacity to produce a portfolio of products through multiple conversion technologies. ...

Rex T. L. Ng; Douglas H. S. Tay; Denny K. S. Ng

2012-10-19T23:59:59.000Z

182

Processing and utilizing high heat value, low ash alternative fuels from urban solid waste  

SciTech Connect (OSTI)

The history of technologies in the US that recover energy from urban solid waste is relatively short. Most of the technology as we know it evolved over the past 25 years. This evolution led to the development of about 100 modern mass burn and RDF type waste-to-energy plants and numerous small modular combustion systems, which collectively are handling about 20%, or about 40 million tons per year, of the nations municipal solid waste. Technologies also evolved during this period to co-fire urban waste materials with other fuels or selectively burn specific waste streams as primary fuels. A growing number of second or third generation urban waste fuels projects are being developed. This presentation discusses new direction in the power generating industry aimed at recovery and utilization of clean, high heat value, low ash alternative fuels from municipal and industrial solid waste. It reviews a spectrum of alternative fuels for feasible recovery and reuse, with new opportunities emerging for urban fuels processors providing fuels in the 6,000--15,000 BTU/LB range for off premises use.

Smith, M.L. [M.L. Smith Environmental and Associates, Tinley Park, IL (United States)

1995-10-01T23:59:59.000Z

183

On-Board Fuel Processing for a Fuel Cell?Heat Engine Hybrid System  

Science Journals Connector (OSTI)

(9) Because they have used the same fuel, gasoline having an established infrastructure, to constrain the same well to tank (WTT) efficiency for the compared systems, the TTW efficiency of the hybrid FCHEV is unexpectedly low, because the gasoline processing to hydrogen with subsequent use of the latter in the FC had an efficiency of only 35% in their calculation. ... to increase by up to 15% by hybridizing it with an energy storage system. ...

Osman Sinan Süslü; ?pek Becerik

2009-03-24T23:59:59.000Z

184

Alternate energy source usage methods for in situ heat treatment processes  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing power to one or more subsurface heaters is described herein. The method may include monitoring one or more operating parameters of the heaters, the intermittent power source, and a transformer coupled to the intermittent power source that transforms power from the intermittent power source to power with appropriate operating parameters for the heaters; and controlling the power output of the transformer so that a constant voltage is provided to the heaters regardless of the load of the heaters and the power output provided by the intermittent power source.

Stone, Jr., Francis Marion; Goodwin, Charles R; Richard, Jr., James E

2014-10-14T23:59:59.000Z

185

Floatable solar heat modules  

SciTech Connect (OSTI)

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

186

Synthesis of Sm{sup 3+}-doped strontium barium niobate crystals in glass by samarium atom heat processing  

SciTech Connect (OSTI)

New glasses giving the crystallization of Sm{sup 3+}-doped Sr {sub x} Ba{sub 1-} {sub x} Nb{sub 2}O{sub 6} (SBN) ferroelectrics have been developed in the Sm{sub 2}O{sub 3}-SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} system, and the formation of SBN crystal dots and lines by continuous wave Nd:YAG laser (wavelength:1064 nm, power: 1 W) irradiations, i.e., samarium atom heat processing, has been examined. The formation of Sm{sup 3+}-doped SBN non-linear optical crystals is confirmed from X-ray diffraction analyses, micro-Raman scattering spectra, second harmonic generations, and photoluminescence spectra. Sm{sup 3+}-doped SBN crystal dots with the diameters of 20-70 {mu}m and lines with the widths of 20-40 {mu}m are written at the surface of some glasses such as 10Sm{sub 2}O{sub 3}.10SrO.10BaO.20Nb{sub 2}O{sub 5}.50B{sub 2}O{sub 3} (mol%) by Nd:YAG laser irradiations with the irradiation times of 20-70 s for the dots and with the scanning speeds of 1-5 {mu}m/s for the lines. The present study suggests that the samarium atom heat processing has a potential for the patterning of optical waveguides consisting of ferroelectric SBN crystals in glass substrates.

Chayapiwut, Nakorn [Department of Chemistry, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Honma, Tsuyoshi [Department of Chemistry, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Benino, Yasuhiko [Department of Chemistry, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Fujiwara, Takumi [Department of Chemistry, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Komatsu, Takayuki [Department of Chemistry, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)]. E-mail: komatsu@chem.nagaokaut.ac.jp

2005-11-15T23:59:59.000Z

187

The conversion of solar energy to the chemical energy of organic compounds is a complex process that includes electron transport and  

E-Print Network [OSTI]

The conversion of solar energy to the chemical energy of organic compounds is a complex process would cause severe problems if special mechanisms did not protect the photosynthetic system from energy or photon units. Irradiance is the amount of energy that falls on a flat sensor of known area per

Ehleringer, Jim

188

Waste-heat utilization. (Latest citations from the U. S. Patent data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning processes employed for the recovery of useful heat from the environment, or from equipment which generates waste heat. Heat pump systems, furnaces, industrial boilers, and systems employed in the recovery of heat from internal combustion engines are discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

189

Solar process water heat for the Iris Images Custom Color Photo Lab. Final report  

SciTech Connect (OSTI)

This is the final technical report of the solar facility locted at Iris Images Custom Photo Laboratory in Mill Valley, California. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100/sup 0/F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxiliary back up system is a conventional gas-fired water heater. Freeze protection in this mild climate was originally provided by closed-loop circulation of hot water from the storage tank. Later this was changed to a drain-down system due to a freeze when electrical power failed. This system has been relatively successful with little or no scheduled maintenance. The site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are included.

Not Available

1980-03-01T23:59:59.000Z

190

Characterization of a Heat-Shock Process for Reduction of the Nucleic Acid Content of Candida utilis  

Science Journals Connector (OSTI)

...molecular weight distribution of the degradation...without appreciable loss of ribonuclease...length of time of heat- shock (step...Immediately after heat-shock- ing, the distribution of nucleic acids...observed in the non-heat-shocked cells...

S. Ohta; S. Maul; A. J. Sinskey; S. R. Tannenbaum

1971-09-01T23:59:59.000Z

191

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

192

Simulation and Optimization of Distillation Processes for Separating the Methanol–Chlorobenzene Mixture with Separate Heat-Pump Distillation  

Science Journals Connector (OSTI)

For a special distillation column with a large temperature difference between the bottom and top, the direct heating of the bottom by compressing the top stream would cause excessive energy consumption by the compressor, which would result in an increase in the overall energy consumption and operating costs; therefore, this method would not meet the energy-saving principle of heat-pump distillation. ... Rivera-Ortega, P.; Picón-Núñez, M.; Torres-Reyes, E.; Gallegos-Muñoz, A.Thermal Integration of Heat Pumping Systems in Distillation Columns Appl. ... Fonyo, Z.; Mizsey, P.Economic Application of Heat Pumps in Integrated Distillation Systems Heat Recovery Syst CHP 1994, 14, 249– 263 ...

Xiaoxin Gao; Zhengfei Ma; Limin Yang; Jiangquan Ma

2013-07-30T23:59:59.000Z

193

RCS pressure under reduced inventory conditions following a loss of residual heat removal  

SciTech Connect (OSTI)

The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes.

Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

1992-08-01T23:59:59.000Z

194

Thermal energy recovery of low grade waste heat in hydrogenation process; Återvinning av lågvärdig spillvärme från en hydreringsprocess.  

E-Print Network [OSTI]

?? The waste heat recovery technologies have become very relevant since many industrial plants continuously reject large amounts of thermal energy during normal operation which… (more)

Hedström, Sofia

2014-01-01T23:59:59.000Z

195

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

196

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

197

Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report  

SciTech Connect (OSTI)

The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

Clifford, J E; Diegle, R B

1980-04-11T23:59:59.000Z

198

Reduce Radiation Losses from Heating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

199

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

200

Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

202

Microwave heating for adsorbents regeneration and oil sands coke activation.  

E-Print Network [OSTI]

??Microwave heating has unique advantages compared to convection-radiation heating methods including fast heating rate and selective heating of objects. This thesis studied two applications of… (more)

Chen, Heng

2010-01-01T23:59:59.000Z

203

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

204

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

205

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

206

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

207

Heat transfer analysis in Stirling engine heat input system  

SciTech Connect (OSTI)

One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

Chung, W.; Kim, S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

1995-12-31T23:59:59.000Z

208

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system,… (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

209

Proceedings of the ASME Heat Transfer Division. Volume 4: Natural convection within a horizontal circular cylinder heated from below and cooled from above; Numerical methods for coupled fluid-thermal-structural interaction; Thermal analysis in waste processing and disposal; Heat transfer in fire and combustion systems; HTD-Volume 335  

SciTech Connect (OSTI)

The first two sections as listed in the title contain 7 papers. The third section on thermal analysis contains 18 papers arranged into the following topical areas: Thermal treatment and municipal wastes; Thermal hydraulics in hazardous and nuclear waste processing and disposal; and Waste processing. Heat transfer in fire and combustion systems contains 17 papers arranged into the following topical sections: Soot/radiation; Combustion systems; Multiphase combustion; and Flames and fires. Most papers have been processed separately for inclusion on the data base.

Pepper, D.W. [ed.] [Univ. of Nevada, Las Vegas, NV (United States); Douglass, R.W. [ed.] [Idaho National Engineering Lab., Idaho Falls, ID (United States); Heinrich, J.C. [ed.] [Univ. of Arizona, Tucson, AZ (United States)] [and others

1996-12-31T23:59:59.000Z

210

Pump apparatus including deconsolidator  

DOE Patents [OSTI]

A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

2014-10-07T23:59:59.000Z

211

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

212

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

213

Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

214

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

215

Reversible and irreversible processes in dispersive/dissipative optical media: Electro-magnetic free energy and heat production  

E-Print Network [OSTI]

We solve the problem addressed by Landau and Lifshitz in 1958, and Oughstun and Sherman of determining the dynamical losses in a purely dissipative dielectric media. We develop concrete notions of macroscopic free energy and losses as energy which is reversible and irreversible, respectively, in the medium-field interaction. We define the reversible and irreversible energies and outline the derivation of said quantities. We examine the implications of our definition and it's auxiliary quantity, the reversal field, for the single Lorentz oscillator model of a medium. We show that for this model the reversible energy reduces to the sum of the kinetic and potential energy, as found by Loudon. We note that in general, the sum of the kinetic and potential energies is greater than the reversible energy. We show that the reversible and irreversible energy have the characteristics classically defining free energy and heat.

C. Broadbent; G. Hovhannisyan; M. Clayton; J. Peatross; S. A. Glasgow

2002-07-31T23:59:59.000Z

216

Electrotechnologies in Process Industries  

E-Print Network [OSTI]

Processes Motor drives are mainly used in prime movers (pumps, fans, compressors, etc.) and in materials processing and handling (grinders, conveyors, etc.). EPRI develops and promotes technologies such as industrial heat pumps, freeze concentra tion... the need to disseminate the results of its research and development so that they can be applied broadly across the industrial sector. Specific technology transfer activities in process industries include: o Conferences and workshops o Tech...

Amarnath, K. R.

217

Application of heat exchangers in BWR nuclear power stations  

SciTech Connect (OSTI)

Applications of heat exchangers, in typical BWR Nuclear Power Plant fluid systems, are described from a process standpoint. System schematics and lists of heat exchanger parameters are presented to aid in understanding the influence of the process on specific applications. These exchangers are constructed to meet special code, seismic, and quality assurance criteria. They have a variety of configurations, including both vertical and horizontal, and are of ''U'' tube or once-through design.

Hess, F.L.; Patti, F.J.

1982-01-01T23:59:59.000Z

218

FEMP--Geothermal Heat Pumps  

Broader source: Energy.gov (indexed) [DOE]

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

219

Heat Controller: Proposed Penalty (2011-CE-1507) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Controller: Proposed Penalty (2011-CE-1507) Heat Controller: Proposed Penalty (2011-CE-1507) Heat Controller: Proposed Penalty (2011-CE-1507) April 22, 2011 DOE alleged in a Notice of Proposed Civil Penalty that Heat Controller, Inc. failed to certify a variety of room air conditioners as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Heat Controller: Proposed Penalty (2011-CE-1507) More Documents & Publications Heat Controller: Order (2011-CE-1507)

220

Assembly of opto-electronic module with improved heat sink  

DOE Patents [OSTI]

A heat sink for a transceiver optoelectronic module including dual direct heat paths and a structure which encloses a number of chips having a central web which electrically isolates transmitter and receiver chips from each other. A retainer for an optical coupler having a port into which epoxy is poured. An overmolded base for an optoelectronic module having epoxy flow controller members built thereon. Assembly methods for an optoelectronic module including gap setting and variation of a TAB bonding process.

Chan, Benson (Vestal, NY); Fortier, Paul Francis (Richelieu, CA); Freitag, Ladd William (Rochester, MN); Galli, Gary T. (Binghampton, NY); Guindon, Francois (Stukely-sud, CA); Johnson, Glen Walden (Yorktown Heights, NY); Letourneau, Martial (Granby, CA); Sherman, John H. (Lisle, NY); Tetreault, Real (Granby, CA)

2004-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Line patterning of (Sr,Ba)Nb{sub 2}O{sub 6} crystals in borate glasses by transition metal atom heat processing  

SciTech Connect (OSTI)

Some NiO-doped Bi{sub 2}O{sub 3},La{sub 2}O{sub 3}-SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses giving the formation of strontium barium niobate Sr{sub 0.5}Ba{sub 0.5}Nb{sub 2}O{sub 6} (SBN) crystals with a tetragonal tungsten-bronze structure through conventional crystallization in an electric furnace have been developed, and SBN crystal lines have been patterned on the glass surface by heat-assisted (250-300 deg. C) laser irradiation and scanning of continuous-wave Nd:YAG laser (wavelength: 1064 nm). The surface morphology and the quality of SBN crystal lines are examined from measurements of confocal scanning laser micrographs and polarized micro-Raman scattering spectra. The surface morphology of SBN crystal lines changes from periodic bump structures to homogeneous structures, depending on laser scanning conditions. It is suggested that the line patterned at the laser irradiation condition of laser power P=1 W and of laser scanning speed S=1 {mu}m/s in 2NiO-4La{sub 2}O{sub 3}-16SrO-16BaO-32Nb{sub 2}O{sub 5}-30B{sub 2}O{sub 3} glass has a possibility of the orientation of SBN crystals along the laser scanning direction. The present study demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni{sup 2+} ions) is a novel technique for spatially selected crystallization of SBN crystals in glass. - Graphical abstract: This figure shows the polarization optical (a) and confocal scanning laser (b) micrographs for the sample obtained by heat-assisted (300 deg. C) Nd:YAG laser irradiation with a laser power of P=1 W and laser scanning speed of S=1 {mu}m/s in Glass C. The figure demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni{sup 2+} ions) is a novel technique for spatially selected crystallization of SBN crystals in glass.

Sato, M.; Honma, T.; Benino, Y. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Komatsu, T. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)], E-mail: komatsu@mst.nagaokaut.ac.jp

2007-09-15T23:59:59.000Z

222

FEMP Expands ESPC ENABLE Program to Include More Energy Conservation...  

Energy Savers [EERE]

(ESPC) ENABLE program to include two new energy conservation measures (ECMs): solar photovoltaic (PV) and simple one-for-one heating, ventilation, and air conditioning (HVAC)...

223

PreHeat: Controlling Home Heating Using Occupancy Prediction  

E-Print Network [OSTI]

@comp.lancs.ac.uk ABSTRACT Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more, and measuring actual gas consumption and occupancy. In UK homes PreHeat both saved gas and reduced MissTime (the Home heating uses more energy than any other residential energy expenditure including air conditioning

Krumm, John

224

Heat pump having improved defrost system  

DOE Patents [OSTI]

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

Chen, F.C.; Mei, V.C.; Murphy, R.W.

1998-12-08T23:59:59.000Z

225

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

organic Rankine cycle waste heat power conversion system. ”Cycle (ORC) System for Waste Heat Recovery. ” Journal ofRankine Cycles in Waste Heat Uti- lizing Processes. ”

Luong, David

2013-01-01T23:59:59.000Z

226

Guide to a geothermal heat plan: a geothermal energy application. Serial No. 3  

SciTech Connect (OSTI)

The concept of a heat plan is introduced so that local officials may become familiar with thermal considerations and determine which options deserve further study and action. The approach for formulating a heat plan is a two-part process where heat resources and end-uses are first characterized in a heat atlas and then acted upon according to goals and strategies embodied in the plan. The purpose of the atlas is to systematically monitor a community's thermal supplies and demands, and to catalog them in the same manner as other community development sectors. The heat plan contains thermal goals and implementation measures based on conditions and opportunities revealed in the atlas. The heat demands considered in the atlas include space, water, and industrial process heat demands. Thermal resources considered include those conventional fuels already in use, as well as those alternate energy resources which have potential for utilization. (LEW)

Not Available

1982-03-01T23:59:59.000Z

227

Pervaporation process and assembly  

DOE Patents [OSTI]

The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.

Wynn, Nicholas P. (Redwood City, CA); Huang, Yu (Palo Alto, CA); Aldajani, Tiem (San Jose, CA); Fulton, Donald A. (Fairfield, CA)

2010-07-20T23:59:59.000Z

228

Application of microwave heating to ceramic processing: Design and initial operation of a 2.45-GHz single-mode furnace  

SciTech Connect (OSTI)

High-power microwave and millimeter-wave sources are currently being applied to ceramic processing studies at the Naval Research Laboratory (NRL). A single-mode cavity microwave furnace, operating in the TE{sub 103} mode at 2.45 GHz, is operational and is being used to investigate sintering of nanocrystalline ceramics. This paper reports the design of the 2.45-GHz furnace and its use in initial microwave sintering experiments on nanocrystalline alumina and titania compacts. The high purity Al{sub 2}O{sub 3} and TiO{sub 2} nanocrystalline powders used in the sintering experiments were prepared by the sol-gel method. These powders were first uniaxially pressed to 14 MPa, cold isostatically pressed (CIP`ed) to various pressures {ge}420 MPa, and finally sectioned into wafers. The density of the green compacts was 30 to 38% theoretical density (TD). The compacts were placed in insulating fiberboard caskets which were sufficiently lossy to provide hybrid heating at room temperature. The compacts were heated in the microwave furnace for up to three hours at temperatures {ge}1720 C. The temperature of the workpiece was monitored using an optical pyrometer. Final densities up to 80% TD have been obtained to date for Al{sub 2}O{sub 3} and up to 52% TD for TiO{sub 2}. The sintered compacts were characterized by X-ray diffraction and by scanning electron microscopy (SEM) to determine the phase and grain size.

Fliflet, A.W. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Bruce, R.W.; Kinkead, A.K. [Sachs/Freeman Associates Inc., Landover, MD (United States)] [and others] [Sachs/Freeman Associates Inc., Landover, MD (United States); and others

1996-06-01T23:59:59.000Z

229

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

230

Cryogenic Fluid Flow Heat Transfer in a Porous Heat Exchanger  

Science Journals Connector (OSTI)

The recent utilization of porous heat exchangers in various key industries has aroused considerable interest in the heat transfer and fluid dynamics processes in channel flows involving suction...1], suction with...

L. L. Vasiliev; G. I. Bobrova; S. K. Vinokurov…

1978-01-01T23:59:59.000Z

231

Writing of nonlinear optical Sm{sub 2}(MoO{sub 4}){sub 3} crystal lines at the surface of glass by samarium atom heat processing  

SciTech Connect (OSTI)

Some glasses such as 21.25Sm{sub 2}O{sub 3}.63.75MoO{sub 3}.15B{sub 2}O{sub 3} (mol %) giving the formation of nonlinear optical Sm{sub 2}(MoO{sub 4}){sub 3} crystals through conventional crystallization in an electric furnace and through continuous-wave Nd: yttrium aluminum garnet (YAG) laser (wavelength: 1064 nm) irradiation (samarium atom heat processing) have been developed. It is proposed from x-ray diffraction analyses, micro-Raman-scattering spectra, and second-harmonic generation measurements that the crystal structure of Sm{sub 2}(MoO{sub 4}){sub 3} formed by the crystallization is the {beta}{sup '}-phase structure with an orthorhombic (noncentrosymmetric) symmetry. The lines consisting of nonlinear optical {beta}{sup '}-Sm{sub 2}(MoO{sub 4}){sub 3} crystals are written at the surface of glasses by YAG laser irradiation (laser power: P=0.4 W, laser scanning speed: S=1-10 {mu}m/s), and, in particular, homogeneous crystal lines are formed at the laser scanning speed of 1 {mu}m/s. Refractive index changes (not crystallization) are also induced by YAG laser irradiation of P=0.4 W and a high laser scanning speed of S=25 {mu}m/s. The crystallization mechanism in the laser-irradiated region has been proposed. The present study demonstrates that the samarium atom heat processing is a technique for the writing of rare earth containing optical nonlinear/ferroelectric crystal lines in glass.

Abe, M.; Benino, Y.; Fujiwara, T.; Komatsu, T.; Sato, R. [Department of Chemistry, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Department of Materials Engineering, Tsuruoka National College of Technology, Tsuruoka 997-8511 (Japan)

2005-06-15T23:59:59.000Z

232

Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes  

DOE Patents [OSTI]

In a coal liquefaction process wherein feed coal is contacted with molecular hydrogen and a hydrogen-donor solvent in a liquefaction zone to form coal liquids and vapors and coal liquids in the solvent boiling range are thereafter hydrogenated to produce recycle solvent and liquid products, the improvement which comprises separating the effluent from the liquefaction zone into a hot vapor stream and a liquid stream; cooling the entire hot vapor stream sufficiently to condense vaporized liquid hydrocarbons; separating condensed liquid hydrocarbons from the cooled vapor; fractionating the liquid stream to produce coal liquids in the solvent boiling range; dividing the cooled vapor into at least two streams; passing the cooling vapors from one of the streams, the coal liquids in the solvent boiling range, and makeup hydrogen to a solvent hydrogenation zone, catalytically hydrogenating the coal liquids in the solvent boiling range and quenching the hydrogenation zone with cooled vapors from the other cooled vapor stream.

Nizamoff, Alan J. (Convent Station, NJ)

1980-01-01T23:59:59.000Z

233

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

234

Heat Pipes: An Industrial Application  

E-Print Network [OSTI]

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

235

Development Requirements for Advanced Industrial Heat Pumps  

E-Print Network [OSTI]

DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

236

Compound Effect of Alfv\\'en Waves and Ion-cyclotron Waves on Heating/Acceleration of Minor Ions via the Pickup Process  

E-Print Network [OSTI]

A scenario is proposed to explain the preferential heating of minor ions and differential streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test particle simulations that minor ions can be nearly fully picked up by intrinsic Alfv\\'en-cyclotron waves observed in the solar wind based on the observed wave energy density. Both high frequency ion-cyclotron waves and low frequency Alfv\\'en waves play crucial roles in the pickup process. A minor ion can first gain a high magnetic moment through the resonant wave-particle interaction with ion-cyclotron waves, and then this ion with a large magnetic moment can be trapped by magnetic mirror-like field structures in the presence of the lower-frequency Alfv\\'en waves. As a result, the ion is picked up by these Alfv\\'en-cyclotron waves. However, minor ions can only be partially picked up in the corona due to low wave energy density and low plasma beta. During the pickup process, minor ions are stoch...

Wang, C B; Lee, L C

2014-01-01T23:59:59.000Z

237

E-Print Network 3.0 - advanced industrial heat Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management and Air Flow) - Waste Heat Recovery in Industrial Processes... on roads - District heating systems - Various industrial processes Geothermal Heat Pumps -...

238

Geothermal Heat Pumps- Heating Mode  

Broader source: Energy.gov [DOE]

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

239

Chemical heat pump and chemical energy storage system  

DOE Patents [OSTI]

A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

1985-08-06T23:59:59.000Z

240

RTO heat recovery system decreases production costs and provides payback  

SciTech Connect (OSTI)

Application of a heat recovery system to an existing regenerative thermal oxidizer (RTO) was considered, tested, and selected for decreasing production costs at a pressure sensitive tape manufacturing facility. Heat recovery systems on RTO's are less common than those on other thermal oxidizers (e.g., recuperative) because RTO's, by the nature of the technology, usually provide high thermal efficiencies (without the application of external heat recovery systems). In this case, the production processes were integrated with the emission controls by applying an external heat recovery system and by optimizing the design and operation of the existing drying and cure ovens, RTO system, and ductwork collection system. Integration of these systems provides an estimated annual production cost savings of over $400,000 and a simplified capital investment payback of less than 2 years, excluding possible savings from improved dryer operations. These additional process benefits include more consistent and simplified control of seasonal dryer performance and possibly production throughput increases. The production costs savings are realized by substituting excess RTO heat for a portion of the infrared (IR) electrical heat input to the dryers/ovens. This will be accomplished by preheating the supply air to the oven zones with the excess RTO heat (i.e., heat at the RTO exceeding auto-thermal conditions). Several technologies, including direct air-to-air, indirect air-to-air, hot oil-to-air, waste heat boiler (steam-to-air) were evaluated for transferring the excess RTO heat (hot gas) to the ovens. A waste heat boiler was selected to transfer the excess RTO heat to the ovens because this technology provided the most economical, reliable, and feasible operation. Full-scale production test trials on the coating lines were performed and confirmed the IR electrical costs could be reduced up to 70%.

Lundquist, P.R.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermal Processes  

Broader source: Energy.gov [DOE]

Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

242

Reducing industrial energy use with thermoelectric diffusion heat pumps  

SciTech Connect (OSTI)

The described Peltier Effect Diffusion System (PEDS) employs an innovative unit geometry in conjunction with thermoelectric (TE) heat pumps having high operational efficiency. Significant system design dynamics are explored, including heat and mass transfer mechanisms, fluid dynamics, and unit sizing methodology. Finally, estimated operating performance is presented for some representative industrial applications which are well suited to availability-based efficiency evaluations, namely: desalination, multi-stage absorption cycle refrigeration systems and freeze-concentration processes. Peltier effect TE heat pumps provide multi-stage work input to separations. The PEDS utilizes electrically generated heat as the separating agent, and pumps this energy to successively higher availability levels, resulting in high overall COP and greatly improved thermodynamic efficiency. Process costs in terms of availability utilization can be identified. The described PEDS process offers a meaningful alternative to conventional mass transfer methods.

Meckler, M.

1982-08-01T23:59:59.000Z

243

Industrial Process Heating - Technology Assessment  

Office of Environmental Management (EM)

and Reheating Hardening; annealing; tempering; forging; rolling 930-2160F 270 TBtu Coking Ironmaking and other metal production 710-2010F 120 TBtu Drying Water and organic...

244

Heat resources and organic Rankine cycle machines  

Science Journals Connector (OSTI)

Abstract Various Rankine cycle architectures for single fluids and other improved versions operating with ammonia/water mixture are presented in this paper. Untapped heat resources and their potential for driving organic Rankine cycles are outlined. The nature – state and temperature of the heat source significantly influences the choice of the type of organic Rankine cycle machine. The temperature appears as a critical parameter during the selection process. Modules differ from one another from technology, size and cost viewpoints. The investment cost of an ORC project includes machine, engineering, system integration, capital costs, etc. and is closely linked to the application.

Bertrand F. Tchanche; M. Pétrissans; G. Papadakis

2014-01-01T23:59:59.000Z

245

Heat driven heat pump using paired ammoniated salts  

SciTech Connect (OSTI)

A cycle for a heat driven heat pump using two salts CaCl/sup 2/.8NH/sup 3/, and ZnCl/sup 2/.4NH3 which may reversibly react with ammonia with the addition or evolution of heat. These salts were chosen so that both ammoniation processes occur at the same temperature so that the heat evolved may be used for comfort heating. The heat to drive the system need only be slightly hotter than 122 C. The low temperature source need only be slightly warmer than 0 C.

Dunlap, R.M.

1980-08-29T23:59:59.000Z

246

Proton heating by parallel Alfven wave cascade  

SciTech Connect (OSTI)

In a recent series of papers, the present authors developed a kinetic theory for low-frequency turbulence propagating parallel to the ambient magnetic field. Making use of this theory, it was shown that low-frequency Alfvenic turbulence may cascade to ion-cyclotron frequency range and beyond by nonlinear three-wave decay processes. The significance of such a finding is that it may lead to the proton heating by cyclotron resonance. However, the actual proton heating process was not demonstrated. The present paper complements the previous works by including the proton heating in the discussion. It is found that the left-hand circularly polarized Alfven-cyclotron turbulence leads to a moderate heating of the protons in the perpendicular direction and cooling in the parallel direction. It is also found that ion-acoustic turbulence is generated by the decay instability process. Finally, the heating rate is shown to increase in inverse proportion to the time scale of the wave source.

Yoon, P. H.; Fang, T.-M. [Massachusetts Technological Laboratory, Inc., 330 Pleasant Street, Belmont, Massachusetts 02478 (United States)

2009-06-15T23:59:59.000Z

247

Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994  

SciTech Connect (OSTI)

The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

Not Available

1994-05-01T23:59:59.000Z

248

Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes  

Broader source: Energy.gov [DOE]

A project to develop a microbial heat recovery cell (MHRC) system prototype using wastewater effluent samples from candidate facilities to produce either electric power or hydrogen

249

The Economic and Environmental Aspects of Heat Exchanger Cleaning -- How FP&L Has Used the Newly Patented MCC Process to Clean Turbine Lube Oil Coolers to Maximize Efficiency and Minimize Waste  

E-Print Network [OSTI]

of efficient and timely cleaning of heat exchangers. There are great differences in the cleaning processes that are used to clean exchanger bundles in industry today. The cleaning of turbine lube oil coolers is a specialized case in point. A newly patented...

Wood, H. A. T.

250

Dynamic Allocation of a Domestic Heating Task to Gas-Based and Heatpump-Based Heating Agents  

Science Journals Connector (OSTI)

In this paper a multi-agent model for a domestic heating task is introduced and analysed. The model includes two alternative heating agents (for gas-based heating and for heatpump-based heating), and a third allo...

Jan Treur

2013-01-01T23:59:59.000Z

251

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

252

INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER  

E-Print Network [OSTI]

INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER Satish G. Kandlikar surfaces in laboratories to obtain the heat transfer coefficient data. In many process applications however, a fluid stream is employed as the heating medium. The heat transfer data generated with the electrically

Kandlikar, Satish

253

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

254

Advances in induction heating  

SciTech Connect (OSTI)

Electric induction heating, in situ, can distill (underground) high-heat-value (HHV) gas, coal tar, bitumen, and shale oil. This technique permits potentially lower cost exploitation of the solid fossil fuels: coal, oil shale, tar sand, and heavy oil. The products, when brought to the surface in gaseous form and processed, yield chemical feedstocks, natural gas, and petroleum. Residual coke can be converted, in situ, to low-heat-value (LHV) gas by a conventional water-gas process. LHV can be burned at the surface to generate electricity at low cost. The major cost of the installation will have been paid for by the HHV gas and tar distilled from the coal. There are 2 mechanisms of heating by electric induction. One uses displacement currents induced from an electric field. The other uses eddy currents induced by a magnetic field.

Not Available

1980-06-16T23:59:59.000Z

255

Study of combustion processes in firing of a heat-insulator produced from technogenic raw materials from nonferrous metallurgy and power industry  

Science Journals Connector (OSTI)

Combustion of heat-insulators produced from technogenic raw materials without use of conventional natural materials were studied. It is shown that most part of volatiles are removed in thermal treatment of hea...

E. S. Abdrakhimova; V. Z. Abdrakhimov

2012-08-01T23:59:59.000Z

256

Solar heated swimming pool  

SciTech Connect (OSTI)

A swimming pool construction incorporating solar heating means to heat the pool water to a desired level. The pool includes a surrounding safety fence supported by a plurality of fence supports which are hollow and which include internal passageways. The pool water is passed through the pool support passageways whereupon it absorbs heat from the sidewalls of the fence supports, the surfaces of which have been heated by solar radiation. The fence supports can be made of plastic or other materials, but preferably are dark for improved absorptivity. The pool water can be passed serially through each of the fence supports and suitable thermostat control means can be provided to limit the water temperature increase.

Pettit, F.M.

1984-10-02T23:59:59.000Z

257

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

1986-10-14T23:59:59.000Z

258

Life cycle assessment of base-load heat sources for district heating system options  

SciTech Connect (OSTI)

Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

2011-03-01T23:59:59.000Z

259

Chapter 17 - Nuclear heat energy  

Science Journals Connector (OSTI)

Abstract This chapter delves into the important heating processes within a nuclear power plant. Applying Fourier’s law of heat conduction permits determining temperature distributions within the nuclear fuel rods. In contrast, convective cooling occurs on the rod surface. The coolant, cladding and fuel temperature distributions through a reactor are determined. Besides heat transfer in the reactor core, some power plants employ heat exchangers to generate steam that is fed to a turbine-generator to produce electricity. As a consequence of the second law of thermodynamics, thermal power plants reject condenser heat to the environment through mechanisms such as cooling towers.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

260

TURBULENT HEAT TRANSPORT IN TWO-AND THREE-DIMENSIONAL TEMPERATURE FIELDS  

E-Print Network [OSTI]

tJ ,.I and the fluid heat transfer characteristics. As [13]Introduction Most fluid flows and heat transfer processes ofproportion of fluid dynamic and heat transfer researchers

Samaraweera, D.S.A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sour gas injection for use with in situ heat treatment  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

Fowler, Thomas David (Houston, TX)

2009-11-03T23:59:59.000Z

262

Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants  

SciTech Connect (OSTI)

Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed.

McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

1980-02-01T23:59:59.000Z

263

Heat Stroke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms â–  High body temperature â–  Confusion â–  Loss of coordination â–  Hot, dry skin or profuse sweating â–  Throbbing headache â–  Seizures, coma First Aid â–  Request immediate medical assistance. â–  Move the worker to a cool, shaded area. â–  Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms â–  Rapid heart beat â–  Heavy sweating â–  Extreme weakness or fatigue â– 

264

Iron-carbon compacts and process for making them  

DOE Patents [OSTI]

The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

Sheinberg, Haskell (Santa Fe, NM)

2000-01-01T23:59:59.000Z

265

Bates solar industrial process-steam application: preliminary design review  

SciTech Connect (OSTI)

The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

Not Available

1980-01-07T23:59:59.000Z

266

Active Solar Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Active Solar Heating Basics Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems collect and absorb solar radiation, then transfer the solar heat directly to the interior space or to a storage system, from which the heat is distributed. If the system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat. Liquid systems are more often used when storage is included, and are well

267

Dynamic Allocation of a Domestic Heating Task to Gas-Based and Heatpump-Based Heating Agents  

E-Print Network [OSTI]

Dynamic Allocation of a Domestic Heating Task to Gas-Based and Heatpump-Based Heating Agents Jan for a domestic heating task is introduced and analysed. The model includes two alternative heating agents (for gas-based heating and for heatpump-based heating), and a third allocation agent which determines

Treur, Jan

268

Heat Integration and Heat Recovery at a Large Chemical Manufacturing Plant  

E-Print Network [OSTI]

in the hydrogenation process. The hydrogenation process uses a catalyst to react the purified phenol with hydrogen, forming a mixture of cyclohexanone and cyclohexanol. The reaction is exothermic and is cooled with water to control the rate of reaction... Process Heat Recovery The process heat recovery opportunity was identified in the hydrogenation process. The hydrogenation process contains an exothermic reaction which is cooled with water to control the rate of reaction. The heated water...

Togna, K .A.

2012-01-01T23:59:59.000Z

269

Electrically heated particulate filter embedded heater design  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

Gonze, Eugene V.; Chapman, Mark R.

2014-07-01T23:59:59.000Z

270

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

271

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

272

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

273

Meals included in Conference Registrations  

E-Print Network [OSTI]

Meals included in Conference Registrations Meals included as part of the cost of a conference the most reasonable rates are obtained. Deluxe hotels and motels should be avoided. GSA rates have been for Georgia high cost areas. 75% of these amounts would be $21 for non- high cost areas and $27 for high cost

Arnold, Jonathan

274

Liquid Salt Heat Exchanger Technology for VHTR Based Applications  

SciTech Connect (OSTI)

The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a small scale prototype system. This includes investigations of plugging issues, heat transfer, pressure drop, and the corrosion and erosion of materials in the flowing system.

Mark Anderson; Kumar Sridhara; Todd Allen; Per Peterson

2012-10-11T23:59:59.000Z

275

Heat Loss Measurement Using Infrared Imaging  

E-Print Network [OSTI]

in various applications. Examples of two applications are presented. The first describes the development of heat balance data for a solvent refined coal processing unit. The second describes the measurement of heat loss and thermal resistance in a double...

Seeber, S. A.

1983-01-01T23:59:59.000Z

276

Process for desulfurizing petroleum feedstocks  

SciTech Connect (OSTI)

A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

Gordon, John Howard; Alvare, Javier

2014-06-10T23:59:59.000Z

277

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006; 6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487 32 345 -- Process Cooling and Refrigeration -- 206 * 1 32 * * -- Machine Drive

278

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

279

Wastewater heat recovery method and apparatus  

DOE Patents [OSTI]

This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, J.W.

1991-01-01T23:59:59.000Z

280

Energy-efficient water heating  

SciTech Connect (OSTI)

This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

NONE

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Modeling and simulation of film blowing process  

E-Print Network [OSTI]

, their work does not include crystallization kinetics, hence, restricted to amorphous polymers. Cao and Campbell?s predictions of bubble radius, temperature, and velocity profiles are in reasonably good agreement with Gupta?s (1980) experimental measurements.... . . . . . . . . . . . . . 95 V Process conditions used for the analysis of Exxon data. . . . . . . . . 99 VI The influence of radiation heat transfer on the process. . . . . . . . . 171 x LIST OF FIGURES FIGURE Page 1 Schematic of a typical film blowing process...

Mayavaram, Ravisankar S.

2005-08-29T23:59:59.000Z

282

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

283

Heat Transfer and Fluid Mechanics for Laser Machining  

Science Journals Connector (OSTI)

This chapter introduces some of the basic concepts in heat transfer, fluid mechanics and numerical solution methods. Since laser ... process, an understanding of issues in conduction heat transfer, convection heat

George Chryssolouris

1991-01-01T23:59:59.000Z

284

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2013-01-01T23:59:59.000Z

285

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2012-01-01T23:59:59.000Z

286

INSULATION OF HEATING SYSTEMS  

Science Journals Connector (OSTI)

... C. PALLOT gave a Cantor Lecture to the Royal Society of Arts on “Thermal Insulation at Medium Temperature” on November 23 ; the lecture, which included many topics of ... many topics of current interest, has now been published1. In a bulletin on heat insulation issued by the Ministry of Fuel and Power, it was pointed out that "In ...

1943-05-22T23:59:59.000Z

287

Experimental Study of Ion Heating and Acceleration During Magnetic Reconnection  

SciTech Connect (OSTI)

Ion heating and acceleration has been studied in the well-characterized reconnection layer of the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)]. Ion temperature in the layer rises substantially during null-helicity reconnection in which reconnecting field lines are anti-parallel. The plasma out flow is sub-Alfvonic due to a downstream back pressure. An ion energy balance calculation based on the data and including classical viscous heating indicates that the ions are heated largely due to non-classical mechanisms. The Ti rise is much smaller during co-helicity reconnection in which field lines reconnect obliquely. This is consistent with a slower reconnection rate and a smaller resistivity enhancement over the Spitzer value. These observations indicate strongly that non-classical dissipation mechanisms can play an important role both in heating the ions and in facilitating the reconnection process.

S.C. Hsu; T.A. Carter; G. Fiksel; H. Ji; R.M. Kulsrud; M. Yamada

2000-10-24T23:59:59.000Z

288

Standard Ebeam Resist Processes at ISNC This file includes  

E-Print Network [OSTI]

: @100kV, 600µC/cm2-1500µC/cm2 Develop: MIBK/IPA=1/3, 45secs (30secs-2mins range); IPA rinse, 30secs; N2mins hotplate Exposure: @100kV, 600µC/cm2-1500µC/cm2 Develop: MIBK/IPA=1/3, 1mins (30secs-2mins range); IPA rinse, 30secs; N2 blow dry For PMMA data sheet, please visit: www

Jalali. Bahram

289

Two component absorption/phase separation chemical heat pump to provide temperature amplification to waste heat streams  

DOE Patents [OSTI]

A chemical heat pump that utilizes liquid/liquid phase separation rather than evaporation to separate two components in a heat of mixing chemical heat pump process. 3 figs.

Scott, T.C.; Kaplan, S.I.

1987-09-04T23:59:59.000Z

290

Geothermal technology transfer for direct heat applications: Final report, 1983--1988  

SciTech Connect (OSTI)

This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

Lienau, P.J.; Culver, G.

1988-01-01T23:59:59.000Z

291

Sponsorship includes: Agriculture in the  

E-Print Network [OSTI]

Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

Nebraska-Lincoln, University of

292

Harvesting Electricity From Wasted Heat  

ScienceCinema (OSTI)

Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

Schwede, Jared

2014-07-16T23:59:59.000Z

293

Harvesting Electricity From Wasted Heat  

SciTech Connect (OSTI)

Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

Schwede, Jared

2014-06-30T23:59:59.000Z

294

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

295

Quartz resonator processing system  

DOE Patents [OSTI]

Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

Peters, Roswell D. M. (Rustburg, VA)

1983-01-01T23:59:59.000Z

296

A Case Study of a Commissioning Process for Demand Side Energy Conservation of the Large Heat Source Plant in Kyoto Station Building-APCBC  

E-Print Network [OSTI]

-09-20 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 21 Total effect by turning for both substation and plant control (FY2011 vs FY2013) ? The electric power consumption compared for 3 years.... ? In the first year (FY2012), we carried out only the parameter tuning for substation control based on the data analysis. ? In the second year (FY2013), we carried out the control parameter tuning of the heat source side in addition to the tuning...

Matsushita, N.; Yoshida,H.

2014-01-01T23:59:59.000Z

297

RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes  

SciTech Connect (OSTI)

In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

Robb Aldrich, Steven Winter Associates

2011-07-01T23:59:59.000Z

298

Air heating system  

DOE Patents [OSTI]

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

299

Heat Distribution Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Distribution Systems Distribution Systems Heat Distribution Systems May 16, 2013 - 5:26pm Addthis Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves two heat distribution systems -- steam radiators and hot water radiators. Steam Radiators Steam heating is one of the oldest heating technologies, but the process of boiling and condensing water is inherently less efficient than more modern systems, plus it typically suffers from significant lag times between the

300

Chapter 5 - Solar Water-Heating Systems  

Science Journals Connector (OSTI)

Abstract Chapter 5 is on solar water-heating systems. Both passive and active systems are described. Passive systems include thermosiphon and integrated collector storage systems. The former include theoretical performance of thermosiphon solar water heaters, reverse circulation in thermosiphon systems, vertical against horizontal tank configurations, freeze protection, and tracking thermosiphons. Subsequently, active systems are described, which include direct circulation systems, indirect water-heating systems, air water-heating systems, heat pump systems and pool heating systems, which include the analysis of various heat losses like evaporation, radiation, convection heat losses, make-up water load, and solar radiation-heat gain. Then the characteristics and thermal analysis of heat storage systems for both water and air systems are presented. The module and array design methods are then described and include the effects of shading, thermal expansion, galvanic corrosion, array sizing, heat exchangers, pipe and duct losses, partially shaded collectors and over-temperature protection—followed by an analysis of the characteristics of differential thermostats. Finally, methods to calculate the hot water demand are given as well as a review of international standards used to evaluate the solar water heaters performance. The chapter includes also simple system models and practical considerations for the setup of solar water-heating systems, which include: pipes, supports and insulation; pumps; valves and instrumentation.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

302

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

303

Clark Public Utilities - Residential Heat Pump Loan Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Loan Program Heat Pump Loan Program Clark Public Utilities - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Air-Source Heat Pumps: $20,000 Geothermal Heat Pumps: $30,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Air-Source Heat Pump: up to $20,000 Geothermal Heat Pumps: up to $30,000 Provider Clark Public Utilities Clark Public Utilities offers loans of up to $20,000 for air-source heat pumps and $30,000 for geothermal heat pumps. Loans will help customers cover the up-front cost of installing a highly efficient heat pump in a residence. All electrically heated homes, including manufactured homes, are eligible for the heat pump financing program, as long as the home has been

304

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

305

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

306

heat pump | OpenEI  

Open Energy Info (EERE)

heat pump heat pump Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

307

Waste heat recovery systems in the sugar industry: An Indian perspective  

SciTech Connect (OSTI)

This article identifies the key role of the sugar industry in the rural development of developing countries. The Indian sugar industry, already second largest among the country`s processing industries, shows even greater potential, according to the Plan Documents (shown in a table). The potential of waste heat in sugar processing plants, which produce white crystal sugar using the double sulphitation clarification process, is estimated at 5757.9 KJ/kg of sugar. Efficient waste heat recovery (WHR) systems could help arrest the trend of increasing production costs. This would help the sugar industry not only in India, but in many other countries as well. The innovative methods suggested and discussed briefly in this article include dehydration of prepared cane, bagasse drying, and juice heating using waste heat. These methods can reduce the cost of energy in sugar production by at least 10% and improve efficiency and productivity.

Madnaik, S.D.; Jadhav, M.G. [Walchand Inst. of Tech., Maharashtra (India)

1996-04-01T23:59:59.000Z

308

Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp  

Science Journals Connector (OSTI)

The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of ...

Zsolt Barta; Emma Kreuger; Lovisa Björnsson

2013-04-01T23:59:59.000Z

309

FDTD simulation of induction heating of conducting ceramic ware  

SciTech Connect (OSTI)

Induction heating for the treatment of metals has been in commercial use since the mid 1960`s. Traditional advantages of induction heating over the convection or radiation processes include speed of heating, possible energy savings, and the ability to customize the coil design to optimize the heating process. In this paper the authors used the Finite-Difference Time-Domain (FDTD) technique to simulate and analyze the induction heating process for highly conducting ceramics. In order to analyze frequency effects, simulations were performed at 300 kHz, 2 MHz, and 25 MHz. It is found that at higher frequencies coils with a pitch of 2 in. or greater became capacitive and generate a large, axial, electric-field component. This new axial electric field, in addition to the normally encountered azimuthal field, causes an improvement in the uniformity of the power deposition in the ceramic sample. If the sample occupies a large portion of the coil, uniformity may also be improved by using a variable-pitch coil, or by extending the length of the coil a few turns beyond the length of the sample. In a production-line arrangement, where multiple samples are placed inside the coil, it is shown that maximum uniformity is achieved when the samples are placed coaxially.

White, M.J.; Iskander, M.F.; Bringhurst, S. [Univ. of Utah, Salt Lake City, UT (United States). Electrical Engineering Dept.

1996-12-31T23:59:59.000Z

310

Appendix F Cultural Resources, Including  

Broader source: Energy.gov (indexed) [DOE]

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

311

Hybrid Heat Pump Design and Application  

E-Print Network [OSTI]

The Hybrid Heat Pump (HHP) converts industrial waste heat into process steam. Waste heat at temperatures as low as approximately 200°F can be used. Steam output covers a range between 12,000 Ib/h and 50,000 Ib/h, depending on the application...

Wagner, J. R.; Koebberman, W. F.

312

Indoor unit for electric heat pump  

DOE Patents [OSTI]

An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

1984-05-22T23:59:59.000Z

313

Electrically heated particulate filter using catalyst striping  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

2013-07-16T23:59:59.000Z

314

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

315

Geothermal district heating systems  

SciTech Connect (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

316

Analysis of conjugate heat transfer in tube-in-block heat exchangers for some engineering applications.  

E-Print Network [OSTI]

??This project studied the effect of different parameters on the conjugate heat transfer in tube-in-block heat exchangers for various engineering applications. These included magnetic coolers… (more)

Gari, Abdullatif Abdulhadi

2006-01-01T23:59:59.000Z

317

Enhanced Joule Heating in Umbral Dots  

E-Print Network [OSTI]

We present a study of magnetic profiles of umbral dots (UDs) and its consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule heating using vertical component of magnetic field. In this paper UDs magnetic profile has been investigated including the new azimuthal component of magnetic field which might explain the relatively larger enhancement of Joule heating causing more brightness near circumference of UD.

Chandan Joshi; Lokesh Bharti; S. N. A. Jaaffrey

2007-05-08T23:59:59.000Z

318

Waste Heat Recapture from Supermarket Refrigeration Systems  

SciTech Connect (OSTI)

The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

Fricke, Brian A [ORNL

2011-11-01T23:59:59.000Z

319

Laminated insulators having heat dissipation means  

DOE Patents [OSTI]

A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

1980-04-24T23:59:59.000Z

320

Method for heating a glass sheet  

DOE Patents [OSTI]

A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

Boaz, Premakaran Tucker (Livonia, MI)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Methods for forming wellbores in heated formations  

DOE Patents [OSTI]

A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

Guimerans, Rosalvina Ramona; Mansure, Arthur James

2012-09-25T23:59:59.000Z

322

Heat Pump Application- An Industrial Case Study  

E-Print Network [OSTI]

HEAT PUMP APPLICATION- AN INDUSTRIAL CASE STUDY Deepak Shukla, Ph.D. Sr. Process Engineer TENSA services, Inc. Houston, Texas ABSTRACT The economics of heat pumping across a distillation column is usually dependent on the amount... of additional compressor work required to lift thermal energy from a low source temperature to a high sink temperature. A reduction of this work improves the heat pump economics. This paper presents the results of a heat pump study conducted by TENSA...

Shukla, D.; Umoh, R.

323

Thermal Performance of Microencapsulated Phase Material (MPCM) Slurry in a Coaxial Heat Exchanger  

E-Print Network [OSTI]

Microencapsulated phase change material (MPCM) slurries and coil heat exchangers had been recently studied separately as enhancers of convective heat transfer processes. Due to the larger apparent heat related to the phase change process...

Yu, Kun

2014-05-08T23:59:59.000Z

324

National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities  

Broader source: Energy.gov [DOE]

Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

325

Heat transfer and heat exchangers reference handbook  

SciTech Connect (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

326

Buildings Included on EMS Reports"  

Broader source: Energy.gov (indexed) [DOE]

Office of Legacy Management Office of Legacy Management Buildings Included on EMS Reports" "Site","Property Name","Property ID","GSF","Incl. in Water Baseline (CY2007)","Water Baseline (sq. ft.)","Water CY2008 (sq. ft.)","Water CY2009 (sq. ft.)","Water Notes","Incl. in Energy Baseline (CY2003)","Energy Baseline (sq. ft.)","CY2008 Energy (sq. ft.)","CY2009 Energy (sq. ft.)","Energy Notes","Included as Existing Building","CY2008 Existing Building (sq. ft.)","Reason for Building Exclusion" "Column Totals",,"Totals",115139,,10579,10579,22512,,,3183365,26374,115374,,,99476 "Durango, CO, Disposal/Processing Site","STORAGE SHED","DUD-BLDG-STORSHED",100,"no",,,,,"no",,,,"OSF","no",,"Less than 5,000 GSF"

327

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

328

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

329

[Waste water heat recovery system]. Final report, September 30, 1992  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

330

E-Print Network 3.0 - alginate scaffold including Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

created through a three step process which included: treatment... ; and exposure to a CaCl2 to crosslink the alginate sheets. Process variables included volume and concentra-...

331

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents [OSTI]

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

332

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents [OSTI]

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

333

Innovative Fresh Water Production Process for Fossil Fuel Plants  

SciTech Connect (OSTI)

This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be significant advantage when using the heated air/heated water process with a less dense less specific surface area packed bed. Use of one configuration over the other depends upon the environment and the desired operating conditions.

James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

2006-09-29T23:59:59.000Z

334

Materials Selection Considerations for Thermal Process Equipment...  

Broader source: Energy.gov (indexed) [DOE]

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

335

Heat exchanger with ceramic elements  

DOE Patents [OSTI]

An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

Corey, John A. (North Troy, NY)

1986-01-01T23:59:59.000Z

336

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

337

Integrated solar heating unit  

SciTech Connect (OSTI)

This patent describes an integral solar heating unit with an integral solar collector and hot water storage system, the unit comprising: (a) a housing; (b) a flat plate solar collector panel mounted in the housing and having a generally horizontal upper edge and an uninsulated, open back surface; (c) a cylindrical hot water tank operatively connected to the solar collector panel and mounted in the housing generally parallel to and adjacent to the upper edge; (d) the housing comprising a hood around the tank a pair of side skirts extending down at the sides of the panel. The hood and side skirts terminate at lower edges which together substantially define a plane such that upon placing the heating unit on a generally planar surface, the housing substantially encapsulates the collector panel and hot water tank in a substantially enclosed air space; (e) the collector including longitudinally extended U-shaped collector tubes and a glazed window to pass radiation through to the collector tubes, and a first cold water manifold connected to the tubes for delivering fresh water thereto and a second hot water manifold connected to the tubes to remove heated water therefrom. The manifolds are adjacent and at least somewhat above and in direct thermal contact with the tank; and, (f) the skirts and hood lapping around the collector panel, exposing only the glazed window, such that everything else in the heating unit is enclosed by the housing such that heat emanating from the uninsulated, open back face of the collector and tank is captured and retained by the housing to warm the manifolds.

Larkin, W.J.

1987-01-20T23:59:59.000Z

338

Industrial heat pumps in Germany -potentials, technological development  

E-Print Network [OSTI]

1 Industrial heat pumps in Germany - potentials, technological development and application examples of Energy (IER) Universität Stuttgart ACHEMA 2012 Application of industrial heat pumps Improving energy-efficiency of industrial processes 13. Juni 2012 #12;ACHEMA 2012 - Industrial heat pumps 21st June 2012 Types of Heat Pumps

Oak Ridge National Laboratory

339

Lecture Ch. 2a Energy and heat capacity  

E-Print Network [OSTI]

1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible P-V work ! define entropy Curry

Russell, Lynn

340

Lecture Ch. 2a Energy and heat capacity  

E-Print Network [OSTI]

1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path integrals) ­ Energy vs. heat/work? ­ Adiabatic processes ­ Reversible "P-V" work define entropy Curry

Russell, Lynn

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

342

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

343

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

344

Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994  

SciTech Connect (OSTI)

A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

NONE

1995-09-26T23:59:59.000Z

345

Feasibility study of heat pumps for waste heat recovery in industry.  

E-Print Network [OSTI]

??Includes abstract. A case study was thus carried out at an applicable local industry (brewery) to assess the feasibility of implementing the heat pump for… (more)

De Waal, Devin.

2012-01-01T23:59:59.000Z

346

Microsystem process networks  

DOE Patents [OSTI]

Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

Wegeng, Robert S. (Richland, WA); TeGrotenhuis, Ward E. (Kennewick, WA); Whyatt, Greg A. (West Richland, WA)

2006-10-24T23:59:59.000Z

347

Microsystem process networks  

DOE Patents [OSTI]

Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

2010-01-26T23:59:59.000Z

348

Microsystem process networks  

DOE Patents [OSTI]

Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

Wegeng, Robert S. (Richland, WA); TeGrotenhuis, Ward E. (Kennewick, WA); Whyatt, Greg A. (West Richland, WA)

2007-09-18T23:59:59.000Z

349

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

350

www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME  

E-Print Network [OSTI]

www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME Research, Development, Demonstration and Promotion of Heat Pumping Technology #12;www.heatpumpcentre.org Includes ­ Heating ­ Air conditioning ­ Refrigeration Covers applications in ­ Residential and commercial buildings ­ Industry HEAT PUMPING TECHNOLOGY

Oak Ridge National Laboratory

351

www.heatpumpcentre.or IEA HEAT PUMP PROGRAMME  

E-Print Network [OSTI]

#12;www.heatpumpcentre.or g IEA HEAT PUMP PROGRAMME Research, Development, Demonstration and Promotion of Heat Pumping Technology #12;www.heatpumpcentre.or g Includes ­ Heating ­ Air conditioning ­ Refrigeration Covers applications in ­ Residential and commercial buildings ­ Industry HEAT PUMPING TECHNOLOGY

Oak Ridge National Laboratory

352

Chemically assisted mechanical refrigeration process  

DOE Patents [OSTI]

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-11-24T23:59:59.000Z

353

Chemically assisted mechanical refrigeration process  

DOE Patents [OSTI]

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-06-23T23:59:59.000Z

354

Solar heat collectors. (Latest citations from the US Patent database). Published Search  

SciTech Connect (OSTI)

The bibliography contains selected patents concerning solar heat collector apparatus and systems. Building panels, air conditioning systems, chemical heat pumps, refrigeration systems, and controls are discussed. Applications include residential and commercial building space and water heating, greenhouse heating, and swimming pool heating. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

355

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

SciTech Connect (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

356

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

357

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

and for the years ahead is the de~ice known as the "Reat Pump," the "Reverse Ran,kine Cycle," or the "Vapor Compression System." ~'ctu? ally, all of these are the same thing. En-ergy level is restored by application of a ce~tain amount of prime energy (shaft... level Rankine cycle or bot toming cycle could have an application. Figure 11 shows the same hot process waste water heat source and the same disengaging drum that was shown in Figure 10. Instead of compressing the vapor, however, it is expanded...

Waterland, A. F.

1981-01-01T23:59:59.000Z

358

Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"  

SciTech Connect (OSTI)

Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

Schumacher, Courtney

2012-12-13T23:59:59.000Z

359

Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties  

SciTech Connect (OSTI)

Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger should be sized on the high end of the required heat load.

Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab

2011-06-10T23:59:59.000Z

360

Three-dimensional particle scale modeling of heat transfer in fluidized beds.  

E-Print Network [OSTI]

??Heat transfer between particle-fluid media and solid surfaces has wide applications in industries such as power plant, steel heat treatment, and chemical processes. One of… (more)

Wahyudi, Hadi

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

facility HVAC and combined heat and power (CHP), alsoand implementation of combined heat and power or processGeneration (Chapter 12) Combined heat and power Photovoltaic

Brush, Adrian

2012-01-01T23:59:59.000Z

362

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Gets Free Cooling Through Waste Heat Recovery. Washington,Process Integration and Waste Heat Recovery in Lithuanianto make good use of waste heat and solar energy." Progress

Brush, Adrian

2012-01-01T23:59:59.000Z

363

An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization  

E-Print Network [OSTI]

The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

Leibowitz, H. M.; Colosimo, D. D.

1980-01-01T23:59:59.000Z

364

ARM - Measurement - Radiative heating rate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

365

ARM - Measurement - Soil heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat flux heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments

366

Heating device for semiconductor wafers  

DOE Patents [OSTI]

An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

Vosen, Steven R. (Berkeley, CA)

1999-01-01T23:59:59.000Z

367

Heating device for semiconductor wafers  

DOE Patents [OSTI]

An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

Vosen, S.R.

1999-07-27T23:59:59.000Z

368

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

369

Similarity Solutions of a Heat Equation with Nonlinearly Varying Heat Capacity  

Science Journals Connector (OSTI)

......examined. The model is a prototype for the study of combustion processes where the heat capacity of a composite solid medium...examined. The model is a prototype for the study of combustion processes where the heat capacity of a composite solid medium......

ANDREW STUART

1988-01-01T23:59:59.000Z

370

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

371

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

372

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

373

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

374

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

375

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

376

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

377

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

378

Evaluation of a fluidized-bed waste-heat recovery system. A technical case study  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R&D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R&D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA`s Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

379

Evaluation of a fluidized-bed waste-heat recovery system  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA's Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

380

Choose the best heat-recovery method for thermal oxidizers  

SciTech Connect (OSTI)

Thermal oxidation is current the most economically favorable add-on method of controlling hydrocarbon air emissions of moderate to low concentration (below 10,000 ppm). This concentration range covers emissions from a wide variety of chemical process industries (CPI) sources, including dryers, reactor vents, tank vents, and coaters. Thermal oxidizer systems consist of three basic sub-systems--burner, combustion chamber, and primary heat recovery. Selecting the type of primary heat recovery is probably the most important decision in the design of a thermal oxidizer, and requires consideration of a wide range of factors. The two most widely used types of primary heat recovery--recuperative and regenerative--each have distinct advantages and disadvantages. In general, recuperative oxidizers are simpler and less costly to purchase, whereas regenerative oxidizers offer substantially lower operating costs. Selecting between recuperative and regenerative heat recovery requires balancing a number of factors, such as capital and operating costs, exhaust gas composition and temperature, and secondary heat demand. This article provides guidance on when, where, and how to use each.

Klobucar, J.M.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Heat Transfer by Free Convection in a Liquid Metal  

Science Journals Connector (OSTI)

19 December 1961 research-article Heat Transfer by Free Convection in a Liquid Metal F. J. Bayley...an experimental investigation of the free convection heat transfer process under the special conditions associated with...

1961-01-01T23:59:59.000Z

382

Pinch Application- Heat Pump Study in a Food Plant  

E-Print Network [OSTI]

was to appropriatly place and size the heat pump system in a food plant. A change in the process configuration was recommended as a result of this study to increase the heat pump profitability and to improve the product quality....

Chao, Y. T.; Tripathi, P.

383

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

384

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

385

Power systems utilizing the heat of produced formation fluid  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

Lambirth, Gene Richard (Houston, TX)

2011-01-11T23:59:59.000Z

386

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

387

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network [OSTI]

for Simulating Fluid Flow and Heat Transfer in Unsaturatedcomplex multiphase fluid flow and heat-transfer processes.of the coupled fluid-flow and heat-transfer processes has

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

388

Rotary kilns - transport phenomena and transport processes  

SciTech Connect (OSTI)

Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

Boateng, A.

2008-01-15T23:59:59.000Z

389

AGN Heating through Cavities and Shocks  

E-Print Network [OSTI]

Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak shocks in M87 are used to argue that they can plausibly prevent gas close to the AGN from cooling. As the most significant heating mechanism at work closest to the AGN, shock heating probably plays a critical role in the feedback mechanism. Third, results are presented from a survey of AGN heating rates in nearby giant elliptical galaxies. With inactive systems included, the overall AGN heating rate is reasonably well matched to the total cooling rate for the sample. Thus, intermittent AGN outbursts are energetically capable of preventing the hot atmospheres of these galaxies from cooling and forming stars.

P. E. J. Nulsen; C. Jones; W. R. Forman; L. P. David; B. R. McNamara; D. A. Rafferty; L. Birzan; M. W. Wise

2006-11-04T23:59:59.000Z

390

Fabric composite heat pipe technology development  

SciTech Connect (OSTI)

Testing has been performed on a variety of fabric composite technology feasibility issues. These include an evaluation of the effective radiation heat transfer rate from a heated metallic surface covered by a ceramic fabric with the intent of determining the effective emissivity'' of the combination of materials, studies of the wicking properties of ceramic fabrics, and the construction of fabric composite heat pipes to test their working properties under both steady state and transient conditions. Results of these experiments shown that fabric composite combinations have greatly enhanced effective emissivities'' resulting from the increases surface area of the fabric, ceramic fabrics can work very well as the wick for heat pipes, ceramic fabric heat pipes have been demonstrated to operate under typical space conditions, and large mass reductions are possible by using fabric composite heat pipes for heat rejection radiator systems.

Klein, A.C.; Gulshan-Ara, Z.; Kiestler, W.; Snuggerud, R.; Marks, T.S. (Department of Nuclear Engineering, Oregon State University, Corvallis, Oregon 97331 (United States))

1993-01-10T23:59:59.000Z

391

Method of and apparatus for thermomagnetically processing a workpiece  

SciTech Connect (OSTI)

A method of thermomagnetically processing a material includes disposing a workpiece within a bore of a magnet; exposing the workpiece to a magnetic field of at least about 1 Tesla generated by the magnet; and, while exposing the workpiece to the magnetic field, applying heat energy to the workpiece at a plurality of frequencies to achieve spatially-controlled heating of the workpiece. An apparatus for thermomagnetically processing a material comprises: a high field strength magnet having a bore extending therethrough for insertion of a workpiece therein; and an energy source disposed adjacent to an entrance to the bore. The energy source is an emitter of variable frequency heat energy, and the bore comprises a waveguide for propagation of the variable frequency heat energy from the energy source to the workpiece.

Kisner, Roger A.; Rios, Orlando; Wilgen, John B.; Ludtka, Gerard M.; Ludtka, Gail M.

2014-08-05T23:59:59.000Z

392

Beat Heating of a Plasma  

Science Journals Connector (OSTI)

If two laser beams have a difference frequency nearly equal to the plasma frequency, nonlinear interaction resonantly excites longitudinal plasma oscillations. These then induce transitions to other transverse modes. Nonlinear damping of the longitudinal mode heats the plasma. The process is optimized by having parallel beams, equal laser intensities, and damping equal to the frequency mismatch.

Bruce I. Cohen; Allan N. Kaufman; Kenneth M. Watson

1972-08-28T23:59:59.000Z

393

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

E-Print Network [OSTI]

multiphase fluid flow, heat transfer, and deformation insimulations of fluid flow, heat transfer, and phaseeither included no fluid flow and modeled heat transfer by

Tsang, Yvonne

2010-01-01T23:59:59.000Z

394

Wave Heating of the Solar Atmosphere  

E-Print Network [OSTI]

Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding on coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding on the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation, and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us understanding and quantifying magnetic wave heating of the sola...

Arregui, I

2015-01-01T23:59:59.000Z

395

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

396

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

397

ARM - Heat Index Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

398

Heat Recovery Boilers for Process Applications  

E-Print Network [OSTI]

significant amountlof particulate and corrosive gases such as HCL The l factors to be considered in the design are wossib ilities of slagging, erosion and high tempefature corrosion. Salts of sodium can have a low melting point, on the order of 1600 F... from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 It is felt by many in the industry that HCL corrosion may be significant beyond a metal temperature of 700 F-750 F. Hence, if superheat ers are used, care...

Ganapathy, V.; Rentz, J.; Flanagan, D.

399

Heat exchanger for fuel cell power plant reformer  

DOE Patents [OSTI]

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

400

Ceramic heat exchanger  

DOE Patents [OSTI]

A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

1998-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ceramic heat exchanger  

DOE Patents [OSTI]

A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

LaHaye, Paul G. (Kennebunk, ME); Rahman, Faress H. (Portland, ME); Lebeau, Thomas P. E. (Portland, ME); Severin, Barbara K. (Biddeford, ME)

1998-01-01T23:59:59.000Z

402

Fabrication and crystal line patterning of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} ion conductive glass by Ni atom heat processing method  

SciTech Connect (OSTI)

Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} conductive crystal lines composed of closely compacted fine particles were patterned on the surface of 13.9Li{sub 2}O-8.9Al{sub 2}O{sub 3}-37.6TiO{sub 2}-38.6P{sub 2}O{sub 5}-1NiO (mol %) precursor glass by a continuous wave Yb fiber laser irradiation ({lambda}=1078 nm) using the nickel atom heat processing method. Homogeneous and smooth crystal lines with a uniform width of 30 {mu}m were obtained with a laser power of 1.3 W. The Li{sup +} ion conductivity of the laser patterned glass was about two orders of magnitude higher than that of the glass matrix due to the formation of Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7}(PO{sub 4}){sub 3} conductive crystalline phase by Yb fiber laser irradiation.

Pang, Maolin; Suzuki, Ryota; Saito, Makoto; Machida, Ken-ichi; Hanzawa, Hiromasa; Nojiri, Yoshihiro; Tanase, Shigeo [Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering Science, Osaka Univeristy, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), Kansai Center, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

2008-01-28T23:59:59.000Z

403

THE HEATS OF COMBUSTION OF AROMATIC HYDROCARBONS AND HEXAMETHYLENE.  

Science Journals Connector (OSTI)

THE HEATS OF COMBUSTION OF AROMATIC HYDROCARBONS AND HEXAMETHYLENE. ... Citation data is made available by participants in CrossRef's Cited-by Linking service. ... Experimental methods included adiabatic heat-capacity calorimetry (5 K to 420 K), comparative ... ...

Theodore W. Richards; Frederick Barry

1915-01-01T23:59:59.000Z

404

Hot Water Heating System Operation and Energy Conservation  

E-Print Network [OSTI]

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

405

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

406

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

407

Industrial Low Temperature Waste Heat Utilization  

E-Print Network [OSTI]

In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

Altin, M.

1981-01-01T23:59:59.000Z

408

Industrial Heat Recovery with Organic Rankine Cycles  

E-Print Network [OSTI]

Rising energy costs are encouraging energy intensive industries to investigate alternative means of waste heat recovery from process streams. The use of organic fluids in Rankine cycles offers improved potential for economical cogeneration from...

Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

1982-01-01T23:59:59.000Z

409

Quantifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

In CHP plants without heat rejection facilities power, output is complementary to the recovery of heat, and all activity is cogeneration. CHP plants with heat rejection facilities can operate a mix of cogeneration and condensing activities. Quantifying the energy flows of both activities properly requires knowledge of the design power-to-heat ratios of the CHP processes (steam and gas turbines, combustion engines). The ratios may be multiple, non-linear or extend into the virtual domain of the production possibility sets of the plants. Quantifying cogeneration in CCGT plants reveals a definition conflict but consistent solutions are available.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

410

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network [OSTI]

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

Oak Ridge National Laboratory

411

Recent results on the application of electron cyclotron heating to tokamaks  

Science Journals Connector (OSTI)

Many experiments using Electron Cyclotron Heating (ECH) of plasmas in tokamaks have ... neutral injection, but in addition to bulk heating it has been useful for many purposes, including study of local electron heat

R. Prater

1990-03-01T23:59:59.000Z

412

Thulium-170 heat source  

SciTech Connect (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

413

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

414

Principles of Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Principles of Heating and Cooling Principles of Heating and Cooling Principles of Heating and Cooling May 30, 2012 - 6:04pm Addthis To heat and cool your house efficiently, it is important to know how heat transfers to and from objects. | Photo courtesy of ©iStockphoto/kryzanek. To heat and cool your house efficiently, it is important to know how heat transfers to and from objects. | Photo courtesy of ©iStockphoto/kryzanek. Understanding how heat is transferred from the outdoors into your home and from your home to your body is important for understanding the challenge of keeping your house cool. Understanding the processes that help keep your body cool is important in understanding cooling strategies for your home. Principles of Heat Transfer Heat is transferred to and from objects -- such as you and your home -- via

415

Definition: Heat exchanger | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Heat exchanger Jump to: navigation, search Dictionary.png Heat exchanger A device for transferring thermal energy (heat) from one fluid (liquid or gas) to another, when the two fluids are physically separated; such as a radiator.[1][2] View on Wikipedia Wikipedia Definition A heat exchanger is a piece of equipment built for efficient heat transfer from one medium to another. The media may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power plants, chemical plants, petrochemical plants, petroleum refineries [bp, shell, sasol], natural gas processing, and sewage treatment. The classic example

416

SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE  

SciTech Connect (OSTI)

The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to stochastic hydrologic properties and flow processes.

C. Tsang

2004-09-22T23:59:59.000Z

417

Analysis of cross-flow mixed convection with applications to building heat transfer  

SciTech Connect (OSTI)

A numerical simulation model has been developed for partial enclosure with restricted inlet and outlet simulating the building fluid flow and heat transfer scenario. Computed results are presented for a number of geometric configurations over a wide range of Reynolds and Rayleigh numbers and validated with available experimental data. The physical processes were modeled by solving equations for the conservation of mass, momentum, and energy with appropriate boundary conditions. The properties of the fluid were assumed to remain approximately constant over the range of operation and the buoyancy was incorporated using the Boussinesq approximation. The k-{var_epsilon} model was used for the simulation of turbulence. The computed results included the local velocity and temperature and the variation of local heat transfer coefficient along the heated side wall. Computed results showed excellent agreement with experimental data. The flow pattern within the enclosure was found to be quite complex in nature and consisted of a core flow due to forced convection near the central region of the enclosure and strong buoyancy induced flow near the heated side walls. It was found that as the flow rate through the enclosure increased, the enhancement of heat transfer above that for natural convection alone, also increased. The variation of the local heat transfer coefficient over the heated surface was found to be strongly affected by the recirculation of portions of the forced flow within the enclosure as well as the impingement to or separation of flow from the side walls in some regions.

Gao, S.; Rahman, M.M.

1999-07-01T23:59:59.000Z

418

Heat-driven acoustic cooling engine having no moving parts  

DOE Patents [OSTI]

A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

419

Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts  

Broader source: Energy.gov [DOE]

Thermodynamic cycle simulation was used to evaluate low temperature combustion in systematic and sequential fashion to base engine design.

420

Cooling by heating  

E-Print Network [OSTI]

We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

A. Mari; J. Eisert

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM - Measurement - Sensible heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsSensible heat flux govMeasurementsSensible heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time rate of flow for the energy transferred from a warm or hot surface to whatever is touching it, typically air. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

422

ARM - Measurement - Latent heat flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsLatent heat flux govMeasurementsLatent heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time rate of flow for the specific enthalpy difference between two phases of a substance at the same temperature, typically water. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

423

Energy Saving Glass Lamination via Selective Radio Frequency Heating  

SciTech Connect (OSTI)

This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for

Allan, Shawn M.

2012-02-27T23:59:59.000Z

424

Energy Saving Glass Lamination via Selective Radio Frequency Heating  

SciTech Connect (OSTI)

This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 ���°C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination id

Allan, Shawn M.; Baranova, Inessa; Poley, Joseph; Reis, Henrique

2012-02-27T23:59:59.000Z

425

Combined Heat and Power: Expanding CHP in Your State  

Broader source: Energy.gov (indexed) [DOE]

Turbines Electricity On-Site Consumption Sold to Utility Fuel Natural Gas Propane Biogas Landfill Gas Coal Steam Waste Products Others Generator Heat Exchanger Thermal Process...

426

Waste Heat Doesn't Have to be a Waste of Money- The American & Efird Heat Recovery Project: A First for the Textile Industry  

E-Print Network [OSTI]

& Efird, Inc., decided to upgrade their heat recovery system at its Dyeing & Finishing Plant in Mt. Holly, North Carolina. They chose an electric industrial process heat pump to enhance heat recovery and to lower operating costs. This application... of the industrial process heat pump was the first of its kind in the American textile industry and was the result of a three year cooperative effort between American & Efird, Inc. and Duke Power Company. This innovative application of heat pump technology has...

Smith, S. W.

427

HEATING 7. 1 user's manual  

SciTech Connect (OSTI)

HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

Childs, K.W.

1991-07-01T23:59:59.000Z

428

Heating oils, 1982  

SciTech Connect (OSTI)

Properties of 235 heating oils marketed in the United States were submitted for study and compilation under agreement between BETC and API. The fuels were manufactured by 25 petroleum refining companies in 88 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1982 compared with data for 1981 are tabulated. Analyses of grade 6 foreign import oils are presented.

Shelton, E.M.

1982-08-01T23:59:59.000Z

429

Heating oils, 1980  

SciTech Connect (OSTI)

Properties of 247 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The fuels were manufactured by 26 petroleum refining companies in 87 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuel are defined by the American Society for Testing and Materials Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1980 compared with data for 1979 are shown in tables. Analyses of grades 2, 5(light), and 6 foreign import oils are presented.

Shelton, E.M.

1980-10-01T23:59:59.000Z

430

Heating oils, 1983  

SciTech Connect (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

431

Heating oils, 1981  

SciTech Connect (OSTI)

Properties of 249 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 28 petroleum refining companies in 92 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1981 compared with data for 1980 are shown in Tables 1 through 6. Analyses of grade 6 foreign import oils are presented in Table 13.

Shelton, E.M.

1981-08-01T23:59:59.000Z

432

Wound tube heat exchanger  

DOE Patents [OSTI]

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

433

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

434

Recover heat from steam reforming  

SciTech Connect (OSTI)

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

435

STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON  

E-Print Network [OSTI]

Chapter V STEADY STATE LIQUID CRYSTAL THERMOGRAPHY AND HEAT TRANSFER MEASUREMENTS ON SURFACES Composite Heat Transfer Surface Liquid Crystal Image Processing Technique V . 4 Experimental Results and Discussion Test Conditions and Data Analysis Application to Endwall Heat Transfer Problem Further Application

Camci, Cengiz

436

.Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding  

E-Print Network [OSTI]

l .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding ) · T. DEBROY, J process parameters such as the voltage profiles, heat generation patterns and temperature profiles with equivalent slag, electrode and other geometrical variable; Calcu- 0 lations show that the heat generation

Eagar, Thomas W.

437

Solar-thermal reaction processing  

DOE Patents [OSTI]

In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

2014-03-18T23:59:59.000Z

438

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume II. Appendices  

SciTech Connect (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. Volume II contains all the appendices, including cost equations and models for the reservoir and fluid transmission system and the distribution system, descriptions of predefined residential district types for the distribution system, key equations for the cooling degree hour methodology, and a listing of the sample case output. Both volumes include the complete table of contents and lists of figures and tables. In addition, both volumes include the indices for the input parameters and subroutines defined in the user manual.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

439

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

SciTech Connect (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

440

The Design of an Open Rankine-Cycle Industrial Heat Pump  

E-Print Network [OSTI]

An open Rankine-cycle heat pump is ideally suited for producing low-pressure industrial process steam. Because steam serves as both the heat pump motive fluid and process fluid, the system achieves a unique simplicity and versatility...

Leibowitz, H. M.; Chaudoir, D. W.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Secondary heat exchanger design and comparison for advanced high temperature reactor  

SciTech Connect (OSTI)

Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

Sabharwall, P. [Idaho National Laboratory, Idaho Falls, ID 83415-3860 (United States); Kim, E. S. [Seoul National Univ., P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Siahpush, A.; McKellar, M.; Patterson, M. [Idaho National Laboratory, Idaho Falls, ID 83415-3860 (United States)

2012-07-01T23:59:59.000Z

442

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH  

E-Print Network [OSTI]

00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

Paris-Sud XI, Université de

443

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP  

E-Print Network [OSTI]

- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ON SIDE REFRIGERANT MEASUREMENT OF HEAT PUMP SEASONAL PERFORMANCES C. T. Tran, PhD student, Centre for Energy and Processes, MINES, Research Engineer, ENERBAT, Electricity of France R&D, Moret/Loing, France Abstract Heat pump systems have

Paris-Sud XI, Université de

444

Definition: Combined heat and power | Open Energy Information  

Open Energy Info (EERE)

heat and power heat and power Jump to: navigation, search Dictionary.png Combined heat and power The production of electricity and heat from a single process. Almost synonymous with the term cogeneration, but slightly more broad. Under the Public Utility Regulatory Policies Act (PURPA), the definition of cogeneration is the production of electric energy and "another form of useful thermal energy through the sequential use of energy." Since some facilities produce both heat and power but not in a sequential fashion, the term CHP is used.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could

445

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

446

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

447

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

448

Residential heating oil price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

449

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

450

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

451

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

452

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

campus, which includes 750 buildings. Photo courtesy of Texas A&M University Combined Heat and Power System Achieves Millions in Cost Savings at Large University Recovery Act...

453

Combined Heat and Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

454

MA HEAT Loan Overview  

Broader source: Energy.gov [DOE]

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

455

Ductless Heat Pumps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

456

Heat Pump Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

457

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

458

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

459

FS: heat pump water heaters | The Better Buildings Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

460

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

462

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

Acoustic Heating Peter Ulmschneider lnstitut fiir Theoretische Astrophysik der Universitat waves are a viable and prevalent heating mechanism both in early- and in late-type stars. Acoustic heating appears to be a dominant mechanism for situations where magnetic fields are weak or absent

Ulmschneider, Peter

463

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

464

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

465

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

466

Combined heat recovery and make-up water heating system  

SciTech Connect (OSTI)

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

467

The Heating of the ICM: Energy Crisis and viable solutions  

E-Print Network [OSTI]

X-ray observations indicate that non-gravitational processes play a key role in the thermodynamics of the Intra Cluster Medium (ICM). The effect of non-gravitational processes is imprinted in the ICM as an entropy minimum, whose effects are visible in the Luminosity-Temperature relation and in the Entropy-Temperature relation. However, the X-ray emission alone cannot discriminate between different mechanisms and sources of heating. There are no answers at present to the following questions: how much non-gravitational energy per baryons is present in the ICM? When was this energy injected? Which are the sources of heating? The embarrassment in front of these questions is amplified by the fact that the most viable sources of heating, SNae and stellar winds, seem to be inefficient in bringing the ICM to the observed entropy level. We may call it the energy crisis. Here we review the main aspects of this crisis, listing possible solutions, including other sources, like AGNs and Radio Galaxies, or other mechanisms, like large scale shocks and selective cooling.

Paolo Tozzi

2001-09-05T23:59:59.000Z

468

Tips: Passive Solar Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

469

Tips: Passive Solar Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Passive Solar Heating and Cooling Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

470

Water Heating | Department of Energy  

Energy Savers [EERE]

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

471

Sodium Heat Engine Development Program  

SciTech Connect (OSTI)

The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype. Mechanical and microstructural evaluation of commercially obtained BASE tubes revealed that they should be adequate for SHE applications and that sodium exposure produced no appreciable deleterious strength effects. Processing activities to produce a more uniform and smaller grain size for the BASE tubes were completed using isostatic pressing, extrusion, and slip casting. Green tubes were sintered by conventional and microwave plasma methods. Of particular interest is the residual stress state in the BASE tubes, and both analysis and nondestructive evaluation methods were employed to evaluate these stresses. X-ray and neutron diffraction experiments were performed to determine the bulk residual stresses in commercially fabricated BASE tubes; however, tube-to-tube variations and variations among the various methods employed did not allow formulation of a definitive definition of the as-fabricated stress state.

Singh, J.P.; Kupperman, D.S.; Majumdar, S.; Dorris, S.; Gopalsami, N.; Dieckman, S.L.; Jaross, R.A.; Johnson, D.L.; Gregar, J.S.; Poeppel, R.B.; Raptis, A.C.; Valentin, R.A.

1992-01-01T23:59:59.000Z

472

Tidal Heating of Extra-Solar Planets  

E-Print Network [OSTI]

Extra-solar planets close to their host stars have likely undergone significant tidal evolution since the time of their formation. Tides probably dominated their orbital evolution once the dust and gas had cleared away, and as the orbits evolved there was substantial tidal heating within the planets. The tidal heating history of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Typically, tidal heating increases as a planet moves inward toward its star and then decreases as its orbit circularizes. Here we compute the plausible heating histories for several planets with measured radii, using the same tidal parameters for the star and planet that had been shown to reconcile the eccentricity distribution of close-in planets with other extra-solar planets. Several planets are discussed, including for example HD 209458 b, which may have undergone substantial tidal heating during the past billion years, perhaps enough to explain its large measured radius. Our models also show that GJ 876 d may have experienced tremendous heating and is probably not a solid, rocky planet. Theoretical models should include the role of tidal heating, which is large, but time-varying.

Brian Jackson; Richard Greenberg; Rory Barnes

2008-02-29T23:59:59.000Z

473

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

474

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

1990-01-01T23:59:59.000Z

475

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

Carrigan, Charles R. (Tracy, CA); Hardee, Harry C. (Albuquerque, NM); Reynolds, Gerald D. (Tijeras, NM); Steinfort, Terry D. (Tijeras, NM)

1992-01-01T23:59:59.000Z

476

Irregular spacing of heat sources for treating hydrocarbon containing formations  

DOE Patents [OSTI]

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

477

Understanding the thermodynamic inefficiencies in combustion processes  

Science Journals Connector (OSTI)

Abstract The thermodynamic inefficiencies associated with any energy conversion process are expressed by the exergy destruction and the exergy losses associated with the process. Combustion processes exhibit very high thermodynamic inefficiencies caused by chemical reaction, heat transfer, friction, and mixing. In this paper, we discuss how to estimate the thermodynamic inefficiencies resulting from each one of these sources. The thermodynamic evaluation can be conducted with the aid of either a conventional exergetic analysis or an advanced one. The latter allows estimation of the potential for improvement of the process being considered and demonstrates the interactions among the components of the system in which combustion takes place. The paper discusses how advanced exergy-based evaluations can be used to reduce the thermodynamic inefficiencies, costs, and environmental impacts associated with energy conversion systems including combustion processes.

George Tsatsaronis; Tatiana Morosuk; Daniela Koch; Max Sorgenfrei

2013-01-01T23:59:59.000Z

478

Methods of Purchasing Purchasing methods include the different  

E-Print Network [OSTI]

" purchases must be reviewed and approved by the Controller's Office. This may result in the end user beingMethods of Purchasing Purchasing methods include the different processes of ordering goods and/or services, and encumbering funds. #12;Method of Purchase Field Purchase Orders (FPO) Accepted

479

Heat Requirements for Retorting Oil Shale  

Science Journals Connector (OSTI)

Heat Requirements for Retorting Oil Shale ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ...

H. W. Sohns; L. E. Mitchell; R. J. Cox; W. I. Barnet; W. I. R. Murphy

1951-01-01T23:59:59.000Z

480

Hybrid Microwave-Cavity Heat Engine  

E-Print Network [OSTI]

We propose and analyze the use of hybrid microwave cavities as quantum heat engines. A possible realization consists of two macroscopically separated quantum dot conductors coupled capacitively to the fundamental mode of a microwave cavity. We demonstrate that an electrical current can be induced in one conductor through cavity-mediated processes by heating up the other conductor. The heat engine can reach Carnot efficiency with optimal conversion of heat to work. When the system delivers the maximum power, the efficiency can be a large fraction of the Carnot efficiency. The heat engine functions even with moderate electronic relaxation and dephasing in the quantum dots. We provide detailed estimates for the electrical current and output power using realistic parameters.

Christian Bergenfeldt; Peter Samuelsson; Björn Sothmann; Christian Flindt; Markus Büttiker

2014-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "include process heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Technical assessment of the Office of Industrial Programs' Advanced Heat Exchanger Program  

SciTech Connect (OSTI)

The DOE's AHX Program is an integral part of the OIP's Waste Heat Recovery Program whose goals are to increase the end-use energy efficiency of industry and agricultural operations, and to expand the energy options for manufacturing processes by providing technologies which use various fuels including coal, renewables, oil, and natural gas. The OIP and PNL convened a panel of industry experts to conduct a technical assessment of OIP's AHX program. This report documents the results of the panel's assessment.

Rinker, F.G.; Bergles, A.E.; Marciniak, T.J.; Batman, J.

1987-02-01T23:59:59.000Z

482

Electromagnetic ion cyclotron resonance heating in the VASIMR  

Science Journals Connector (OSTI)

Plasma physics has found an increasing range of practical industrial applications, including the development of electric spacecraft propulsion systems. One of these systems, the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, both applies several important physical processes occurring in the magnetosphere. These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Auroral current region processes that are simulated in VASIMR include lower hybrid heating, parallel electric field acceleration and ion cyclotron acceleration. This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron resonance heating (ICRH). The major purpose is to provide a VASIMR status report to the COSPAR community. The VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma. This plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. The present setup for the booster uses 2–4 MHz waves with up to 20 kW of power. This process is similar to the ion cyclotron heating in tokamaks, but in the VASIMR the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The ICRH produced a substantial increase in ion velocity. Pitch angle distribution studies show that this increase takes place in the resonance region where the ion cyclotron frequency is equal to the frequency on the injected RF waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR. In deuterium plasma, 80% efficient absorption of 20 kW of ICRH input power has been achieved. No evidence for power limiting instabilities in the exhaust beam has been observed.

E.A. Bering; F.R. Chang-Díaz; J.P. Squire; M. Brukardt; T.W. Glover; R.D. Bengtson; V.T. Jacobson; G.E. McCaskill; L. Cassady

2008-01-01T23:59:59.000Z

483

Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor  

SciTech Connect (OSTI)

The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediat