National Library of Energy BETA

Sample records for include off-grid photovoltaics

  1. COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES

    E-Print Network [OSTI]

    Deymier, Pierre

    . Existing storage technologies include electrochemical batteries and fuel cells, supercapacitors, thermal be operated at very low powers, to optimally utilize the output of individual PV panels. Compressed Air Energy

  2. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  3. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    E-Print Network [OSTI]

    Radecsky, Kristen

    2009-01-01

    Testing for Emerging Off-grid White-LED Illumination SystemsBudget: The Economics of Off-Grid Lighting for SmallProject includes an Off-Grid Lighting Technology Assessment

  4. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    Life Cycle Assessment of Off-Grid Lighting Applications:Testing for Emerging Off-grid White-LED Illumination SystemsBudget: The Economics of Off-Grid Lighting for Small

  5. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    E-Print Network [OSTI]

    Radecsky, Kristen

    2009-01-01

    Report #3 Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses inProject includes an Off-Grid Lighting Technology Assessment

  6. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    of technological options for off-grid light provision thatQuality Assurance for Off-Grid Lighting in Africa Conferencemarkets for high efficiency off-grid lighting technologies

  7. Measured Off-Grid LED Lighting System Performance

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01

    Budget: The Economics of Off-Grid Lighting for SmallA. Jacobson. 2007. "The Off-Grid Lighting Market in WesternTesting for Emerging Off-grid White-LED Illumination Systems

  8. Product Quality Assurance for Off-Grid Lighting in Africa

    SciTech Connect (OSTI)

    World Bank; Mills, Evan; Mills, Evan

    2008-07-13

    Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract has been competitively awarded to the Global Approval Program for Photovoltaics (PV GAP) under the Lighting Africa Program to select and test ten solar lantern product models. Lantern selection will be determined based on a number of criteria, among them, the ability to provide a daily duty cycle of at least 3 hours of light, the number of days of autonomy of battery, the volume of sales (especially in Africa), and whether or not the manufacturing facility is ISO 9000 certified. Those that are confirmed as meeting the specifications may be eligible to receive a PVGAP quality seal. The work is being carried out in partnership with the Photovoltaic and Wind Quality Test Center in Beijing, China and TUV Rhineland in Koeln, Germany. As off-grid LED-based stand-alone lighting products is in a nascent stage of development compared to CFL-based lanterns, Lighting Africa will support the development of a 'Quality Screening' approach to selecting LED lighting, in order not to delay consumers benefiting from such advances. The screening methodology could be used by procurement agencies to qualify LED lighting products for bulk or programmatic procurements. The main elements of this work comprises of developing a procurement specification and test procedure for undertaking a 'quick' quality/usability screening to be used for procuring LED lights and to test up to 30 LED-based lights to screen products that meet the requirement. The second strategy is intended to meet a longer-term need associated with creating a self-sustaining product quality assurance program that will effectively protect the African consumer, prevent significant market spoiling, adapt with expected technological advancements over the long-term--in other words, give consumers the ability to detect quality products and the information needed to find products that meet their specific needs from among the myriad of lighting products that become available commercially. Workshop discussions and the discussions evolving from the workshop led the Lighting Africa team to opt for an approach similar to that of th

  9. Measured Off-Grid LED Lighting System Performance

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01

    4 Measured Off-Grid LED Lighting System Performance Jessicapeople, the quality of LED lighting products remains acomponents of off-grid LED lighting systems (e.g. light

  10. Introduction to Small-Scale Photovoltaic Systems (Including RETScreen...

    Open Energy Info (EERE)

    Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale...

  11. Embodied Energy and Off-Grid Lighting

    SciTech Connect (OSTI)

    Alstone, Peter; Mills, Evan; Jacobson, Arne

    2011-01-25

    The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, we found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.

  12. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    for Off-Grid Lighting in Africa Conference Proceedingsfrom the Lighting Africa Product Quality Assurance WorkshopSUMMARY Background Lighting Africa is a World Bank Group

  13. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect (OSTI)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  14. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01

    A. Jacobson (2007) “The Off-Grid Lighting Market in WesternBudget: The Economics of Off-Grid Lighting for Small6 Market Trial: Selling Off-Grid Lighting Products in Rural

  15. Measured Off-Grid LED Lighting System Performance

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01

    The Specter of Fuel-Based Lighting," Science 308:1263-1264.Mills. 2008. "Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses in

  16. Simulation of Off-Grid, Off-Pipe, Single-Family Detached Residences in US Climates 

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    2008-01-01

    , the building UA, Tbal and daily hot water use were obtained for F-Chart inputs. Electricity use for space cooling, lighting, appliances and other: The off-grid house requires electricity for operating the cooling system including fans and pumps.... The battery storage system was sized to store excess electricity generated for use during days when the weather is not favorable for electricity generation. The parameters used for sizing the battery system include: total electricity requirement for a...

  17. Measured Off-Grid LED Lighting System Performance

    SciTech Connect (OSTI)

    Granderson, Jessica; Galvin, James; Bolotov, Dmitriy; Clear, Robert; Jacobson, Arne; Mills, Evan

    2008-12-18

    This report is a product of our ongoing effort to support the development of high-quality yet affordable products for off-grid lighting in the developing world that have good potential to succeed in the market. The effort includes work to develop low-cost testing procedures, to identify useful performance metrics, and to facilitate the development of industry standards and product rating protocols. We conducted laboratory testing of nine distinct product lines. In some cases we also tested multiple generations of a single product line and/or operating modes for a product. The resultsare summarized in Table 1. We found that power consumption and light output varied by nearly a factor of 12, with efficacy varying by a factor of more than six. Of particular note, overall luminous efficacy varied from 8.2 to 53.1 lumens per watt. Color quality indices variedmaterially, especially for correlated color temperature. Maximum illuminance, beamcandlepower, and luminance varied by 8x, 32x, and 61x respectively, suggesting considerable differences among products in terms of service levels and visual comfort. Glare varied by1.4x, and was above acceptable thresholds in most cases. Optical losses play a role in overall performance, varying by a factor of 3.2 and ranging as high as 24percent. These findings collectively indicate considerable potential for improved product design.

  18. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01

    2007) “The Off-Grid Lighting Market in Western Kenya: LEDMills (2008) “Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Business in

  19. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    E-Print Network [OSTI]

    Tracy, Jennifer

    2010-01-01

    testing of emerging off-grid White-LED illumination systems,the economics behind off-grid lighting products for smallAvailable in the Kenyan Off-Grid Lighting Market Jennifer

  20. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    developing photovoltaic standards in Africa will beAfrica elected to use the technical specifications issued by the Photovoltaic

  1. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    SciTech Connect (OSTI)

    Tracy, Jennifer; Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-06-21

    In this study, we performed a market trial of off-grid LED lighting products in Maai Mahiu, arural Kenyan town. Our goals were to assess consumer demand and consumer preferences with respect to off-grid lighting systems and to gain feedback from off-grid lighting users at the point of purchase and after they have used to products for some time.

  2. Compressive Radar with Off-Grid and Extended Targets

    E-Print Network [OSTI]

    Fannjiang, Albert

    2012-01-01

    Compressed sensing (CS) schemes are proposed for monostatic as well as synthetic aperture radar (SAR) imaging of sparse targets with chirps. In particular, a simple method is developed to improve performance with off-grid targets. Tomographic formulation of spotlight SAR is analyzed by CS methods with several bases and under various bandwidth constraints. Performance guarantees are established via coherence bound and the restricted isometry property. CS analysis provides a fresh and clear perspective on how to optimize temporal and angular samplings for spotlight SAR.

  3. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01

    trial of off-grid LED lighting products in Maai Mahiu, aa relatively costly LED lighting product. If market spoilageand higher quality LED lighting products. Another potential

  4. OE Announces Awardees Under the Remote Off-Grid Microgrid Design...

    Energy Savers [EERE]

    decision support analysis on alternating current and direct current remote off-grid microgrids to meet user-defined objectives and constraints for costs and energy system...

  5. Technical and Economic Assessment of Off-grid, Mini-grid and...

    Open Energy Info (EERE)

    Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical and Economic...

  6. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    SciTech Connect (OSTI)

    Radecsky, Kristen; Johnstone, Peter; Jacobson, Arne; Mills, Evan

    2008-12-14

    superior lighting services to low income people in off-grid areas of developing countries, many of whom currently rely on fuel based lighting sources such as kerosene. If this potential is to be achieved in the near term, however, manufacturers must produce off-grid lighting products that are inexpensive, perform well, and meet the needs of potential end users. At present, relatively few products meet all three of these goals. In this article, we report results from a detailed study of lighting use by micro-enterprises in two small towns in Kenya's Rift Valley Province. The work included a survey about lighting use by 50 small businesses, careful measurements of kerosene lighting use patterns and associated costs for 23 of these businesses, and a subsequent field trial in which 14 of the 23 businesses purchased and used low cost LED lamps over a number of months.

  7. OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA

    E-Print Network [OSTI]

    Delaware, University of

    OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA by the Center for Energy and Environmental Policy of University of Delaware Sponsored by National Renewable Energy Laboratory and Ministry of Agriculture People's Republic of China June 2001 #12;i OFF-GRID RENEWABLE ENERGY

  8. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOE Patents [OSTI]

    Yang, Liyou (Lawrenceville, NJ)

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  9. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    E-Print Network [OSTI]

    Radecsky, Kristen

    2009-01-01

    a preference for off-grid LED lighting products that wereowners were interested in LED lighting even if the operatingfor Off-Grid Lighting LED lighting is viewed increasingly as

  10. Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01

    the Pecking Order in Off-Grid Lighting A Demonstration ofanalysis and information on off-grid lighting solutions fordevelopment of commercial off-grid lighting markets in Sub-

  11. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    A. Jacobson, 2007. The Off-grid Lighting Market in WesternBudget: The Economics of Off-Grid Lighting for SmallSurvey for Illuminance in an Off-Grid, African Setting Peter

  12. Energy System Development inAfrica: The case of grid and off-grid power inKenya

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Energy System Development inAfrica: The case of grid and off-grid power inKenya By Katherine Deaton Development inAfrica: The case of grid and off-grid power inKenya Energy System Development inAfrica: The case of grid and off-grid power in Kenya by Katherine Steel Submitted to the Engineering Systems Division

  13. Business and Marketing Plan: Homeowners Off-Grid Association

    E-Print Network [OSTI]

    Schoonover, Natalie Linn

    2010-12-17

    renewable energy sources, such as wind, solar photovoltaics, biomass, and geothermal. As of November 2010, twenty-nine states have mandated their own RPS standards. Of those states, approximately twelve have solar-specific requirements; each state differs...

  14. Solar Photovoltaics development -Status and perspectives

    E-Print Network [OSTI]

    Solar Photovoltaics development - Status and perspectives Jørgen Fenhann Risø National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

  15. ANALYSIS OF OFF-GRID, OFF-PIPE HOUSING FOR HOT-HUMID AND HOT-ARID CLIMATES 

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    2008-01-01

    This paper investigates the feasibility of off-grid, off-pipe housing in hot-humid and hot-arid climates in the U.S. The study aims to eliminate the need for non-renewable sources of energy and municipal water in residences by using off-grid, off...

  16. Compressive radar with off-grid targets: a perturbation approach This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Fannjiang, Albert

    Compressive radar with off-grid targets: a perturbation approach This article has been downloaded.1088/0266-5611/29/5/054008 Compressive radar with off-grid targets: a perturbation approach Albert Fannjiang1,3 and Hsiao-Chieh Tseng2 1. In particular, a simple, perturbation method is developed to reduce the gridding error for off-grid targets

  17. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    E-Print Network [OSTI]

    Tracy, Jennifer

    2010-01-01

    LED-Based Flashlights Available in the Kenyan Off-Grid LightingLED technology holds promise to provide affordable, high quality lightingLED technology has the potential to provide high quality lighting

  18. Off-Grid or Stand-Alone Renewable Energy Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientific andComplex Oak125 October 2526Off-Grid

  19. Off-Grid or Stand-Alone Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWindOPENOccurrence Reporting andOff-Grid or

  20. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    E-Print Network [OSTI]

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01

    ATLAS is a particle physics experiment on Large Hadron Collider at CERN. The experiment produces petabytes of data every year. The ATLAS Computing model embraces the Grid paradigm and originally included three levels of computing centres to be able to operate such large volume of data. With the formation of small computing centres, usually based at universities, the model was expanded to include them as Tier3 sites. The experiment supplies all necessary software to operate typical Grid-site, but Tier3 sites do not support Grid services of the experiment or support them partially. Tier3 centres comprise a range of architectures and many do not possess Grid middleware, thus, monitoring of storage and analysis software used on Tier2 sites becomes unavailable for Tier3 site system administrator and, also, Tier3 sites activity becomes unavailable for virtual organization of the experiment. In this paper we present ATLAS off-Grid sites monitoring software suite, which enables monitoring on sites, which are not unde...

  1. Solar energy potential atlas for planning energy system off-grid electrification in the Republic of Djibouti

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Solar energy potential atlas for planning energy system off-grid electrification in the Republic solar resource can therefore be an interesting mean to produce energy where it is consumed. The aimWh/m². Furthermore, the solar radiation reaching Djibouti corresponded to 20 000 times the total yearly energy

  2. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    SciTech Connect (OSTI)

    Tracy, Jennifer; Jacobson, Arne; Mills, Evan

    2010-03-02

    Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hours from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, 38percent for run time, 11percent for light distribution and by as much as 200percent for color rendering. Results obtained are useful for creating a framework for quality assurance of off-grid LED products and will be valuable for informing consumers, distributors and product manufacturers about product performance.

  3. A simple mathematical description of an off-grid hybrid solarwind power generating system This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Blasone, Massimo

    A simple mathematical description of an off-grid hybrid solar­wind power generating system­771 doi:10.1088/0143-0807/34/3/763 A simple mathematical description of an off-grid hybrid solar energy from the PV cells to the storage unit. In this paper we consider the energy flow in the off-grid

  4. Photovoltaic module kit including connector assembly for non-penetrating array installation

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2013-12-31

    A PV module kit for non-penetrating rooftop installation, including a plurality of PV modules and a plurality of connectors. Each of the PV modules includes a PV laminate and a frame forming a mounting region assembled thereto. The connectors include a male connector having a male fastener extending from a head, and a female connector having a female fastener assempbled within a head. The heads are entirely formed of plastic. The kit provides a mounted array state including a junction at which the mounting regions of at least two of the PV modules are aligned and interconnected by engagement of the male connector with the female connector. The so-formed junction is substantially electrically insulated. The plurality of connectors can further include a spacer connector including a head forming a bore sized slidably receive the male fastener, with all of the connector heads being identical.

  5. Photovoltaic module kit including connector assembly for non-penetrating array installation

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2012-10-23

    A PV module kit for non-penetrating rooftop installation, including a plurality of PV modules and a plurality of connectors. Each of the PV modules includes a PV laminate and a frame forming a mounting region assembled thereto. The connectors include a male connector having a male fastener extending from a head, and a female connector having a female fastener assembled within a head. The heads are entirely formed of plastic. The kit provides a mounted array state including a junction at which the mounting region of at least two of the PV modules are aligned and interconnected by engagement of the male connector with the female connector. The so-formed junction is substantially electrically insulated. The plurality of connectors can further include a spacer connector including a head forming a bore sized to slidably receive the male fastener, with all of the connector heads being identical.

  6. Photovoltaic module kit including connector assembly for non-penetrating array installation

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA); Culligan, Matthew (Berkeley, CA)

    2011-11-22

    A PV module kit for non-penetrating rooftop installation, including a plurality of PV modules and a plurality of connectors. Each of the PV modules includes a PV laminate and a frame forming a mounting region assembled thereto. The connectors include a male connector having a male fastener extending from a head, and a female connector having a female fastener assembled within a head. The heads are entirely formed of plastic. The kit provides a mounted array state including a junction at which the mounting region of at least two of the PV modules are aligned and interconnected by engagement of the male connector with the female connector. The so-formed junction is substantially electrically insulated. The plurality of connectors can further include a spacer connector including a head forming a bore sized to slidably receive the male fastener, with all of the connector heads being identical.

  7. Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye

    SciTech Connect (OSTI)

    Guo, Jiahui; Zhang, Ye; Liu, Yilu; Young II, Marcus Aaron; Irminger, Philip; Dimitrovski, Aleksandar D; Willging, Patrick

    2014-01-01

    Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection method is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.

  8. Building-integrated photovoltaics (BIPV): Analysis and US market potential. Final report

    SciTech Connect (OSTI)

    Frantzis, L.; Friedman, D.; Hill, S.; Teagan, P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Strong, S.; Strong, M. [Solar Design Associates, Harvard, MA (United States)

    1995-02-01

    Arthur D. Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for grid-connected, building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin; and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US. Off-grid building applications also offer a near-term market for BIPV, but are not included in the scope of this study.

  9. Feasibility of Hybrid Retrofits to Off-Grid Diesel Power Plants in the Philippines

    SciTech Connect (OSTI)

    Barley, C. D.; Flowers, L. T.; Benavidez, P. J.; Abergas, R. L.; Barruela, R. B.

    1999-08-01

    The Strategic Power Utilities Group (SPUG) of the National Power Corporation (NPC) in the Philippines owns and operates about 100 power plants, mostly fueled by diesel, ranging in energy production from about 15 kilowatt-hours (kWh)/day to 106,000 kWh/day. Reducing the consumption of diesel fuel in these plants, along with the associated financial losses, is a priority for SPUG. The purpose of this study is to estimate the potential fuel and cost savings that might be achieved by retrofitting hybrid power systems to these existing diesel plants. As used in this report, the term ''hybrid system'' refers to any combination of wind turbine generators (WTGs), photovoltaic (PV) modules, lead-acid batteries, and an AC/DC power converter (either an electronic inverter or a rotary converter), in addition to the existing diesel gensets. The resources available for this study did not permit a detailed design analysis for each of the plants. Instead, the following five-step process was used: (1) Tabulate some important characteristics of all the plants. (2) Group the plants into categories (six classes) with similar characteristics. (3) For each class of system, identify one plant that is representative of the class. (4) For each representative plant, perform a moderately detailed prefeasibility analysis of design options. (5) Summarize and interpret the results. The analysis of each representative plant involved the use of time-series computer simulation models to estimate the fuel usage, maintenance expenses, and cash flow resulting from various designs, and to search the domain of possible designs for the one leading to the lowest life-cycle cost. Cost items that would be unaffected by the retrofit, such as operator salaries and the capital cost of existing equipment, were not included in the analysis. Thus, the results are reported as levelized cost of energy (COE) savings: the difference between the cost of the existing diesel-only system and that of an optimized hybrid system, expressed in units of U.S. dollars per kWh (US$/kWh) of energy production. This analysis is one phase of a study entitled ''Analysis of Renewable Energy Retrofit Options to Existing Diesel Mini-Grids,'' funded by the Asia-Pacific Economic Cooperation (APEC) and the U.S. Department of Energy (DOE), and performed jointly by NPC, the U.S. National Renewable Energy Laboratory (NREL), and Sustainable Energy Solutions in New York, New York (Morris et al. 1998). A more detailed version of this paper is included in that report.

  10. Living off-grid in an arid environment without a well : can residential and commercial/industrial water harvesting help solve water supply problems?

    SciTech Connect (OSTI)

    Axness, Carl L.; Ferrando, Ana

    2010-08-01

    Our family of three lives comfortably off-grid without a well in an arid region ({approx}9 in/yr, average). This year we expect to achieve water sustainability with harvested or grey water supporting all of our needs (including a garden and trees), except drinking water (about 7 gallons/week). We discuss our implementation and the implication that for an investment of a few thousand dollars, many single family homes could supply a large portion of their own water needs, significantly reducing municipal water demand. Generally, harvested water is very low in minerals and pollutants, but may need treatment for microbes in order to be potable. This may be addressed via filters, UV light irradiation or through chemical treatment (bleach). Looking further into the possibility of commercial water harvesting from malls, big box stores and factories, we ask whether water harvesting could supply a significant portion of potable water by looking at two cities with water supply problems. We look at the implications of separate municipal water lines for potable and clean non-potable uses. Implications on changes to future building codes are explored.

  11. A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications

    E-Print Network [OSTI]

    Arnold, Craig B.

    September 2013 Keywords: Off-grid renewables Lead-acid Lithium-ion Capacity fade Wind Variable charge a b phosphate) cells charged with wind-based charging protocols. Poor pulse charge acceptance, particularly have electricity away from the grid typically rely on diesel generators, renewable energy systems

  12. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  13. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  14. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  15. Powering a Home with Just 25 Watts of Solar PV. Super-Efficient Appliances Can Enable Expanded Off-Grid Energy Service Using Small Solar Power Systems

    SciTech Connect (OSTI)

    Phadke, Amol A.; Jacobson, Arne; Park, Won Young; Lee, Ga Rick; Alstone, Peter; Khare, Amit

    2015-04-01

    Highly efficient direct current (DC) appliances have the potential to dramatically increase the affordability of off-grid solar power systems used for rural electrification in developing countries by reducing the size of the systems required. For example, the combined power requirement of a highly efficient color TV, four DC light emitting diode (LED) lamps, a mobile phone charger, and a radio is approximately 18 watts and can be supported by a small solar power system (at 27 watts peak, Wp). Price declines and efficiency advances in LED technology are already enabling rapidly increased use of small off-grid lighting systems in Africa and Asia. Similar progress is also possible for larger household-scale solar home systems that power appliances such as lights, TVs, fans, radios, and mobile phones. When super-efficient appliances are used, the total cost of solar home systems and their associated appliances can be reduced by as much as 50%. The results vary according to the appliances used with the system. These findings have critical relevance for efforts to provide modern energy services to the 1.2 billion people worldwide without access to the electrical grid and one billion more with unreliable access. However, policy and market support are needed to realize rapid adoption of super-efficient appliances.

  16. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  17. Photovoltaic power generation system free of bypass diodes

    DOE Patents [OSTI]

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  18. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  19. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    E-Print Network [OSTI]

    Radecsky, Kristen

    2009-01-01

    that included solar chargers due to the higher initialthe lamp body, and an AC charger. A one Watt solar moduleelectronic circuitry, AC charger, and solar module were

  20. Simulated Building Energy Performance of Single Family Detached Residences Designed for Off-Grid, Off-Pipe Operation 

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    2010-01-01

    energy resources and high energy use, which would be aimed for selecting energy-efficiency measures. Peak days hourly energy use plots include outdoor dry-bulb temperature, global horizontal solar radiation, room air temperature, and attic air.... Figure 1 shows climate characteristics of the three locations, including: TMY2 monthly statistics for heating degree-days, cooling degree-days, dry-bulb temperature, diurnal temperature range, dew- point temperature, global horizontal solar radiation...

  1. Photovoltaic nanocrystal scintillators hybridized on Si solar cells

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated

  2. Photovoltaics: The next generation

    SciTech Connect (OSTI)

    Wilson, A.

    1986-08-01

    The development of photovoltaics in the United States, with a few notable exceptions, has been carried out by the oil industry. Companies such as Arco, Exxon, Mobil and Sohio have played a tremendously important role in bringing photovoltaic technology to its current state of development. Many of these companies are continuing very active programs in pv, including the investigation of new and potentially far-reaching technologies.

  3. Residential photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  4. Mounting support for a photovoltaic module

    DOE Patents [OSTI]

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  5. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect (OSTI)

    DeScioli, Derek

    2013-06-01

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  6. Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector

    SciTech Connect (OSTI)

    Tracy, Jennifer; Mills, Evan

    2010-11-06

    The Lumina Project and Lighting Africa conducted a full-scale field test involving a switch from kerosene to solar-LED lighting for commercial broiler chicken production at an off-grid farm in Kenya. The test achieved lower operating costs, produced substantially more light, improved the working environment, and had no adverse effect on yields. A strategy using conventional solar-fluorescent lighting also achieved comparable yields, but entailed a six-fold higher capital cost and significantly higher recurring battery replacement costs. Thanks to higher energy and optical efficiencies, the LED system provided approximately twice the illumination to the chicken-production area and yet drew less than half the power.At the study farm, 3000 chickens were grown in each of three identical houses under kerosene, fluorescent, and LED lighting configurations. Under baseline conditions, a yearly expenditure of 1,200 USD is required to illuminate the three houses with kerosene. The LED system eliminates this fuel use and expense with a corresponding simple payback time of 1.5 years, while the solar-fluorescent system has a payback time of 9.3 years. The corresponding reduction in fuel expenditure in both cases represents a 15percent increase in after-tax net income (revenues minus expenses) across the entire business operation. The differential cost-effectiveness between the LED and fluorescent systems would be substantially greater if the fluorescent system were upsized to provide the same light as the LED system. Providing light with the fluorescent or LED systems is also far more economical than connecting to the grid in this case. The estimated grid-connection cost at this facility is 1.7 million Kenya Schillings (approximately 21,250 USD), which is nearly six-times the cost of the fluorescent system and 35-times the cost of the LED system.The LED system also confers various non-energy benefits. The relative uniformity of LED lighting, compared to the fluorescent or kerosene lighting, reduced crowding which in turn created a less stressful environment for the chickens. The far higher levels of illumination also created a better environment for the workers, while eliminating the time required for obtaining fuel and maintaining kerosene lanterns. An additional advantage of the LED system relative to the solar fluorescent system was that the former does not require a skilled technician to carry out the installation. The portable LED system lighting layout is also more easily adjusted than that of the hardwired fluorescent systems. Furthermore, switching to the LED system avoids over one metric ton of carbon dioxide emissions per house on an annual basis compared to kerosene. There is high potential for replication of this particular LED lighting strategy in the developing world. In order to estimate the scale of kerosene use and the potential for savings, more information is needed on the numbers of chickens produced off-grid, as well as lighting uses for other categories of poultry production (egg layers, indigenous broilers ). Our discovery that weight gain did not slow in the solar-fluorescent house after it experienced extended lighting outages beginning on day 14 of the 35-day study suggests that conventional farming practices in Kenyan broiler operations may call for more hours of lighting than is needed to achieve least-cost production.

  7. Photovoltaic array mounting apparatus, systems, and methods

    DOE Patents [OSTI]

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2015-04-14

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  8. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  9. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

  10. Formed photovoltaic module busbars

    DOE Patents [OSTI]

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  11. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  12. EELE408 Photovoltaics Lecture 20: Photovoltaic Systems

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array · 6. Determine battery size for recommended reserve time Photovoltaic System Design Block Diagram Ph

  13. Photovoltaics Special Research

    E-Print Network [OSTI]

    New South Wales, University of

    1999 Photovoltaics Special Research Centre UUNNSSWW 1999 Photovoltaics Special Research Centre The University of New South Wales Centre for Photovoltaic Engineering Electrical Engineering Building contains three sections which are colour coded as follows: Red: Photovoltaics Special Research Centre End

  14. Rapid screening buffer layers in photovoltaics

    DOE Patents [OSTI]

    List, III, Frederick Alyious; Tuncer, Enis

    2014-09-09

    An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

  15. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  16. Photovoltaic product directory and buyers guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  17. Photovoltaic module with adhesion promoter

    DOE Patents [OSTI]

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  18. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  19. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic...

  20. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  1. EELE408 Photovoltaics Lecture 15 Photovoltaic Devices

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 15 Photovoltaic Devices Dr. Todd J. Kaiser tjkaiser) · Demonstrated the photovoltaic effect · Best results with UV or blue light 2 g · Electrodes covered with light of photovoltaic effect in an all solid state device · Several decades before the effect could be explained Fritts

  2. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  3. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

  4. INTEGRATING PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview

  5. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

  6. Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership

    E-Print Network [OSTI]

    Tracy, Jennifer

    2010-01-01

    Project includes an Off-Grid Lighting Technology Assessmentand the market success of off-grid lighting solutions formarket spoiling effect for off-grid lighting products based

  7. US photovoltaic patents: 1991--1993

    SciTech Connect (OSTI)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  8. Photovoltaic Technology Basics

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

  9. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  10. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  11. EELE408 Photovoltaics Lecture 17 Photovoltaic Modules

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 17 Photovoltaic Modules Dr. Todd J. Kaiser tjkaiser with the lowest output · Cells usually matched to each other · Shaded cell acts like poor cell ­ Significantly

  12. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  13. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  14. Solar photovoltaic reflective trough collection structure

    DOE Patents [OSTI]

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  15. PHOTOVOLTAICS SPECIAL RESEARCH

    E-Print Network [OSTI]

    New South Wales, University of

    PHOTOVOLTAICS SPECIAL RESEARCH CENTRE UNSW ANNUAL REPORT 1997 #12;PHOTOVOLTAICS SPECIAL RESEARCH CENTRE UNSW ANNUAL REPORT 1997 Photovoltaics Special Research Centre School of Electrical Engineering.labs@unsw.edu.au WWW: http://www.pv.unsw.edu.au THE UNIVERSITY OF NEW SOUTH WALES The Photovoltaics Special Research

  16. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  17. Photovoltaic building sheathing element with anti-slide features

    DOE Patents [OSTI]

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  18. Interfacial Engineering of Molecular Photovoltaics

    E-Print Network [OSTI]

    Shelton, Steven Wade

    2014-01-01

    Engineering of Molecular Photovoltaics by Steven WadeEngineering of Molecular Photovoltaics Copyright © 2014 byEngineering of Molecular Photovoltaics by Steven Wade

  19. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  20. Graduate Research Opportunities in New Materials for Photovoltaics

    E-Print Network [OSTI]

    Graduate Research Opportunities in New Materials for Photovoltaics Summary: We have new interested in the development of new materials for photovoltaics (PV). It is expected that this work-throughput combinatorial methods to develop new thin film photovoltaic absorbers. Specific responsibilities include

  1. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  2. Photovoltaic Degradation Risk: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  3. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  4. Photovoltaic concentrator assembly with optically active cover

    DOE Patents [OSTI]

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  5. Improved photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  6. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A. (East Patchogue, NY)

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  7. Electroluminescence in photovoltaic cell

    E-Print Network [OSTI]

    Petraglia, Antonio; 10.1088/0031-9120/46/5/F01

    2011-01-01

    Here we propose two methods to get electroluminescence images from photovoltaic cells in a school or home lab.

  8. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-06-27

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  9. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  10. PHOTOVOLTAICS EXCELLENCE IS

    E-Print Network [OSTI]

    New South Wales, University of

    #12;THE PHOTOVOLTAICS CENTRE OF EXCELLENCE IS A CENTRE OF EXCELLENCE OF THE AUSTRALIAN RESEARCH) Photovoltaics Centre of Excellence commenced at the University of New South Wales (UNSW) on 13th June, 2003 silicon photovoltaic research on three separate fronts, as well as to apply these advances to the related

  11. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  12. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  13. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    PHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic opportunities and locations for using photovoltaics to power businesses #12;SHOULD PV BE IN YOUR BUSINESS PLAN know that solar energy is environ- mentally attractive--and that photovoltaic or PV systems have made

  14. Decoupling Utility Profits from Sales: Issues for the Photovoltaic...

    Office of Environmental Management (EM)

    shows the relative magnitude of decoupling overall and estimations of the impact of photovoltaics from a renewable portfolio standard that includes a solar specific requirement....

  15. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    SciTech Connect (OSTI)

    Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-08-26

    Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided by a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.

  16. Oscar Wilkie BE in Photovoltaics

    E-Print Network [OSTI]

    New South Wales, University of

    Oscar Wilkie BE in Photovoltaics and solar EnErgy EnginEEring What dO PhOtOvOltaics engineers dO? Photovoltaics engineering focuses on the manufacture and use of photovoltaic solar cells to generate electricity with an increased need for specialised photovoltaics engineers and there are constantly new opportunities arising

  17. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    cells: An overview. Progress in Photovoltaics: Research andnanoparticles. Progress in Photovoltaics, 19( 3):260–265,

  18. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    8 W driver for 6 high power LEDs MJ/m2 Manufacturing Energychip estimate for high power LED MJ/kg Cradle to Gate Duque1 kWh/LED package for high power LED packages. Osram (2009)

  19. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    Vol. 14 p. 275-280 Green Design Institute, 2011. Economicoutput models (e.g. , see Green Design Institute 2011) and

  20. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    Self-reported Impacts of LED Lighting Technology Compared to2011. Adoption of LED Lighting by Night Market Vendors inbased to rechargeable LED lighting. However, as with most

  1. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity28, no. 4, pp. 533-546. Lighting Africa (prepared by Dalberg

  2. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    to offset the “embodied” primary energy that was required toprocess to estimate the primary energy requirements based onmethods to estimate the primary energy requirement for a

  3. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    Economic Input-Output Life Cycle Assessment Tool, http://P. 2001. Application of Life-Cycle Assessment to Type IIIC. Hendrickson, 2009, Life Cycle Assessment of Solid State

  4. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    CdTe PV Modules. Solar Energy Materials & Solar Cells 67 (material processing methods to estimate the primary energy requirement for a solar-

  5. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    energy consumption over two years for (i) a grid charged LED lamp like the one we deployed, (ii) a corresponding solar

  6. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    offered in a recent market test—solar and grid charged—forSolar Lighting for the Base of the Pyramid: Overview of an Emerging Market.market test). The figure shows that over a two-year lifetime, 5 the solar

  7. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    Analaysis of Injection Molding. Proceedings of the 2006 IEEEe.g. MJ/kg for injection molding). In this report, we areet al. 2005 Injection Molding (Hydraulic) MJ/kg Raw plastic

  8. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01

    connected solar and wind energy systems. 7 If anticipatedsolar (EROI 5-50) and wind energy (EROI 20). Because thesolar and large-scale wind energy. We also found that the

  9. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  10. Photovoltaic module mounting system

    SciTech Connect (OSTI)

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  11. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHECKLIST AND GUIDE Renewable Energy Ready Home Renewable Energy Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the...

  12. Lab Breakthrough: Microelectronic Photovoltaics

    Broader source: Energy.gov [DOE]

    Sandia's glitter-sized photovoltaic cells are highly efficient and cost effective – the perfect combination for a game-changing technology.

  13. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  14. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  15. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  16. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  17. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Off-grid Residential Photovoltaic Systems." Prog. Photovolt:of Residential Photovoltaic System Experience at Tucsonfor Residential Photovoltaic Systems. Fact Sheet. NREL

  18. US Photovoltaic Patents, 1988--1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  19. US Photovoltaic Patents, 1988--1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  20. Microsystems Enabled Photovoltaics

    ScienceCinema (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  1. Photovoltaics Centre of Excellence The Photovoltaics Centre of Excellence

    E-Print Network [OSTI]

    New South Wales, University of

    Photovoltaics Centre of Excellence #12;The Photovoltaics Centre of Excellence is a Centre;#12;Photovoltaics involve the direct conversion of light, normally sunlight, into electricity when falling upon to its leading role in microelectronics. The Australian Research Council (ARC) Photovoltaics Centre

  2. ANNUAL REPORT 1998 PHOTOVOLTAICS GROUP

    E-Print Network [OSTI]

    New South Wales, University of

    ANNUAL REPORT 1998 UNSW PHOTOVOLTAICS GROUP ANNUAL REPORT 1998 UNSW PHOTOVOLTAICS GROUP #12;THE UNIVERSITY OF NEW SOUTH WALES THE PHOTOVOLTAICS SPECIAL RESEARCH CENTRE IS A SPECIAL RESEARCH CENTRE OF THE AUSTRALIAN RESEARCH COUNCIL THE KEY CENTRE FOR PHOTOVOLTAIC ENGINEERING IS A KEY CENTRE OF THE AUSTRALIAN

  3. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  4. Photovoltaic Power for the Nanosat Project

    SciTech Connect (OSTI)

    Rose, B.H.

    1999-06-01

    This report describes the characteristics of photovoltaic arrays that maybe suitable for use with nanosatellite electronic systems. It includes a thorough literature search on power management and distribution systems for satellites as small as microsatellites. The major conclusion to be drawn is that it is the total system, including satellite electronic system, photovoltaic systems, peak power tracker and the power management and distribution systems which need to be optimized. An example of a peak power tracker is given, and a novel series connected boost unit is described which might allow the system voltage to be increased if enough photovoltaic panels to operate the systems in real time is impractical. Finally, it is recommended that the development effort be oriented and expanded to include a peak power tracker and other power management and distribution systems.

  5. Metallic nanostructures for optoelectronic and photovoltaic applications

    E-Print Network [OSTI]

    Lim, Swee Hoe

    2009-01-01

    enhanced performance of photovoltaic and photodetector Proc.and H. Wagner, in Photovoltaic Specialists Conference. ,for Optoelectronic and Photovoltaic Applications by Swee Hoe

  6. DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Submitted by Russell M Reserved #12;ABSTRACT DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Thin-film photovoltaics

  7. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    costs for installed photovoltaic systems. This graph showsOne dollar per watt photovoltaic systems workshop sum- mary,costs for installed photovoltaic systems. This graph shows

  8. Decentalized solar photovoltaic energy systems

    SciTech Connect (OSTI)

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  9. Performance of Photovoltaic Maximum Power Point Tracking Algorithms in the Presence of Noise

    E-Print Network [OSTI]

    Odam, Kofi

    Performance of Photovoltaic Maximum Power Point Tracking Algorithms in the Presence of Noise tracking (MPPT) algorithms for photovoltaic systems, including how noise affects both tracking speed-performance photovoltaic sys- tems. An intelligent controller adjusts the voltage, current, or impedance seen by a solar

  10. EEC 289-L Photovoltaics and Solar Cells 3 Units Winter Quarter (Alternate Years)

    E-Print Network [OSTI]

    California at Davis, University of

    EEC 289-L Photovoltaics and Solar Cells 3 Units ­ Winter Quarter (Alternate Years) Prerequisite, and third-generation photovoltaics and solar cells, including design, fabrication technology, and grid physics of photovoltaics a. Device operation and performance metrics b. Properties of solar radiation c

  11. Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics Xukai Xinab

    E-Print Network [OSTI]

    Lin, Zhiqun

    Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics Jun Wang,a Xukai Xinab advances in the synthesis and utilization of CZTS nanocrystals and colloidal GQDs for photovoltaics emerged to achieve low cost, high perfor- mance photovoltaics, including organic solar cells,2­6 dye

  12. High-performance Si microwire photovoltaics Michael D. Kelzenberg,a

    E-Print Network [OSTI]

    Atwater, Harry

    High-performance Si microwire photovoltaics Michael D. Kelzenberg,a Daniel B. Turner-Evans,a Morgan for low- cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-perfor- mance photovoltaic applications, including long minority

  13. Photovoltaic Cell Performance Basics

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of the PV cell.

  14. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  15. Photovoltaic decision analysis

    E-Print Network [OSTI]

    Goldman, Neil L.

    1977-01-01

    This paper is concerned with the development and implementation of a methodology that analyzes information relating to the choice between flat plate and concentrator technologies for photovoltaic development. A

  16. Crystalline Silicon Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion...

  17. Organic Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE funds research and development projects related to organic photovoltaics (OPV) due to the unique benefits of the technology. Below is a list of the projects, summary of the benefits, and...

  18. Three-dimensional photovoltaics

    E-Print Network [OSTI]

    Myers, Bryan

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint ...

  19. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  20. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  1. Photovoltaic Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  2. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  3. Amonix Photovoltaic System

    Broader source: Energy.gov [DOE]

    This photograph features the Amonix and Arizona Public Service (APS) partnership to install the world’s largest utility-scale concentrating photovoltaic (CPV) power plant in 2002. Photovoltaic (PV) systems at the APS facility use a combination of technologies. The systems in the foreground are single-axis tracking flat-plate silicon systems. Shown in the upper right are three large (35 kilowatt) Amonix CPV.

  4. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  5. Sustainability of Large Photovoltaic Deployment: Environmental Research

    E-Print Network [OSTI]

    Homes, Christopher C.

    Sustainability of Large Photovoltaic Deployment: Environmental Research Sustainability of Large Photovoltaic Deployment: Environmental ResearchEnvironmental ResearchEnvironmental Research Vasilis Fthenakis and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in Photovoltaics: Research

  6. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

  7. Multijunction photovoltaic device and fabrication method

    DOE Patents [OSTI]

    Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

    1993-09-21

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  8. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  9. Photovoltaic energy program overview: Fiscal year 1994

    SciTech Connect (OSTI)

    1995-03-01

    This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

  10. Photovoltaic procurement strategies: an assessment of supply issues

    SciTech Connect (OSTI)

    Posner, D.; Costello, D.

    1980-02-01

    This review report presents the results of an analysis of alternative approaches to the design of a federal photovoltaics procurement program. Advantages and disadvantages of large purchases at fixed prices and smaller purchases for testing and demonstrating the technology are presented. The objectives and possible impacts of these purchase programs on the photovoltaic industry are described. The reactions of the industry to alternative purchase programs were assessed using personal interviews with selected companies currently active in photovoltaics. The report begins with a review of the impacts of federal procurements on other innovations, including the electronics industry, and suggests the relation of these procurements to photovoltaics. The methodology for conducting the interviews is presented next. The results of the interviews are summarized into possible scenarios of future developments in the industry and into discussions of key issues in the design of a procurement program. An appendix on the current structure of the photovoltaic industry is provided.

  11. Method of manufacturing a large-area segmented photovoltaic module

    DOE Patents [OSTI]

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  12. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  13. Nanowires enabling strained photovoltaics

    SciTech Connect (OSTI)

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  14. Technical Potential for Solar Photovoltaics

    E-Print Network [OSTI]

    Branoff, Theodore J.

    Technical Potential for Solar Photovoltaics in Illinois May 2013 #12;Authors ...................................................................................................... 1.1 Utility-Scale Solar Photovoltaic Systems in the U.S. ........................... 1.2 Previous ...................................................................................................... 3.1 Optimization Matrix for Large-Scale PV System Applications ......... 3.2 Photovoltaic

  15. Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response 

    E-Print Network [OSTI]

    Tyra, K.; Hanel, J.

    2012-01-01

    Excitonic photovoltaic devices, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, are attractive alternatives to conventional inorganic solar cells due to their potential for low cost and low ...

  16. Photovoltaic array with minimally penetrating rooftop support system

    DOE Patents [OSTI]

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  17. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  18. Series interconnected photovoltaic cells and method for making same

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  19. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy Levels Counter Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy

  20. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  1. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  2. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  3. Introduction to Small-Scale Photovoltaic Systems (Including RETScreen Case

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian

  4. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  5. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

    2012-07-17

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  6. Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources. In the current power

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources in pollution [1]. The most well-known green technologies include photovoltaics and wind turbines. Although fuel, fuel cells and photovoltaics, produce direct current (DC). Currently, power system infrastructures

  7. Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01

    Budget: The Economics of Off-Grid Lighting for SmallProject includes an Off-Grid Lighting Technology Assessmentand the market success of off-grid lighting solutions for

  8. Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications

    E-Print Network [OSTI]

    Mills, Evan

    2007-01-01

    with fluorescent lighting for off-grid applications in theProject includes an Off-Grid Lighting Technology Assessmentand the market success of off-grid lighting solutions for

  9. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    on-grid applications 8 , off-grid applications 9 , and waterpumping applications 10 . An off-grid application is takenand isolated-grid systems Off-grid applications include both

  10. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01

    Project includes an Off-Grid Lighting Technology Assessmentand the market success of off-grid lighting solutions forillumination systems for off-grid application—the focus of

  11. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01

    main conclusions about off-grid markets for DC appliances,and power systems. Mature Off-Grid Markets for DC Appliancesapplications include off-grid residential, telecom, remote

  12. Direct mounted photovoltaic device with improved adhesion and method thereof

    DOE Patents [OSTI]

    Boven, Michelle L; Keenihan, James R; Lickly, Stan; Brown, Jr., Claude; Cleereman, Robert J; Plum, Timothy C

    2014-12-23

    The present invention is premised upon a photovoltaic device suitable for directly mounting on a structure. The device includes an active portion including a photovoltaic cell assembly having a top surface portion that allows transmission of light energy to a photoactive portion of the photovoltaic device for conversion into electrical energy and a bottom surface having a bottom bonding zone; and an inactive portion immediately adjacent to and connected to the active portion, the inactive portion having a region for receiving a fastener to connect the device to the structure and having on a top surface, a top bonding zone; wherein one of the top and bottom bonding zones comprises a first bonding element and the other comprises a second bonding element, the second bonding element designed to interact with the first bonding element on a vertically overlapped adjacent photovoltaic device to bond the device to such adjacent device or to the structure.

  13. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  14. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Crandall, Richard S. (Boulder, CO); Deb, Satyendra K. (Boulder, CO); Stone, Jack L. (Lakewood, CO)

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  15. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  16. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  17. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    Large Grid- Connected Photovoltaic Systems in California andEconomics of Commercial Photovoltaic Systems in California,”

  18. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  19. Sandia Photovoltaics Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard RutlandSTEAB's PrioritiesFuelofPhotovoltaics Program

  20. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. (ed.)

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  1. Scattering Properties of nanostructures : applications to photovoltaics

    E-Print Network [OSTI]

    Derkacs, Daniel

    2009-01-01

    Arya, D. Carlson, Prog. Photovoltaics 10, p. 69 (2002). K.and J. Bailat, Prog. in Photovoltaics 12 , 113 (2004). M.and A. Mart?´, Progress in Photovoltaics 9, p. 73 (2001). S.

  2. Photon management in thermal and solar photovoltaics

    E-Print Network [OSTI]

    Hu, Lu

    2008-01-01

    Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

  3. Monitoring SERC Technologies — Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

  4. Photovoltaics for Residential Buildings Webinar

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet on using solar photovoltaic (PV) systems to provide electricity for homes.

  5. Utility-scale photovoltaic concentrators

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  6. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    SciTech Connect (OSTI)

    Lamm, D.

    1980-06-01

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  7. Southwest Photovoltaic Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Southwest Photovoltaic Systems Inc Jump to: navigation, search Name: Southwest Photovoltaic Systems Inc Place: Tomball, Texas Zip: 77375 Product: Distributor of small scale PV...

  8. ULTRATHIN FLEXIBLE CRYSTALLINE SILICON: MICROSYSTEMS ENABLED PHOTOVOLTAICS

    E-Print Network [OSTI]

    ULTRATHIN FLEXIBLE CRYSTALLINE SILICON: MICROSYSTEMS ENABLED PHOTOVOLTAICS Jose L. Cruz Photovoltaics (MEPV) is a technique to create solar cells relying on tools from the microsystems and integrated

  9. Organic Photovoltaics Experiments Showcase 'Superfacility' Concept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Collaboration Key to Enabling On-The-Fly HPC...

  10. The Capital Intensity of Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  11. Ris Energy Report 5 Photovoltaics 6.3.1 Photovoltaics

    E-Print Network [OSTI]

    kREbs, RIsø NATIONAL LAbORATORy, DENMARk The market for photovoltaics (PV, or solar cells) has grown? Crystalline silicon remains the standard PV technology, with a market share that has increased from 85 Photovoltaics 6.3.1 less than half the market. Figure 18 shows that the cost of traditional PV technology has

  12. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOE Patents [OSTI]

    Branz, H.M.; Crandall, R.S.; Tracy, C.E.

    1994-12-27

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer. 5 figures.

  13. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOE Patents [OSTI]

    Branz, Howard M. (Boulder, CO); Crandall, Richard S. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1994-01-01

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.

  14. Autonomous control and membrane maintenance optimization of photovoltaic reverse osmosis systems

    E-Print Network [OSTI]

    Bhujle, Aditya Sarvanand

    2013-01-01

    The supply of clean water in remote and off-grid areas has been a major global challenge for humanity. Over 780 million people lack access to clean water [1]. However, a significant fraction of these people have access to ...

  15. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  16. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  17. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar Jump to: navigation,asPhotovoltaics

  18. Photovoltaic System Fault Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp in thePhotonPhotosPhotovoltaic

  19. Sandia Energy - Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNewPhotoionization MassPhotovoltaic

  20. Multijunction photovoltaic device and method of manufacture

    DOE Patents [OSTI]

    Arya, Rejeewa R. (Jamison, PA); Catalano, Anthony W. (Boulder, CO); Bennett, Murray (Longhorne, PA)

    1995-04-04

    A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

  1. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  2. Photovoltaics information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  3. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  4. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  5. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOE Patents [OSTI]

    Phillips, James E. (Newark, DE); Lasswell, Patrick G. (Newark, DE)

    1987-01-01

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device.

  6. Working with the National Center of Photovoltaics (NCPV) (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Working with the National Center for Photovoltaics. One-sided sheet that includes projects in various areas: Technology Pathway Partnerships, CRADAs, Incubator Program, Pre-Incubator Program, Universities, Next-Generation Program, and NREL T&E.

  7. Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes

    E-Print Network [OSTI]

    Cao, Guozhong

    -called third generation of solar cells including dye-sensitized solar cells, DSCs2,3 and organic phoEnhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2- tovoltaics, OPVs.4-6 OPVs or polymer-based photovoltaic devices can be processed from solution and have

  8. Apparatus for making photovoltaic devices

    DOE Patents [OSTI]

    Foote, James B. (Toledo, OH); Kaake, Steven A. F. (Perrysburg, OH); Meyers, Peter V. (Bowling Green, OH); Nolan, James F. (Sylvania, OH)

    1994-12-13

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  9. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  10. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  11. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    Third generation photovoltaics: solar cells for 2020 andfor use in organic photovoltaics, Solar Energy Materials andSolar cell efficiency tables (Version 27), Progress in Photovoltaics

  12. Optical Design Considerations for High Conversion Efficiency in Photovoltaics

    E-Print Network [OSTI]

    Ganapati, Vidya

    2015-01-01

    thermophotovoltaics. In solar photovoltaics, radiation fromto the efficiency of solar photovoltaics can have largeof efficiency in solar photovoltaics, and looks at how

  13. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    Coggeshall. 2008. Solar Photovoltaic Financing: DeploymentEconomics of Commercial Photovoltaic Systems in California.Financing Non-Residential Photovoltaic Projects: Options and

  14. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    and Simulation of Photovoltaic Arrays. ” IEEE Trans. PowerSolar Cell Variability Photovoltaic (PV) cells manufacturedmodeling method for photovoltaic cells. ” in Proc. IEEE 35th

  15. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978—

  16. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    modeling method for photovoltaic cells. ” in Proc. IEEE 35thlosses in solar photovoltaic cell networks. ” Energy 32:Modeling of Solar Cell Variability Photovoltaic (PV) cells

  17. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

  18. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01

    film transistors 1-4 and photovoltaic cells. 5-9 Among thesePhotovoltaic Cell .the materials, all photovoltaic cells operate on the basic

  19. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    Diodes, Photodiodes, and Photovoltaic Cells, Applied Physicsprocessable polymer photovoltaic cells by self-organizationand their influence on photovoltaic cells, Solar Energy

  20. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    the manufacturing of solar cells and photovoltaic arrays hasfor providing us Photovoltaic cells, lumines- cent materialsthe currently available photovoltaic cells. The property of

  1. Charge transport in hybrid nanorod-polymer composite photovoltaic cells

    E-Print Network [OSTI]

    Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

    2002-01-01

    circuit diagram for a photovoltaic cell under illumination.devices such as photovoltaic cells and light-emitting-Polymer Composite Photovoltaic Cells Wendy U. Huynh ‡ ,

  2. EA-341 Photovoltaic Technologies, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-341 Photovoltaic Technologies, LLC EA-341 Photovoltaic Technologies, LLC Order authorizing Photovoltaic Technologies, LLC to export electric energy to Mexico EA- 341...

  3. Tariffs Can Be Structured to Encourage Photovoltaic Energy

    E-Print Network [OSTI]

    Wiser, Ryan

    2009-01-01

    Be Structured to Encourage Photovoltaic Energy Ryan Wiser,of customer-sited photovoltaic (PV) systems. Though theseEconomics of Commercial Photovoltaic Systems in California,

  4. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  5. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    J. W. Yu, Organic photovoltaic devices with a crosslinkablein Nanostructured Photovoltaic Devices, Recent Patents oninterfaces in organic photovoltaic devices, Solar Energy

  6. Electronic structure and photovoltaic application of BiI3

    E-Print Network [OSTI]

    2015-01-01

    Electronic structure and photovoltaic application of BiI 3Electronic structure and photovoltaic application of BiI 3recent improvement in photovoltaic efficiency in hybrid lead

  7. Hybrid solar collector using nonimaging optics and photovoltaic components

    E-Print Network [OSTI]

    2015-01-01

    Evaluation of On-Board Photovoltaic Modules Options forthe Temperature Dependence of Photovoltaic Module ElectricalChow, T. T. , "A review on photovoltaic/thermal hybrid solar

  8. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    Eventually a full photovoltaic cell can be constructed based20.8%. ” 29th European Photovoltaic Solar Energy ConferenceFilms, Thin Film Chalogenide Photovoltaic Materials (EMRS,

  9. Efficient yet Accurate Models for Photovoltaic Modules with Shading Effects

    E-Print Network [OSTI]

    Tu, Tianheng

    2014-01-01

    Jiang, “Partial shading modeling of photovoltaic system withModels for Photovoltaic Modules with Shading Effects AModels for Photovoltaic Modules with Shading Effects by

  10. Femtosecond laser processing of photovoltaic and transparent materials

    E-Print Network [OSTI]

    Ahn, Sanghoon

    2013-01-01

    at  300  K.  Progress   in  Photovoltaics.  1995;3:189-­?A   review.   Progress   in   Photovoltaics.  2006;14:107-­?efficiency.  Progress  in  Photovoltaics.  2004;12:553-­?

  11. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01

    F. C. ; Norrman, K. Prog. Photovoltaics 2007, 15, 697–712.Processed Organic Photovoltaics that Generate Chargepolymer-based organic photovoltaics (OPVs) have attracted

  12. Comment on "coherence and uncertainty in nanostructured organic photovoltaics"

    E-Print Network [OSTI]

    Mukamel, S

    2013-01-01

    provide new probes for photovoltaics. The develop- ment ofin Nanostructured Organic Photovoltaics. J. Phys. Chem. Lettin Nanostructured Organic Photovoltaics” Shaul Mukamel

  13. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01

    properties for organic photovoltaics (OPVs). Space-chargePolymers for Organic Photovoltaics By David Fredric JoelPolymers for Organic Photovoltaics by David Fredric Joel

  14. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    of Residential Buildings with Photovoltaics & Batteries Chaobuildings equipped with photovoltaics and bat- teries (RBPB)In these systems the photovoltaics (PVs) operate as a local

  15. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01

    4.4 Photovoltaics in Practice . . . . . . . . . . . . . .milestones. Quantum dot photovoltaics is in the bottom-rightIN QUANTUM DOT PHOTOVOLTAICS A dissertation submitted in

  16. Optical Design Considerations for High Conversion Efficiency in Photovoltaics

    E-Print Network [OSTI]

    Ganapati, Vidya

    2015-01-01

    for light trapping in photovoltaics: the supercell concept”,efficiency tables”, Progress in Photovoltaics: Research andphotovoltaic cells”, Progress in Photovoltaics: Research and

  17. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01

    and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon Nanotube – Polymer Photovoltaics 6.1 Polymer-Nanotube

  18. Soiling losses for solar photovoltaic systems in California

    E-Print Network [OSTI]

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01

    Large Grid-Connected Photovoltaic Systems in California andin design of photovoltaic systems. In: Markvart T. andA thermal model for photovoltaic systems. Solar Energy 2001;

  19. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    for grid-connected photovoltaic systems,” IEEE Transactionswith a rooftop photovoltaic (PV) system and second-lifeconnected, photovoltaic- battery storage systems,” Renewable

  20. Current Status of Concentrator Photovoltaic (CPV) Technology

    SciTech Connect (OSTI)

    Philipps, S. P.; Bett, A. W.; Horowitz, K.; Kurtz, S.

    2015-01-01

    This report describes the current status of the market and technology for concentrator photovoltaic (CPV) cells and modules. Significant progress in CPV has been achieved, including record efficiencies for modules (36.7%) and cells (46%), as well as growth of large field installations in recent years. CPV technology may also have the potential to be cost-competitive on a levelized cost of energy (LCOE) basis in regions of high direct normal irradiance (DNI). The study includes an overview of all installations larger than 1 MW, information on companies currently active in the CPV field, efficiency data, and estimates of the LCOE in different scenarios.

  1. Portable thermo-photovoltaic power source

    DOE Patents [OSTI]

    Zuppero, Anthony C. (Idaho Falls, ID); Krawetz, Barton (Idaho Falls, ID); Barklund, C. Rodger (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

    1997-01-14

    A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

  2. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  3. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  4. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Series interconnected photovoltaic cells and method for making same

    DOE Patents [OSTI]

    Albright, Scot P. (El Paso, TX); Chamberlin, Rhodes R. (El Paso, TX); Thompson, Roger A. (Littleton, CO)

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  6. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  7. SAM Photovoltaic Model Technical Reference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAM Photovoltaic Model Technical Reference P. Gilman National Renewable Energy Laboratory Technical Report NRELTP-6A20-64102 May 2015 NREL is a national laboratory of the U.S....

  8. Denver International Airport Photovoltaic System

    Broader source: Energy.gov [DOE]

    The Denver International Airport (DIA) features a 2-megawatt (MW) photovoltaic (PV) system. DIA also hosts to a second 1.6-MW system. Denver is a Solar America City.

  9. Reducing recombination in organic photovoltaics

    E-Print Network [OSTI]

    Sussman, Jason M. (Jason Michael)

    2011-01-01

    In this thesis, I consider two methods to improve organic photovoltaic efficiency: energy level cascades and promotion of triplet state excitons. The former relies on a thin layer of material placed between the active ...

  10. Plug-and-Play Photovoltaics

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $21 million in funding for the Plug-and-Play Photovoltaics funding opportunity. Part of the SunShot Systems Integration efforts, the following projects were...

  11. OTEC- Residential Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

  12. Ameren Missouri- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Ameren Missouri offers rebates to its customers for the installation of net metered photovoltaic (PV) systems on their properties. The rebate is set at $2.00 per DC watt with a maximum rebate of ...

  13. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  14. A stochastic method for stand-alone photovoltaic system sizing

    SciTech Connect (OSTI)

    Cabral, Claudia Valeria Tavora; Filho, Delly Oliveira; Martins, Jose Helvecio; Toledo, Olga Moraes

    2010-09-15

    Photovoltaic systems utilize solar energy to generate electrical energy to meet load demands. Optimal sizing of these systems includes the characterization of solar radiation. Solar radiation at the Earth's surface has random characteristics and has been the focus of various academic studies. The objective of this study was to stochastically analyze parameters involved in the sizing of photovoltaic generators and develop a methodology for sizing of stand-alone photovoltaic systems. Energy storage for isolated systems and solar radiation were analyzed stochastically due to their random behavior. For the development of the methodology proposed stochastic analysis were studied including the Markov chain and beta probability density function. The obtained results were compared with those for sizing of stand-alone using from the Sandia method (deterministic), in which the stochastic model presented more reliable values. Both models present advantages and disadvantages; however, the stochastic one is more complex and provides more reliable and realistic results. (author)

  15. Back contact to film silicon on metal for photovoltaic cells

    DOE Patents [OSTI]

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  16. Biomonitoring for the photovoltaics industry

    SciTech Connect (OSTI)

    Bernholc, N.M.; Moskowitz, P.D.

    1995-07-01

    Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

  17. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  18. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  19. Tariffs Can Be Structured to Encourage Photovoltaic Energy

    E-Print Network [OSTI]

    Wiser, Ryan

    2009-01-01

    Economics of Commercial Photovoltaic Systems in California,of customer-sited photovoltaic (PV) systems. Though these

  20. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01

    thermal model for photovoltaic systems, Solar Energy, Vol.  benefits of rooftop photovoltaic (PV) systems for building 

  1. Surface plasmon-enhanced photovoltaic device

    DOE Patents [OSTI]

    Kostecki, Robert; Mao, Samuel

    2014-10-07

    Photovoltaic devices are driven by intense photoemission of "hot" electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.

  2. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    SciTech Connect (OSTI)

    Daranciang, Dan

    2012-02-15

    We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond timescales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

  3. Photovoltaic Incentive Design Handbook

    SciTech Connect (OSTI)

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

  4. Photovoltaic-system costing-methodology development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-07-01

    Presented are the results of a study to expand the use of standardized costing methodologies in the National Photovoltaics Program. The costing standards, which include SAMIS for manufacturing costs and M and D for marketing and distribution costs, have been applied to concentrator collectors and power-conditioning units. The M and D model was also computerized. Finally, a uniform construction cost-accounting structure was developed for use in photovoltaic test and application projects. The appendices contain example cases which demonstrate the use of the models.

  5. Progress in photovoltaic system and component improvements

    SciTech Connect (OSTI)

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E.; Bower, W.; Bonn, R.; Hund, T.D.

    1998-07-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  6. Australian Centre for Advanced Photovoltaics Australia-US Institute for Advanced Photovoltaics

    E-Print Network [OSTI]

    New South Wales, University of

    Australian Centre for Advanced Photovoltaics Australia-US Institute for Advanced Photovoltaics Annual Report 2014 Engineering Photovoltaic and Renewable Energy EngineeringNever Stand Still Stanford University #12;AustralianCentreforAdvancedPhotovoltaics-AnnualReport2014 Table of Contents 1. Director

  7. 282 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Photovoltaic Material Characterization With Steady

    E-Print Network [OSTI]

    Javey, Ali

    282 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Photovoltaic Material an approach to characterize the surface and bulk properties for thin films of photovoltaic mate- rials- toluminescence (PL), photovoltaic cells. I. INTRODUCTION VARIOUS characterization techniques based on photolu

  8. Ballasted photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

    2011-11-29

    A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

  9. High efficiency thin-film multiple-gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  10. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  11. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  12. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

  13. Plug-and-Play Photovoltaics Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  14. Photovoltaic cell efficiency at elevated temperatures

    E-Print Network [OSTI]

    Ray, Katherine Leung

    2010-01-01

    In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

  15. Interband Cascade Photovoltaic Cells

    SciTech Connect (OSTI)

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 ?m, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  16. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  17. Discovery Park Impact Network for Photovoltaic Technology

    E-Print Network [OSTI]

    Holland, Jeffrey

    Discovery Park Impact Network for Photovoltaic Technology NEED Discovery Park provides for Photovoltaic Technology (NPT). The NPT is designed to be a unique venue for industry-directed, university aims to become an international center of gravity for photovoltaic research that connects islands

  18. High Concentrated Photovoltaic (CPV) Masafumi Yamaguchi

    E-Print Network [OSTI]

    Canet, Léonie

    High Concentrated Photovoltaic (CPV) Masafumi Yamaguchi Toyota Technological Institute, Nagoya, 468,, other partners #12;Outline 1. Importance of High Performance, Low Cost and Highly Reliable Photovoltaics on Concentrator Photovoltaics (CPV) ; NG-CPV 4. Future Prospects of PV and Summary #12;1. Importance of High

  19. Mirror-Augmented Photovoltaic Designs and Performance

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Mirror-Augmented Photovoltaic Designs and Performance Wei-Chun Lin, Dave Hollingshead, Kara A-In developing photovoltaic (PV) technology, it is crucial to provide lower cost PV power. One of the useful-tracked) mirror-augmented photovoltaic (MAPV) system. A series of MATLAB calculations were developed to screen

  20. Photovoltaic retinal prosthesis with high pixel density

    E-Print Network [OSTI]

    Palanker, Daniel

    Photovoltaic retinal prosthesis with high pixel density Keith Mathieson1,4 , James Loudin1 to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high

  1. ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    1 ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS MARK ANDERSON, ASHTON GRANDY, JEREMY HASTIE. The main method for harnessing solar power is with arrays made up of photovoltaic (PV) panels. Accumulation-based cleaning methods for photovoltaic arrays are costly in time, water and energy usage and lack automation

  2. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  3. EELE408 Photovoltaics Lecture 23: Summary

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 23: Summary Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department the circuit delivering power to the load Photovoltaic Effect Voltage Separation of holes and electrons p 5-6% Resistance 14-23% LLNL Energy Chart 6 #12;2 Energy Demand Predictions 7 Photovoltaic Myths 8

  4. EELE408 Photovoltaics Lecture 01: Intro & Safety

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 01: Intro & Safety Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman EELE408 Photovoltaics & Ventre: Photovoltaic Systems Engineering , 3E · Resources: ­ Green: Solar Cells: Operating Principles

  5. Ryne P. Raffaelle National Center for Photovoltaics

    E-Print Network [OSTI]

    Ryne P. Raffaelle National Center for Photovoltaics National Renewable Energy Laboratory DOING&D Partnerships #12;National Center for Photovoltaics The National Center for Photovoltaics (NCPV) focuses generations to meet their own needs. ­ UN Bruntland Commission Our Focus: Making PV More Sustainable

  6. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  7. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    E-Print Network [OSTI]

    Winfree, Erik

    Rational Design of Zinc Phosphide Heterojunction Photovoltaics Thesis by Jeffrey Paul Bosco would meet me with the same energy and enthusiasm regarding the topic of zinc phosphide photovoltaics to the field of earth-abundant photovoltaics has been indispensable to my work. Greg also made a great mentor

  8. Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

  9. Photovoltaic cell and production thereof

    DOE Patents [OSTI]

    Narayanan, Srinivasamohan (Gaithersburg, MD); Kumar, Bikash (Bangalore, IN)

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  10. Aternating current photovoltaic building block

    DOE Patents [OSTI]

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  11. Recycling Of Cis Photovoltaic Waste

    DOE Patents [OSTI]

    Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

    1998-07-14

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  12. Nanostructured Photovoltaics: - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar Photovoltaic Find More Like This Return to Search

  13. Photovoltaic industry progress through 1984

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.

    1985-04-01

    The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

  14. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA); Culligan, Matthew (Berkeley, CA)

    2012-08-07

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  15. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2013-05-28

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  16. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2014-02-18

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  17. Photovoltaic array mounting apparatus, systems, and methods

    DOE Patents [OSTI]

    West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2014-12-02

    An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.

  18. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    approach to selecting LED lighting, in order not to delayagencies to qualify LED lighting products for bulk orto accelerate, making LED lighting systems more feasible and

  19. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    Jeffrey Miller Pivotal Lighting Design 1601 Fifth Avenueaffordable, sustainable, lighting available to the millionsable to realize modern lighting options. R; Doluweera Peon,

  20. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    OECD World Source: IEA, World Energy Outlook, 2006 Lackingreproduced from IEA, World Energy Outlook, 2006 Fuel-based

  1. Measured Off-Grid LED Lighting System Performance

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01

    National Laboratory, University of California † Schatz Energy ResearchNational Laboratory’s lighting laboratory, staff, and equipment. The authors thank Kristen Radecsky of the Schatz Energy Research

  2. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    Modules in the Kenya Solar Market, 1999-2007. (A. Jacobson)the experiences in the solar market in Kenya, the presenterstunting the market. Solar PV market experiences in Kenya

  3. Off-grid Energy in Rural India: Policy Recommendations for

    E-Print Network [OSTI]

    Mauzerall, Denise

    -grid energy technologies, like improved cooking stoves, biogas digesters, and micro hydropower efficient wood- fueled cooking stoves, biogas digesters for fuel production, or wind

  4. Performance Analysis of Off-Grid Micro WECS in Harsh

    E-Print Network [OSTI]

    Bruneau, Steve

    Labrador · Originally powered solely by diesel generators with battery bank · Solar power introduced · 261 days of production data used in study #12;6/19 General Site Layout DIESEL GENERATOR & BATTERY BANK failures at existing WECS sites leading to costly maintenance 2. Bell-Aliant would like to improve

  5. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    Developing countries Transition economies and OECD World Source: IEA, World Energy Outlook, 2006 Lacking electricity,

  6. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01

    and Mining, Sonelgaz (2004), OME ( 2006) US Department of Commerce (2004), OME (2006) OME (2006) Ministry of Energy and Mines, Office

  7. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01

    M. A. Third generation photovoltaics: Ultra-high conversionmodern photovoltaic age. … in photovoltaics: research andnanopillar-array photovoltaics on low-cost and flexible

  8. SAM Photovoltaic Model Technical Reference

    SciTech Connect (OSTI)

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  9. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  10. Photovoltaic cells employing zinc phosphide

    DOE Patents [OSTI]

    Barnett, Allen M. (Newark, DE); Catalano, Anthony W. (Wilmington, DE); Dalal, Vikram L. (Newark, DE); Masi, James V. (Wilbraham, MA); Meakin, John D. (Newark, DE); Hall, Robert B. (Newark, DE)

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  11. Photovoltaic Subcontract Program, FY 1990

    SciTech Connect (OSTI)

    Summers, K.A.

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  12. Breakthrough: micro-electronic photovoltaics

    SciTech Connect (OSTI)

    Okandan, Murat; Gupta, Vipin

    2012-04-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  13. NREL Photovoltaic Program FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  14. Photovoltaic and thermophotovoltaic devices with quantum barriers

    DOE Patents [OSTI]

    Wernsman, Bernard R. (Jefferson Hills, PA)

    2007-04-10

    A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.

  15. Photovoltaic power conditioning subsystem: state of the art and development opportunities

    SciTech Connect (OSTI)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-15

    Photovoltaic sytems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and hot utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are also considered, including: (1) standards, guidelines, and specifications; (2) cost-effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. In addition, theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  16. Glass for low-cost photovoltaic solar arrays

    SciTech Connect (OSTI)

    Bouquet, F.L.

    1980-02-01

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

  17. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes R. (El Paso, TX)

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  18. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOE Patents [OSTI]

    Phillips, J.E.; Lasswell, P.G.

    1987-02-03

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device. 10 figs.

  19. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01

    PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?

  20. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    and Uncertainty of Photovoltaics for Integration with themodels and datasets. Photovoltaics fall under the broader

  1. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    installed power from photovoltaic systems worldwide fromphotovoltaic systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .times than bulk Si photovoltaic systems. . . Comparison of

  2. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    J. Nozik, “Third Generation Photovoltaics based on Multiple8].Applications in third generation photovoltaics have the

  3. Ligitek Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas:Hill,Photovoltaic Jump to: navigation, search

  4. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01

    polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88,S-CdS heterojunction photovoltaic cells. J. Appl. Phys. 45,photovoltaic devices, such as dye-sensitized solar cells 1-

  5. Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation, USA ABSTRACT In order to optimize and extend the life of photovoltaics (PV) modules, scientific photovoltaics. The statisti- cally significant relationships were investigated using lifetime and degradation

  6. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01

    CdSe quantum dots for photovoltaic devices. Nano Lett. 7,nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys.Gill, W. D. , Bube, R. H. Photovoltaic Properties of Cu 2 S-

  7. EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students

    E-Print Network [OSTI]

    Oregon, University of

    EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ­ Pleasant Activity ­ Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

  8. Solution-processed photovoltaics with advanced characterization and analysis

    E-Print Network [OSTI]

    Duan, Hsin-Sheng

    2014-01-01

    at the 37th IEEE Photovoltaics Specialists Conference (D. B. Mitzi, Prog. Photovoltaics 2011, 20, 6. [23] S. Bag,R. Noufi, IEEE J. Photovoltaics 2012, T. Todorov, J. Tang,

  9. Fall 2013 Course Announcement EEE 598 ADVANCED PHOTOVOLTAICS

    E-Print Network [OSTI]

    Zhang, Junshan

    Fall 2013 Course Announcement EEE 598 ADVANCED PHOTOVOLTAICS Professor Meng Tao (meng a role will photovoltaics play in this new energy infrastructure? There are fundamental bottlenecks for current photovoltaic technologies to become a noticeable source of energy: material availability, energy

  10. Aalborg Universitet Analysis and Modeling of Transformerless Photovoltaic Inverter Systems

    E-Print Network [OSTI]

    Kerekes, Tamas

    Aalborg Universitet Analysis and Modeling of Transformerless Photovoltaic Inverter Systems Kerekes and Modeling of Transformerless Photovoltaic Inverter Systems. Aalborg Universitet: Institut for Energiteknik from vbn.aau.dk on: juli 05, 2015 #12;Analysis and Modeling of Transformerless Photovoltaic Inverter

  11. Degradation Pathway Models for Photovoltaics Module Lifetime Performance

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Degradation Pathway Models for Photovoltaics Module Lifetime Performance Nicholas R. Wheeler, Laura data from Underwriter Labs, featuring measurements taken on 18 identical photovoltaic (PV) modules in modules and their effects on module performance over lifetime. Index Terms--photovoltaics, statistical

  12. Composition and method for encapsulating photovoltaic devices

    DOE Patents [OSTI]

    Pern, Fu-Jann (Golden, CO)

    2000-01-01

    A composition and method for encapsulating a photovoltaic device which minimizes discoloration of the encapsulant. The composition includes an ethylene-vinyl acetate encapsulant, a curing agent, an optional ultraviolet light stabilizer, and/or an optional antioxidant. The curing agent is preferably 1,1-di-(t-butylperoxy)-3,3,5-trimethylcyclohexane; the ultraviolet light stabilizer is bis-(N-octyloxy-tetramethyl) piperidinyl sebacate and the antioxidant is selected from the group consisting of tris (2,4-di-tert-butylphenyl) phosphite, tetrakis methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) methane, octadecyl 3,5-di-tert-butyl-4-hydroxyhydrocinnamate, and 2,2'-ethylidene bis(4,6-di-t-butylphenyl) fluorophosponite. The composition is applied to a solar cell then cured. The cured product contains a minimal concentration of curing-generated chromophores and resists UV-induced degradation.

  13. Bexar County Parking Garage Photovoltaic Panels

    SciTech Connect (OSTI)

    Golda Weir

    2012-01-23

    The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

  14. Annual Report: Photovoltaic Subcontract Program FY 1990

    SciTech Connect (OSTI)

    Summers, K. A.

    1991-03-01

    This report summarizes the progress of the Photovoltaic (PV) Subcontract Program of the Solar Energy Research Institute (SERI) from October 1, 1989 through September 30, 1990. The PV Subcontract Program is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year 1990, this included more than 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of the subcontracts were with universities at a total funding of nearly $3.3 million. The six technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports on its progress.

  15. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Syvania, OH)

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  16. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Syvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  17. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Sylvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  18. 350 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Optimal Dispatch of Residential Photovoltaic

    E-Print Network [OSTI]

    Giannakis, Georgios

    350 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Optimal Dispatch of Residential Photovoltaic Inverters Under Forecasting Uncertainties Emiliano Dall'Anese, Member, IEEE, Sairaj V. Dhople--Efforts to ensure reliable operation of existing low- voltage distribution systems with high photovoltaic (PV

  19. Energizing the Next Generation with Photovoltaics Following the lead of Russian colleagues, photovoltaic (PV)

    E-Print Network [OSTI]

    Oregon, University of

    Energizing the Next Generation with Photovoltaics ABSTRACT Following the lead of Russian colleagues, photovoltaic (PV) lab kits are being built and experiments and curricula are being developed for use of these kits. This Photovoltaic Sci- ence Experiments and Curriculum (PSEC) is being tested in local high

  20. Multiband semiconductor compositions for photovoltaic devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual...

  1. Nanocrystal and Molecular Precursors for Photovoltaic Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal and Molecular Precursors for Photovoltaic Applications The objective in this proposal is to identify factors that limit the efficiency of nanocrystal based solar cells...

  2. Multiband semiconductor compositions for photovoltaic devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%. Inventors: Walukiewicz; Wladyslaw...

  3. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency. rerhsolarelectricguide.pdf More Documents & Publications Solar Water...

  4. PROJECT PROFILE: Photovoltaic Stakeholder Engagement Initiatives

    Broader source: Energy.gov [DOE]

    This project is focused on independent stakeholder engagement activities conducted by Sandia National Laboratory relating to photovoltaic (PV) outreach at the national and international level.

  5. Hudson Light & Power- Photovoltaic Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hudson Light & Power Department, the municipal utility for the Town of Hudson, offers a limited number of solar photovoltaic (PV) rebates for residential, commercial, industrial, and municipal...

  6. Mesa Top Photovoltaic Array (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

  7. Recording of SERC Monitoring Technologies- Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

  8. SERC Photovoltaics for Residential Buildings Webinar Transcript

    Broader source: Energy.gov [DOE]

    A presentation sponsored by the U.S. Department of Energy about using solar photovoltaics (PV) systems to provide electricity for homes.

  9. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  10. FEMP Offers New Training on Photovoltaic Operations and Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEMP Offers New Training on Photovoltaic Operations and Maintenance Best Practices FEMP Offers New Training on Photovoltaic Operations and Maintenance Best Practices November 4,...

  11. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Office of Environmental Management (EM)

    8: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA March 2, 2009 EA-1638: Final...

  12. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Environmental Management (EM)

    7: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010...

  13. Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor...

    Open Energy Info (EERE)

    Photovoltaic Energy Corp KPE formerly Photon Semiconductor Energy Jump to: navigation, search Name: Kyungdong Photovoltaic Energy Corp (KPE) (formerly Photon Semiconductor &...

  14. Solar Photovoltaic Financing: Deployment on Public Property by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local...

  15. Sandia Energy - Sandia and EMCORE: Solar Photovoltaics, Fiber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Home Renewable Energy Energy Partnership Concentrating Solar Power Photovoltaic Research & Capabilities Solar...

  16. Solar Photovoltaic Installation Market Trends | OpenEI Community

    Open Energy Info (EERE)

    Solar Photovoltaic Installation Market Trends Home John55364's picture Submitted by John55364(95) Contributor 14 May, 2015 - 02:24 Global Solar Photovoltaic (PV) Installation...

  17. Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps...

    Office of Environmental Management (EM)

    Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's...

  18. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 -...

  19. Cost and Potential of Monolithic CIGS Photovoltaic Modules (Presentati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost and Potential of Monolithic CIGS Photovoltaic Modules IEEE Photovoltaic Specialists Conference, New Orleans Kelsey A. W. Horowitz and Michael Woodhouse June 17, 2015 NREL...

  20. Photovoltaic subsystem optimization and design tradeoff study. Final report

    SciTech Connect (OSTI)

    Stolte, W.J.

    1982-03-01

    Tradeoffs and subsystem choices are examined in photovoltaic array subfield design, power-conditioning sizing and selection, roof- and ground-mounted structure installation, energy loss, operating voltage, power conditioning cost, and subfield size. Line- and self-commutated power conditioning options are analyzed to determine the most cost-effective technology in the megawatt power range. Methods for reducing field installation of flat panels and roof mounting of intermediate load centers are discussed, including the cost of retrofit installations.

  1. Sandia photovoltaic systems definition and application experiment projects

    SciTech Connect (OSTI)

    Jones, G.

    1983-04-01

    A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.

  2. Federal policies to promote the widespread utilization of photovoltaic systems. Supplement: review and critique

    SciTech Connect (OSTI)

    Smith, J.L.

    1980-04-15

    This document is intended as a supplement to the two-volume report entitled Federal Policies to Promote the Widespread Utilization of Photovoltaic Systems that was submitted to Congress by the Department of Energy in February and April of 1980. This supplement contains review comments prepared by knowledgeable experts who reviewed early drafts of the Congressional report. Responses to the review comments by the Jet Propulsion Laboratory, preparer of the Congressional report, are also included in this supplement. The Congressional report, mandated in the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (P.L. 95-590), discusses various issues related to promoting the deployment of photovoltaic systems through the Federal Photovoltaic Program. Various program strategies and funding levels are examined.

  3. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhotoPhotovoltaic Manufacturing

  4. Photovoltaic Installations at Williams College Ruth Aronoff

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

  5. Photovoltaic olar nergy Development on Landfills

    E-Print Network [OSTI]

    of a selfballasting photovoltaic solar racking system will affect a closed landfills dirt cap. The effects areas of remote and Photovoltaic solar panels with a self-ballasting system. Source: www to generate up to 7,000 megawatts of solar energy while avoiding sensitive biological resources. The data

  6. National Center for Photovoltaics at NREL

    ScienceCinema (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2014-06-10

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  7. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY #12;#12;A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John

  8. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A REPORT FOR THE MIT FUTURE OF SOLAR ENERGY STUDY #12;#12;A REPORT fOR THE MIT fUTURE Of SOLAR ENERGY STUDY A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John

  9. National Center for Photovoltaics at NREL

    SciTech Connect (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2013-11-07

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  10. Integrated Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian Centre for EnergyTorcuato DiPhotovoltaics

  11. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOE Patents [OSTI]

    de Rooij, Michael Andrew (Clifton Park, NY); Steigerwald, Robert Louis (Burnt Hills, NY); Delgado, Eladio Clemente (Burnt Hills, NY)

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  12. Defect localization, characterization and reliability assessment in emerging photovoltaic devices.

    SciTech Connect (OSTI)

    Yang, Benjamin Bing-Yeh; Cruz-Campa, Jose Luis; Haase, Gad S.; Tangyunyong, Paiboon; Cole, Edward Isaac,; Okandan, Murat; Nielson, Gregory N.

    2014-04-01

    Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

  13. Editorial: Photovoltaic Materials and Devices

    SciTech Connect (OSTI)

    Sopori, B.; Tan, T.; Rupnowski, P.

    2012-01-01

    As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

  14. The Design and Implementation of Solar Power with Photovoltaics

    E-Print Network [OSTI]

    Lavaei, Javad

    The Design and Implementation of Solar Power with Photovoltaics E4511 Power Systems Analysis Final Project Victor Campbell vfc2106 #12;2 Table of Contents 1. Introduction 2. Solar Cells 2.1 Photovoltaic of solar energy is the design of solar, or photovoltaic, cells. Photovoltaic cells are semiconductor

  15. Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems Xue Lin 1 , Yanzhi, yanzhiwa, dizhu, pedram}@usc.edu, 2 naehyuck@elpl.snu.ac.kr ABSTRACT Photovoltaic energy harvesting systems, Performance, Reliability. Keywords Photovoltaic System, Fault Detection, Fault Tolerance, Photovoltaic Panel

  16. EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2011-01-01

    EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

  17. Request for Information on Photovoltaic Module Recycling

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

  18. NREL PV AR&D 11th review meeting, May 13--15, 1992, Denver Marriott City Center, Denver, Colorado. Photovoltaic Advanced Research and Development Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    This is a collection of abstracts from papers presented at the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) research and development review meeting held May 1992. Subject areas covered include solar cell and solar module manufacturing and development, materials, polycrystalline thin films, applications, amorphous silicon, solar cell performance and testing, crystalline silicon and other photovoltaic and safety perspectives. (GHH)

  19. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    Organic Solar Concentrators for Photovoltaics,” Science,Polymer Photovoltaics for Solar Energy Conversion,” Adv.solar concentrators for building integrated photovoltaics,”

  20. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01

    Generation  Photovoltaics:  Advanced  Solar  Energy  be  achieved  through  photovoltaics  (solar  cells).    Photovoltaics     There  are  two  requirements  for  designing  a  high  efficiency  solar  

  1. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01

    Y; Alivisatos, AP, Photovoltaic Devices Employing TernaryPhotovoltaic performance of ultra-small PbSe quantum dotsquantum dot, solar cell, photovoltaic, quantum size effect

  2. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01

    Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

  3. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

  4. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells,” Thin Solid Films, vol. 516,

  5. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

  6. Temperature-Dependent Polarization in Field-Effect Transport and Photovoltaic Measurements of Methylammonium Lead Iodide

    E-Print Network [OSTI]

    2015-01-01

    Two-­?Layer Organic Photovoltaic Cell. Appl Phys Lett 1986,Sensitizers for Photovoltaic Cells. J Am Chem Soc 2009, 131,transistor, capacitor and photovoltaic cell measurements all

  7. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01

    Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edwardin thin film organic photovoltaic cells (OPVs) is presented.

  8. Using Self-Assembly to Control Nanoscale Morphology in Semiconducting Polymers for Application in Organic Photovoltaics

    E-Print Network [OSTI]

    Ferreira, Amy Susan

    2015-01-01

    Fullerene Organic Photovoltaic Cells. Nat Commun 2013, 4. (Bulk- Heterojunction Photovoltaic Cells. Appl. Phys. Lett.C60 Heterojunction Photovoltaic Cell. Appl. Phys. Lett.

  9. Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells

    E-Print Network [OSTI]

    Borenstein, Severin

    2005-01-01

    Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

  10. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  11. A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa; Dornfeld, David

    2010-01-01

    impacts and costs of photovoltaic systems: Current state ofEnergy Payback Time for Photovoltaic Modules,” ProceedingsLife-cycle assessment of photovoltaic modules: Comparison of

  12. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    installed power from photovoltaic systems worldwide fromBest research photovoltaic efficiencies (Kazmerski,as a function of time for numerous types of photovoltaic

  13. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01

    DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

  14. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01

    in thin film organic photovoltaic cells (OPVs) is presented.Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edward

  15. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals

    E-Print Network [OSTI]

    Alivisatos, A. Paul

    2009-01-01

    Photovoltaic Devices Employing Ternary PbS x Se 1-xalloy nanoparticles. Photovoltaic devices made using ternaryInformation for Efficient Photovoltaic Devices Employing

  16. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01

    Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

  17. Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

    E-Print Network [OSTI]

    Dillon, Robert

    2013-01-01

    RIVERSIDE Spectroscopy of Photovoltaic Materials: Charge-DISSERTATION Spectroscopy of Photovoltaic Materials: Charge-function of photovoltaic (PV) and photocatalytic (PC)

  18. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    Hydrogen Generation using Photovoltaic-Electrolysis Devices.6128-6141. Gratzel, M. Photovoltaic and PhotoelectrochemicalHydrogen Generation Using Photovoltaic?Electrolysis Devices.

  19. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    California’s Solar Photovoltaic Subsidies? Center for thefrom Residential Photovoltaic Systems Naïm R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS Naïm R. Darghouth

  20. Temperature-Dependent Polarization in Field-Effect Transport and Photovoltaic Measurements of Methylammonium Lead Iodide

    E-Print Network [OSTI]

    2015-01-01

    High- Performance Photovoltaic Perovskite Layers Fabricatedand Its Relation to Photovoltaic Performance. The Journal ofJ. Giant Switchable Photovoltaic Effect in Organometal

  1. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Tabone, Michaelangelo D; Callaway, Duncan S

    2015-01-01

    AND UNCERTAINTY OF PHOTOVOLTAIC GENERATION [9] M. Milligan,for grid-connected photovoltaic system based on advancedand uncertainty in solar photovoltaic generation at multiple

  2. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    of pv systems. Progress in Photovoltaics: Research andpv system flatcon. Progress in Photovoltaics: Research andmw pv installation. Progress in Photovoltaics: Research and

  3. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01

    Third   Generation  Photovoltaics:  Advanced  Solar  R.   Noufi,  Prog.  Photovoltaics  16,  235-­?239  (2008).  M.  Green,  Prog.  Photovoltaics  17,  183-­?189  (2009).  

  4. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    for building integrated photovoltaics,” 2013, vol. 8821, pp.of building integrated photovoltaics,” Sol. Energy, vol. 85,of building-integrated photovoltaics,” Energy, vol. 26, no.

  5. Using Self-Assembly to Control Nanoscale Morphology in Semiconducting Polymers for Application in Organic Photovoltaics

    E-Print Network [OSTI]

    Ferreira, Amy Susan

    2015-01-01

    of Polymer-Based Photovoltaics. J. Polym. Sci. Part B Polym.Heterojunction Organic Photovoltaics: Correlating EfficiencyFullerene Quasi-Bilayer Photovoltaics. J. Phys. Chem. Lett.

  6. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01

    Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

  7. PbS and Ge Nanocrystals: A Pathway Towards Third Generation Photovoltaics

    E-Print Network [OSTI]

    Church, Carena

    2014-01-01

    Towards Third Generation Photovoltaics by Carena PuameliChurch Third-generation photovoltaics offer a way around theJ. Nozik. Third generation photovoltaics based on multiple

  8. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01

    DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGemployer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIALhave sold with photovoltaic (PV) energy systems installed at

  9. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Tabone, Michaelangelo D; Callaway, Duncan S

    2015-01-01

    for grid-connected photovoltaic system based on advancedof many photovoltaic power generation systems dis- persed inSYSTEMS Modeling Variability and Uncertainty of Photovoltaic

  10. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    from Residential Photovoltaic Systems Naïm R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS Naïm R. DarghouthABSTRACT Residential photovoltaic (PV) systems in the US are

  11. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01

    Margolis, R. , 2004. Are Photovoltaic Systems Worth More toeconomics of commercial photovoltaic systems in California.a grid-connected photovoltaic system. Renewable Energy 32,

  12. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Mills, Andrew

    2009-01-01

    R. Margolis. 2004. “Are Photovoltaic Systems Worth More to1993. “Distributed photovoltaic system evaluation by Arizonaof Commercial Photovoltaic Systems in California. ” LBNL-

  13. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-01-01

    R. Margolis. 2004. “Are Photovoltaic Systems Worth More to1993. “Distributed photovoltaic system evaluation by Arizonaof Commercial Photovoltaic Systems in California Ryan Wiser,

  14. A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa; Dornfeld, David

    2010-01-01

    impacts and costs of photovoltaic systems: Current state ofAssessment of Photovoltaic Systems Teresa W. Zhang and Davidassessment of photovoltaic systems is a rich field, with

  15. Third-Party Finance for Commercial Photovoltaic Systems: The Rise of the PPA

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Economics of Commercial Photovoltaic Systems in California,Finance for Commercial Photovoltaic Systems: The Rise of theof grid-connected photovoltaic (PV) systems in the United

  16. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Power Point Tracking in Photovoltaic Systems . . . 4.1DC- DC converter photovoltaic systems: power optimizationgrid-connected photovoltaic systems,” IET Electric Power

  17. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    R. Margolis. 2004. “Are Photovoltaic Systems Worth More to1993. “Distributed photovoltaic system evaluation by Arizonaof Commercial Photovoltaic Systems in California. ” ”LBNL-

  18. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    concentrators for building integrated photovoltaics,” 2013,the performance of building integrated photovoltaics,” Sol.evaluation of building-integrated photovoltaics,” Energy,

  19. PbS and Ge Nanocrystals: A Pathway Towards Third Generation Photovoltaics

    E-Print Network [OSTI]

    Church, Carena

    2014-01-01

    A Pathway Towards Third Generation Photovoltaics by CarenaPuameli Church Third-generation photovoltaics offer a wayJ. Nozik. Third generation photovoltaics based on multiple

  20. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01

    Green, M. A. Third generation photovoltaics: Ultra-highthe perspective of third-generation photovoltaics: Verticalphotovoltaics. Third generation photovoltaics have been

  1. Development of a photovoltaic power supply for wireless sensor networks.

    SciTech Connect (OSTI)

    Harvey, Matthew R.; Kyker, Ronald D.

    2005-06-01

    This report examines the design process of a photovoltaic (solar) based power supply for wireless sensor networks. Such a system stores the energy produced by an array of photovoltaic cells in a secondary (rechargeable) battery that in turn provides power to the individual node of the sensor network. The goal of such a power supply is to enable a wireless sensor network to have an autonomous operation on the order of years. Ideally, such a system is as small as possible physically while transferring the maximum amount of available solar energy to the load (the node). Within this report, there is first an overview of current solar and battery technologies, including characteristics of different technologies and their impact on overall system design. Second is a general discussion of modeling, predicting, and analyzing the extended operation of a small photovoltaic power supply and setting design parameters. This is followed by results and conclusions from the testing of a few basic systems. Lastly, some advanced concepts that may be considered in order to optimize future systems will be discussed.

  2. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect (OSTI)

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  3. Residential photovoltaic worth : a summary assessment

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1982-01-01

    Two critical perspectives have been addressed by the analyses of residential photovoltaic worth. For the researcher and designer have been established allowable costs. For the homeowner and institutional decision-makers ...

  4. Sandia Energy - Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of microsystem-enabled photovoltaic (MEPV) cells (497 downloads) Microscale c-Si (C)PV Cells for Low-Cost Power (259 downloads) Flexible MEPV Publications Ultrablade Fabrics...

  5. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  6. Central Georgia EMC- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  7. GreyStone Power- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  8. Photovoltaic Online Training Course for Code Officials

    Broader source: Energy.gov [DOE]

    The Photovoltaic Online Training Course for Code Officials is a free online training tool for those officials who conduct reviews and inspections of residential PV systems. Throughout the course's...

  9. Practical Roadmap and Limits to Nanostructured Photovoltaics

    E-Print Network [OSTI]

    Lunt, Richard R.

    The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power ...

  10. Applications of nanoimprinted structures to organic photovoltaics

    E-Print Network [OSTI]

    Flores, Eletha J

    2013-01-01

    Small-molecule organic photovoltaic cells (OPVs) have the potential to be a low-cost, flexible power conversion solution to many energy problems. These OPVs take advantage of an extremely thin active layer which enables ...

  11. Low-Cost Installation of Concentrating Photovoltaic

    E-Print Network [OSTI]

    allow for minimal disturbance of soil and ecosystem, and comprehensive full system delivery: April 2009 to March 2012 For more information, please contact: · Placing concentrating photovoltaic for this information or the researc

  12. Time-Resolved Photoluminescence and Photovoltaics

    SciTech Connect (OSTI)

    Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

    2005-01-01

    The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

  13. Silicon cast wafer recrystallization for photovoltaic applications

    E-Print Network [OSTI]

    Hantsoo, Eerik T. (Eerik Torm)

    2008-01-01

    Current industry-standard methods of manufacturing silicon wafers for photovoltaic (PV) cells define the electrical properties of the wafer in a first step, and then the geometry of the wafer in a subsequent step. The ...

  14. Sawnee EMC- Solar Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

  15. Request for Information: Photovoltaic Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing costs associated with photovoltaic module production have decreased dramatically over the past decade, but further improvements are still needed. Cell and module developments that maximize efficiency, service lifetime, and total energy output while minimizing installation material and labor costs are critical to the future of commercial photovoltaic technologies. Continued innovation in these areas will play a vital role in achieving a levelized cost of energy that is low enough to drive widespread deployment for decades to come.

  16. Effects of Metastabilities on CIGS Photovoltaic Modules

    Broader source: Energy.gov [DOE]

    This poster describes a SunShot Initiative solar project led by a team from Nexcis Photovoltaic Technology entitled "Effects of Metastabilities on CIGS Photovoltaic Modules." The team studied the driving force of the mechanisms which governs the different observed phases during storage, light exposition and annealing. The aim of this study is to obtain a better understanding of this phenomenon and hence a better evaluation of its impact on solar panel reliability.

  17. Models used to assess the performance of photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  18. NREL Photovoltaic Program FY 1996 Annual Report

    SciTech Connect (OSTI)

    Not Available

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  19. High Penetration Photovoltaic Case Study Report

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.; Keller, J.; Coddington, M.

    2013-01-01

    Technical concerns with integrating higher penetrations of photovoltaic (PV) systems include grid stability, voltage regulation, power quality (voltage rise, sags, flicker, and frequency fluctuations), and protection and coordination. The current utility grid was designed to accommodate power flows from the central generation source to the transmission system and eventually to the distribution feeders. At the distribution level, the system was designed to carry power from the substation toward the load. Renewable distributed generation, particularly solar PV, provides power at the distribution level challenging this classical paradigm. As these resources become more commonplace the nature of the distribution network and its operation is changing to handle power flow in both directions. This report is focused on large PV installations in which penetration is significantly greater than 15% of maximum daytime feeder load. These case studies are intended to demonstrate success stories with integration of large PV plants at the distribution level as well as some of the solutions used by the utility to ensure safe, reliable operation of both the PV system and the distribution network.

  20. SIXTH QUARTERLY REPORT OF RESEARCH ON CuxS - (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS

    E-Print Network [OSTI]

    Chin, B.L.

    2011-01-01

    for use in experimental photovoltaic cells. Hall mobilityvacuum method for photovoltaic cell fabrication" However,

  1. Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system. Keywords Photovoltaic System, Hybrid Electric Vehicle, Photovoltaic Array Reconfiguration, Dynamic

  2. Photovoltaics Program: utility interface southwest regional workshop proceedings

    SciTech Connect (OSTI)

    1981-04-01

    This was the first of a series of regional workshops that will focus on the photovoltaic and utility interface, and the use of photovoltaics as a cogeneration option by utilities. The needs and constraints of the utilities are defined and an understanding is established of the capabilities and limitations of photovoltaic systems as an alternative electricity generation option by utilities. Utilities' viewpoints regarding large-scale central systems and small-scale, interconnected, distributed systems are given. The Public Utility Regulatory Policies Act and other economic, legislative, and regulatory factors affecting photovoltaic systems are discussed. Current status of photovoltaic systems with respect to the Department of Energy Photovoltaic Program is given. (LEW)

  3. Presented at the 28th IEEE Photovoltaic Specialists Conference / Sept. 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28th IEEE Photovoltaic Specialists Conference / Sept. 17-22, 2000 LOCAL Photovoltaic Specialists C

  4. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    E-Print Network [OSTI]

    Hoen, Ben

    2011-01-01

    Residential Photovoltaic Energy Systems on Home Sales PricesResidential Photovoltaic Energy Systems on Home Sales Prices

  5. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Mills, Andrew

    2009-01-01

    of Solar: Prices and Output from Distributed PhotovoltaicPhotovoltaic Energy Availability During Periods of Peak Power Prices. ”

  6. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-01-01

    of Solar: Prices and Ouput from Distributed PhotovoltaicPhotovoltaic Energy Availability During Periods of Peak Power Prices. ”

  7. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    of Solar: Prices and Output from Distributed PhotovoltaicPhotovoltaic Energy Availability During Periods of Peak Power Prices. ”

  8. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)

    SciTech Connect (OSTI)

    Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-02-01

    Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

  9. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect (OSTI)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  10. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  11. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  12. Data base on batteries, power-conditioning equipment, and photovoltaic arrays. Final report

    SciTech Connect (OSTI)

    Podder, A; Kapner, M; Morse, T

    1981-02-01

    The objective of this study was to compile an up-to-date comprehensive data base for research, design, and development of photovoltaic systems, primarily in the areas of applications and battery technology, and secondarily in the area of power conditioning and photovoltaic array technology. This volume contains the data base used to develop the end-use scenarios and identify the R and D needed for batteries to be used in photovoltaic power systems. In addition to its specific application to the present study, this data base is intended to provide state-of-the-art information to manufacturers of the various components of photovoltaic power systems, system designers, and researchers in this field. An extensive literature search was conducted to obtain technical data on batteries, power conditioners, and photovoltaic arrays. The data obtained from published technical literature and direct communication with manufacturers and developers are compiled. Principles of operation, types of systems, performance characteristics, test data, and cost data are included for each of the components. (WHK)

  13. PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS

    E-Print Network [OSTI]

    Natelson, Douglas

    PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS antenna arrays are assembled by coating on CdSe tetrapod templates; the rectifying barrier is formed and reduce the costs associated with conventional solar cells, including multi-bandgap materials [5

  14. An update on environmental, health and safety issues of interest to the photovoltaic industry

    SciTech Connect (OSTI)

    Moskowitz, P.D.; Viren, J.; Fthenakis, V.M.

    1992-08-01

    There is growing interest in the environmental, health, and safety issues related to new photovoltaic technologies as they approach commercialization. Such issues include potential toxicity of II--VI compounds; the impacts of new environmental regulations on module manufacturers; and, the need for recycling of spent modules and manufacturing wastes. This paper will review these topics. 20 refs.

  15. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2006; 14:275280

    E-Print Network [OSTI]

    understood that production of energy by burning of fossil fuels generates a number of pollutants and carbon dioxide. What is less known is that any anthropogenic means of energy production, including solar for environmental, energy and transport policies.'1 Photovoltaic installations in Germany were presented

  16. Evaluation of the commercial potential of novel organic photovoltaic technologies

    E-Print Network [OSTI]

    Barr, Jonathan (Jonathan Allan)

    2005-01-01

    Photovoltaic cells based on organic semiconducting materials have the potential to compete with the more mature crystalline and thin film based photovoltaic technologies in the future primarily due to the expectation of ...

  17. Theoretical investigations of the electronic processes in organic photovoltaics

    E-Print Network [OSTI]

    Yost, Shane Robert

    2013-01-01

    The design of more efficient organic photovoltaics starts with an increase in understanding of the fundamental processes related to organic photovoltaics, such as the charge separation processes at the organic/organic ...

  18. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term

    E-Print Network [OSTI]

    Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections November 2012 #12;Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections David Feldman1 , Galen Barbose2........................................................................................................................................... 1 2. Historical and Recent Reported Prices

  19. Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  20. Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

    2008-05-01

    This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

  1. Annual Report: Photovoltaic Subcontract Program FY 1991

    SciTech Connect (OSTI)

    Summers, K. A.

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  2. Design principles for shift current photovoltaics

    E-Print Network [OSTI]

    Cook, Ashley M; de Juan, Fernando; Moore, Joel E

    2015-01-01

    While the basic principles and limitations of conventional solar cells are well understood, relatively little attention has gone toward evaluating and maximizing the potential efficiency of photovoltaic devices based on shift currents. In this work, a sum rule approach is introduced and used to outline design principles for optimizing shift currents for photon energies near the band gap, which depend on Berry connections as well as standard band structure. Using these we identify two new classes of shift current photovoltaics, ferroelectric polymer films and orthorhombic monochalcogenides, both of which exhibit peak photoresponsivities larger than predictions for previously known photovoltaics of this type. Using physically motivated tight-binding models, the full frequency dependent response of these materials is obtained. Exploring the phase space of these models, we find photoresponsivities that can exceed $100$ mA/W. These results show that considering the microscopic origin of shift current via effective...

  3. Optical Refrigeration for Ultra-Efficient Photovoltaics

    E-Print Network [OSTI]

    Manor, Assaf; Rotschild, Carmel

    2014-01-01

    Improving the conversion efficiency of solar energy to electricity is most important to mankind. For single-junction photovoltaic solar-cells, the Shockley-Queisser thermodynamic efficiency limit is extensively due to the heat dissipation, inherently accompanying the quantum process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics and thermo-photonics, have been suggested to harness this wasted heat, yet efficiencies exceeding the Shockley-Queisser limit have not been demonstrated due to the challenge of operating at high temperatures. Here, we present a highly efficient converter based on endothermic photoluminescence, which operates at relative low temperatures. The thermally induced blue-shifted photoluminescence of a low-bandgap absorber is coupled to a high-bandgap photovoltaic cell. The high absorber's photo-current and the high cell's voltage results in 69% maximal theoretical conversion efficiencies. We experimentally demonstrate tenfold thermal-enhancement of usef...

  4. Apparatus for encapsulating a photovoltaic module

    DOE Patents [OSTI]

    Albright, Scot P. (El Paso, TX); Dugan, Larry M. (Boulder, CO)

    1995-10-24

    The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.

  5. Photovoltaic Subcontract Program. Annual report, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  6. Photovoltaic module with light reflecting backskin

    DOE Patents [OSTI]

    Gonsiorawski, Ronald C. (Danvers, MA)

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  7. ECE 414A/514A Photovoltaic Solar Energy Systems

    E-Print Network [OSTI]

    Arizona, University of

    ECE 414A/514A Photovoltaic Solar Energy Systems Instructor: Prof. Raymond K. Kostuk Time: MWF 04, and development of photovoltaic cells and it is expected to continue into the foreseeable future. This trend to provide an introduction to the theory and operation of different types of photovoltaic devices

  8. Network for Photovoltaic TechnologyNEED IMPACT STATEMENT

    E-Print Network [OSTI]

    Ginzel, Matthew

    Network for Photovoltaic TechnologyNEED IMPACT STATEMENT INITIATIVE In early 2009, the Discovery graduate students have received several best poster and paper awards; A hub for photovoltaic research://nanohub.org/groups/PVWorkshop The NPT is becoming an international center for photovoltaic research to connect islands of excellence

  9. Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications

    E-Print Network [OSTI]

    Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications J. Even theoretically the crystalline phases of one of the hybrids relevant for photovoltaic applications, namely CH3NH3, evidencing inversion of band edge states. Keywords: Photovoltaic, Hybrid perovskite, density functional

  10. Performance and Analysis of Photovoltaic (PV)Technologies

    E-Print Network [OSTI]

    Performance and Analysis of Photovoltaic (PV)Technologies at Selected Sites This report presents As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.1: Photovoltaic Systems September 2014`i at Manoa #12;Performance and Analysis of Different Photovoltaic Technologies at Selected Sites Prepared

  11. Peer Effects in the Diffusion of Solar Photovoltaic Panels

    E-Print Network [OSTI]

    Lee, Daeyeol

    Peer Effects in the Diffusion of Solar Photovoltaic Panels Bryan Bollinger NYU Stern School base of consumers in the reference group. We study the diffusion of solar photovoltaic panels of an environmentally beneficial technology, solar photovoltaic (PV) panels. Policymakers are particularly interested

  12. Concentrated Photovoltaic Systems Center for Energy Research at

    E-Print Network [OSTI]

    Hemmers, Oliver

    Amonix Concentrated Photovoltaic Systems Center for Energy Research at UNLV #12;A State-of-the-Art Solar Power System Center for Energy Research at UNLV The most common photovoltaic (PV) systems-Concentration Photovoltaic System. Manufactured by AmonixTM, the first MegamoduleTM system ­ Model 5500 ­ was a single

  13. Interdisciplinary Institute for Innovation What cost for photovoltaic

    E-Print Network [OSTI]

    Boyer, Edmond

    Interdisciplinary Institute for Innovation What cost for photovoltaic modules in 2020? Lessons from@mines-paristech.fr hal-00805668,version2-27May2013 #12;1 What cost for photovoltaic modules in 2020? Lessons from Abstract Except in few locations, photovoltaic generated electricity remains considerably more expensive

  14. Progress in Recycling of Retired Cadmium-Telluride Photovoltaic Modules

    E-Print Network [OSTI]

    Progress in Recycling of Retired Cadmium- Telluride Photovoltaic Modules Postdoctoral: Wenming Wang-Talk Program July 21, 2005 #12;Recycling Retired Photovoltaic Modules to Valuable Products, Where Are We.M., Feasibility of Recycling of Cadmium-Telluride Photovoltaics, Presented at 134th TMS Annual Meeting &Exhibition

  15. STATISTICAL ANALYSIS AND STRUCTURE OPTIMIZATION OF LARGE PHOTOVOLTAIC MODULE

    E-Print Network [OSTI]

    Qiu, Qinru

    STATISTICAL ANALYSIS AND STRUCTURE OPTIMIZATION OF LARGE PHOTOVOLTAIC MODULE RATHEESH R on the output power of large Photovoltaic (PV) module by modeling each PV cell as a current source whose short. Photovoltaic (PV) is a simple and elegant method of harnessing the sun's energy. PV devices (solar cells

  16. Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells

    E-Print Network [OSTI]

    Atwater, Harry

    Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells Michael D. Kelzenberg, Daniel B-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response work by our group has shown that macroscopic Si wire arrays (>1 cm2 in area) suitable for photovoltaic

  17. Design and Control of an Inverter for Photovoltaic Applications

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Design and Control of an Inverter for Photovoltaic Applications by Søren Bækhøj Kjær Dissertation Assistant. He also taught photovoltaic systems for terrestrial- and space-applications (Power system quality, control and optimized design, for fuel cell and photovoltaic applications. He is currently

  18. Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    E-Print Network [OSTI]

    Giannakis, Georgios

    Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems Emiliano Dall. The increased penetration of roof-top photovoltaic (PV) systems has highlighted pressing needs to address power--Distribution networks, inverter control, optimal power flow (OPF), photovoltaic (PV) systems, sparsity, voltage

  19. Artificial Soiling of Photovoltaic Module Surfaces using Traceable Soil Components

    E-Print Network [OSTI]

    Artificial Soiling of Photovoltaic Module Surfaces using Traceable Soil Components Patrick D@sandia.gov Abstract--Effective evaluation and prediction of photovoltaic performance loss due to soiling requires types. I. INTRODUCTION Soiling is a significant source of energy loss in photovoltaic (PV) systems [1

  20. Photovoltaic Pumping Systems A Comparison of Two Concepts

    E-Print Network [OSTI]

    Heinemann, Detlev

    Photovoltaic Pumping Systems A Comparison of Two Concepts Hans Bloos, Markus Genthner, Detlev of Oldenburg two different concepts of photovoltaic pumping subsystems available on the market were Photovoltaic pumping (PVP) has established itself as a water lifting technique for remote areas in sun