Sample records for include fossil steam

  1. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  2. Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

    2013-11-19T23:59:59.000Z

    Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

  3. OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION,

    E-Print Network [OSTI]

    Stanford University

    OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION, CO2 CAPTURE AND WIND A THESIS SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY of Master of Science in Energy Resources Engineering. (Louis J. Durlofsky) Principal Co-Adviser I certify

  4. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect (OSTI)

    Nelson, C.

    1995-08-01T23:59:59.000Z

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  5. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

    2011-10-18T23:59:59.000Z

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  6. Steam Path Audits on Industrial Steam Turbines

    E-Print Network [OSTI]

    Mitchell, D. R.

    1992-01-01T23:59:59.000Z

    The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set...

  7. Proceedings: Sixth International Conference on Fossil Plant Cycle Chemistry

    SciTech Connect (OSTI)

    None

    2001-04-01T23:59:59.000Z

    The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These conference proceedings address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for control of corrosion and water preparation and purification.

  8. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, M.J.

    1987-05-04T23:59:59.000Z

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  9. Case studies on recent fossil-fired plants

    SciTech Connect (OSTI)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-12-31T23:59:59.000Z

    The article summarises the findings of case studies on fossil-fired power plants carried out by the IEA Clean Coal Centre for the IEA at the request of world leaders at the Gleneagles G8 Summit in July 2005. The studies compared the cost, efficiency and emissions of eight recently constructed coal-fired plants using pulverized coal combustion with subcritical, supercritical or ultra-supercritical steam turbine cycles. Also included was a review of IGCC developments. A case study of a natural gas combined-cycle plant was included for comparison. The full report has been published by the IEA. 1 tab.

  10. #include #include

    E-Print Network [OSTI]

    Campbell, Andrew T.

    process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

  11. SteamMaster: Steam System Analysis Software

    E-Print Network [OSTI]

    Wheeler, G.

    tool to facilitate the process. SteamMaster is based on an Excel spreadsheet with a Visual Basic interface to simplify system modeling and analysis. SteamMaster has many features and capabilities, including energy and cost savings calculations for five...

  12. Fossil Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Fuels A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals...

  13. #include #include

    E-Print Network [OSTI]

    Poinsot, Laurent

    #include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

  14. Steam System Data Management

    E-Print Network [OSTI]

    Roberts, D.

    2013-01-01T23:59:59.000Z

    Steam System Data Management What Does It Include Safety In Motion Wal?Tech?Valve,?Inc. 251?438?2203 The Real Genius Behind Technology Is People ESL-IE-13-05-35 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New... ? Fabrication Training (Six Year Training) ? Welding Certifications ?Retired From Chevron After 25 Years ? Established A Steam System Program ? Planner For Routine Maintenance Work ? Planner For Steam System Improvements ? Wal-Tech Valve, Inc. ? Purchased...

  15. Fossil Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE HydrogenPlans |Formerof Fossil Energy

  16. Fossil Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43andPropertyForPlans FactFortFossil

  17. Fossil turbulence and fossil turbulence waves can be dangerous

    E-Print Network [OSTI]

    Carl H Gibson

    2012-11-25T23:59:59.000Z

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales where vorticity is created to larger scales where turbulence fossilizes. Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbulence patterns and fossil turbulence waves preserve and propagate energy and information about previous turbulence. Ignorance of fossil turbulence properties can be dangerous. Examples include the Osama bin Laden helicopter crash and the Air France 447 Airbus crash, both unfairly blamed on the pilots. Observations support the proposed definitions, and suggest even direct numerical simulations of turbulence require caution.

  18. Proceedings: 7th International Conference on Cycle Chemistry in Fossil Plants

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The purity of boiler water, feedwater, and steam is central to ensuring component availability and reliability in fossil-fired plants. These proceedings of EPRI's Seventh International Conference on Cycle Chemistry in Fossil Plants address the state of the art in fossil plant and combined cycle/heat recovery steam generator (HRSG) cycle chemistry as well as international practices for corrosion control and water preparation and purification.

  19. Steam Quality

    E-Print Network [OSTI]

    Johnston, W.

    between the water level and the steam in a boiler, some water vapor will always tend to pass through the system with the steam. Hence, a continuing problem. If steam does carry water vapor past the separators it will tend to coalesce as a liquid...

  20. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, Michael J. (Plainfield, IL)

    1988-01-01T23:59:59.000Z

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  1. Steam Pricing

    E-Print Network [OSTI]

    Jones, K. C.

    . But he uses it to drive a steam turbine which in turn drives a pump. The turbine expands the steam to a lower pressure where it is then condensed and the condensate returned to the boiler house. Let's find out what the steam is worth to this user. His... while the 15 psig condensing turbine is a good candidate to be replaced with an electric motor. But, whatever the case is, the cost of the steam has nothing to do with its value. The point of the above is that this paper is about COST...

  2. Thomas Reddinger Director, Steam

    E-Print Network [OSTI]

    Raina, Ramesh

    Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

  3. Thomas Reddinger Director, Steam

    E-Print Network [OSTI]

    Mather, Patrick T.

    Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Bourdon Steam Plant Operator Vincent Massara Steam Plant Operator Cliff Lescenski Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley Equipment Maintenance Robert Earle Equipment

  4. Fossil energy materials needs assessment

    SciTech Connect (OSTI)

    King, R.T.; Judkins, R.R. (comps.)

    1980-07-01T23:59:59.000Z

    An assessment of needs for materials of construction for fossil energy systems was prepared by ORNL staff members who conducted a literature search and interviewed various individuals and organizations that are active in the area of fossil energy technology. Critical materials problems associated with fossil energy systems are identified. Background information relative to the various technologies is given and materials research needed to enhance the viability and improve the economics of fossil energy processes is discussed. The assessment is presented on the basis of materials-related disciplines that impact fossil energy material development. These disciplines include the design-materials interface, materials fabrication technology, corrosion and materials compatibility, wear phenomena, ceramic materials, and nondestructive testing. The needs of these various disciplines are correlated with the emerging fossil energy technologies that require materials consideration. Greater emphasis is given to coal technology - particularly liquefaction, gasification, and fluidized bed combustion - than to oil and gas technologies because of the perceived inevitability of US dependence on coal conversion and utilization systems as a major part of our total energy production.

  5. Steam Path Audits on Industrial Steam Turbines

    E-Print Network [OSTI]

    Mitchell, D. R.

    in sellable power output as a result of improved turbine efficiency. The Lyondell facility is a combined cycle power plant where a gas turbine: heat recovery system supplies steam to the steam turbine. Since this steam is a bypropuct of the gas turbine...steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits...

  6. Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  7. Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  8. Cycling operation of fossil plants

    SciTech Connect (OSTI)

    Devendorf, D.; Kulczycky, T.G. (Niagara Mohawk Power Corp., Syracuse, NY (USA))

    1991-05-01T23:59:59.000Z

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  9. 55Home Power #21 February / March 1991 ALTERNATIVES TO FOSSIL FUELED

    E-Print Network [OSTI]

    55Home Power #21 February / March 1991 BioGas ALTERNATIVES TO FOSSIL FUELED ENGINE among letters from Home Power readers. I would like to share some perspectives on steam power and its! Producing steam requires heating water to above boiling temperature under pressure. Water boils at 212 F

  10. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  11. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  12. Fossil | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    7, 2014 Funds Awarded to Historically Black Colleges and Universities for Fossil Energy Research The U.S. Department of Energy has selected four research projects that will...

  13. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01T23:59:59.000Z

    and incentive grants. Stand-alone projects encompass a wide range of projects. Examples include: -conversion of steam heated Air Handling Units from steam to natural gas. -Heat Recovery Projects. -Installation of RO water treatment systems.... These facilities have large Central Heating Plants. Some institutions have installed co- generation, replacing boilers with Heat Recovery Steam Generators. TABLE 2 BOILER POPULATION FOR STEAM PLANTS WITH ANNUAL FUEL CONSUMPTION GREATER THAN 70 MILLION CUBIC...

  14. Thomas Reddinger Director, Steam

    E-Print Network [OSTI]

    McConnell, Terry

    Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

  15. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  16. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

    2002-01-01T23:59:59.000Z

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  17. Steam and Condensate Systems

    E-Print Network [OSTI]

    Yates, W.

    1979-01-01T23:59:59.000Z

    efficiency and profit. Some important factors to consider in steam and condensate systems are: 1) Proper steam pressure 2) Adequate sized steam lines 3) Adequate sized condensate return lines 4) Utilization of flash steam 5) Properly sized... ! can cause system inefficiency. i Adequate sized steam lines assure the process will be furnished with sufficiertt i quantities of steam at the proper pressure. Adequate sized condensate return lines are essential to overall efficiency. lhese...

  18. Steam System Optimization

    E-Print Network [OSTI]

    Aegerter, R. A.

    flanges, control valves, steam turbines, manways, sections of piping, heads on vessels, etc. are uninsulated. If steam is in demand at the steam pressure level of the uninsulated piping and equipment, then the piping and equipment should be insulated... been developed, it is an excellent tool to identify the steam sources. Areas to first look for possible waste are steam turbines and steam let down stations. 161 ESL-IE-98-04-26 Proceedings from the Twentieth National Industrial Energy Technology...

  19. Steam System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    2004-01-01T23:59:59.000Z

    opportunities. Often flanges, control valves, steam turbines, man ways, sections of piping, heads on vessels, etc. are bare and can significantly increase the steam demand. An insulation survey should be conducted of the steam, condensate... is being let down. Some projects are independent of the steam balance, such as eliminating high-pressure (HP) steam leaks, insulating HP steam piping, optimizing the boiler operation, and improving the performance of condensing turbines...

  20. SteamMaster: Steam System Analysis Software

    E-Print Network [OSTI]

    Wheeler, G.

    2003-01-01T23:59:59.000Z

    recommendations to increase steam system effic iency. Steam System Opportunities ]n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a O.4-year payback. 75...

  1. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01T23:59:59.000Z

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  2. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

    1994-01-01T23:59:59.000Z

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  3. Fossil energy program. Progress report, July 1980

    SciTech Connect (OSTI)

    McNeese, L. E.

    1980-10-01T23:59:59.000Z

    This report - the seventy-second of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process and program analysis, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, fossil energy applications assessments, performance assurance system support for fossil energy projects, international assessment of atmospheric fluidized bed combustion technology, and PFBC systems analysis.

  4. Evaluating Steam Trap Performance

    E-Print Network [OSTI]

    Fuller, N. Y.

    EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data... that live steam loss is the heaviest contributor to the annual operating cost of any steam trap and that maintenance frequency and repair cost are also more important than a trap's first cost. INTRODUCTION Steam traps used on distribution line drip...

  5. Fossil | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ProgramsFIRSTCleanFossil Fossil For

  6. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

  7. Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2012-09-01T23:59:59.000Z

    This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.

  8. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01T23:59:59.000Z

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  9. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    Douglas Arrell

    2006-05-31T23:59:59.000Z

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  10. Fossil Energy Program Annual Progress Report for April 1, 2002, Through March 31, 2003

    SciTech Connect (OSTI)

    Judkins, RR

    2003-06-19T23:59:59.000Z

    The mission of the Fossil Energy Program is to conduct research and development that contribute to the advancement of fossil energy technologies. The Oak Ridge National Laboratory Fossil Energy Program research and development activities, performed for the Department of Energy Assistant Secretary for Fossil Energy, cover the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy Office of Fossil Energy, the DOE National Energy Technology Laboratory, the DOE Fossil Energy Clean Coal Technology Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The ORNL Fossil Energy Program shares with DOE Oak Ridge Operations technical management responsibility for all activities on the DOE Fossil Energy Advanced Research Materials Program. The Advanced Research Materials Program includes research at other DOE and government laboratories, at universities, and at industrial organizations.

  11. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08T23:59:59.000Z

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  12. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01T23:59:59.000Z

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  13. Industrial Steam Power Cycles Final End-Use Classification

    E-Print Network [OSTI]

    Waterland, A. F.

    1983-01-01T23:59:59.000Z

    Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

  14. ProSteam- A Structured Approach to Steam System Improvement

    E-Print Network [OSTI]

    Eastwood, A.

    and of any operational constraints. It can also be used to determine the true cost of improvement projects, relating any changes in steam demand back to purchased utilities (fuel, power, and make-up water) at the site boundary. Example projects could include...

  15. Flash Steam Recovery Project

    E-Print Network [OSTI]

    Bronhold, C. J.

    2000-01-01T23:59:59.000Z

    /condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a...

  16. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19T23:59:59.000Z

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  17. Flash Steam Recovery Project

    E-Print Network [OSTI]

    Bronhold, C. J.

    organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam...

  18. Steam Digest 2001

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  19. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  20. Steam Trap Management

    E-Print Network [OSTI]

    Murphy, J. J.; Hirtner, H. H.

    problemA of water hammer and high back pressure. ? Exorbitantly hi~h percentage of cold trapA. ? External steam leaks within the steam trap stations, bypasA valves and/or strainer blowdown valvefl open, blowin~ steam. ! I ? Dirt nssociated... Trapping 2 Trap Installed Backwards 1 Misapplication of Technology 1 Strainer Blowdown Connections Capped 285 (*b) Test Tee Connections Capped 11 Trap Inlet Connected to Steam Line Strainer Blowdown Connection 3 Water Logged Coils (Vacuum Present) 7...

  1. HP Steam Trap Monitoring

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01T23:59:59.000Z

    STEAM MONITORING HP Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption... Steam Trap Monitoring ? Real-time monitoring for high-pressure critical traps (>15 PSIG) ? Average total system cost $25K - $50K ? Web-Based or Modbus/BMS Integration Basic Installation Wireless Signal Transmitter Receiver Repeater...

  2. Steam System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    2004-01-01T23:59:59.000Z

    Refinery and chemical plant steam systems are complex and the fuel required to produce the steam represents a major expense. The incremental cost for generating a 1,000 lb./hr. of steam is typically $45,000 - $60,000/year. Most plants have...

  3. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    E-Print Network [OSTI]

    Gurney, Kevin R.

    2010-01-01T23:59:59.000Z

    resolution fossil fuel combustion CO 2 emission fluxes for2002, includes detail on combustion technology and forty-atmosphere is that due to the combustion of fossil fuels and

  4. Fossil energy program. Summary document

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    This program summary document presents a comprehensive overview of the research, development, and demonstration (RD and D) activities that will be performed in FY 1981 by the Assistant Secretary for Fossil Energy (ASFE), US Department of Energy (DOE). The ASFE technology programs for the fossil resources of coal, petroleum (including oil shale) and gas have been established with the goal of making substantive contributions to the nation's future supply and efficienty use of energy. On April 29, 1977, the Administration submitted to Congress the National Energy Plan (NEP) and accompanying legislative proposals designed to establish a coherent energy policy structure for the United States. Congress passed the National Energy Act (NEA) on October 15, 1978, which allows implementation of the vital parts of the NEP. The NEP was supplemented by additional energy policy statements culminating in the President's address on July 15, 1979, presenting a program to further reduce dependence on imported petroleum. The passage of the NEA-related energy programs represent specific steps by the Administration and Congress to reorganize, redirect, and clarify the role of the Federal Government in the formulation and execution of national energy policy and programs. The energy technology RD and D prog4rams carried out by ASFE are an important part of the Federal Government's effort to provide the combination and amounts of energy resources needed to ensure national security and continued economic growth.

  5. Fossil fuels supplies modeling and research

    SciTech Connect (OSTI)

    Leiby, P.N.

    1996-06-01T23:59:59.000Z

    The fossil fuel supplies modeling and research effort focuses on models for US Strategic Petroleum Reserve (SPR) planning and management. Topics covered included new SPR oil valuation models, updating models for SPR risk analysis, and fill-draw planning. Another task in this program area is the development of advanced computational tools for three-dimensional seismic analysis.

  6. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01T23:59:59.000Z

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  7. Steam System Optimization

    E-Print Network [OSTI]

    Aegerter, R. A.

    1998-01-01T23:59:59.000Z

    been developed, it is an excellent tool to identify the steam sources. Areas to first look for possible waste are steam turbines and steam let down stations. 161 ESL-IE-98-04-26 Proceedings from the Twentieth National Industrial Energy Technology... Conference, Houston, TX, April 22-23, 1998 The easiest solution to eliminating excess steam is to shut down steam turbines that exhaust into the header and start up the motor driven spare equipment. Often times this step will be enough to eliminate...

  8. Combustion Air Preheat on Steam Cracker Furnaces

    E-Print Network [OSTI]

    Kenney, W. F.

    1983-01-01T23:59:59.000Z

    Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several...

  9. HIGH-EFFICIENCY STEAM ELECTROLYZER Ai-Quoc Pham, Ervin See, Dave Lenz, Peter Martin and Robert Glass

    E-Print Network [OSTI]

    from fossil fuels, i.e., by steam reforming of natural gas and by coal gasification. However, most, electricity is not a primary energy but must be produced using fossil fuels, nuclear fuels, or renewable of the first electrolyzer stack. Introduction Currently, most hydrogen demand is met by hydrogen production

  10. Fossil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2 Fossil Energy Today -

  11. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  12. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  13. Predicting Steam Turbine Performance

    E-Print Network [OSTI]

    Harriz, J. T.

    ," PREDICTING STEAM TURBINE PERFORMANCE James T. Harriz, EIT Waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT Tracking the performance of extraction, back pressure and condensing steam turbines is a crucial part... energy) and test data are presented. Techniques for deriving efficiency curves from each source are described. These techniques can be applied directly to any steam turbine reliability study effort. INTRODUCTION As the cost of energy resources...

  14. Steam reforming analyzed

    SciTech Connect (OSTI)

    Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

    1992-07-01T23:59:59.000Z

    This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

  15. Downhole steam injector

    DOE Patents [OSTI]

    Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

    1983-01-01T23:59:59.000Z

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  16. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01T23:59:59.000Z

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  17. Fossil Energy Materials Program conference proceedings

    SciTech Connect (OSTI)

    Judkins, R.R. (comp.)

    1987-08-01T23:59:59.000Z

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  18. Options for Generating Steam Efficiently

    E-Print Network [OSTI]

    Ganapathy, V.

    This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

  19. Managing the Steam Trap Population

    E-Print Network [OSTI]

    Atlas, R. D.

    1983-01-01T23:59:59.000Z

    item? .However, some converts to the gospel of enlighten ed steam trap management expect to achieve the following benefits: A 95% trap performance level which is a better than 30% improvement over the industry norm. Plus, we have found a well... trained. This may six surveys per year with a guaf'8nteed performance level involve two days of training per man including of better than 9596. This program usually has the best cash classroom and field instruction plus periodic flow, and faster...

  20. Steam Turbine Materials and Corrosion

    SciTech Connect (OSTI)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01T23:59:59.000Z

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  1. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01T23:59:59.000Z

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  2. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  3. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:May 2015 All Issues submit Greening up fossil fuels with carbon...

  4. Streams of Steam The Steam Boiler Specification Case Study

    E-Print Network [OSTI]

    Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

  5. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18T23:59:59.000Z

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  6. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  7. Fossil-Based Hydrogen Production

    E-Print Network [OSTI]

    Fuel Processing Using Micro-channel Steam Reforming & Advanced Separations Technology ITM Syngas & ITM H2: Ceramic Membrane Reactor Systems for Converting Natural Gas to H2 & Syngas for Liquid

  8. Ukraine Steam Partnership

    SciTech Connect (OSTI)

    Gurvinder Singh

    2000-02-15T23:59:59.000Z

    The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

  9. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01T23:59:59.000Z

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  10. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

    2011-09-07T23:59:59.000Z

    Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

  11. Schewel and Schipper 1 FOSSIL FREIGHT: HOW MUCH FOSSIL FUEL DOES IT TAKE TO MOVE FOSSIL1

    E-Print Network [OSTI]

    Kammen, Daniel M.

    understanding of the full cost of5 fossil fuel reliance, and help create the foundation for models to analyzeSchewel and Schipper 1 FOSSIL FREIGHT: HOW MUCH FOSSIL FUEL DOES IT TAKE TO MOVE FOSSIL1 FUEL?2.schewel@berkeley.edu)13 UC Berkeley Energy and Resources Group14 310 Barrows Hall15 UC Berkeley16 Berkeley CA 9470917 Cell

  12. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect (OSTI)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01T23:59:59.000Z

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  13. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect (OSTI)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01T23:59:59.000Z

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  14. Email To Friend Steam Electricity Generator

    E-Print Network [OSTI]

    . keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshoppingBack One Email To Friend Steam Electricity Generator Need Steam Electricity Generator? See Steam Electricity Generator. greenshieldsindustrial.com Steam Generators Deals on Steam Generators Find what you

  15. Steam generator operating experience, update for 1989--1990

    SciTech Connect (OSTI)

    Frank, L.

    1991-12-01T23:59:59.000Z

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity. It provides: results of 1989 and 1990 steam generator inspections; highlights prevalent problem areas; improvements that have been made in nondestructive testing methods; preventive measures; repair techniques; and replacement procedures. It describes the equipment of the three (3) major suppliers and discusses recent examinations of 76 plants. Major areas of concern are the steam generator degradation mechanisms that affect tube integrity or cause tube leakage and tube failure. These include; (1) intergranular attack (IGA); (2) intergranular stress corrosion cracking (IGSCC); (3) primary water stress corrosion cracking (PWSCC); (4) pitting; and (5) vibrational wear and fatigue. Also discussed are plugging, sleeving, heat treatment, peening, chemical cleaning, and steam generator replacements. The current status of regulatory instruments and inspection guidelines for ensuring the steam generator integrity, is discussed with the highlights of steam generator research. New potential safety issues such as circumferential cracking and tube plug cracking are also discussed.

  16. Predicting Steam Turbine Performance

    E-Print Network [OSTI]

    Harriz, J. T.

    1985-01-01T23:59:59.000Z

    Tracking the performance of extraction, back-pressure and condensing steam turbines is a crucial part of minimising energy and maintenance costs for large process industries. A thorough understanding of key equipment performance characteristics...

  17. Steam generator operating experience update, 1982-1983. [PWR

    SciTech Connect (OSTI)

    Frank, L.

    1984-06-01T23:59:59.000Z

    This report is a continuation of earlier reports by the staff addressing pressurized water reactor steam generator operating experience. NUREG-0886, Steam Generator Tube Experience, published in February 1982 summarized experience in domestic and foreign plants through December 1981. This report summarizes steam generator operating experience in domestic plants for the years 1982 and 1983. Included are new problems encountered with secondary-side loose parts, sulfur-induced stress-assisted corrosion cracking, and flow-induced vibrational wear in the new preheater design steam generators. The status of Unresolved Safety Issues A3, A4, and A5 is also discussed.

  18. Steam System Losses

    E-Print Network [OSTI]

    Buchanan, M. G.; Sneary, M. L.

    energy into the air. You might say that many of us are increasing the relative humidity of our respective cities. Before a conventional pump package can handle steam condensate, that fluid must be cooled to somewhere below 180 0 ? This cooling... are increasing the relative humidity of our respective cities. Before a conventional pump package can handle steam condensate, that fluid must be cooled to somewhere below 180 0 . This cooling is accomplished by venting the receiver to the atmosphere...

  19. Steam System Tool Suite Introduction Guide

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Steam System Tool Suite Introduction Guide Alternate Text Narratives and Graphic.............................................................................................................................6 Modules Steam System Scoping Tool (SSST)........................................................................................8 Steam System Assessment Tool (SSAT

  20. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

  1. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    SciTech Connect (OSTI)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01T23:59:59.000Z

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  2. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

  3. Steam generator tube rupture study

    E-Print Network [OSTI]

    Free, Scott Thomas

    1986-01-01T23:59:59.000Z

    This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

  4. Deaerators in Industrial Steam Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  5. Reduction in Unit Steam Production

    E-Print Network [OSTI]

    Gombos, R.

    2004-01-01T23:59:59.000Z

    In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

  6. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

  7. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

  8. Economics of Steam Pressure Reduction

    E-Print Network [OSTI]

    Sylva, D. M.

    Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

  9. Inspect and Repair Steam Traps

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  10. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

  11. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

  12. Progress of fossil fuel science

    SciTech Connect (OSTI)

    Demirbas, M.F.

    2007-07-01T23:59:59.000Z

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  13. Steam Condensation Induced Waterhammer

    E-Print Network [OSTI]

    Kirsner, W.

    ,200 foot steam line to begin wanning it up. He'd been energizing the G-line for 3 weeks now at the end ofthe asbestos worker's shift and had never had the system warm up this quickly. It usually took from 30 to 45 minutes. When the handwheel spun... at Fort Wainwright, Alaska, the G and H Lines ran underground in narrow utilidors 2 filled with pipe. Originally, the contractor had tried to abate the steam main with the lines energized. This proved to be near impossible for the workers. Utilidor...

  14. Method of removing cesium from steam

    DOE Patents [OSTI]

    Carson, Jr., Neill J. (Clarendon Hills, IL); Noland, Robert A. (Oak Park, IL); Ruther, Westly E. (Skokie, IL)

    1991-01-01T23:59:59.000Z

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  15. Apparatus for removing micronized coal from steam

    SciTech Connect (OSTI)

    Vlnaty, J.

    1981-12-15T23:59:59.000Z

    Micronized coal is removed from coal-bearing steam by spraying stabilized petroleum oil into the steam and directing the resultant stream at a separation surface on which a coal-oil slurry is deposited and collected. Apparatus includes conduits which direct the resultant stream downward into a housing and normal to a surface on which the slurry is deposited by impact forces. In additional apparatus disclosed, the resultant stream is directed from a horizontal conduit circumferentially along the interior wall of a horizontally disposed cylindrical chamber at the top of the chamber and the coal-oil slurry deposited on the wall by centrifugal force is collected in a trough situated below a longitudinal slot at the bottom of the chamber. In both types of apparatus, after separation of the slurry the velocity of the steam is reduced to settle out remaining oil droplets and is then discharged to the atmosphere.

  16. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Steam Generation Efficiency Module Shell Losses - 1 8/27/2010 Steam End-User Training Steam Generation Efficiency Module Shell Losses-Section: Shell Losses] Banner: DOE's BestPractices Steam End User Training Steam Generation Efficiency Efficiency

  17. Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood

    SciTech Connect (OSTI)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian

    2011-06-21T23:59:59.000Z

    Bio-oil produced from pinewood by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. Pretreatment prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we tested three pretreatment methods: dilute acid, dilute alkali, and steam explosion. Bio-oils were produced from untreated and pretreated pinewood feedstocks in an auger reactor at 450 C. The bio-oils?¢???? physical properties including pH, water content, acid value, density, viscosity, and heating value were measured. Chemical characteristics of the bio-oils were determined by gas chromatographymass spectrometry. Results showed that bio-oil yield and composition were influenced by biomass pretreatment. Of the three pretreatment methods, 1%H2SO4 pretreatment resulted in the highest bio-oil yield and best bio-oil quality.

  18. Steam Plant, 6% Irrigation,

    E-Print Network [OSTI]

    Zhou, Pei

    Steam Plant, 6% School of Medicine, 17% Irrigation, 3% Hospital, 22% Athletics, 2% Housing, 5 Rainwater Cisterns Reducing the number of once through cooling systems in labs Expediting the connection for Irrigation ~15 million gallons Percent of Water Used for Irrigation that is Non-Potable ~10-15% Number

  19. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  20. An Analysis of Steam Process Heater Condensate Drainage Options

    E-Print Network [OSTI]

    Risko, J. R.

    for those installations with unsuitable condensate drainage include: ? Condensate being visibly wasted from the heat exchanger discharge side, either from a hose connection at the strainer, or an opened union or drain valve on the steam trap's outlet...

  1. Energy Conservation Thru Steam Trap Surveys and Preventive Maintenance Programs

    E-Print Network [OSTI]

    Boynton, T.; Dewhirst, B.

    1980-01-01T23:59:59.000Z

    This paper will deal with steam trap surveys and preventive maintenance programs and the energy savings that may be realized from such efforts. Trap survey organization, flexibility, simplicity, and mechanics will be reviewed, including the economic...

  2. Steam distribution and energy delivery optimization using wireless sensors

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Djouadi, Seddik M [ORNL; Lake, Joe E [ORNL

    2011-01-01T23:59:59.000Z

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  3. Clustering Fossils in Solid Inflation

    E-Print Network [OSTI]

    Mohammad Akhshik

    2014-09-10T23:59:59.000Z

    In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tensor perturbation induces observable clustering fossils in the form of quardupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with Planck constraints. Specializing to this allowed range of model parameter, we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum of scalar perturbations. We argue that imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.

  4. Surface chemistry control for selective fossil resin flotation

    DOE Patents [OSTI]

    Miller, Jan D. (1886 Atkin Ave., Salt Lake City, UT 84106); Yi, Ye (2875 E. Wander Way, Salt Lake City, UT 84117); Yu, Qiang (224 University Village, Salt Lake City, UT 84108)

    1994-01-01T23:59:59.000Z

    A froth flotation method is disclosed for separating fine particles of fossil resin from by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method.

  5. Surface chemistry control for selective fossil resin flotation

    DOE Patents [OSTI]

    Miller, J.D.; Yi, Y.; Yu, Q.

    1994-06-07T23:59:59.000Z

    A froth flotation method is disclosed for separating fine particles of fossil resin by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method. 12 figs.

  6. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15T23:59:59.000Z

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  7. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  8. Steam Trap Application

    E-Print Network [OSTI]

    Murphy, J. J.

    1982-01-01T23:59:59.000Z

    Equipment Collecting leg, same size as equip ment connection but not less than Install a Yarway Process Trap below be drained. Install a Provide vacuum strainer with a blow down valve. Use and Yarway Aldrain valves full ported stop valves, (gate... and Corrosion Problems Like any critical control device the steam trap should be protected from dirt and scale if optimum operation and adequate service life are to be attained. Strainers should be equipped with blowdown valves to provide an effective...

  9. Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships

    E-Print Network [OSTI]

    Jones, T.

    1997-01-01T23:59:59.000Z

    been great advances in boiler control technology as older pneumatic and analog electronic control systems have given way to digital, computer-based distributed control systems. These systems are more reliable and can extend boiler life. Modem... Several software tools are now available for individual steam technologies, such as steam traps, insulation, and boiler controls. The Partnership should investigate linking these software tools together and incorporating other steam "modules" (i...

  10. Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2005-11-01T23:59:59.000Z

    A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

  11. Constant-Pressure Measurement of Steam-

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-169 Constant-Pressure Measurement of Steam- Water Relative Permeability Peter A. O by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative

  12. Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections

    SciTech Connect (OSTI)

    None

    2002-10-01T23:59:59.000Z

    Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

  13. Steam condensate leakage

    SciTech Connect (OSTI)

    Midlock, E.B.; Thuot, J.R.

    1996-07-01T23:59:59.000Z

    Argonne National Laboratory (ANL) is a multi-program research and development center owned by the United States Department of Energy and operated by the University of Chicago. The majority of the buildings on site use steam for heating and other purposes. Steam is generated from liquid water at the site`s central boiler house and distributed around the site by means of large pipes both above and below the ground. Steam comes into each building where it is converted to liquid condensate, giving off heat which can be used by the building. The condensate is then pumped back to the boiler house where it will be reheated to steam again. The process is continual but is not perfectly efficient. A substantial amount of condensate is being lost somewhere on site. The lost condensate has both economic and environmental significance. To compensate for lost condensate, makeup water must be added to the returned condensate at the boiler house. The water cost itself will become significant in the future when ANL begins purchasing Lake Michigan water. In addition to the water cost, there is also the cost of chemically treating the water to remove impurities, and there is the cost of energy required to heat the water, as it enters the boiler house 1000 F colder than the condensate return. It has been estimated that only approximately 60% of ANL`s steam is being returned as condensate, thus 40% is being wasted. This is quite costly to ANL and will become significantly more costly in the future when ANL begins purchasing water from Lake Michigan. This study locates where condensate loss is occurring and shows how much money would be saved by repairing the areas of loss. Shortly after completion of the study, one of the major areas of loss was repaired. This paper discusses the basis for the study, the areas where losses are occurring, the potential savings of repairing the losses, and a hypothesis as to where the unaccounted for loss is occurring.

  14. Fossil Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 201422

  15. Fossil Energy | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms & News 2008Fossil Energy

  16. Process for purifying geothermal steam

    DOE Patents [OSTI]

    Li, Charles T. (Richland, WA)

    1980-01-01T23:59:59.000Z

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  17. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Steam Generation Efficiency Module Efficiency Definition - 1 8/30/2010 Steam End-User Training Steam Generation Efficiency Module will be discussed. [Slide Visual Contents of Module Sections] Banner: DOE's BestPractices Steam End User Training

  18. DOE's BestPractices Steam End-User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End-User Training Steam End User Training Steam Generation Module Stack Losses 1 June 28, 2010 Steam EndUser Training Steam Generation Efficiency Module Stack Losses loss is almost always the largest boiler loss. [Slide Visual ­ Stack Loss Title Page] Steam

  19. Practical aspects of steam injection processes: A handbook for independent operators

    SciTech Connect (OSTI)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01T23:59:59.000Z

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  20. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07T23:59:59.000Z

    Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

  1. Steam System Improvement: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Leigh, N.

    . For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

  2. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

    2002-01-01T23:59:59.000Z

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  3. Steam System Survey Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpringoutAPBF-DEC NOxBestPractices SteamOffice of1/263

  4. Cheng Cycle Brings Flexibility to Steam Plant

    E-Print Network [OSTI]

    Keller, D. C.; Bynum, D.; Kosla, L.

    true for decreased gas rates, which yield reductions in net fuel costs and electric revenues. Other economic factors include operation and maintenance. Frito-Lay plans to contract all major maintenance directly to International Power Technology... to the increased mass flow and specific heat of the steam/air mixture. Electrical output ranges from 3.5 KW without injection to a theoretical 6.0 KW at maximum injection. Despite the volatility of nuclear power in California, project risk was low because...

  5. Savings in Steam Systems (A Case Study)

    E-Print Network [OSTI]

    DeBat, R.

    2001-01-01T23:59:59.000Z

    of the process or the plant. In the power industry, the term Distributed Control System (DCS) is generally applied to the system that implements boiler control and data acquisition functions of the power plant. A state-of-the-art DCS is typically composed... application in a boiler house operation typically covers the following areas: ? Boiler controls, including the combustion (firing rate), furnace draft, steam temperature, and feedwater control loops; ? Burner control; ? Control loops in the plant...

  6. Steam System Optimization: A Case Study

    E-Print Network [OSTI]

    Iordanova, N.; Venkatesan, V. V.

    /hr is imported from an outside power plant and 170,000 lbslhr is internally generated as waste heat recovery. The steam system analysis identified energy savings worth of $2,400,000 per year. The optimization measures were in two categories: ? no cost / low... cost that can be done through better maintenance and improvement of operating conditions. ? major improvement that requires a significant amount of investment, that includes the modification of process and major equipment. Though the findings...

  7. Steam generator operating experience: Update for 1984-1986

    SciTech Connect (OSTI)

    Frank, L.; Stokley, J.

    1988-06-01T23:59:59.000Z

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity, provides updated inspection results reported in 1984, 1985, and 1986, and highlights both prevalent problem areas and advances in improved equipment test practices, preventive measures, repair techniques, and replacement procedures. It describes equipment design features of the three major suppliers and discusses 68 plants in detail. Steam generator degradation mechanisms include intergranular stress corrosion cracking, primary water stress corrosion cracking, pitting, intergranular attack, and vibration wear that effects tube integrity and causes leakage. Plugging, sleeving heat treatment, peening, chemical cleaning, and steam generator replacements are described and regulatory instruments and inspection guidelines for nondestructive evaluations and girth weld cracking are discusses. The report concludes that although degradation mechanisms are generally understood, the elimination of unscheduled plant shutdowns and costly repairs resulting from leaking tubes has not been achieved. Highlights of steam generator research and unresolved safety issues are discussed. 21 refs., 8 tabs.

  8. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2007-10-01T23:59:59.000Z

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  9. Role of non-fossil energy in meeting China's energy and climate target for 2020

    SciTech Connect (OSTI)

    Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

    2012-12-01T23:59:59.000Z

    China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40-45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020 ; finally, conclusions and policy measures for non-fossil energy development are proposed.

  10. Steam Basics: Use Available Data to Lower Steam System Cost

    E-Print Network [OSTI]

    Risko, J. R.

    2011-01-01T23:59:59.000Z

    of the 2011 Industrial Energy Technology Conference New Orleans, Louisiana, May 17-19, 2011 13. Is there never enough time or resource to periodically blow down strainers / drip pockets? 14. Is there a ?one size fits all? approach towards steam trap... selection; using the same model for all drip and tracer applications? 15. Does the site remove strainer screens from steam traps to prevent blockage? 16. Is at least the same amount of steam produced today as 4 years ago? 17. In the past 3 years, has...

  11. Materials Performance in USC Steam Portland

    SciTech Connect (OSTI)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26T23:59:59.000Z

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  12. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12; Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12; UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal Constructed in 1964, provides steam for

  13. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  14. Steam Load Reduction Guidance Emergency Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Steam Load Reduction Guidance Emergency Management Program v October 2014 Steam_Load_Reduction_Guidance_DSRDSR 1.0 PurposeandScope Utilities provides steam to the campus community for space heating, hot water in the steam distribution system or the Central Energy Plant, the preservation of building infrastructure

  15. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8/27/2010 Steam End User Training Welcome Module Slide 1 Steam End User Training Welcome to the Department of Energy's Industrial Technologies Program BestPractices Steam End-User Training. The Department of Energy

  16. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Condensate recovery o Fuel unit cost o Total fuel consumption o Steam production Slide 6 Boiler o PRV steam flows o o Steam consumers Turbine efficiencies Electrical unit cost o o CondensateDOE's BestPractices Steam End User Training Steam End User Training Conclusion Module 1 June 28

  17. Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships

    E-Print Network [OSTI]

    Jones, T.

    The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green...

  18. Steam reformer with catalytic combustor

    DOE Patents [OSTI]

    Voecks, Gerald E. (La Crescenta, CA)

    1990-03-20T23:59:59.000Z

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  19. Steam Cracker Furnace Energy Improvements

    E-Print Network [OSTI]

    Gandler, T.

    & challenges in steam cracking ? Energy efficiency improvements Overview Baytown Olefins Plant Page 3 Baytown Complex ?One of world?s largest integrated, most technologically advanced petroleum/petrochemical complexes ?~3,400 acres along Houston Ship... wall temperatures Furnace tube hydrocarbon + steam 0 0.2 0.4 0.6 0.8 1 1.2 1 2 time C o k e l a y e r Page 8 Steam Cracker Furnace Energy Efficiency ? Overall energy efficiency of furnace depends on ? Run length or % of time...

  20. Wet-steam erosion of steam turbine disks and shafts

    SciTech Connect (OSTI)

    Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

    2011-01-15T23:59:59.000Z

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  1. Steam generator operating experience, update for 1987--1988

    SciTech Connect (OSTI)

    Frank, L.; Stokley, J.

    1989-06-01T23:59:59.000Z

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity, provides results of 1987 and 1988 steam generator inspections, and highlights both prevalent problem areas and improvements that have been made in nondestructive testing methods, preventive measures, repair techniques, and replacement procedures. It describes the equipment of the three major suppliers and discusses recent examinations of 76 plants. Major areas of concern are the steam generator degradation mechanisms that affect tube integrity or cause tube leakage and tube failure. These include intergranular attack (IGA), intergranular stress corrosion cracking (IGSCC), primary water stress corrosion cracking (PWSCC), pitting, and vibrational wear and fatigue. Also discussed are plugging, sleeving, heat treatment, peening, chemical cleaning, and steam generator replacements, the current status of regulatory instruments and inspection guidelines for ensuring the steam generator integrity, and highlights of steam generator research and unresolved safety issues. The report concludes that cracking, both IGSCC on the tube outside diameter and PWSCC on the tube inside diameter, was the major cause of tube degradation during the 1987--1988 period. 24 refs., 8 tabs.

  2. Energy Department Releases Draft Advanced Fossil Energy Solicitation...

    Broader source: Energy.gov (indexed) [DOE]

    fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII...

  3. antarctic fossil record: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He said the fossils have been Machel, Hans 465 Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities1 Chemistry Websites Summary: Dirty...

  4. 2012 Annual Planning Summary for Fossil Energy, National Energy...

    Office of Environmental Management (EM)

    Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning Summary for Fossil Energy, National Energy Technology...

  5. Cost and Performance Baseline for Fossil Energy Plants Volume...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revision 3 July 6, 2015 DOENETL-20151723 OFFICE OF FOSSIL ENERGY National Energy Technology Laboratory Cost and Performance Baseline for Fossil Energy Plants Volume 1: Revision...

  6. Molecules and fossils reveal punctuated diversification in Caribbean "faviid" corals

    E-Print Network [OSTI]

    Schwartz, Sonja A; Budd, Ann F; Carlon, David B

    2012-01-01T23:59:59.000Z

    punctuated diversification in Caribbean faviid corals. BMCRanges of the Fossil Caribbean Faviidae. Compiled firstand notes for all Caribbean fossil faviid species. Competing

  7. DOE Leverages Fossil Energy Expertise to Develop And Explore...

    Office of Environmental Management (EM)

    DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources...

  8. Energy Department's Fossil Energy Chief to Tour Western Michigan...

    Office of Environmental Management (EM)

    Department's Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable Energy Department's Fossil Energy Chief to Tour...

  9. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

  10. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect (OSTI)

    Zitney, S.E.

    2007-06-01T23:59:59.000Z

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  11. Computer Optimization of Steam Production

    E-Print Network [OSTI]

    Todd, C. H.

    1982-01-01T23:59:59.000Z

    As fuel costs continued to rise sharply during the 1970' s, the staff at Exxon's Benicia Refinery realized there was a growing economic incentive to optimize the production of high pressure steam. A significant percentage of the Refinery's total...

  12. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    2000-01-01T23:59:59.000Z

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  13. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  14. Steam Coal Import Costs - EIA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34...

  15. Steam System Forecasting and Management

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01T23:59:59.000Z

    '. This and the complex and integrated nature of the plants energy balance makes steam system forecasting and management essential for optimum use of the plant's energy. This paper discusses the method used by Union carbide to accomplish effective forecasting...

  16. Potential for travertine formation: Fossil Creek, Arizona

    E-Print Network [OSTI]

    Fossil Springs and at full baseflow during turbine maintenance. Analyses resulted in a rate of 11,923 kg with the soil zone, carbonate aquifers, organic material, or regional geothermal activity to produce H2CO3

  17. Proceedings: 1990 fossil plant cycling conference

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities, vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.

  18. Hybrid solar-fossil fuel power generation

    E-Print Network [OSTI]

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01T23:59:59.000Z

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  19. Classification of fossil fuels according to structural-chemical characteristics

    SciTech Connect (OSTI)

    A.M. Gyul'maliev; G.S. Golovin; S.G. Gagarin [Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-10-15T23:59:59.000Z

    On the basis of a set of linear equations that relate the amount of major elements n{sub E} (E = C, H, O, N, S) in the organic matter of fossil fuels to structural characteristics, such as the number of cycles R, the number of atoms n{sub E}, the number of mutual chemical bonds, the degree of unsaturation of the structure {delta}, and the extent of its reduction B, a structural-chemical classification of fossil coals that is closely related to the parameters of the industrial-genetic classification (GOST 25543-88) is proposed. Structural-chemical classification diagrams are constructed for power-generating coals of Russia; coking coals; and coals designed for nonfuel purposes including the manufacture of adsorbents, synthetic liquid fuel, ion exchangers, thermal graphite, and carbon-graphite materials.

  20. Fossil Energy Program. Progress report for April 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-06-01T23:59:59.000Z

    This report - the sixty-ninth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  1. Fossil energy program. Progress report for June 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-08-01T23:59:59.000Z

    This report - the seventy-first of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluation, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, TVA fluidized combustion demonstration plant program technical support, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  2. Fossil energy program. Progress report for May 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-08-01T23:59:59.000Z

    This report - the seventieth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, atmospheric fluidized bed coal combustor for cogeneration, performance assurance system support and international energy technology assessment.

  3. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

  4. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    SciTech Connect (OSTI)

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01T23:59:59.000Z

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  5. Altered states: Effects of diagenesis on fossil tooth chemistry

    SciTech Connect (OSTI)

    Kohn, M.J.; Schoeninger, M.J.; Barker, W.W.

    1999-09-01T23:59:59.000Z

    Investigation of modern and fossil teeth from northern and central Kenya, using the ion microprobe, electron microprobe, and transmission electron microscope, confirms that fossil tooth chemistry is controlled not only by the diagenetic precipitation of secondary minerals but also by the chemical alteration of the biogenic apatite. Increases in the concentrations of Fe, Mn, Si, Al, Ba, and possibly Cu in fossil vs. modern teeth reflect mixtures of apatite and secondary minerals. These secondary minerals occur in concentrations ranging from {approximately}0.3% in enamel to {approximately}5% in dentine and include sub-{micro}m, interstitial Fe-bearing manganite [(Fe{sup 3+}, Mn{sup 3+})O(OH)], and smectite. The pervasive distribution and fine grain size of the secondary minerals indicate that mixed analyses of primary and secondary material are unavoidable in in situ methods, even in ion microprobe spots only 10 {micro}m in diameter, and that bulk chemical analyses are severely biased. Increases in other elements, including the rare earth elements, U, F, and possibly Sr apparently reflect additional alteration of apatite in both dentine and enamel. Extreme care will be required to separate secondary minerals from original biogenic apatite for paleobiological or paleoclimate studies, and nonetheless bulk analyses of purified apatite may be suspect. Although the PO{sub 4} component of teeth seems resistant to chemical alteration, the OH component is extensively altered. This OH alteration implies that bulk analyses of fossil tooth enamel for oxygen isotope composition may be systematically biased by {+-}1%, and seasonal records of oxygen isotope composition may be spuriously shifted, enhanced, or diminished.

  6. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01T23:59:59.000Z

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  7. Wireless Sensing, Monitoring and Optimization for Campus-Wide Steam Distribution

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Woodworth, Ken [ORNL; Lake, Joe E [ORNL

    2011-11-01T23:59:59.000Z

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize energy delivery within the steam distribution system. Our approach leverages an integrated wireless sensor and real-time monitoring capability. We make real time state assessment on the steam trap health and steam flow estimate of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observing measurements of these sensors with state estimators for system health. Our assessments are based on a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps status. Experimental results show that the energy signature scheme has the potential to identify different steam trap states and it has sufficient sensitivity to estimate flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. We are able to present the steam flow and steam trap status, sensor readings, and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  8. Analyses of integrated MHD/steam plants

    SciTech Connect (OSTI)

    Muller, D.J.; Willis, P.A.

    1984-08-01T23:59:59.000Z

    This paper summarizes the work performed on Task I of the MHD Advanced Power Train (APT) Program, sponsored by the U.S. Department of Energy. This program included an analysis of integrated MHD/Steam Power Plants in size ranges of 200, 500 and 1000 MW /SUB e/ . A parametric study of various cycle configurations and operating parameters resulted in an optimized, integrated configuration for which plant performance projections were calculated. These results are presented. The scalability of present day test configurations and their applicability to large-scale commercial components was investigated. The present state of MHD technology is evaluated, and extensions of that technology are presented.

  9. Evolution of Marine Invertebrates and the Burgess Shale Fossils

    E-Print Network [OSTI]

    Kammer, Thomas

    Evolution of Marine Invertebrates and the Burgess Shale Fossils Geology 331, Paleontology #12 #12;Burgess Shale Fossils · Most are soft-bodied fossils, a very rare kind of fossilization. · Of today's 32 living phyla, 15 are found in the Burgess Shale. The other 17 are microscopic or too delicate

  10. Steam systems in industry: Energy use and energy efficiency improvement potentials

    SciTech Connect (OSTI)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-07-22T23:59:59.000Z

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

  11. Sandia National Laboratories: Fossil Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drilling technology, materials and process science, advanced storage systems, and combustion science. Program influences on the domestic oil and gas industry include:...

  12. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines

    SciTech Connect (OSTI)

    Holcomb, G.R. [US DOE, Albany, OR (United States)

    2009-07-01T23:59:59.000Z

    The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  13. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-01-01T23:59:59.000Z

    U.S. Department of Energys goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  14. Humidification Steam vs. Water-Spray

    E-Print Network [OSTI]

    Gidwani, B. N.; Weston, R. F.

    1984-01-01T23:59:59.000Z

    Currently the HVAC systems which require winter humidification at Goddard Space Flight Center (GSFC) utilize an economizer cycle with steam as the source for humidification. Due to the continuously increasing cost of producing steam, a feasibility...

  15. Steam Conservation and Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

  16. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  17. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  18. The Economics of Steam Electric Generation

    E-Print Network [OSTI]

    Ophaug, R. A.; Birget, C. D.

    1980-01-01T23:59:59.000Z

    The economics of combining steam and electric generation for companies requiring both steam and electric services develop a challenge which few engineers and economists can realize. This paper outlines the general approach to this challenge...

  19. Training: Steam Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Steam Systems Training: Steam Systems April 16, 2014 - 6:31pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who...

  20. Bore tube assembly for steam cooling a turbine rotor

    DOE Patents [OSTI]

    DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  1. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8/27/2010 Steam End User Training Navigational Tutorial Module Slide 1 Introduction Hello, and welcome to the Steam End User Training. I would like to take a few minutes to show you how to navigate through

  2. DOE's BestPractices Steam End User Training Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome to the Steam System End User training. In this training, we will investigate how to assess, evaluate

  3. Identifying Steam Opportunity "Impact" Inputs for the Steam System Assessment Tool (SSAT)

    E-Print Network [OSTI]

    Harrell, G.; Jendrucko, R.; Wright, A.

    2004-01-01T23:59:59.000Z

    The U.S. DOE BestPractices Steam "Steam System Assessment Tool" (SSAT) is a powerful tool for quantifying potential steam improvement opportunities in steam systems. However, all assessment tools are only as good as the validity of the modeling...

  4. Optimisation of Fuel Usage and Steam Availability in the Power and Steam

    E-Print Network [OSTI]

    Cambridge, University of

    the medium pressure manifold (nominally operated at 14 bar), through a steam turbine that can be usedOptimisation of Fuel Usage and Steam Availability in the Power and Steam Plant of a Paper Mill KEYWORDS: Model Predictive Control, Improved Efficiency, Optimisation, Power and Steam Supply System

  5. Steam Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurringSteam Systems Steam Systems Many

  6. Capturing Energy Savings with Steam Traps

    E-Print Network [OSTI]

    Bockwinkel, R. G.; French, S. A.

    , it's important to select and install the correct type and size steam trap for each application. This means a corruninnent must be made to training those who select, install, test and maintain steam traps on a. daily Scott A. French Application... generated. This paper will review each of these topics and then explore some of the new services, products, practices and technology available to help you maintain or improve the efficiency of your steam system. COSTLY STEAM LEAKS ENERGY RESOURCES...

  7. Method and apparatus for removing micronized coal from steam

    SciTech Connect (OSTI)

    Vlnaty, J.

    1980-10-14T23:59:59.000Z

    Micronized coal is removed from coal-bearing steam by spraying stabilized petroleum oil into the steam and directing the resultant stream at a separation surface on which a coal-oil slurry is deposited and collected. Apparatus includes conduits which direct the resultant stream downward into a housing and normal to a surface on which the slurry is deposited by impact forces. In additional apparatus disclosed, the resultant stream is directed from a horizontal conduit circumferentially along the interior wall of a horizontally disposed cylindrical chamber at the top of the chamber and the coal-oil slurry deposited on the wall by centrifugal force is collected in a trough situated below a longitudinal slot at the bottom of the chamber. In both types of apparatus, after separation of the slurry the velocity of the steam is reduced to settle out remaining oil droplets and is then discharged to the atmosphere.

  8. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  9. Best Management Practice #8: Steam Boiler Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  10. STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION

    E-Print Network [OSTI]

    Stanford University

    STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM Laboratory. iv #12;ABSTRACT Steam-water relative permeability curves are required for mathematical models of two-phase geothermal reservoirs. In this study, drainage steam- water relative permeabilities were

  11. Steam Sterilization Cycles for Lab Applications

    E-Print Network [OSTI]

    Farritor, Shane

    Steam Sterilization Cycles for Lab Applications Presented by Gary Butler STERIS Life Sciences August 2009 #12;Early Steam Sterilizers Koch Upright Sterilizer · First Pressurized Sterilizer · First OPERATING END (NO PRINTER) PRIMARY OPERATING END WITH PRINTER SAFETY VALVE CHAMBER PRESSURE GAUGE Steam

  12. Superalloys for ultra supercritical steam turbines--oxidation behavior

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-09-01T23:59:59.000Z

    Goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

  13. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  14. Trace fossil assemblages in selected shelf sandstones

    E-Print Network [OSTI]

    Locke, Kathleen Ann

    1983-01-01T23:59:59.000Z

    and decreasing marine 1nfluence. Individual trace fossil types are more abundant and show a greater d1versity 1n the delta-margin facies; several large, vert1cal crab(?) burrows are P ascot a d th bi g is do 1 t d by ~Ohio o h In the shelf sequences, mostly... ~Zoo h os, f d ly i th iddl -to. outer and outer shelf sequences. Continued study of trace fossils should provide more specific information than the general shelf locations described above. ACKNOWLEDGEMENTS The completion of this thesis marks...

  15. Fossil Energy Word Find | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget FossilThird Quarter,Word

  16. New downhole steam generator tested

    SciTech Connect (OSTI)

    Bleakley, W.B.

    1981-07-01T23:59:59.000Z

    Completion of 2 field tests of a new-model down-hole steam generator paves the way for further evaluation and development of a system destined to increase California's heavy oil production. Current air pollution restrictions there prevent installation of conventional steam generators in several areas of interest to oil operators. The current series of tests, conducted by Chemical Oil Recovery Co. (CORCO) of Bakersfield, California, follows an earlier prototype operation conducted by Sandia National Laboratories in conjunction with the US Department of Energy. The CORCO tests were conducted on the surface with the generator's output going into Tenneco Oil Exploration and Production Co.'s overland-Riokern Well No. 80, located in the Kern River field 4 miles north of Bakersfield. The first test was concluded with just under 1000 bbl of steam injected, less than planned due to a higher-than-expected injection pressure. The unit operated at less than 25% capacity because of the air compressor limitation. Compressor output was only 285 psi, not enough to inject the desired volumes into the reservoir. Test data shows that injection amounted to 150 bpd of 90 to 95% quality steam at 225-psi wellhead pressure. After injection, the well was shut in for 3 days to allow soaking, then put on production. Initial production was 40 bopd at 175 F.

  17. Geismar TDI Plant Steam Optimization

    E-Print Network [OSTI]

    Baily, M.

    2013-01-01T23:59:59.000Z

    Inlet isolation valve o Outlet isolation valve o Built-in strainer o Upstream blow down o Downstream blow down (or test port) o 2-bolt connection for K port steam trap ? Valves on V2 stations are bellows sealed valves ? high integrity seal...

  18. Generating Steam by Waste Incineration

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01T23:59:59.000Z

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  19. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01T23:59:59.000Z

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

  20. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  1. Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts

    E-Print Network [OSTI]

    Blaylock, Donnie Wayne

    2011-01-01T23:59:59.000Z

    The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications including petrochemical processing and ammonia synthesis. ...

  2. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect (OSTI)

    Bradley, R.A. (comp.) [comp.

    1981-12-01T23:59:59.000Z

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  3. Alternative technologies to steam-methane reforming

    SciTech Connect (OSTI)

    Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

    1995-11-01T23:59:59.000Z

    Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

  4. Steam in Distribution and Use: Steam Quality Redefined

    E-Print Network [OSTI]

    Deacon, W. T.

    in the system at regular intervals. 2) Control valves should be protected by a strainer which is free from condensate accumulation. Heat Transfer potential. 1) Use steam at the lowest possible pressure to take advantage of low pressure latent heat...) A special situation exists ahead of valves that are protected by a strainer. The strainer body is a low point and accumulates condensate naturally, reducing the effective area of the strainer screen. (See Figure 4.) KI!?: Fig. 4. Automatic...

  5. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    E-Print Network [OSTI]

    Gurney, Kevin R.

    2010-01-01T23:59:59.000Z

    interannual variations in fossil fuel emissions. J. Geophys.Treat CO 2 from fossil fuel burning: global distribution ofdioxide emissions from fossil fuel consumption and cement

  6. Coastal Microstructure: From Active Overturn to Fossil Turbulence

    E-Print Network [OSTI]

    Leung, Pak Tao

    2012-02-14T23:59:59.000Z

    Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence...

  7. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  8. RECOVERY ACT CASE STUDY CHP and district energy serve Texas A&M's 5,200-acre campus, which includes 750 buildings.

    E-Print Network [OSTI]

    .S. Congressman Chet Edwards Texas A&M's CHP system includes a gas turbine generator, heat recovery steam generator, and steam turbine generator. Photo courtesy of Texas A&M University 3 Riley, Jim, "Combined Heat, 2010. Brush Generator 34 MW RO Water Dresser Rand Steam Turbine Ideal Generator 11 MW 12.47 kV EIT HRSG

  9. Fossil Energy Program annual progress report for April 1996 through March 1997

    SciTech Connect (OSTI)

    Judkins, R.R.

    1997-07-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program research and development activities, performed for the Department of Energy (DOE) Assistant Secretary for Fossil Energy, cover the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve. The coal activities include materials research and development; environmental analysis support; bioprocessing of coal to produce liquid or gaseous fuels; and coal combustion research. The work in support of gas technologies includes activities on the Advanced Turbine Systems Program, primarily in the materials and manufacturing aspects. Several activities are contributing to petroleum technologies in the areas of computational tools for seismic analysis and the use of bioconversion for the removal of impurities from heavy oils. This report contains 32 papers describing the various research activities, arranged under the following topical sections: materials research and development; environmental analysis support; bioprocessing research; coal combustion research; fossil fuel supply modeling and research; and advanced turbine systems.

  10. Chemical filtration for steam purity

    SciTech Connect (OSTI)

    Kovalcik, F.

    1985-03-01T23:59:59.000Z

    Few industrial process systems are as vulnerable to corrosion as the steam generating loop of an electric power plant. Impurities inevitably migrate into the steam cycle, and must be removed to prevent turbine blade corrosion. It is critical to understand the behavior of the condensate polishing resins used to remove the impurities. The Electric Power Research Institute (EPRI) participated in investigations involving ion chromatography which identified chloride as a problem in studies of regeneration and polishing procedures. A modified regeneration procedure consists of ammonium sulfate treatment of the resin before and after ammonia recirculation, followed by a dilute ammonia rinse. A joint study with Southern California Edison also simulated condenser leaks to find the effect of cooling water intrusion.

  11. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16T23:59:59.000Z

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  12. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA); Corletti, Michael M. (New Kensington, PA)

    1993-01-01T23:59:59.000Z

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  13. Reducing Fossil Carbon Emissions and Building Environmental Awareness at

    E-Print Network [OSTI]

    of waste that is created when extracting and consuming fossil fuels. Reducing Dartmouth College's demand on the biophysical environment in the following ways: Reducing the amount of fossil fuels that are consumed. Reducing the amount of pollution that is generated from fossil fuel consumption. Reducing the amount

  14. Opportunism and competition in the non-fossil fuel obligation

    E-Print Network [OSTI]

    Watson, Andrew

    Opportunism and competition in the non-fossil fuel obligation Paolo Agnolucci July 2005 Tyndall are the responsibility of the author(s) alone and not the Tyndall Centre. #12;Summary The Non-Fossil Fuel Order (NFFO Electricity; Renewable Policy, Non-Fossil Fuel Obligation; Moral Hazard; Post-contractual Opportunism #12

  15. Yankee Ticket Prices and Fossil Fuels 10 April 2008

    E-Print Network [OSTI]

    Hansen, James E.

    higher. Eventually, sales volume will begin to decline, but fossil fuel moguls will make more money than unconventional fossil fuels such as tar shale and tar sands on a large scale. That choice cannot be left is captured and sequestered) and unconventional fossil fuels are not tapped #12;substantially. Peak CO2 can

  16. DOE BestPractices Steam End User Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE BestPractices Steam End User Training Guide Alternate Text Narratives and Graphic Descriptions June 29, 2010 #12;DOE BestPractices Steam End User Training Steam End User Training Table ............................................................................................................................................................................201 #12;DOE's BestPractices Steam End User Training Welcome Module 1 June 28, 2010 Steam End

  17. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    SciTech Connect (OSTI)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01T23:59:59.000Z

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  18. Optical steam quality measurement system and method

    DOE Patents [OSTI]

    Davidson, James R.; Partin, Judy K.

    2006-04-25T23:59:59.000Z

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  19. Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart

    E-Print Network [OSTI]

    Jones, T.; Hart, F.

    1998-01-01T23:59:59.000Z

    traps, insulation, and boiler controls. The Partnership should investigate linking these software tools together and incorporating other steam "modules" (i.e., water treatment, boiler tune-up, common steam applications) in order to estimate...

  20. Identifying Steam Opportunity "Impact" Inputs for the Steam System Assessment Tool (SSAT)

    E-Print Network [OSTI]

    Harrell, G.; Jendrucko, R.; Wright, A.

    2004-01-01T23:59:59.000Z

    IDENTIFYING STEAM OPPORTUNITY "IMPACT" INPUTS FOR THE STEAM SYSTEM ASSESSMENT TOOL (SSAT) Dr. Greg Harrell, University of Tennessee/Knoxville Dr. Richard Jendrucko, University of Tennessee/Knoxville Dr. Anthony Wright, Oak Ridge National...

  1. The Steam System Assessment Tool (SSAT): Estimating Steam System Energy, Cost, and Emission Savings

    E-Print Network [OSTI]

    Wright, A.; Bealing, C.; Eastwood, A.; Tainsh, R.; Hahn, G.; Harrell, G.

    The U. S. Department of Energy's (DOE) Industrial Technology Program BestPractices Steam effort is developing a number of software tools to assist industrial energy users to improve the efficiency of their steam system. A major new Best...

  2. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    None

    1998-01-01T23:59:59.000Z

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  3. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    1999-01-01T23:59:59.000Z

    for more detailed information on boiler control upgrades were initiated. While reviewing steam trap options, NNFD was contacted by Dibert Valve & Fitting Company, which was marketing a new steam trap system that allowed easier testing and repair..., a detailed workscope for the boiler control upgrades, and a quote was obtained. After review by maintenance management and mechanics, orders for both the boiler control package and the steam trap system's components were placed. BOILER CONTROLS...

  4. The Future of Steam: A Preliminary Discussion

    E-Print Network [OSTI]

    Russell, C.; Harrell, G.; Moore, J.; French, S.

    alternatives to steam turbines. Gas turbines, microturbines, and fuel cells are emerging technologies to watch in lhis regard. Greater acceptance of the CHP concept is in part related to concerns with reliability in power supply. Deregulation... monitored steam operations will give the system operator better diagnostic capabilities Periodic measures of fuel consumption, emissions content, and steam deliveries per volume of product are a few examples of operational metrics. The collection...

  5. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01T23:59:59.000Z

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  6. Steam Pressure Reduction Opportunities and Issues

    E-Print Network [OSTI]

    Berry, J.; Griffin, B.; Wright, A. L.

    2006-01-01T23:59:59.000Z

    - use, and recovery. In addition to reduced energy losses, fuel consumption can be reduced, boiler efficiency can be improved, and process energy needs can be met with a reduced steam flow rate. Changes in system parameters can vary with the design... steam trap to discharge the required flow of condensate, resulting in water- logging of steam-heated equipment (e.g., dryers, water heaters, reactors). For example, consider a makeup air unit that operates at the main system pressure...

  7. Steam reforming utilizing high activity catalyst

    SciTech Connect (OSTI)

    Setzer, H. J.

    1985-03-05T23:59:59.000Z

    High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

  8. Optimized Control Of Steam Heating Coils

    E-Print Network [OSTI]

    Ali, Mir Muddassir

    2012-02-14T23:59:59.000Z

    cooling. II. Flooding of coils with condensate and its subsequent freezing when outside air temperature falls below 32?F. III. Increased maintenance cost due to water hammer, corrosion of coils in the presence of non-condensable gases and leaking steam... monotonically as the steam pressure increases, a higher steam pressure may lead to overheating of the air and result in simultaneous heating and cooling. In addition to energy waste due to simultaneous heating and cooling, an improper operating strategy can...

  9. World launch! Hot-Steam Aerostat

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Info HeiDAS UH World launch! Hot-Steam Aerostat #12;"If you intend to view the land, if you plan Verne: "Fife weeks on a balloon". HeiDAS stands for Hei?DampfAeroStat (Hot-Steam AeroStat) and it refers to the first operable balloon ever that became buoyant by means of superheated steam. The performance of Hei

  10. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  11. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    SciTech Connect (OSTI)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01T23:59:59.000Z

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  12. Covered Product Category: Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

  13. Pre-In-Plant Training Webinar (Steam)

    Broader source: Energy.gov [DOE]

    This pre-In-Plant training webinar for the Better Plants Program covers how to find energy savings in steam systems.

  14. Achieve Steam System Excellence - Steam Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001 Energy ManagementPatriciaUCNIAchieve Steam System

  15. Achieve Steam System Excellence - Steam Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofingDepartmentAchieve Steam System

  16. DOE's BestPractices Steam End User Training Steam EndUser Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Steam EndUser Training Resource Utilization End User Training Resource Utilization Analysis Module 1 June 28, 2010 #12; DOE's BestPractices Steam End User Training Slide 3 Fuel Selection 1 Fuel purchases typically dominate the operating cost

  17. Steam catalysis in CaO carbonation under low steam partial pressure

    SciTech Connect (OSTI)

    Yang, S.J.; Xiao, Y.H. [Chinese Academy of Science, Beijing (China)

    2008-06-15T23:59:59.000Z

    CaO was widely used to capture CO{sub 2} in direct hydrogen production process, where steam always existed simultaneously. The effect of steam on CaO carbonation performance under low steam partial pressure was investigated using a pressurized thermogravimetric apparatus. The experimental results revealed that steam improved CaO carbonation performance significantly no matter whether Ca(OH){sub 2} was produced or not. At 823 K and 0.5 MPa of steam partial pressure, effect of steam on CaO carbonation performance could not be attributed mainly to production of Ca(OH){sub 2} because the hydration rate of CaO was very slow. The main reason was steam catalysis in CaO carbonation. Enhancement of steam on CaO carbonation performance without Ca(OH){sub 2} production could not be attributed to improvement of steam on the physical property, but to catalytic effect of steam. Effects of CaO precursors, CO{sub 2} partial pressure, steam partial pressure, and temperature with steam addition on CaO carbonation performance were also investigated.

  18. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  19. Fossil-energy program. Quarterly progress report for June 30, 1983

    SciTech Connect (OSTI)

    McNeese, L.E.

    1983-08-01T23:59:59.000Z

    This quarterly report covers the progress made during the period March 31 through June 30 for the Oak Ridge National Laboratory research and development projects that are carried out in support of the increased utilization of coal and other fossil fuels as sources of clean energy. These projects are supported by various parts of DOE including Fossil Energy, Basic Energy Sciences, Office of Health and Environmental Research, Office of Environmental Compliance and Overview, the Electric Power Research Institute, and by the Tennessee Valley Authority and the EPA Office of Research and Development through inter-agency agreement with DOE.

  20. RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES

    SciTech Connect (OSTI)

    Gorensek, M; Charles W. Forsberg, C

    2008-08-04T23:59:59.000Z

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

  1. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

    2009-07-15T23:59:59.000Z

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  2. Steam Field | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaStea DivisioneSteam

  3. Design manual for high temperature hot water and steam systems

    SciTech Connect (OSTI)

    Cofield, R.E. Jr.

    1984-01-01T23:59:59.000Z

    The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

  4. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    of the collector, turbine, and steam accumulator arehigher efficiencies with wet steam, but turbines often see

  5. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect (OSTI)

    Jantzen, C

    2006-12-22T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  6. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    ?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

  7. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007...

  8. analyzing steam generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  9. advanced steam generators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  10. asco steam generators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator,...

  11. alloy n06600 steam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as...

  12. Recent Progress on Steam Hydrogasification of Carbonaceous Matter...

    Broader source: Energy.gov (indexed) [DOE]

    Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean...

  13. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Steam System Performance: A Sourcebook for Industry, Second Edition Improving Steam System Performance: A Sourcebook for Industry, Second Edition This sourcebook is...

  14. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a...

  15. Steam System Efficiency Optimized After J.R. Simplot Fertilizer...

    Broader source: Energy.gov (indexed) [DOE]

    Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives...

  16. Comparative Investigation of Benzene Steam Reforming over Spinel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts....

  17. Optimizing Steam & Condensate System: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Norris, C.

    2011-01-01T23:59:59.000Z

    for electricity). The site generates steam for its process operation from 3 gas fired boilers at 525-psig pressure. The steam is consumed at 5 process areas; Acid, Basics, Crystals, Derivatives & Hydrogen plants. All of the process areas recover condensate inside...

  18. Coreflood experimental study of steam displacement

    E-Print Network [OSTI]

    Cerutti, Andres Enrique

    1997-01-01T23:59:59.000Z

    in which steam was injected into a core or a sand pack. Liquid saturation profiles in the core or sand pack were constructed from X-ray CT scan cross-sectional images. The liquid saturation profiles indicate the presence of three zones, namely, the steam...

  19. Energy Management - Using Steam Pressure Efficiently

    E-Print Network [OSTI]

    Jiandani, N.

    1983-01-01T23:59:59.000Z

    Saturated steam contains heat in two different forms. Sensible heat and latent heat. Due to the nature of this vapor, the relative proportion of latent heat is higher at lower pressures compared to higher pressures. When steam is used for heating...

  20. Program assists steam drive design project

    SciTech Connect (OSTI)

    Mendez, A.A.

    1984-08-27T23:59:59.000Z

    A new program for the HP-41CV programmable calculator will compute all parameters required for a steam drive project design. The Marx and Langenheim model assumptions are used to solve a more advanced version of the Myhill and Stegemeier model. Also, the Mandl and Volek model assuptions are used to compute the size of the steam zone.

  1. Energy Management - Using Steam Pressure Efficiently

    E-Print Network [OSTI]

    Jiandani, N.

    1983-01-01T23:59:59.000Z

    Saturated steam contains heat in two different forms. Sensible heat and latent heat. Due to the nature of this vapor, the relative proportion of latent heat is higher at lower pressures compared to higher pressures. When steam is used for heating...

  2. System studies guiding fossil energy RD & D

    SciTech Connect (OSTI)

    NONE

    2007-12-31T23:59:59.000Z

    The article describes the following recently completed studies, all of which may be accessed on NETL's website: http://netl.doe.gov/energy-analyses/ref-shelf.html: Cost and performance baseline for fossil energy power plants - volume 1: bituminous coal and natural gas to electricity (May 2007); Increasing security and reducing carbon emissions of the US transportation sector: a transformational role for coal with biomass (August 2007); Industrial size gasification for syngas, substitute natural gas, and power production (April 2007); and Carbon dioxide capture from existing coal-fired power plants (December 2006). 2 figs.

  3. Draft Advanced Fossil Solicitation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 FederalDonnaDraft Advanced Fossil

  4. No Fossil Fuel - Kingston | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppelsource History(CTI PFAN)Fossil Fuel - Kingston

  5. Circumferential cracking of steam generator tubes

    SciTech Connect (OSTI)

    Karwoski, K.J.

    1997-04-01T23:59:59.000Z

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

  6. Project DEEP STEAM: third meeting of the technical advisory panel, Bakersfield, CA, March 1980

    SciTech Connect (OSTI)

    Fox, R. L.; Johnson, D. R.; Donaldson, A. B.; Mulac, A. J.; Krueger, D. A.

    1981-04-01T23:59:59.000Z

    The third meeting of the technical advisory panel for the Deep Steam project was held in March 1980 in Bakersfield, California. The following seven papers were presented: Materials Studies; Insulation/Packer Simulation Test; Enhanced Recovery Packer; High Pressure Downhole Steam Generator; Lower Pressure Downhole Steam Generator; Physical Simulations; and Field Testing. The panel made many recommendations, some of which are: shell calcium silicate insulation should be included in the injection string modification program; for metal packer, consider age hardening alloys, testing with thermal cycling, intentionally flawed casing, and operational temperatures effect on differential expansion, plus long term tests under temperature and corrosive environment; for minimum stress packer, consider testing environment carefully as some elastomers are especially susceptible to oil, oxygen, and combustion gases; for downhole steam generator, quality of water required with new low pressure combustion design needs to be investigated; in field testing, materials coupons, for corrosion monitoring, should be an integral part of field test operations.

  7. Progress performance report of clean uses of fossil fuels

    SciTech Connect (OSTI)

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01T23:59:59.000Z

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  8. Fossil energy biotechnology: A research needs assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  9. A Novel Solar-Fossil Hybrid Power Plant

    SciTech Connect (OSTI)

    Brown, Daryl R.

    2014-01-01T23:59:59.000Z

    This is a short article prepared for Power Magazine about our development of a solar-powered steam-methane reformer.

  10. Office of Fossil Energy Continues Long-Running Minority Educational...

    Broader source: Energy.gov (indexed) [DOE]

    environments of AUSC coal-fired boilers and steam and gas turbines require corrosion-resistant coatings with enhanced thermal durability and reliability. A technique for...

  11. ash fossil energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration gas mixtures containing H2 developed Associated Fossil Energy Programs Carbon dioxide sequestration. 2005 2010 2013 2015 12;Barriers to Hydrogen Production from...

  12. american fossil mammals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time, in particular during Plotnick, Roy E. 424 Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities1 Chemistry Websites Summary: Dirty...

  13. advanced fossil energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reforming reaction is driven to completion with conversion of the fossil fuel energy values to the equivalent of hydrogen fuel. The fuel carbon content is recovered...

  14. agglomeration fossil energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time, in particular during Plotnick, Roy E. 309 Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities1 Chemistry Websites Summary: Dirty...

  15. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective

    E-Print Network [OSTI]

    Divakaruni, S. M.

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  16. Fossil Energy Acting Assistant Secretary Recognized at Black...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy,...

  17. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...

    Broader source: Energy.gov (indexed) [DOE]

    FOSSIL ENERGY ) FE DOCKET NO. 14-001-CIC CAMERON LNG, LLC ) FE DOCKET NO. 11-162-LNG ) FE DOCKET NO....

  18. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective

    E-Print Network [OSTI]

    Divakaruni, S. M.

    1989-01-01T23:59:59.000Z

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  19. alternative fossil fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 3 From fossil fuels to renewable energies...

  20. Economic Analysis of "Steam-Shock" and "Pasteurization"

    E-Print Network [OSTI]

    Economic Analysis of "Steam-Shock" and "Pasteurization" Processes for Oyster Shucking JOHN W. BROWN Introduction "Steam-shock" is an oyster shucking process that uses steam to relax the oyster's adductor muscle of the shucking process as in integral part of the operation of an existing oyster-shucking house. The term "steam

  1. Steam reforming utilizing iron oxide catalyst

    SciTech Connect (OSTI)

    Setzer, H. T.; Bett, J. A. S.

    1985-06-11T23:59:59.000Z

    High activity steam reforming iron oxide catalysts are described. Such catalysts can be unsupported utilizing at least 90% by weight iron oxide and various modifiers (Ai/sub 2/O/sub 3/, K/sub 2/O, CaO, SiO/sub 2/) or unmodified and supported on such things as alumina, CaO impregnated alumina, and lanthanum stabilized alumina. When used in steam reformers such as autothermal and tubular steam reformers, these catalysts demonstrate much improved resistance to carbon plugging.

  2. Electrical Cost Reduction Via Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... to replace pressure reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between...

  3. NON-STATIONARY TEMPERATURE STRESSES IN THE INDUSTRIAL STEAM TURBINE ROTOR

    E-Print Network [OSTI]

    Zvonimir Guzovi?; Kreimir Kova?i?; Tihomir Mihali?

    The usage of industrial steam turbines in different industrial branches (chemistry, petrochemistry, refineries, sugar and ethanol plants, etc.) for a generator drive for electricity generation or a mechanical drive for compressors, blowers and pumps, is characterized by the need for high flexibility of operation. High flexibility includes numerous start-ups, shut-downs and power changes during the useful life. Changes in power and steam mass flow lead to changes of the working fluid state in the single turbine stages, and thus their aerodynamic and thermodynamic characteristics. During these transient working regimes in steam turbine rotors, large space and time-dependent temperature gradients appear, which can result in high non-stationary temperature stresses, i.e. increased local stress concentrations, what has a negative impact on the useful life of the rotor. In the worst case they can cause fracture of the turbine rotor. Today, for the determination of thermal stressed state of the steam turbine parts the user softwares based on numerical methods are used. In this paper the results of numerical modelling and calculations of non-stationary temperature fields and related stresses in the rotor of industrial steam turbine of 35 MW power during transient operating regime (a cold startup) will be presented. The results of the calculations serve for estimation of the transient regime impact on the stresses of the rotor, as well as on its entire useful life. Key words: industrial steam turbine, transient regimes, temperature stresses, numerical modelling 1.

  4. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  5. ExxonMobile Beaumont Chemical Plant Steam Integration Project

    E-Print Network [OSTI]

    Long, T.

    ? Conventional boilers ? Gas turbine generators/ heat recovery steam generators ? Waste heat recovery boilers ? Steam is distributed and consumed at multiple locations and at various levels ? Evolution across the site can lead to isolated steam imbalances 4... the chemical plant boundaries ? The Refinery had a need for this valuable energy resource. ? A project was conceived to install piping and control systems to export the excess medium pressure steam to the adjacent Refinery where the steam could be more...

  6. Steam reforming of low-level mixed waste. Final report

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  7. Fossil Energy Fuel Cell Wayne Surdoval, SECA Coordinator

    E-Print Network [OSTI]

    National Energy Technology Laboratory Office of Fossil Energy #12;Strategic Center for Natural GasFossil Energy Fuel Cell Program Wayne Surdoval, SECA Coordinator June 3, 2003 SECA Fuel Processing. & Desulf. *Berry *Shekhawat Gardner 1.) Develop Fuel Reforming Database & Report 2.) Develop Fuel

  8. Environmental Law and Fossil Fuels: Barriers to Renewable Energy

    E-Print Network [OSTI]

    Outka, Uma

    2012-01-01T23:59:59.000Z

    This article is concerned with renewable energys too-slow transition and with how existing legal regimes work to preserve fossil energy dominance. It develops from two related claims: that an implicit support structure for fossil energy is written...

  9. EDIACARAN AND CAMBRIAN INDEX FOSSILS FROM SONORA, MEXICO

    E-Print Network [OSTI]

    Hagadorn, Whitey

    EDIACARAN AND CAMBRIAN INDEX FOSSILS FROM SONORA, MEXICO by FRANCISCO SOUR-TOVAR*, JAMES W, Facultad de Ciencias, Universidad Nacional Auto´noma de Me´xico, Ciudad Universitaria, Me´xico DF, Mexico Formation near Pitiquito, Sonora, Mexico, and new occurrences of the Neoproterozoic index fossil Cloudina

  10. Cogeneration: An Industrial Steam and Power Option

    E-Print Network [OSTI]

    Orlando, J. A.; Stewart, M. M.; Roberts, J. R.

    Industrial facilities of all sizes have the ability to reduce and better control both power and steam costs with a cogeneration system. Unlike the larger systems that sell almost all of the cogenerated power to a regulated electric utility...

  11. Extraction Steam Controls at EPLA-W

    E-Print Network [OSTI]

    Brinker, J. L.

    2004-01-01T23:59:59.000Z

    ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site...

  12. Solar steam generation by heat localization

    E-Print Network [OSTI]

    Ghasemi, Hadi

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

  13. Electrical Cost Reduction Via Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    1991-01-01T23:59:59.000Z

    years. The availability of this equipment in a packaged system form makes it feasible to replace pressure reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity...

  14. Cheng Cycle Brings Flexibility to Steam Plant

    E-Print Network [OSTI]

    Keller, D. C.; Bynum, D.; Kosla, L.

    1987-01-01T23:59:59.000Z

    Department examined several energy optimization systems for this site. It was determined that a modified gas turbine cogeneration system was the best overall option. This system is unique in that it injects superheated steam from the waste heat boiler back...

  15. Steam turbine upgrading: low-hanging fruit

    SciTech Connect (OSTI)

    Peltier, R.

    2006-04-15T23:59:59.000Z

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  16. Steam System Optimization : A Case Study

    E-Print Network [OSTI]

    Iordanova, N.; Venkatesan, V. V.; Calogero, M.

    2002-01-01T23:59:59.000Z

    to the required levels for different consumers. ABC Plant utilizes steam in two ways: ? indirect use, returning the condensate after process heating, hot water generation and comfort heating. ? direct use in XXX moisturizers, XXX steamers, XXX water tanks...

  17. World Class Boilers and Steam Distribution System

    E-Print Network [OSTI]

    Portell, V. P.

    World class is a term used to describe steam systems that rank in the top 20% of their industry based on quantitative system performance data and energy management for the facility. The rating is determined through a proceduralized assessment...

  18. Optimizing Steam & Condensate System: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Norris, C.

    2011-01-01T23:59:59.000Z

    Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel ...

  19. Steam Management- The 3M Approach

    E-Print Network [OSTI]

    Renz, R. L.

    As one of the world's leading manufacturers of innovative products, 3M is continually working to improve energy efficiency in offices, research centers, and production facilities. Steam system optimization is one of the keys to this process...

  20. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  1. Technical evaluation: 300 Area steam line valve accident

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

  2. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  3. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  4. Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation

    SciTech Connect (OSTI)

    Webb, R.L.; Chamra, L.; Jaber, H.

    1992-02-01T23:59:59.000Z

    Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

  5. Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America

    E-Print Network [OSTI]

    Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

    2007-01-01T23:59:59.000Z

    dioxide emissions from fossil fuel consumption and cementindependent budgeting of fossil fuel CO 2 over Europe by COregional, and national fossil fuel CO 2 emissions, Carbon

  6. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Figures A typical wet steam Rankine cycle on a temperature-A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributed

  7. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    Gas Turbine Power (MWe) Steam Turbine Power (MWe) Total (for the 2015 advanced steam turbine configuration for powerthe LP section of the steam turbine set. Finally, the fuel

  8. Towards constraints on fossil fuel emissions from total column carbon dioxide

    E-Print Network [OSTI]

    Keppel-Aleks, G.; Wennberg, P. O; O'Dell, C. W; Wunch, D.

    2013-01-01T23:59:59.000Z

    G. Keppel-Aleks et al. : Fossil fuel constraints from X CO 2P. P. : Assess- ment of fossil fuel carbon dioxide and otherstrong localized sources: fossil fuel power plant emissions

  9. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    dioxide emissions from fossil-fuel combustion R. J. Andresdioxide emis- sions from fossil-fuel use in North America,S. : High resolution fossil fuel combustion CO 2 emission

  10. Visbreaking-enhanced thermal recovery method utilizing high temperature steam

    SciTech Connect (OSTI)

    Shu, W.R.

    1984-06-26T23:59:59.000Z

    The displacement efficiency of a steam drive process is improved and steam override reduced by rapidly injecting a predetermined amount of high temperature steam via an injection well into the formation to visbreak a portion of the oil in the formation prior to a steam drive wherein steam is injected into the formation via the injection well to displace oil to a spaced-apart production well through which oil is recovered. The visbroken oil provides a more favorable transition of mobility ratio between the phases in the formation thereby reducing viscous fingering and increasing the displacement efficiency of the steam drive. In addition, after a predetermined amount of high temperature steam has been injected into the formation, the formation may be allowed to undergo a soak period prior to the steam drive. The high temperature steam injection and soaking steps may be sequentially repeated for a plurality of cycles.

  11. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    SciTech Connect (OSTI)

    Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-03-19T23:59:59.000Z

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  12. Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies

    E-Print Network [OSTI]

    Hahn, G.

    A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

  13. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    by electricity generation/CHP facilities by distillate fuelFossil Fuel Consumption for Electricity and Heat GenerationFossil Fuel Consumption for Electricity and Heat Generation

  14. Visualization experiments on steam injection in Hele-Shaw cells

    SciTech Connect (OSTI)

    Kong, Xianli; Haghighi, M.; Yortsos, Y.C.

    1992-03-01T23:59:59.000Z

    Flow visualization experiments have been successfully employed in reservoir engineering research for many years. They involve 2-D geometries in transparent Hele-Shaw cells and glass micromodels. Although much work has been done on immiscible flows (drainage or imbibition), visualization of steamfloods, which constitute a major part of current EOR methods, has not been attempted to data. In this paper, we present experimental results on steam injection in a transparent, pyrex glass Hele-Shaw cell. Both synthetic (Dutrex 739) and natural heavy oils were used under a variety of conditions, including effects of gravity.

  15. Response of Soviet-designed VVER-440 steam generator vessel to pressurization

    SciTech Connect (OSTI)

    Kennedy, J.M.; Sienicki, J.J.

    1989-01-01T23:59:59.000Z

    The Soviet-designed VVER (Water-Cooled, Water-Moderated Energy Reactors) pressurized water reactors use horizontal steam generators to transfer energy from the primary to secondary coolant systems (DOE/NE-0084 Revision 2, 1989). Primary coolant flowing from the reactor vessel enters the steam generator through a vertical, circular, manifold header that also serves as the tubesheet distributing coolant to the horizontal tube bundle. Primary coolant exits the tube bundle and steam generator through a second similar vertical manifold header. The header design includes the provision for access by a person to inspect the mainfolds through bolted down closure heads atop each manifold. The internal diameter of each header exceeds that of the connected primary coolant system piping. The postulated failure of a manifold closure head or the manifold itself provides a pathway for primary coolant to enter the secondary system. Steam formation due to flashing of primary coolant inside the steam generator secondary side region can result in pressurization of the steam generator shell to values above the nominal secondary side operating pressure. The present work involves the investigation of the consequences of manifold failure for the case of the VVER-440 reactor system. An analysis has been performed of the loadings upon and the mechanical response of the steam generator shell for the case of a postulated large break in the manifold wall. The objectives were to calculate the maximum pressure attained inside the shell and to predict the shell failure pressure as well as the failure mechanism. 6 refs., 8 figs., 1 tab.

  16. Internship Contract (Includes Practicum)

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

  17. FINDING FOSSIL GROUPS: OPTICAL IDENTIFICATION AND X-RAY CONFIRMATION

    E-Print Network [OSTI]

    Miller, Eric D.

    We report the discovery of 12 new fossil groups (FGs) of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically ...

  18. Fossil Energy Fuel Cell Wayne Surdoval, SECA Coordinator

    E-Print Network [OSTI]

    & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel CellFossil Energy Fuel Cell Program Wayne Surdoval, SECA Coordinator June 3, 2003 National Energy & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling

  19. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY OFFICE OF FOSSIL ENERGY Air Flow North America Corp. Docket No.: 14-206-LNG APPLICATION OF AIR FLOW NORTH AMERICA CORP. FOR LONG-TERM AUTHORIZATION TO EXPORT...

  20. OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project...

    Energy Savers [EERE]

    OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project LLC ) Docket No. 14-96-LNG JOINT MOTION TO INTERVENE AND COMMENTS OF THE STATE OF ALASKA AND THE ALASKA GASLINE...

  1. OFFICE OF FOSSIL ENERGY NATURAL GAS DIVISION SERVICE LIST

    Energy Savers [EERE]

    appfergasIntraAuthReport.do?queryNameserviceListPrint&docketNumber14-96-LNG 13 OFFICE OF FOSSIL ENERGY NATURAL GAS DIVISION SERVICE LIST FE DOCKET NO: 14-96-LNG ...

  2. Proceedings of the fourth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Judkins, R.R.; Braski, D.N. (comps.)

    1990-08-01T23:59:59.000Z

    The Fourth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on may 15--17, 1990. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. Individual projects are processed separately for the data bases.

  3. President Requests $881.6 Million for Fossil Energy Programs

    Broader source: Energy.gov [DOE]

    President Obama's FY 2010 budget seeks $881.6 million for the Office of Fossil Energy to support improved energy security and rapid development of climate-oriented technology.

  4. President Requests $760.4 Million for Fossil Energy Programs

    Broader source: Energy.gov [DOE]

    President Obama's FY 2011 budget seeks $760.4 million for the Office of Fossil Energy to support improved energy security and rapid development of climate-oriented technology.

  5. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    8 Table 6. Sales of fossil fuel production from federal and Indian lands by statearea, FY 2003-13 trillion Btu State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Alabama...

  6. Ichnotaxonomic assessment of Mazon Creek area trace fossils, Illinois, USA

    E-Print Network [OSTI]

    LoBue, David J.

    2010-08-12T23:59:59.000Z

    The Francis Creek Shale Member (FCSM) of the Mid-Pennsylvanian Carbondale Formation along Mazon Creek in northern Illinois is known for soft-bodied organisms preserved within siderite concretions. Trace fossils, though ...

  7. Integrated vacuum absorption steam cycle gas separation

    DOE Patents [OSTI]

    Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

    2011-11-22T23:59:59.000Z

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  8. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01T23:59:59.000Z

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  9. Instrumentation and control for fossil-energy processes

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The 1982 symposium on instrumentation and control for fossil energy processes was held June 7 through 9, 1982, at Adam's Mark Hotel, Houston, Texas. It was sponsored by the US Department of Energy, Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Fifty-two papers have been entered individually into EDB and ERA; eleven papers had been entered previously from other sources. (LTN)

  10. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07T23:59:59.000Z

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  11. Following Where the Steam Goes: Industry's Business Opportunity

    E-Print Network [OSTI]

    Jaber, D.; Jones, T.

    Many associated benefits accrue from plant projects which comprehensively address steam systems. The DOE-Alliance to Save Energy Steam Challenge program was initiated shortly after last year's IETC on April 30, 1998 to promote awareness...

  12. Finding Benefits by Modeling and Optimizing Steam and Power Systems

    E-Print Network [OSTI]

    Jones, B.; Nelson, D.

    2007-01-01T23:59:59.000Z

    A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well...

  13. Steam boiler control specification problem: A TLA solution

    E-Print Network [OSTI]

    Merz, Stephan

    Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f Introduction We propose a solution to the steam boiler control specification problem [AS] by means of a formal

  14. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    ?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky Introduction The steam-boiler control specification problem has been proposed as a challenge for different

  15. Steam boiler control speci cation problem: A TLA solution

    E-Print Network [OSTI]

    Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur We propose a solution to the steam boiler control speci cation problem AS] by means of a formal speci

  16. An ObjectOriented Algebraic SteamBoiler Control Specification

    E-Print Network [OSTI]

    ?lveczky, Peter Csaba

    An Object­Oriented Algebraic Steam­Boiler Control Specification Peter Csaba ? Olveczky 1# , Piotr Introduction The steam­boiler control specification problem has been proposed as a challenge for di

  17. Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??

    E-Print Network [OSTI]

    Henzinger, Thomas A.

    model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models and Programming the Steam Boiler Control (J.-R. Abrial, E. Borger, and H. Langmaack, eds.), Lecture Notes

  18. Optimization of Steam Network in Tehran Oil Refinery

    E-Print Network [OSTI]

    Khodaie, H.; Nasr, M. R. J.

    2008-01-01T23:59:59.000Z

    case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating...

  19. area steam plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems to become a major factor in overall plant efficiency and profit.... Yates, W. 1980-01-01 24 SteamMaster: Steam System Analysis Software Texas A&M University - TxSpace...

  20. Finding Benefits by Modeling and Optimizing Steam and Power Systems

    E-Print Network [OSTI]

    Jones, B.; Nelson, D.

    2007-01-01T23:59:59.000Z

    A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well...

  1. The Analysis and Development of Large Industrial Steam Systems

    E-Print Network [OSTI]

    Waterland, A. F.

    1980-01-01T23:59:59.000Z

    Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

  2. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Recover Low-Pressure Waste Steam Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators...

  3. STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm

    E-Print Network [OSTI]

    STIPE STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm Thomas Koch Erik Balck stempelmotor med dampindsprjtning". English title: "Steam injected piston engine, a feasibility study...........................................................................................................................10 Gas turbine technology

  4. Steam Tracing...New Technologies for the 21st Century

    E-Print Network [OSTI]

    Pitzer, R. K.; Barth, R. E.; Bonorden, C.

    For decades, steam tracing has been an accepted practice in the heating of piping, vessels, and equipment. This paper presents recent product innovations such as "burn-safe" and "energy efficient" steam tracing products. For the many applications...

  5. Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert

    E-Print Network [OSTI]

    Albert, John

    Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert OU Mathfest, January 2009 1 professorship at age 61, but continued to work on mathematics right up to his death at age 73. 2. Steam Engines

  6. CIBO's Energy Efficiency Handbook for Steam Power Systems

    E-Print Network [OSTI]

    Bessette, R. D.

    The Council of Industrial Boiler Owners (CIBO) has developed a handbook to help boiler operators get the best performance from their industrial steam systems. This energy efficiency handbook takes a comprehensive look at the boiler and steam system...

  7. Modules for estimating solid waste from fossil-fuel technologies

    SciTech Connect (OSTI)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01T23:59:59.000Z

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

  8. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13T23:59:59.000Z

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  9. Radiological Assessment of Steam Generator Removal and Replacement: Update and Revision

    SciTech Connect (OSTI)

    Hoenes, G. R.; Mueller, M. A.; McCormack, W. D.

    1980-12-01T23:59:59.000Z

    A previous analysis of the radiological impact of removing and replacing corroded steam generators has been updated based on experience gained during steam generator repairs at Surry Unit 2. Some estimates of occupational doses involved in the operation have been revised but are not significantly different from the earlier estimates. Estimates of occupational doses and radioactive effluents for new tasks have been added. Health physics concerns that arose at Surry included the number of persons involved in the operation, tne training of workers, the handling of quantitites.of low-level waste, and the application of the ALARA principle. A review of these problem areas may help in the planning of other similar operations. A variety of processes could be used to decontaminate steam generators. Research is needed to assess these techniques and their associated occupational doses and waste volumes. Contaminated steam generators can be stored or disposed of after removal without significant radiological problems. Onsite storage and intact shipment have the least impact. In-placing retubing, an alternative to steam generator removal, results in occupational doses and effluents similar to those from removal, but prior decontamination of the channel head is needed. The retubing option should be assessed further.

  10. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01T23:59:59.000Z

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  11. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    SciTech Connect (OSTI)

    Beardwood, E.S.

    1999-07-01T23:59:59.000Z

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  12. Reduce Steam Trap Failures at Chambers Works

    E-Print Network [OSTI]

    Kouba, C.

    Maintenance Mechanic), Rick Ragsdale (Fluor), Joyce Finkle (PC), Denis P Humphreys (Fluoroproducts), Jack Hemmert, Charlie Brown 10/20/2010 2 Steam trap failures are nothing new Steam trap programs are nothing new WHAT makes this program have such a huge... impact and How is it sustainable HOW we went about finding a solution What do you have learn from this 10/20/2010 3 Six Sigma Methodology was KEY to success Savings: $1MM annualized in only 6 months! 10/20/2010 4Define: Project CTQ?s Customer...

  13. Energy & Environmental Benefits from Steam & Electricity Cogeneration

    E-Print Network [OSTI]

    Ratheal, R.

    2004-01-01T23:59:59.000Z

    steam from two on-site powerhouses (one coal-fired and one natural gas-fired) and from gas-fired and waste heat boilers in its four hydrocarbon cracking plants. The challenge was to find a way to reduce costs and improve reliability of procuring and... the electricity required by TEX and sells excess power to wholesale customers in the region. It provides a large portion of TEX steam requirements, with sufficient reliability such that TEX decommissioned its coal-fired powerhouse and reduced operations...

  14. Steam Pressure Reduction Opportunities and Issues

    E-Print Network [OSTI]

    Berry, J.; Griffin, B.; Wright, A. L.

    2006-01-01T23:59:59.000Z

    STEAM PRESSURE REDUCTION, OPPORTUNITIES, AND ISSUES Jan Berry, CEM U.S. DOE BestPractices Steam Coordinator Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6070 berryjb@ornl.gov Phone: 865-241-1939 Bob Griffin, PE Energy... Solutions Manager Enbridge Gas Distribution, Inc. P.O. Box 650, Scarborough, ON Canada, M1K 5E3 robert.griffin@enbridge.com Phone: 416-495-5298 Fax: 416-495-5331 Anthony L. Wright, Ph.D. U.S. DOE BestPractices Coordinator Oak Ridge National...

  15. DOE's BestPractices Steam End User Training Blowdown Losses 1

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    DOE's BestPractices Steam End User Training Blowdown Losses 1 June 28, 2010 Steam End User Training Steam Generation Module Steam EndUser Training Steam Generation Efficiency Module Blowdown affect on boiler efficiency. [Slide Visual ­Blowdown Losses Title Page] Steam Generation Efficiency

  16. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect (OSTI)

    Gabitto, Jorge; Barufet, Maria

    2002-11-20T23:59:59.000Z

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  17. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect (OSTI)

    Gabitto, Jorge; Barrufet, Maria

    2001-12-18T23:59:59.000Z

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibria, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  18. STEAM RECEIVER MODELS FOR SOLAR DISH CONCENTRATORS: TWO MODELS COMPARED

    E-Print Network [OSTI]

    response of a parabolic dish steam cavity receiver. Both approaches are based on a heat transfer model

  19. Steam reforming on transition-metal carbides from density-functional theory

    E-Print Network [OSTI]

    Vojvodic, Aleksandra

    2009-01-01T23:59:59.000Z

    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

  20. Living Expenses (includes approximately

    E-Print Network [OSTI]

    Maroncelli, Mark

    & engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated

  1. Proceedings of the Seventh Annual Conference on Fossil Energy Materials. Fossil Energy AR and TD Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. [comps.

    1993-07-01T23:59:59.000Z

    Objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The 37 papers are arranged into 3 sessions: ceramics, new alloys/intermetallics, and new alloys/advanced austenitics. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Reduction on synthesis gas costs by decrease of steam/carbon and oxygen/carbon ratios in the feedstock

    SciTech Connect (OSTI)

    Basini, L.; Piovesan, L. [Snamprogetti S.p.A. Research Labs., Milano (Italy)] [Snamprogetti S.p.A. Research Labs., Milano (Italy)

    1998-01-01T23:59:59.000Z

    The costs for syngas production at low steam/carbon and oxygen/carbon ratios have been analyzed for simplified process schemes of the main syngas production technologies (steam-CO{sub 2} reforming, autothermal reforming, and combined reforming) and different synthesis gas compositions. The broad analysis arises from experimental indication on the possibility of preventing carbon formation at low steam/carbon and oxygen/carbon ratios in the feedstock by choosing an appropriate catalyst or by introducing small amounts of sulfur compounds in the reactant feed. The analysis is limited to the synthesis gas production step and does not include its downstream processes. The results indicate that technologies at low steam/carbon and oxygen/carbon ratios would have a significant positive impact on synthesis gas costs.

  3. Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  4. CHEM333: Experiment 4: Steam Distillation of Essential Oils;

    E-Print Network [OSTI]

    Taber, Douglass

    CHEM333: Experiment 4: Steam Distillation of Essential Oils; Experiments A, C, D and below. Reading: For this experiment read Chapter 10. This week you will get to use steam distillation to isolate may wait until you come to lab to find out which spice you get. Steam distillation is not a common

  5. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21T23:59:59.000Z

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  6. Steam Trap Testing and Evaluation: An Actual Plant Case Study

    E-Print Network [OSTI]

    Feldman, A. L.

    1981-01-01T23:59:59.000Z

    With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process...

  7. Lowest Pressure Steam Saves More BTU's Than You Think

    E-Print Network [OSTI]

    Vallery, S. J.

    Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between...

  8. Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator

    E-Print Network [OSTI]

    Demirel, Melik C.

    Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

  9. Halophilic Archaea determined from geothermal steam vent aerosols

    E-Print Network [OSTI]

    Kelley, Scott

    Halophilic Archaea determined from geothermal steam vent aerosols Dean G. Ellis, Richard W. Bizzoco of fumaroles largely because of the difficulty in collect- ing sufficient numbers of cells from boiling steam analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii

  10. COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR USING DOMAIN DECOMPOSITION AND LOCAL ZOOM METHODS Abstract We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator, Zoom, Domain Decomposition

  11. EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS A REPORT SUBMITTED;Abstract A set of relative permeability relations for simultaneous ow of steam and water in porous media with saturation and pressure measurements. These relations show that the relative permeability for steam phase

  12. ORNL/TM-2001/263 Steam System Survey Guide

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2001/263 Steam System Survey Guide Greg Harrell, Ph.D., P.E. #12;DOCUMENT AVAILABILITY Government or any agency thereof. #12;ORNL/TM-2001/263 STEAM SYSTEM SURVEY GUIDE Greg Harrell, Ph.D., P for the U.S. Department of Energy BestPractices Steam Program Prepared by OAK RIDGE NATIONAL LABORATORY Oak

  13. EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY A REPORT SUBMITTED TO THE DEPARTMENT calculations. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954

  14. RELIABILITY OF SAMPLING INSPECTION SCHEMES APPLIED TO REPLACEMENT STEAM GENERATORS

    E-Print Network [OSTI]

    Cizelj, Leon

    RELIABILITY OF SAMPLING INSPECTION SCHEMES APPLIED TO REPLACEMENT STEAM GENERATORS Guy Roussel the size of the random sample of tubes to be inspected in replacement steam generators is revisited in this paper. A procedure to estimate the maximum number of defective tubes left in the steam generator after

  15. High Temperature Electrolysis of Steam and Carbon Dioxide

    E-Print Network [OSTI]

    High Temperature Electrolysis of Steam and Carbon Dioxide Søren Højgaard Jensen+,#, Jens V. T. Høgh + O2 #12;Electrolysis of steam at high temperature Interesting because · Improved thermodynamic of electrolysis of steam Picture taken from E. Erdle, J. Gross, V. Meyringer, "Solar thermal central receiver

  16. Rapid Recolonisation of Agricultural Soil by Microarthropods After Steam Disinfestation

    E-Print Network [OSTI]

    Cucco, Marco

    Rapid Recolonisation of Agricultural Soil by Microarthropods After Steam Disinfestation Stefano Fenoglio Paolo Gay Giorgio Malacarne Marco Cucco ABSTRACT. Steam disinfestation of soil is attracting. In this study, we assessed the effect of steam applica- tion on the microarthropod community, a fundamental

  17. Best Management Practice #8: Boiler and Steam Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  18. Experience, Engagement and Social Interaction at a Steam Locomotive

    E-Print Network [OSTI]

    Hornecker, Eva

    Experience, Engagement and Social Interaction at a Steam Locomotive Multimodal Interactive Museum a steam- powered locomotive at the Riverside Transport Museum in Glasgow, UK. We examine the role. The exhibit has visitors making a simulation of a steam powered locomotive run by controlling coal, water

  19. Numerical Simulation of a Natural Circulation Steam Generator

    E-Print Network [OSTI]

    Weinmüller, Ewa B.

    Numerical Simulation of a Natural Circulation Steam Generator W. Linzer \\Lambda , K. Ponweiser circulation steam generator. We focus on a model with a simple geometry consisting of two vertical pipes properties of water and steam. We present a numerical algorithm based on an explicit upwind discretization

  20. Global impact of fossil fuel combustion on atmospheric NO x Larry W. Horowitz

    E-Print Network [OSTI]

    Jacob, Daniel J.

    Global impact of fossil fuel combustion on atmospheric NO x Larry W. Horowitz Advanced Study University, Cambridge, MA 02138 (email djj@io.harvard.edu) #12; Abstract. Fossil fuel combustion of fossil fuel combustion on the global distribution of NO x . In the model, we tag fossil fuel NO x and its

  1. Ethical Corporation: By Invitation -Climate change: Calling the fossil fuel abolitionists EC Newsdesk

    E-Print Network [OSTI]

    Hoffman, Andrew J.

    in a fossil fuel-based economy. Fossil fuels are our primary source of energy and support our entire wayEthical Corporation: By Invitation - Climate change: Calling the fossil fuel abolitionists EC Newsdesk 28 May 08 Where is the green Wilberforce? By Invitation: Climate change: Calling the fossil fuel

  2. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    SciTech Connect (OSTI)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01T23:59:59.000Z

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

  3. Saving Money with Steam Leak and Steam Trap Surveys

    E-Print Network [OSTI]

    Woodruff, D.

    2010-01-01T23:59:59.000Z

    The U.S. industrial sector consumes about one-third of energy in the United States each year. Improving energy efficiency in an industrial environment may come with a host of benefits to the facility owner, including a ...

  4. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation

    E-Print Network [OSTI]

    Jaiswal, Namit

    2007-09-17T23:59:59.000Z

    Simulation study has shown oil production is accelerated when propane is used as an additive during steam injection. To better understand this phenomenon, distillation experiments were performed using San Ardo crude oil (12oAPI). For comparison...

  5. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation

    E-Print Network [OSTI]

    Ramirez Garnica, Marco Antonio

    2004-09-30T23:59:59.000Z

    Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand...

  6. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01T23:59:59.000Z

    or refractory. Improve condensate return. Add an Oxygen trim system Repair heat exchangers to permit condensate return.. Replace or re-build the boiler control system. Fix steam leaks. Repair a defective economizer. Implement a pressurized condensate...

  7. Improved Steam Assisted Gravity Drainage (SAGD) Performance with Solvent as Steam Additive

    E-Print Network [OSTI]

    Li, Weiqiang

    2011-02-22T23:59:59.000Z

    Steam Assisted Gravity Drainage (SAGD) is used widely as a thermal recovery technique in Canada to produce a very viscous bitumen formation. The main research objectives of this simulation and experimental study are to investigate oil recovery...

  8. Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart

    E-Print Network [OSTI]

    Jones, T.; Hart, F.

    Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

  9. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Yamaguchi, N.D.; Keeville, H. [and others

    1993-12-01T23:59:59.000Z

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  10. A LABORATORY INVESTIGATION OF STEAM ADSORPTION

    E-Print Network [OSTI]

    Stanford University

    A LABORATORY INVESTIGATION OF STEAM ADSORPTION IN GEOTHERMAL RESERVOIR ROCKS OF STANFORD UNIVERSITY of Tables List of Figures 1.0 INTRODUCTION 1.1 The Adsorption Phenomenon 1.2 Vapor Dominated Geothermal.1 Background 3.1.I The Kelvin Equation 3.1.2 Langmuir-BET Type Equations 3.2 Adsorption Calculations 3

  11. Design and Performance Aspects of Steam Generators

    E-Print Network [OSTI]

    Ganapathy, V.

    generators based on standard, pre-packaged designs. A "standard" boiler has several limitations such as pre-determined furnace dimensions, tube length, surface area, tube spacings etc, which may or may not be the optimum choice for a given steam demand...

  12. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01T23:59:59.000Z

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  13. Low chemical concentrating steam generating cycle

    DOE Patents [OSTI]

    Mangus, James D. (Greensburg, PA)

    1983-01-01T23:59:59.000Z

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  14. Natural gas-assisted steam electrolyzer

    DOE Patents [OSTI]

    Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  15. Gas turbine row #1 steam cooled vane

    DOE Patents [OSTI]

    Cunha, Frank J. (Longwood, FL)

    2000-01-01T23:59:59.000Z

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  16. Task 1Steam Oxidation (NETL-US)

    SciTech Connect (OSTI)

    G. R. Holcomb

    2010-05-01T23:59:59.000Z

    The proposed steam in let temperature in the Advanced Ultra Supercritical (AUSC) steam turbine is high enough (760C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre . A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

  17. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation

    E-Print Network [OSTI]

    Jaiswal, Namit

    2007-09-17T23:59:59.000Z

    EXPERIMENTAL AND ANALYTICAL STUDIES OF HYDROCARBON YIELDS UNDER DRY-, STEAM-, AND STEAM-WITH- PROPANE DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University...-WITH- PROPANE-DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved...

  18. Regulation of hazardous air pollutants emitted from fossil-fired boilers

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Daellenbach, K.K.

    1993-12-01T23:59:59.000Z

    The changes made in {section}112 of the Clean Air Act by the 1990 Amendments to the Act will affect the regulation of hazardous air pollutants (HAPs) emitted by fossil-fired boilers. The 1990 Amendments designated 189 chemicals/compounds as HAPS. Major and area sources of these pollutants in categories designated by the Environmental Protection Agency (EPA) will be subject to emission standards set by EPA. Industrial and institutional/commercial boilers are two such categories of HAPs designated by EPA for which emission standards will be issued. Fossil-fired boilers can emit a variety of HAPS. All or a portion of such emissions that exceed designated thresholds are likely to be regulated. This paper discusses how the 1990 amendments impact fossil-fired boilers. The steps are outlined which can be taken by owners of industrial and institutional/commercial boilers before the final emission standards are issued. These steps include participation in EPA`s standard setting process, participation in EPA`s early reduction program to delay the time when compliance with the maximum achievable control technology (MACT) standard is required, and consideration of any planned modifications to a facility which might subject that facility to a MACT standard set in advance of the EPA-set standard.

  19. Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine

    SciTech Connect (OSTI)

    Reader, G.T.; Potter, I.J. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

    1995-12-31T23:59:59.000Z

    The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

  20. Measurement of steam quality in two-phase critical flow

    E-Print Network [OSTI]

    Sinclair, John William

    1984-01-01T23:59:59.000Z

    flow orifice meter 4 Vapor-phase orifice meter 5 Steam quality adjustment valves 6 Critical flow test section 12 13 15 17 7 Two-phase mixture vent to atmosphere passage through test section 8 Fluke data logger 9 Condenser apparatus 18 21...-water 15 Steam quality as a function of vapor-phase Reynolds number for critical flow of steam-water . . . . . . . . , . . . . 48 16 Steam quality as a function of pressure measured upstream from critical flow orifice 17 Steam quality as a function...

  1. A study of steam injection in fractured media

    SciTech Connect (OSTI)

    Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

    1996-02-01T23:59:59.000Z

    Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

  2. Steam gasification of carbon: Catalyst properties

    SciTech Connect (OSTI)

    Falconer, J.L.

    1993-01-10T23:59:59.000Z

    Coal gasification by steam is of critical importance in converting coal to gaseous products (CO, H[sub 2], CO[sub 2], CH[sub 4]) that can then be further converted to synthetic natural gas and higher hydrocarbon fuels. Alkali and alkaline earth metals (present as oxides) catalyze coal gasification reactions and cause them to occur at significantly lower temperatures. A more fundamental understanding of the mechanism of the steam gasification reaction and catalyst utilization may well lead to better production techniques, increased gasification rates, greater yields, and less waste. We are studying the gasification of carbon by steam in the presence of alkali and alkaline earth oxides, using carbonates as the starting materials. Carbon dioxide gasification (CO[sub 2] + C --> 2CO) has been studied in some detail recently, but much less has been done on the actual steam gasification reaction, which is the main thrust of our work. In particular, the form of the active catalyst compound during reaction is still questioned and the dependence of the concentration of active sites on reaction parameters is not known. Until recently, no measurements of active site concentrations during reaction had been made. We have recently used transient isotope tracing to determine active site concentration during CO[sub 2] gasification. We are investigating the mechanism and the concentration of active sites for steam gasification with transient isotopic tracing. For this technique, the reactant feed is switched from H[sub 2]0 to isotopically-labeled water at the same concentration and tow rate. We can then directly measure, at reaction the concentration of active catalytic sites, their kinetic rate constants, and the presence of more than one rate constant. This procedure allows us to obtain transient kinetic data without perturbing the steady-state surface reactions.

  3. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30T23:59:59.000Z

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

  4. Computerized operating cost model for industrial steam generation

    SciTech Connect (OSTI)

    Powers, T.D.

    1983-02-01T23:59:59.000Z

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  5. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01T23:59:59.000Z

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  6. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11T23:59:59.000Z

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  7. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T. [comp.

    1993-05-01T23:59:59.000Z

    Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  8. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T. (comp.)

    1993-01-01T23:59:59.000Z

    Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  9. Optimization of a Small Modular Lead Fast Reactor with Steam Cycle for Remote Siting

    SciTech Connect (OSTI)

    Feldman, Earl E.; Wei, Thomas Y. C.; Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

    2004-07-01T23:59:59.000Z

    Parametric thermal-hydraulic studies needed to develop and optimize the design of a small modular 25 MWt lead-bismuth reactor plant have been performed. The starting point was the design of a liquid metal version of the secure transportable autonomous reactor (STAR-LM) plant of 300 to 400 MWt with a steam power cycle.1 The primary flow is driven entirely by natural convection. The new plant is to be extremely small so that its main components can be transported to the reactor site by truck. The analytical model includes the two major components of the primary loop, the reactor and a once-through steam generator, which is a shell-and-tube heat exchanger with straight vertical tubes. The modeling includes the changes between the beginning and the end of plant life due to the gradual buildup of a layer of magnetite on the surfaces of the fuel pins and on the outer surfaces of the steam generator tubes. Three reactor parametric studies were performed-one for each of three sets of reactor geometric parameters. In each study the pin-bundle pressure drop, the vertical height of the primary loop, the hydraulic diameter of the core, the number of fuel pins, and peak fuel and cladding temperatures were determined for a range of values of fuel pin linear power. Four steam generator parametric studies were performed. The first three have fixed tube inner diameters of 0.5, 1.0, and 1.5 cm, respectively. In the fourth study the tube inner diameter was allowed to vary and the margin to critical heat flux, CHF, was maintained at 20%. In the steam generator studies the independent parameters include tube length and tube-bundle pitch-to-diameter ratio and the dependent variables include steam generator cross-sectional area, the number of tubes, the vertical height of the primary loop, and the steam generator pressure drop. The results show that an acceptable optimum thermal-hydraulic design for a 25 MWt STAR-LM is feasible. (authors)

  10. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31T23:59:59.000Z

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  11. The dilemma of fossil fuel use and global climate change

    SciTech Connect (OSTI)

    Judkins, R.R.; Fulkerson, W. (Oak Ridge National Lab., TN (USA)); Sanghvi, M.K. (Amoco Corp., Chicago, IL (USA))

    1991-01-01T23:59:59.000Z

    The use of fossil fuels and relationship to climate change is discussed. As the use of fossil fuels has grown, the problems of protecting the environment and human health and safety have also grown, providing a continuing challenge to technological and managerial innovation. Today that challenge is to control atmospheric emissions from combustion, particularly those emissions that cause acidic deposition, urban pollution, and increasing concentrations of greenhouse gases. Technology for reducing acidic deposition is available and needs only to be adopted, and the remedies for urban pollution are being developed and tested. How effective or expensive these will be remains to be determined. The control of emissions of the greenhouse gas, CO{sub 2}, seems possible only be reducing the total amounts of fossil fuels used worldwide, and by substituting efficient natural gas technologies for coal. Long before physical depletion forces the transition away from fossil fuels, it is at least plausible and even likely that the greenhouse effect will impose a show-stopping constraint. If such a transition were soon to be necessary, the costs would be very high because substitute energy sources are either limited or expensive or undesirable for other reasons. Furthermore, the costs would be unevenly felt and would be more oppressive for developing nations because they would be least able to pay and, on average, their use rates of fossil fuels are growing much faster than those of many industrialized countries. It is prudent, therefore, to try to manage the use of fossil fuels as if a greenhouse constraint is an important possibility.

  12. Fossil Energy FY 2010 Budget | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf MoreRevisedProgramCostFWPActFossilStatementFossil

  13. Fossil Energy FY 2015 Budget in Brief | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget Fossil Energy's FYFossil

  14. Fossil Energy Fiscal Year 2012 Budget Request | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget Fossil Energy's

  15. Fossil Energy Research Efforts in Carbon Capture and Storage | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget Fossil Energy'sof

  16. Fossil Fuels Study Guide - High School | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FY 2010 Budget FossilThird

  17. Fossil Energy Today - Fourth Quarter, 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 20142 Fossil

  18. Fossil Energy Today - Second Quarter, 2011 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 20142 Fossil1

  19. Fossil Energy Today - Second Quarter, 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 20142 Fossil12

  20. Fossil Energy Today - Third Quarter, 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment ofFossil Energy FY 201422 Fossil

  1. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10T23:59:59.000Z

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  2. Deposition of seed and slag in MHD steam plants (Work done under the auspices of the U. S. Department of Energy)

    SciTech Connect (OSTI)

    Smyk, E.B.; Chow, L.S.H.; Johnson, T.R.; Klinger, J.G.; Staffon, J.D.

    1983-08-01T23:59:59.000Z

    At Argonne National Laboratory (ANL), the deposition rates of seed, K/sub 2/SO/sub 4/, and slag on cooled tubes, which represent the steam and air heaters in an MHD steam plant, are being measured and the characteristics of these fouling deposits studied. Some of the seed vapor condenses on the cooled surfaces but most of it condenses on entrained, submicron slag particles as the combustion gas cools. Thermophoresis is the most important deposition mechanism for the slag-seed particles. Particles larger than several micrometers, which occur as unvaporized slag particles entrained in the combustor exhaust gas, deposit mostly by inertial impaction. The effects of seed- and slag-laden flue gas on the convective sections of an MHD steam plant are simulated in the Fossil Energy Users Laboratory at ANL. Particulate measurements have shown that most of the K/sub 2/SO/sub 4/ particles have a diameter of about 0.3 ..mu..m in good agreement with theory. Seed vapor condensation rates of 1.2 to 1.5 kg/m/sup 2/ X h have been measured for a K/sub 2/SO/sub 4/ loading of 1.7 wt % in rough agreement with mass transfer theory. Measured deposition rates of submicron particles were also in rough agreement with the predictions of a thermophoretic deposition model. Tests completed to date support the premise that the convective sections of the MHD steam plant can be designed to operate efficiently and reliably.

  3. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

    2007-09-01T23:59:59.000Z

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

  4. Artificial Intelligence Techniques for Steam Generator Modelling

    E-Print Network [OSTI]

    Wright, Sarah

    2008-01-01T23:59:59.000Z

    This paper investigates the use of different Artificial Intelligence methods to predict the values of several continuous variables from a Steam Generator. The objective was to determine how the different artificial intelligence methods performed in making predictions on the given dataset. The artificial intelligence methods evaluated were Neural Networks, Support Vector Machines, and Adaptive Neuro-Fuzzy Inference Systems. The types of neural networks investigated were Multi-Layer Perceptions, and Radial Basis Function. Bayesian and committee techniques were applied to these neural networks. Each of the AI methods considered was simulated in Matlab. The results of the simulations showed that all the AI methods were capable of predicting the Steam Generator data reasonably accurately. However, the Adaptive Neuro-Fuzzy Inference system out performed the other methods in terms of accuracy and ease of implementation, while still achieving a fast execution time as well as a reasonable training time.

  5. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

    1992-01-01T23:59:59.000Z

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  6. Cash Flow Impacts of Industrial Steam Efficiency

    E-Print Network [OSTI]

    Russell, C.

    of thermal transfer tasks within the majority of manufacturing industries, it is widely perceived as a "support" utility. In other words, steam is considered a power source subordinate to process lines that are the real focus of manufacturing activity... be directed to productive functions, enabling the plant to extend production runs or perhaps even begin new product lines. RETURN ON INVESTMENT Global competition and decentralized corporate structures provide formidable challenges for manufacturing...

  7. Steam Trap Maintenance as a Profit Center

    E-Print Network [OSTI]

    Bouchillon, J. L.

    of the proper piping arrangements to all your basic equipment showing the traps, strainers, air vents, vacuum breakers, etc. These diagrams need to apply only to your plant, not to the hundreds of possibilities found in an all-purpose publication. See Fig... and rust ("dirt") E Size L Mechanical failure usually is... OJ Recommended design factor 2-3 Loud, popping condensate discharge No Renewable wlo piping disassembly No Requires strainer No Tbennal efficiency (low steam loss) Fair Condensate Wscharge...

  8. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D. (Ballston Lake, NY)

    1990-01-01T23:59:59.000Z

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  9. Steam Generator Group Project. Annual report, 1982

    SciTech Connect (OSTI)

    Clark, R.A.; Lewis, M.

    1984-02-01T23:59:59.000Z

    The Steam Generator Group Project (SGGP) is an NRC program joined by additional sponsors. The SGGP utilizes a steam generator removed from service at a nuclear plant (Surry 2) as a vehicle for research on a variety of safety and reliability issues. This report is an annual summary of progress of the program for 1982. Information is presented on the Steam Generator Examination Facility (SGEF), especially designed and constructed for this research. Loading of the generator into the SGEF is then discussed. The report then presents radiological field mapping results and personnel exposure monitoring. This is followed by information on field reduction achieved by channel head decontaminations. The report then presents results of a secondary side examination through shell penetrations placed prior to transport, confirming no change in generator condition due to transport. Decontamination of the channel head is discussed followed by plans for eddy current testing and removal of the plugs placed during service. Results of a preliminary profilometry examination are then provided.

  10. Underground coal gasification using oxygen and steam

    SciTech Connect (OSTI)

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01T23:59:59.000Z

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  11. Measuring non-condensable gases in steam

    SciTech Connect (OSTI)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15T23:59:59.000Z

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1%) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  12. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21T23:59:59.000Z

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  13. Fossil Energy Program semiannual progress report for April 1992-- September 1992

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-12-01T23:59:59.000Z

    This report covers progress made during the period April 1, 1992, through September 30, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Office of Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development.

  14. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01T23:59:59.000Z

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  15. U.S. Department of Energy Office of Fossil Energy

    E-Print Network [OSTI]

    Program Past Present Future Syngas Production Emphasis on H2 Production GTL Platform Technology) Process Overview Air Separation Syngas Generation Fischer- Tropsch Synthesis (F-T)(Carbon Monoxide + Hydrogen) Air Oxygen Jet Fuel, Diesel, Naphtha Syngas Natural Gas +/- Steam About 40% of Capital Cost

  16. MODELING INFRASTRUCTURE FOR A FOSSIL HYDROGEN ENERGY SYSTEM

    E-Print Network [OSTI]

    energy conversion plant [scale, feedstock (e.g., coal vs. natural gas), process design, electricity co cycle emissions of both air pollutants and greenhouse gases [1]. A large-scale fossil H2 system with CO2 from electric power plants [2-4], or H2 plants [5-8], CO2 transmission [9] and storage [10], and H2

  17. Proceedings of the sixth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-07-01T23:59:59.000Z

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  18. Age of Neoproterozoic Bilatarian Body and Trace Fossils, White

    E-Print Network [OSTI]

    J. L. Kirschvink3 A uranium-lead zircon age for a volcanic ash interstratified with fossil seawater. The terminal Neoproterozoic interval is char- acterized by a period of supercontinent amal- gamation and dispersal (1, 2), low-latitude glaciations (3, 4), chemical perturbations of seawater (5

  19. Proceedings of the fifth annual conference on fossil energy materials

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1991-09-01T23:59:59.000Z

    The Fifth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 14--16, 1991. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. This conference is held every year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B.

  20. U.S. Department of Energy Office of Fossil Energy

    E-Print Network [OSTI]

    efficiency) H2 pipeline system #12;System Analysis Comparison of Hydrogen from Coal & Natural Gas usedU.S. Department of Energy Office of Fossil Energy Cross Cutting Analysis June 3, 2003 Hydrogen and Coal Derived Hydrogen FCV System Analysis · Two scenarios were developed to estimate the impact

  1. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages Franck Lartauda,b,1 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpenti

  2. PALEOZOIC TRACE FOSSILS FROM THE KUFRA BASIN, LIBYA

    E-Print Network [OSTI]

    Benton, Michael

    PALEOZOIC TRACE FOSSILS FROM THE KUFRA BASIN, LIBYA BRIAN R. TURNER AND MICHAEL J. BENTONPaleozoicsuccessionin the southeastern part ofthe Kufra Basin, Libya, comprises a sequence of sedimentary facies up to 250 m thick THEK u m BASINin southeast Libya (Figure 1)occupiesan area of about 400,000km2and is filled

  3. Introduction Fossil fuel combustion by aviation, shipping and road

    E-Print Network [OSTI]

    Haak, Hein

    fifth of the total global anthropogenic emissions of CO2. These emissions are growing more rapidly than to global CO emissions are estimated to be much smaller, likely due to more efficient fuel combustion. Road96 Introduction Fossil fuel combustion by aviation, shipping and road traffic contributes about one

  4. Fossil Energy Oil and Natural Gas Capabilities for Tribes Webinar

    Broader source: Energy.gov [DOE]

    Attend this webinar to hear from U.S. Department of Energy Fossil Energy Program staff about the Programs oil and gas portfolio, technologies, and research capabilities that may be of interest to Tribes and tribal energy resource development organizations.

  5. Comments on US LMFBR steam generator base technology

    SciTech Connect (OSTI)

    Simmons, W.R.

    1984-01-01T23:59:59.000Z

    The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects.

  6. Water chemistry of breeder reactor steam generators. [LMFBR

    SciTech Connect (OSTI)

    Simpson, J.L.; Robles, M.N.; Spalaris, C.N.; Moss, S.A.

    1980-08-01T23:59:59.000Z

    The water quality requirements will be described for breeder reactor steam generators, as well as specifications for balance of plant protection. Water chemistry details will be discussed for the following power plant conditions: feedwater and recirculation water at above and below 5% plant power, refueling or standby, makeup water, and wet layup. Experimental data will be presented from tests which included a departure from nucleate boiling experiment, the Few Tube Test, with a seven tube evaporator and three tube superheater, and a verification of control and on-line measurement of sodium ion in the ppB range. Sampling and instrumentation requirements to insure adherence to the specified water quality will be described. Evaporator cleaning criteria and data from laboratory testing of chemical cleaning solutions with emphasis on flow, chemical composition, and temperature will be discussed.

  7. Industrial Steam System Process-Control Schemes: A BestPractices Steam Technical Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers toHeat PumpsSteamSteam

  8. Effective Steam Trap Selection/Maintenance - Its Payback

    E-Print Network [OSTI]

    Garcia, E.

    1984-01-01T23:59:59.000Z

    trap location, service, manufacturer, model, steam pressures, pipe size, type of connect ion, associated valves, strainer, and insulation. The condition in which each trap was found in the plant was reported and summarized as in Table 1. Other... leaks and any unsafe situations were also noted. Of the 5,000 surveyed traps, approximately 20% had failed open or were in another failure mode where live steam was leaking, 5% were found plugged, and 10% were found not losing steam but needing...

  9. Reliability Improvement Programs in Steam Distribution and Power Generation Systems

    E-Print Network [OSTI]

    Petto, S.

    RELIABILITY IIIPROVEfWlT PROGRAMS IN STEAM DISTRIBUTION AND POVER GENERATION SYSTEItS Steve Petto Tech/Serv Corporation Blue Bell, PA Abstract This paper will present alternatives to costly corrective maintenance of the steam trap... In the reliability and efficiency of the system. Recent studies have shownt hat more than 40% of all In stalled steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems In condensate return...

  10. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01T23:59:59.000Z

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  11. Steam generator for liquid metal fast breeder reactor

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

    1985-01-01T23:59:59.000Z

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  12. Seasonal and latitudinal variability of troposphere ?14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere

    E-Print Network [OSTI]

    Randerson, J. T; Enting, I. G; Schuur, E. A. G; Caldeira, K.; Fung, I. Y

    2002-01-01T23:59:59.000Z

    CO 2 Emissions From Fossil-Fuel Burning, Hydraulic Cementof seasonal variation in fossil fuel CO 2 emissions, Tellus,contributions from fossil fuels, oceans, the stratosphere,

  13. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO 2

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    dioxide emissions from fossil fuel consumption and cementannual variations in fossil fuel emissions, J. Geophys.2008 Contribution of ocean, fossil fuel, land biosphere, and

  14. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-07-01T23:59:59.000Z

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  15. Full Steam Ahead for PV in US Homes?

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Full Steam Ahead for PV in US Homes? Mark Bolinger, Galenutility-scale photovoltaic (PV) installations in the yearsimplications for PV rebate program administrators, PV system

  16. Building America Expert Meeting: Multifamily Hydronic and Steam...

    Broader source: Energy.gov (indexed) [DOE]

    controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and...

  17. Steam System Balancing and Tuning for Multifamily Residential...

    Energy Savers [EERE]

    for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested:...

  18. Y-12 Steam Plant Project Received National Recognition for Project...

    National Nuclear Security Administration (NNSA)

    Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  19. a-3 chemical steam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and desirable characteristics as both a heat transfer medium and a... Waterland, A. F. 1980-01-01 12 Thomas Reddinger Director, Steam Materials Science Websites Summary: Bourdon...

  20. Steam and Condensate System Optimization in Converse College, Spartanburg, SC

    E-Print Network [OSTI]

    Cruz, A.; Iordanova, N.; Stevenson, S.

    2007-01-01T23:59:59.000Z

    STEAM AND CONDENSATE SYSTEM OPTIMIZATION IN CONVERSE COLLEGE, SPARTANBURG, SC Alberto Cruz, CEM Nevena Iordanova, CEM Susan Stevenson Energy Systems Engineer Director of Engineering Services VP for Finance...

  1. Recent Progress on Steam Hydrogasification of Carbonaceous Matter...

    Broader source: Energy.gov (indexed) [DOE]

    Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel Surinder P. Singh, Arun Raju, Chan Seung Park, Joe Norbeck University of California,...

  2. Steam Plant Operator (2nd Shift) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam Plant Operator (2nd Shift) Department: Facilities Supervisor(s): Willam Gervasi Staff: L&S 5 Requisition Number: 1500061 Obtain the necessary skills and theoretical knowledge...

  3. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    emissions from fossil-fuel combustion R. J. Andres 1 , T. A.resolution fossil fuel combustion CO 2 emission fluxes forCO 2 emissions from fuel combustion, 2010 edition, OECD/IEA,

  4. Energy Conclave 2010 The global energy concerns of depleting fossil fuels and climate change have put

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    at the rapidly increasing energy demand, the limited supply of fossil fuels and the increased concern over globalEnergy Conclave 2010 8th - 15th The global energy concerns of depleting fossil fuels and climate

  5. Fossil Energy Program semiannual progress report for October 1991--March 1992

    SciTech Connect (OSTI)

    Judkins, R.R.

    1992-11-01T23:59:59.000Z

    This report covers progress made during the period October 1, 1991, through March 31, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development. The Fossil Energy Program organization chart is shown in the appendix. Topics discussed are under the following projects: materials research and developments; environmental analysis support; coal conversion development; coal combustion research; and fossil fuels supplies modeling and research.

  6. Analyzing the Regional Impact of a Fossil Energy Cap in China

    E-Print Network [OSTI]

    Zhang, D.

    Decoupling fossil energy demand from economic growth is crucial to Chinas sustainable development. In addition to energy and carbon intensity targets enacted under the Twelfth Five-Year Plan (20112015), a coal or fossil ...

  7. Mid-Late Holocene environmental change in northern Sweden: an investigation using fossil insect remains

    E-Print Network [OSTI]

    Khorasani, Sara

    2013-11-28T23:59:59.000Z

    For the first time, Mid-Late Holocene insect fossil assemblages were studied from inland northern Sweden, producing new evidence relating to both natural environmental changes and human impacts. The insect fossil ...

  8. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    SciTech Connect (OSTI)

    Judkins, RR

    2001-06-14T23:59:59.000Z

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  9. Air Pollution Control Regulations: No. 6 - Continuous Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Management Stationary sources, including fossil fuel fired steam or hot water generating units, may be required to install and operate a continuous emissions monitoring system...

  10. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOE Patents [OSTI]

    Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  11. Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America

    E-Print Network [OSTI]

    Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

    2007-01-01T23:59:59.000Z

    changes resulting from fossil-fuel CO 2 release and cosmic-for recently added fossil fuel CO 2 in the atmosphere anddioxide emissions from fossil fuel consumption and cement

  12. Experimental study of Morichal heavy oil recovery using combined steam and propane injection

    E-Print Network [OSTI]

    Goite Marcano, Jose Gregorio

    1999-01-01T23:59:59.000Z

    with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

  13. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    Flows and stream conditions in steam power cycle. Table 4.1in the low-temperature reactor system. Steam power cycle 8.1Heat Storage System for a Solar Steam Power Plant." 12th

  14. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    of the process, using a steam hydro-gasification reactor (simultaneously in the presence of both hydrogen and steam toundergo steam pyrolysis and hydro-gasification in a single

  15. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    IOUT *MEBP *STC(QAAN. R )-STEAM TURBINE CALC. ~ETFQMIN~5 ST~KJ/S) 1JC. /(GROSS STEAM TURBINE POWER PRODUCTION) STEA~ GENprogram then prints the steam turbine results. All flows in

  16. Experimental study of Morichal heavy oil recovery using combined steam and propane injection

    E-Print Network [OSTI]

    Goite Marcano, Jose Gregorio

    1999-01-01T23:59:59.000Z

    with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

  17. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    MW) CERT-1 Gas turbine Steam turbine Total Naphtha DieselMW) CERT-3 CERT-3B Gas turbine Steam turbine Total Naphthageneration (MW) Gas turbine Steam turbine Total Naphtha

  18. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    Heat Trimmer Dist. Condenser Turbine Steam Leaks LP TurbineWaste Heat Trimmer Turbine Steam Leaks LP Turbine CondenserHR) CARRIED BY LP TURBINE STEAM. *STC OFL RH ll~ PRESSURE

  19. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    Power generation (MW) Gas turbine Steam turbine Total Naphtha DieselPower generation (MW) CERT-1 Gas turbine Steam turbine Total Naphtha DieselPower generation (MW) Gas turbine CERT-2 CERT-2B Steam turbine Total Naphtha Diesel

  20. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    System for a Solar Steam Power Plant." 12th Intersoc. Energywith a solar-heated steam power plant during daylight hoursa conventional steam-cycle power plant. for both the power