Powered by Deep Web Technologies
Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Auto dealers | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Renters and tenants Restaurants Frequently asked questions Auto dealers Photograph of a car inspection Auto dealerships use, on average, more energy per square foot than a typical...

2

Information for Automobile Dealers  

NLE Websites -- All DOE Office Websites (Extended Search)

Information for Automobile Dealers Information for Automobile Dealers Automobile dealers are encouraged to download and print copies of the Fuel Economy Guide for their customers. An electronic version of the guide is available below. To ensure that you will receive a new model year Fuel Economy Guide via e-mail in the future, please provide your e-mail address to us by sending an email to: fueleconomy@ornl.gov. Fuel Economy Guide Cover The Current Guide 2014 Fuel Economy Guide Adobe Acrobat Icon 2014 Letter to Automobile Dealers Adobe Acrobat Icon 2014 Order Card Adobe Acrobat Icon To order printed copy of the 2012-2014 Fuel Economy Guide Online: http://www.afdc.energy.gov/feguide-order By mail: NREL -- Fuel Economy Guide 15013 Denver West Parkway Golden, CO 80401 By phone: 1-800-254-6735 Automobile dealers are also encouraged to promote the Fuel Economy Guide

3

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Dealer Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Dealer Permit

4

Alternative Fuels Data Center: Propane Board and Dealer Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Board and Propane Board and Dealer Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Board and Dealer Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Board and Dealer Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Google Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Delicious Rank Alternative Fuels Data Center: Propane Board and Dealer Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Board and Dealer Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Board and Dealer Requirements The Idaho Liquefied Petroleum Gas (LPG) Public Safety Act established the

5

Automobile Dealer Letter-FINAL.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Agency Agency December 2013 SUBJECT: The 2014 Model Year EPA/DOE Fuel Economy Guide Dear Automobile Dealer: The U.S. Department of Energy (DOE) and U.S. Environmental Protection Agency (EPA) seek your help in providing your customers with information about fuel economy and the benefi ts of using more fuel-effi cient vehicles. Fuel economy is an important factor for consumers when shopping for a vehicle. EPA regulations require automobile dealers to prominently display the EPA/DOE Fuel Economy Guide booklets at each location where new automobiles are offered for sale and to make them available to the public at no charge (40 CFR 600.405-08 and 600.407-08). The regulations ensure that prospective customers have ready access to fuel economy information for current model year vehicles.

6

Dual Tank Fuel System  

DOE Patents (OSTI)

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

7

Dealer: application-aware request splitting for interactive cloud applications  

Science Conference Proceedings (OSTI)

Deploying interactive applications in the cloud is a challenge due to the high variability in performance of cloud services. In this paper, we present Dealer-- a system that helps geo-distributed, interactive and multi-tier applications meet their ... Keywords: cloud computing, geo-distribution, interactiv emulti-tier applications, performance variability, request redirection, service level agreement (SLA)

Mohammad Hajjat; Shankaranarayanan P. N; David Maltz; Sanjay Rao; Kunwadee Sripanidkulchai

2012-12-01T23:59:59.000Z

8

AX Tank Farm tank removal study  

Science Conference Proceedings (OSTI)

This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1999-02-24T23:59:59.000Z

9

Atlantic Tunas Dealer Permit Holder Reporting Instructions for Atlantic Bluefin Tuna  

E-Print Network (OSTI)

Atlantic Tunas Dealer Permit Holder Reporting Instructions for Atlantic Bluefin Tuna An Atlantic Tunas Dealer Permit must be held to purchase an Atlantic bluefin tuna from a fishing vessel. (For://www.nero.noaa.gov/permits/ ) Atlantic bluefin tuna may only be purchased from a fisherman holding an Atlantic Tunas Vessel Permit

10

Tank 241-AW-101 tank characterization plan  

DOE Green Energy (OSTI)

The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists.

Sathyanarayana, P.

1994-11-22T23:59:59.000Z

11

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topics 3 Overview of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control...

12

Tank 241-S-107 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues (Conway 1993). The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process``. This document satisfies that requirement for tank 241-S-107 (S-107) sampling activities. The report gives a summary of descriptive information available on Tank S-107. Included are the present status and physical description of the tank, its age, process history, and expected tank contents from previous sampling and analytical data. The different types of waste, by layer, for Tank S-107 will also be discussed. As of December 1994, Tank S-107 has been categorized as sound and was partially isolated in December 1982. It is a low-heat load tank and is awaiting stabilization. Tank S-107 is expected to contain two primary layers of waste. The bottom layer should contain a mixture of REDOX waste and REDOX cladding waste. The second layer contains S1 saltcake (waste generated from the 242-S evaporator/crystallizer from 1973 until 1976), and S2 salt slurry (waste generated from the 242-S evaporator-crystallizer from 1977 until 1980).

Jo, J.

1995-04-06T23:59:59.000Z

13

Propane extractor could allow small dealers to obtain product as in 'old days'  

SciTech Connect

A growing trend for small natural gas plant operators to install cryogenic demethanizers lets them recover ethane and heavier hydrocarbons as a single raw-make product for pipelining to a central location for fractionation, instead of producing LPG for local sales. The local LPG dealers must then transport LPG a substantial distance from the central fractionator. A possible solution to the dealers' supply problem is proposed: construct small portable processing units (computer-controlled for unattended operation) which would receive a portion of the raw-make liquid from a pipeline, extract propane as LPG, and return the balance of the stream to the pipeline, storing LPG for loading local transports. Not only would transportation costs be reduced, but local key operated loading facilities would be open at all hours of the day or night, seven days a week; the alternative would be long lines of transports waiting to load at central facilties during limited loading times. In Texas, residential LPG usage of about 40,000 bbl/day (10% of estimated raw liquid volumes) would require greater than 80 units of the new Propane Extraction Process. Diagrams are included.

Ainsworth, A.G.; McClanahan, D.N.

1977-12-01T23:59:59.000Z

14

Is Price Behavior Scaling and Multiscaling in a Dealer Market? Perspectives from Multi-Agent Based Experiments  

Science Conference Proceedings (OSTI)

Empirical findings point out that the scaling and multiscaling properties can be found in many dealer markets. But how do these properties emerge from these financial markets? What are the dynamical causes for these nonlinear properties? Are they the ... Keywords: Artificial dealer market, Bounded rationality, C63, D83, Heterogeneity, MF-DFA, Scaling and multiscaling properties

Ling-Yun He

2010-10-01T23:59:59.000Z

15

A Dealer Guide to ENERGY STAR®: Putting Energy into Profits | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

A Dealer Guide to ENERGY STAR®: Putting Energy into Profits A Dealer Guide to ENERGY STAR®: Putting Energy into Profits Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

16

The Federal Reserves Primary Dealer Credit Facility. Unpublished paper, Federal Reserve Bank of  

E-Print Network (OSTI)

As liquidity conditions in the repo marketthe market where broker-dealers obtain financing for their securitiesdeteriorated following the near-bankruptcy of Bear Stearns in March 2008, the Federal Reserve took the step of creating a special facility to provide overnight loans to dealers that have a trading relationship with the Federal Reserve Bank of New York. Six months later, in the wake of new strains in the repo market, the Fed expanded the facility by broadening the types of collateral accepted for loans. Both initiatives were designed to help restore the orderly functioning of the market and to prevent the spillover of distress to other financial firms. On March 16, 2008, at the height of the Bear Stearns crisis, the Federal Reserve Board granted the Federal Reserve Bank of New York the authority to establish the Primary Dealer Credit Facility (PDCF). The facility allows primary dealersbanks and securities broker-dealers that trade U.S. government and other securities with market participants and the Federal Reserve Bank of New Yorkto borrow from the New York Fed on a collateralized basis in times of market stress. 1 By extension, this provision of credit is designed to ease liquidity pressures in the broader repo market, the secured funding market where primary dealers and others normally obtain much of the financing for their securities holdings. In the days leading up to the Feds action, access to repo financing had narrowed sharply, and the Fed recognized the need to provide dealers with an alternate source of funds. This edition of Current Issues offers an overview of the Primary Dealer Credit Facility. We consider the events that led to the creation of the facilitychiefly, the 2008 Bear Stearns turmoil and the liquidity strains that developed in the overnight repo marketand the reasons for the expansion of the facility in September 2008. 2 In addition, we discuss the economics of the facility in relation to the Federal Reserves role as lender of last resort. Also considered are issues relating to the supervision of financial institutions and the risk of moral hazard that have been raised following the launch of the PDCF. 3

Tobias Adrian; Christopher R. Burke; James J. Mcandrews

2008-01-01T23:59:59.000Z

17

Measuring the Impact of Negative Demand Shocks on Car Dealer Networks  

Science Conference Proceedings (OSTI)

The goal of this paper is to study the behavior of consumers, dealers, and manufacturers in the car sector and present an approach that can be used by managers and policy makers to investigate the impact of significant demand shocks on profits, prices, ... Keywords: automobile industry, models of demand and supply, spatial competition

Paulo Albuquerque; Bart J. Bronnenberg

2012-01-01T23:59:59.000Z

18

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2  Overview and Status of SRS Tank Closure Program  Issues/Challenges  Communications  Schedule Performance  Ceasing Waste Removal  Compliance with SC Water Protection Standards  Questions? Topics 3 Overview of SRS Tank Closure Program  Two Tank Farms - F Area and H Area  Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act  Three agency Federal Facility Agreement (FFA)  DOE, SCDHEC, and EPA  51 Tanks  24 old style tanks (Types I, II and IV)  Do not have full secondary containment  FFA commitments to close by 2022  2 closed in 1997

19

Tank 48 - Chemical Destruction  

SciTech Connect

Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

2013-01-09T23:59:59.000Z

20

Comparative safety analysis of LNG storage tanks  

Science Conference Proceedings (OSTI)

LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Explanatory Notes  

U.S. Energy Information Administration (EIA)

also modified to include dealer tank wagon, rack, and ... the relative size of their sales ... propane, and residual fuel oil resellers and retailers. ...

22

Dealer Financial Conditions and the Term Securities Lending Facility: Was Bagehot Right After All? *  

E-Print Network (OSTI)

Do central bank lender-of-last-resort (LOLR) facilities elicit greater and more aggressive participation from less capitalized financial firms? We answer this question by examining financial conditions of dealers that participated in the Federal Reserve?s Term Securities Lending Facility (TSLF), a LOLR facility that provided liquidity against a range of assets during 2008-09. We find that, in the cross-section, dealers with more leverage and lower equity returns prior to a TSLF auction were more likely to participate in the auction and bid more aggressively (i.e., bid more and at higher bidding rates). These effects were stronger for auctions that allowed tendering of more illiquid collateral. We find some support for reluctance of firms to participate given a lack of participation in earlier auctions, but such stigma does not fully explain the effect of leverage in inducing greater participation. Our results suggest the importance of considering solvency concerns of banks when designing LOLR facilities during times of aggregate liquidity shortages.

Viral V Acharya; Michael J. Fleming; Federal Reserve; Bank New York; Asani Sarkar; Federal Reserve; Bank New York

2011-01-01T23:59:59.000Z

23

FEMA Think Tank Call Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMA Think Tank Call Meeting FEMA Think Tank Call Meeting Minimize Date: Wednesday, September 25, 2013 Time: 1:00 - 2:30 p.m. (Eastern Time) Location: Y-12 New Hope Center, 602 Scarboro Rd, Oak Ridge, TN 37830 Overview Description: The FEMA Think Tank is a mechanism to formally collect, discuss, evaluate, and develop innovative ideas in the emergency management community - state, local, and tribal governments, as well as members of the public, including the private sector, the disability community, and volunteer groups. It ensures whole community partners and federal employees are motivated and encouraged to innovate, actively solicit and discuss ideas, and oversee the implementation of promising ideas. The FEMA Think Tank is designed to act as a forum where good ideas are shared, discussed, and become innovative solutions. There are currently two components to the think tank. The first, an online component, can be accessed at any time at, http://fema.ideascale.com. The second component is a conference call that includes both a nationwide telephone audience and an audience at the FEMA Think Tank Call site. This second component is described in more detail at the following website: http://www.fema.gov/fema-think-tank.

24

CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS  

SciTech Connect

The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

Hommel, S.; Fountain, D.

2012-03-28T23:59:59.000Z

25

Type I Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

26

Tank characterization report for single-shell Tank B-201  

Science Conference Proceedings (OSTI)

The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank.

Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

1994-09-01T23:59:59.000Z

27

AX Tank Farm tank removal study  

SciTech Connect

This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1998-10-14T23:59:59.000Z

28

HANFORD TANK CLEANUP UPDATE  

SciTech Connect

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

29

ICPP tank farm closure study. Volume 1  

SciTech Connect

The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

1998-02-01T23:59:59.000Z

30

RETRIEVAL & TREATMENT OF HANFORD TANK WASTE  

SciTech Connect

The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next generation of tanks to be retrieved.

EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

2006-01-20T23:59:59.000Z

31

Auxiliary resonant DC tank converter  

SciTech Connect

An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

Peng, Fang Z. (Knoxville, TN)

2000-01-01T23:59:59.000Z

32

ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING  

SciTech Connect

Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank walls. The Acid Spray Wash was followed by a Water Spray Wash to remove oxalic acid from the tank internals. SRR conducted the Spray Wash as follows. Personnel added 4,802 gallons of 8 wt % oxalic acid to Tank 6F through the spray mast installed in Riser 2, added 4,875 gallons of oxalic acid through Riser 7, added 5,000 gallons of deionized water into the tank via Riser 2, and 5,000 gallons of deionized water into the tank via Riser 7. Following the Spray Wash, they visually inspected the tank and transferred 22,430 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Following the Spray Wash and transfer, Savannah River Site (SRS) added 113,935 gallons of well water to Tank 6F. They mixed the tank contents with a single SMP and transferred 112,699 gallons from Tank 6F to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,488 gallons of solids remained in the tank. Following the Water Wash, SRR personnel collected a solid sample and submitted it to SRNL for analysis to assess the effectiveness of the chemical cleaning and to provide a preliminary indication of the composition of the material remaining in the tank.

Poirier, M.; Fink, S.

2010-02-02T23:59:59.000Z

33

STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114  

SciTech Connect

Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

2008-12-31T23:59:59.000Z

34

Septic Tanks (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

35

Tank 241-U-111 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-111.

Carpenter, B.C.

1995-01-24T23:59:59.000Z

36

Tank 241-B-112 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.`` This document satisfies that requirement for tank 241-B-112 (B-112). Tank B-112 is currently a non-Watch List tank; therefore, the only applicable DQO as of January 1995 is the Tank Safety Screening Data Quality Objective, which is described below. Tank B-112 is expected to have three primary layers. A bottom layer of sludge consisting of second-cycle waste, followed by a layer of BY saltcake and a top layer of supernate.

Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-06T23:59:59.000Z

37

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

38

TANK48 CFD MODELING ANALYSIS  

SciTech Connect

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

Lee, S.

2011-05-17T23:59:59.000Z

39

Tank 241-AZ-102 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

40

Tank 241-AZ-101 tank characterization plan  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

Schreiber, R.D.

1995-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Haynes Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Haynes Tow Tank Haynes Tow Tank Jump to: navigation, search Basic Specifications Facility Name Haynes Tow Tank Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Tow Tank Length(m) 45.7 Beam(m) 3.7 Depth(m) 3.0 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Special Physical Features The tank includes a 7.6m by 3.7m by 1.5m deep sediment pit. Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 1.8 Length of Effective Tow(m) 24.4 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView Number of channels 40 Cameras Yes Number of Color Cameras 6 Description of Camera Types 3 video; 3 digital

42

Tank characterization report for single-shell tank 241-C-109  

SciTech Connect

This document provides the characterization information and interprets the data for Single-Shell Tank 241-C-109. Single-Shell Tank 241-C-109 is an underground storage tank containing high-level radioactive waste. It is located in the C Tank Farm in the Hanford Site`s 200 East Area. The tank was sampled in September of 1992 to address the Ferrocyanide Unreviewed Safety Question. Analyses of tank waste were also performed to support Hanford Federal Facility Agreement and Consent Order Milestone M-44-08. Tank 241-C-109 went into service in 1946 and received first-cycle decontamination waste from bismuth phosphate process operations at B Plant in 1948. Other waste types added that are expected to contribute to the current contents include ferrocyanide scavenging waste and Strontium Semiworks waste. It is the last tank in a cascade with Tanks 241-C-107 and 241-C-108. The tank has a capacity of 2,010 kL (530 kgal) and currently contains 250 kL (66 kgal) of waste, existing primarily of sludge. Approximately 9.15 kL (4 kgal) of supernate remain. The sludge is heterogeneous, with significantly different chemical compositions depending on waste depth. The major waste constituents include aluminum, calcium, iron, nickel, nitrate, nitrite, phosphate, sodium, sulfate and uranium. The major radionuclides present are Cesium 137 and Strontium 90. The results of this characterization indicate that the waste in this tank is adequately described in the Dangerous Waste Permit Application of the Single-Shell Tank System.

DiCenso, A.T.; Amato, L.C.; Lambie, R.W.; Franklin, J.D.; Seymour, B.J.; Johnson, K.W.; Stevens, R.H. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Remund, K.M. [Pacific Northwest Lab., Richland, WA (United States); Sasaki, L.M.; Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-01T23:59:59.000Z

43

Underground Storage Tank Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

44

Bases for solid waste volume estimates for tank waste remediation system  

Science Conference Proceedings (OSTI)

This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

Reddick, G.W., Westinghouse Hanford

1996-08-01T23:59:59.000Z

45

River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description  

Science Conference Proceedings (OSTI)

This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

DOVALLE, O.R.

1999-12-29T23:59:59.000Z

46

TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS  

Science Conference Proceedings (OSTI)

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

Lee, S.; Leishear, R.; Poirier, M.

2012-05-31T23:59:59.000Z

47

Hanford tanks initiative (HTI) work breakdown structure (WBS)dictionary  

Science Conference Proceedings (OSTI)

This dictionary lists the scope, deliverables, and interfaces for the various work elements of the Hanford Tanks Initiative. Cost detail is included for information only.

Mckinney, K.E.

1997-03-31T23:59:59.000Z

48

Tank characterization report for single-shell Tank 241-T-105  

SciTech Connect

Single-Shell Tank 241-T-105, an underground storage tank containing radioactive waste, was most recently sampled in March and May of 1993. Sampling and characterization of the waste in Tank 241-T-105 contribute toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order. Tank 241-T-105, located in the 200 West Area T Tank Farm, was constructed in 1944 and went into service in July of 1946 by receiving second cycle decontamination waste from the T Plant. During the service life of the tank, other wastes were added including T Plant first cycle waste, PUREX Plant coating waste, laboratory waste, decontamination waste from T Plant, B Plant low level waste, and B Plant ion exchange waste. The tank currently contains 98,000 gal of non-complexed waste, existing primarily as sludge. Approximately 23,000 gal of drainable interstitial liquid remain. The waste is heterogeneous. Tank 241-T-105 is classified as a non-Watch List tank, with no Unreviewed Safety Questions associated with it at this time. The tank was Interim Stabilized in 1987 and Intrusion Prevention was completed in 1988. The waste in Tank 241-T-105 is comprised of precipitated salts, some of which contain traces of radioactive isotopes. The most prevalent analytes include aluminum, iron, silicon, manganese, sodium, uranium, nitrate, nitrite, and sulfate. The water digested sample results demonstrated that cadmium, chromium, lead, mercury, selenium, and silver concentrations were greater than their Toxicity Characteristic regulatory thresholds. The major radionuclide constituents are {sup 90}Sr and {sup 137}Cs. The waste is 74.1% solids by weight.

DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Nuttall, G.L.; Johnson, K.W. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

49

Tank 48 Treatment Process  

-Reduce elutriation of particulates containing coal System planning: Sludge batch planning/DWPF WAC-Evaluate Tank Farm and DWPF coal capability

50

SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127  

SciTech Connect

Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

2012-01-25T23:59:59.000Z

51

RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM  

SciTech Connect

Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North and South hemispheres is currently supported by a single Mantis rover sample in each hemisphere. A floor scrape sample was obtained from a compact region near the center riser slightly in the South hemisphere and has been analyzed for a shortened list of key analytes. There is not enough additional material from the floor scrape sample material for completing the full suite of constituents. No floor scrape samples have been previously taken from the North hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 19 residual floor material, four additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Three of the four additional samples from each hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape sample results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in t

Harris, S.; Shine, G.

2009-12-14T23:59:59.000Z

52

241-AN Double Shell Tanks (DST) Integrity Assessment Report  

Science Conference Proceedings (OSTI)

This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

JENSEN, C.E.

1999-09-21T23:59:59.000Z

53

241-AY Double Shell Tanks (DST) Integrity Assessment Report  

Science Conference Proceedings (OSTI)

This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

JENSEN, C.E.

1999-09-21T23:59:59.000Z

54

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

55

Near Tank Treatment System  

Hanford High Level Waste: S/SX Tanks TEM Images of Actual Waste Boehmite 7 (a) 0.2 m (b) 0.2 m (c) 0.5 m (d) 0.2 m U and Mn particles . Near Tank Treatment System

56

Tank farms solid waste characterization guide with sampling and analysis plan attachment  

SciTech Connect

This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

Quigley, J.T.

1997-04-02T23:59:59.000Z

57

SRS Tank Closure Regulatory Developments  

Order 435.1 and State-required documents are prepared and in review Tank-specific documents for Tanks 18, 19, 5 and ... Solids Volume (gal) Solids ...

58

Tank characterization reference guide  

Science Conference Proceedings (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

59

Tank characterization report for Double-Shell Tank 241-AP-103  

SciTech Connect

This document provides the characterization information and interprets the data for Double-Shell Tank AP-103. The results of the analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics (D waste codes) and against state waste codes. It did not include checking tank analyses against U, P, F, or K waste codes since application of these codes is dependent on the source of the waste and not on particular constituent concentrations. The results indicate that the waste in this tank is adequately described in the Dangerous Waste Permit Application for the Double-Shell Tank System.

DeLorenzo, D.S.; DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-07-01T23:59:59.000Z

60

TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES  

SciTech Connect

A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na{sub 2}SO{sub 4} {center_dot} Na{sub 2}CO{sub 3}). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

2009-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lakefront Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Lakefront Tow Tank Lakefront Tow Tank Jump to: navigation, search Basic Specifications Facility Name Lakefront Tow Tank Overseeing Organization University of New Orleans Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 4.9 Depth(m) 1.8 Cost(per day) $1200 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.7 Length of Effective Tow(m) 25.9 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Length(m) 22 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular random and transient waves Spectra include ISSC, JONSWAP, Bretschneider, Pierson-Moskowitz and custom user-defined. Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Aluminum segmented arch

62

Tank 241-U-202 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-U-202.

Schreiber, R.D.

1995-02-21T23:59:59.000Z

63

Tank 241-BY-106 tank characterization plan  

Science Conference Proceedings (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-106.

Schreiber, R.D.

1995-01-24T23:59:59.000Z

64

Tank 241-C-102 tank characterization plan  

SciTech Connect

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-102.

Schreiber, R.D.

1995-01-01T23:59:59.000Z

65

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

66

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

Baker, T.H.; Ott, H.L.

1994-01-11T23:59:59.000Z

67

Pressurizer tank upper support  

DOE Patents (OSTI)

A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

Baker, Tod H. (O' Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

1994-01-01T23:59:59.000Z

68

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

69

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

70

TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS  

SciTech Connect

The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

Lee, S.; Leishear, R.; Poirier, M.

2012-05-31T23:59:59.000Z

71

Seismically-induced sloshing phenomena in LMFBR reactor tanks  

Science Conference Proceedings (OSTI)

A coupled fluid-structure interaction solution procedure for analyzing seismically-induced sloshing phenomena in fluid-tank systems is presented. Both rigid and flexible tanks are considered. Surface-wave effects are also included. Results demonstrate that tank flexibility could affect the free surface-wave amplitude and the sloshing pressuare if the natural frequency of the fluid-structure system is below 5 Hz. Furthermore, the presence of higher sloshing modes do enhance the post-earthquake sloshing response.

Ma, D.C.; Liu, W.K.; Gvildys, J.; Chang, Y.W.

1982-01-01T23:59:59.000Z

72

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

73

Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000  

SciTech Connect

This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

JENSEN, C.E.

2000-01-10T23:59:59.000Z

74

Ferrocyanide Safety Program rationale for removing six tanks from the safety watch list  

SciTech Connect

This report documents an in-depth study of single-shell tanks containing ferrocyanide wastes. Topics include: safety assessments, tank histories, supportive documentation about interim stabilization and planned remedial activities.

Borsheim, G.L.

1993-09-01T23:59:59.000Z

75

State of the Art Report on High-Level Waste Tank Closure  

Science Conference Proceedings (OSTI)

This report includes strategies for treating the incidental waste left in the emptied tanks as non-retrievable heels and methods and materials for physically stabilizing the void space in the tanks to prevent future subsidence.

Langton, C.A.

2002-06-18T23:59:59.000Z

76

Cryogenic Fuel Tank Draining  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

Analysis Model Donald; Donald Greer

1999-01-01T23:59:59.000Z

77

Flammable gas project: Criteria for flammable gas watch list tanks  

Science Conference Proceedings (OSTI)

The Flammable Gas Watch List is the listing of tanks that are subject to the provisions of Public Law 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation`` (Appendix A). Tanks on the Flammable Gas Watch List are judged to have a serious potential for release of high-level waste due to the ignition of flammable gases released from the waste in the tank. The purpose of this document is to provide criteria for identifying and categorizing the Hanford Site high4evel waste tanks to be included on the Flammable Gas Watch List. This document also provides criteria on which to base a recommendation to remove tanks from the Flammable Gas Watch List.

Cash, R.J.

1997-01-29T23:59:59.000Z

78

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

79

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

80

Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)  

SciTech Connect

Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

Lambert, D.P.

2000-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM  

SciTech Connect

Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was obtained from a compact region near the northeast riser and has been analyzed for a shortened list of key analytes. Since the unused portion of the floor scrape sample material is archived and available in sufficient quantity, additional analyses need to be performed to complete results for the full suite of constituents. The characterization of the full suite of analytes in the South hemisphere is currently supported by a single Mantis rover sample; there have been no floor scrape samples previously taken from the South hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 18 residual floor material, three additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Two of the three additional samples from the North hemisphere and three of the four additional samples from the South hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape samples (the sample previously obtained near NE riser plus the two additional samples that will be analyzed) results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in the stati

Shine, G.

2009-12-14T23:59:59.000Z

82

Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior  

DOE Green Energy (OSTI)

This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

HEDENGREN, D.C.

2000-09-28T23:59:59.000Z

83

Minutes of the Tank Waste Science Panel meeting July 9--1, 1991. Hanford Tank Safety Project  

Science Conference Proceedings (OSTI)

The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes.

Strachan, D.M. [comp.

1992-04-01T23:59:59.000Z

84

Tank characterization for Double-Shell Tank 241-AP-102  

SciTech Connect

This document provides the characterization information and interprets the data for Double-Shell Tank AP-102.

DeLorenzo, D.S.; DiCenso, A.T.; Amato, L.C.; Weyns-Rollosson, M.I.; Smith, D.J. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Simpson, B.C.; Welsh, T.L. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

85

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

86

PSA results for Hanford high level waste Tank 101-SY  

DOE Green Energy (OSTI)

Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (``burps``) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections.

MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

1993-10-01T23:59:59.000Z

87

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial follow up to the DOE and Department of Transportation (DOT) International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009. Here you will find information about Workshop proceedings including all presentations. Agenda and Notes The following agenda and notes provide summary information about the workshop.

88

Technology development activities supporting tank waste remediation  

Science Conference Proceedings (OSTI)

This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

Bonner, W.F.; Beeman, G.H.

1994-06-01T23:59:59.000Z

89

SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE  

SciTech Connect

Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

2011-11-16T23:59:59.000Z

90

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

91

Screening for organic solvents in Hanford waste tanks using organic vapor concentrations  

SciTech Connect

The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids.

Huckaby, J.L.; Sklarew, D.S.

1997-09-01T23:59:59.000Z

92

CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315  

SciTech Connect

In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

Langton, C.; Burns, H.; Stefanko, D.

2012-01-10T23:59:59.000Z

93

Analysis of vehicle fuel release resulting in waste tank fire  

Science Conference Proceedings (OSTI)

This document reevaluates several aspects of the in-tank vehicle fuel fire/deflagration accident formally documented as an independent accident (representative accident [rep acc] 2). This reevaluation includes frequencies for the accidents and incorporates the behavior of gasoline and diesel fuel in more detail than previous analysis. This reevaluation uses data from RPP-13121, ''Historical Summary of Occurrences from the Tank Farm Safety Analysis Report'', Table B-1, ''Tank Farm Events, Off-Normal and Critiques,'' and B-2, ''Summary of Occurrences,'' and from the River Protection Project--Occurrence Reporting & Processing System (ORPS) reports as a basis for changing some of the conclusions formally reported in HNF-SD-WM-CN-037, ''Frequency Analysis of Vehicle Fuel Releases Resulting in Waste Tank Fire''. This calculation note will demonstrate that the in-tank vehicle fuel fire/deflagration accident event may be relocated to other, more bounding accidents.

STEPHENS, L.S.

2003-03-21T23:59:59.000Z

94

Tank characterization data report: Tank 241-C-112  

Science Conference Proceedings (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-04-01T23:59:59.000Z

95

Sludge mobilization with submerged nozzles in horizontal cylindrical tanks  

SciTech Connect

The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code.

Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

1995-10-01T23:59:59.000Z

96

Underground storage tank 253-D1U1 Closure Plan  

Science Conference Proceedings (OSTI)

This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

97

Hanford Double-Shell Tank Extent-of-Condition Construction Review - 14174  

SciTech Connect

During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable ?lessons-learned? information about expected difficulties as well as construction practices and techniques that are likely to be successful.

Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

2013-11-14T23:59:59.000Z

98

Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1  

Science Conference Proceedings (OSTI)

The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

Lenseigne, D.L., Westinghouse Hanford, Richland, WA

1997-09-15T23:59:59.000Z

99

Estimated uncertainty of calibrations of freestanding prismatic liquefied natural gas cargo tanks  

SciTech Connect

The accuracy of the tank calibrated by the photogrammetric technique was examined during the calibration of fifteen freestanding prismatic LNG transport tanks. This examination indicated that the calibration accuracy of the tanks calibrated in the storage position was better than plus or minus 0.1%. Additional factors influencing the accuracy of the calibration of the tanks, such as the effects of installing the tanks into the ship and loading the ships with LNG, were examined in the course of this work and the results are reported here. The various measurements used by various NBS personnel to analyze the calibration accuracy are detailed in the eight Appendices included in this report.

Siegwarth, J.D.; LaBrecque, J.F.

1982-01-01T23:59:59.000Z

100

Double-shell tank ultrasonic inspection plan. Revision 1  

DOE Green Energy (OSTI)

The waste tank systems managed by the Tank Waste Remediation System Division of Westinghouse Hanford Company includes 28 large underground double-shell tanks (DST) used for storing hazardous radioactive waste. The ultrasonic (UT) inspection of these tanks is part of their required integrity assessment (WAC 1993) as described in the tank systems integrity assessment program plan (IAPP) (Pfluger 1994a) submitted to the Ecology Department of the State of Washington. Because these tanks hold radioactive waste and are located underground examinations and inspections must be done remotely from the tank annuli with specially designed equipment. This document describes the UT inspection system (DSTI system), the qualification of the equipment and procedures, field inspection readiness, DST inspections, and post-inspection activities. Although some of the equipment required development, the UT inspection technology itself is the commercially proven and available projection image scanning technique (P-scan). The final design verification of the DSTI system will be a performance test in the Hanford DST annulus mockup that includes the demonstration of detecting and sizing corrosion-induced flaws.

Pfluger, D.C.

1994-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

Science Conference Proceedings (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

102

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

103

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

104

Worker Protection from Chemical Vapors: Hanford Tank Farms  

Science Conference Proceedings (OSTI)

Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank head-spaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns, risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits (OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors. (authors)

Anderson, T.J. [CH2M HILL Hanford Group, Inc. / Environmental Health, Richland, WA (United States)

2007-07-01T23:59:59.000Z

105

Retrieval of Ninth Single-Shell Tank Complete | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrieval of Ninth Single-Shell Tank Complete Retrieval of Ninth Single-Shell Tank Complete Retrieval of Ninth Single-Shell Tank Complete September 6, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 Rob Roxburgh, WRPS 509-376-5188 Richland - Washington River Protection Solutions (WRPS) has completed the retrieval of radioactive and chemical waste from single-shell tank (SST) C-104, an underground storage tank that once held 259,000 gallons of waste left over from nuclear weapons production at Hanford. WRPS is the tank operations contractor for the U.S. Department of Energy (DOE) Office of River Protection (ORP). Tank C-104 is a 530,000-gallon-capacity SST that once contained the second-highest waste volume of the 16 SSTs in Hanford's C Farm, including a significant amount of plutonium and uranium.

106

DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS  

SciTech Connect

Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

Mickalonis, J.; Vormelker, P.

2009-07-31T23:59:59.000Z

107

Self-Anchoring Mast for Deploying a High-Speed Submersible Mixer in a Tank  

DOE Patents (OSTI)

A self-anchoring mast for deploying a high-speed submersible mixer in a tank includes operably connected first and second mast members (20, 22) and a foot member 46 operably connected to the second mast member for supporting the mast in a tank. The second mast member includes a track (36, 38) for slidably receiving a bearing of the mixer to change the orientation of the mixer in the tank.

Cato, Joseph E. Jr.; Shearer, Paul M.; Rodwell, Philip 0.

2004-10-12T23:59:59.000Z

108

IN-TANK ELUTRIATION TEST REPORT AND INDEPENDENT ASSESSMENT  

SciTech Connect

The Department of Energy (DOE) Office of Environmental Management (EM) funded Technology Development and Deployment (TDD) to solve technical problems associated with waste tank closure for sites such as Hanford Site and Savannah River Site (SRS). One of the tasks supported by this funding at Savannah River National Laboratory (SRNL) and Pacific Northwest Laboratory (PNNL) was In-Tank Elutriation. Elutriation is the process whereby physical separation occurs based on particle size and density. This report satisfies the first phase of Task WP_1.3.1.1 In-Tank Elutriation, which is to assess the feasibility of this method of separation in waste tanks at Hanford Site and SRS. This report includes an analysis of scoping tests performed in the Engineering Development Laboratory of SRNL, analysis of Hanford's inadvertent elutriation, the viability of separation methods such as elutriation and hydrocyclones and recommendations for a path forward. This report will demonstrate that the retrieval of Hanford salt waste tank S-112 very successfully decreased the tank's inventories of radionuclides. Analyses of samples collected from the tank showed that concentrations of the major radionuclides Cs-136 and Sr-90 were decreased by factors of 250 and 6 and their total curie tank inventories decreased by factors of 60,000 and 2000. The total tank curie loading decreased from 300,000 Ci to 55 Ci. The remaining heel was nearly all innocuous gibbsite, Al(OH){sub 3}. However, in the process of tank retrieval approximately 85% of the tank gibbsite was also removed. Significant amounts of money and processing time could be saved if more gibbsite could be left in tanks while still removing nearly all of the radionuclides. There were factors which helped to make the elutriation of Tank S-112 successful which would not necessarily be present in all salt tanks. 1. The gibbsite particles in the tank were surprisingly large, as much as 200 {micro}m. The gibbsite crystals had probably grown in size over a period of decades. 2. The radionuclides were apparently either in the form of soluble compounds, like cesium, or micrometer sized particles of actinide oxides or hydroxides. 3. After the initial tank retrieval the tank contained cobble which is not conducive to elutriation. Only after the tank contents were treated with thousands of gallons of 50 wt% caustic, were the solids converted to sand which is compatible with elutriation. Discussions between SRNL and PNNL resulted in plans to test elutriation in two phases; in Phase 1 particles would be separated by differences in settling velocity in an existing scaled tank with its associated hardware and in Phase 2 additional hardware, such as a hydrocyclone, would be added downstream to separate slow settling partciels from liquid. Phase 1 of in-tank elutriation was tested for Proof of Principle in theEngineering Development Laboratory of SRNL in a 41" diameter, 87 gallon tank. The tank had been previously used as a 1/22 scale model of Hanford Waste Tank AY-102. The objective of the testing was to determine which tank operating parameters achieved the best separation between fast- and slow-settling particles. For Phase 1 testing a simulated waste tank supernatant, slow-settling particles and fast-settling particles were loaded to the scaled tank. Because this was a Proof of Principle test, readily available solids particles were used that represented fast-settling and slow-settling particles. The tank contents were agitated using rotating mixer jet pumps (MJP) which suspended solids while liquids and solids were drawn out of the tank with a suction tube. The goal was to determine the optimum hydraulic operating conditions to achieve clean separation in which the residual solids in the tank were nearly all fast-settling particles and the solids transferred out of the tank were nearly all slow-settling particles. Tests were conducted at different pump jet velocities, suction tube diameters and suction tube elevations. Testing revealed that the most important variable was jet velocity which tr

Burns, H.; Adamson, D.; QURESHI, Z.; STEEPER, T.

2011-04-13T23:59:59.000Z

109

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

110

ANALYSIS OF THE TANK 5F FINAL CHARATERIZATION SAMPLES-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

2012-01-20T23:59:59.000Z

111

Analysis Of The Tank 5F Final Characterization Samples-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

2012-09-27T23:59:59.000Z

112

ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

2012-08-03T23:59:59.000Z

113

Tank Waste Corporate Board | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Corporate Board Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. November 18, 2010 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. July 29, 2009 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board

114

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

115

Computer modeling of jet mixing in INEL waste tanks  

SciTech Connect

The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations.

Meyer, P.A.

1994-01-01T23:59:59.000Z

116

Analysis Of The Tank 6F Final Characterization Samples-2012  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

2012-09-27T23:59:59.000Z

117

ANALYSIS OF THE TANK 6F FINAL CHARACTERIZATION SAMPLES-2012  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

Oji, L.; Diprete, D.; Coleman, C.; Hay, M.; Shine, G.

2012-06-28T23:59:59.000Z

118

Analysis of the Tank 6F Final Characterization Samples-2012  

SciTech Connect

The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

2013-01-31T23:59:59.000Z

119

Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington  

SciTech Connect

This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

Freeman-Pollard, J.R.

1994-03-02T23:59:59.000Z

120

Storage tanks, particularly for liquefied gases  

SciTech Connect

Marine and Industrial Developments, Ltd., Greece, has developed a new, low-cost LNG-tank lining which is highly resistant to impairment by tensile stresses encountered during cooldown to cryogenic temperatures. The thermal insulation is incorporated in the unitary cellular matrix lining composed of layers of plastics (polyurethane rubbers) including the primary barrier and at least one other fluid-impervious layer between the primary barrier and the tank wall. The plastic layers are thin, less than 0.24 in. (6 mm) in thickness. The layers of plastic for forming the cellular matrix can be formed in situ as the lining is built by applying a polymerizable or curable polymeric composition under, between, and over blocks of the selected thermally insulating material as they are laid. The polymerizable composition thus constitutes a kind of mortar which is then polymerized and/or cured in situ.

Papanicolaou, J.P.; Galatis, T.N.

1976-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tank 241-C-103 tank characterization plan. Revision 2  

Science Conference Proceedings (OSTI)

This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-C-103.

Homi, C.S.

1995-10-04T23:59:59.000Z

122

Tank 241-AN-102 tank characterization plan. Revision 1  

Science Conference Proceedings (OSTI)

This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

Homi, C.S.

1995-10-04T23:59:59.000Z

123

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

124

Assessment of chemical vulnerabilities in the Hanford high-level waste tanks  

SciTech Connect

The purpose of this report is to summarize results of relevant data (tank farm and laboratory) and analysis related to potential chemical vulnerabilities of the Hanford Site waste tanks. Potential chemical safety vulnerabilities examined include spontaneous runaway reactions, condensed phase waste combustibility, and tank headspace flammability. The major conclusions of the report are the following: Spontaneous runaway reactions are not credible; condensed phase combustion is not likely; and periodic releases of flammable gas can be mitigated by interim stabilization.

Meacham, J.E. [and others

1996-02-15T23:59:59.000Z

125

Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes  

SciTech Connect

Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and {sup 90}Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste.

Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

1993-06-01T23:59:59.000Z

126

High-Pressure Hydrogen Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

127

Hydrogen Storage "Think Tank" Report  

NLE Websites -- All DOE Office Websites (Extended Search)

brainstorming on this critical issue. This "Think Tank" meeting was held in Washington, D.C. on March 14, 2003 and was organized and sponsored by the U.S. Department of...

128

Improvement in LNG storage tanks  

SciTech Connect

To develop and produce natural gas fuel tanks for medium duty truck and transit bus end-use to overcome the weight and range problems inherent in current fuel systems.

NONE

1999-11-20T23:59:59.000Z

129

Hazard assessments of double-shell flammable gas tanks  

DOE Green Energy (OSTI)

This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures.

Fox, G.L.; Stepnewski, D.D.

1994-09-28T23:59:59.000Z

130

Organic Tanks Safety Program: Waste aging studies  

Science Conference Proceedings (OSTI)

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

131

CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS  

SciTech Connect

In 2000 the Hanford Tank Farms had one of the worst safety records in the Department of Energy Complex. By the end of FY08 the safety performance of the workforce had turned completely around, resulting in one of the best safety records in the DOE complex for operations of its kind. This paper describes the variety of programs and changes that were put in place to accomplish such a dramatic turn-around. The U.S. Department of Energy's 586-square-mile Hanford Site in Washington State was established during World War II as part of the Manhattan Project to develop nuclear materials to end the war. For the next several decades it continued to produce plutonium for the nation's defense, leaving behind vast quantities of radioactive and chemical waste. Much of this waste, 53,000,000 gallons, remains stored in 149 aging single-shell tanks and 28 newer double-shell tanks. One of the primary objectives at Hanford is to safely manage this waste until it can be prepared for disposal, but this has not always been easy. These giant underground tanks, many of which date back to the beginning of the Manhattan Project, range in size from 55,000 gallons up to 1.1 million gallons, and are buried beneath 10 feet of soil near the center of the site. Up to 67 of the older single-shell tanks have leaked as much as one million gallons into the surrounding soil. Liquids from the single-shell tanks were removed by 2003 but solids remain in the form of saltcake, sludges and a hardened heel at the bottom of some tanks. The Department of Energy's Office of River Protection was established to safely manage this waste until it could be prepared for disposal. For most of the last seven years the focus has been on safely retrieving waste from the 149 aging single-shell and moving it to the newer double-shell tanks. Removing waste from the tanks is a difficult and complex task. The tanks were made to put waste in, not take it out. Because of the toxic nature of the waste, both chemically as well as radiologically, all retrieval operations must be performed using remote-controlled equipment which has to be installed in each tank, then removed when retrieval is completed. This process involves a variety of potentially hazardous construction activities including crane and rigging, excavation, electrical and piping work. It also requires strong attention to safety to avoid injuries to personnel and contamination of the environment.

BERRIOCHOA MV; ALCALA LJ

2009-01-06T23:59:59.000Z

132

CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS  

SciTech Connect

In 2000 the Hanford Tank Farms had one of the worst safety records in the Department of Energy Complex. By the end of FY08 the safety performance of the workforce had turned completely around, resulting in one of the best safety records in the DOE complex for operations of its kind. This paper describes the variety of programs and changes that were put in place to accomplish such a dramatic turn-around. The U.S. Department of Energy's 586-square-mile Hanford Site in Washington State was established during World War II as part of the Manhattan Project to develop nuclear materials to end the war. For the next several decades it continued to produce plutonium for the nation's defense, leaving behind vast quantities of radioactive and chemical waste. Much of this waste, 53,000,000 gallons, remains stored in 149 aging single-shell tanks and 28 newer double-shell tanks. One of the primary objectives at Hanford is to safely manage this waste until it can be prepared for disposal, but this has not always been easy. These giant underground tanks, many of which date back to the beginning of the Manhattan Project, range in size from 55,000 gallons up to 1.1 million gallons, and are buried beneath 10 feet of soil near the center of the site. Up to 67 of the older single-shell tanks have leaked as much as one million gallons into the surrounding soil. Liquids from the single-shell tanks were removed by 2003 but solids remain in the form of saltcake, sludges and a hardened heel at the bottom of some tanks. The Department of Energy's Office of River Protection was established to safely manage this waste until it could be prepared for disposal. For most of the last seven years the focus has been on safely retrieving waste from the 149 aging single-shell and moving it to the newer double-shell tanks. Removing waste from the tanks is a difficult and complex task. The tanks were made to put waste in, not take it out. Because of the toxic nature of the waste, both chemically as well as radiologically, all retrieval operations must be performed using remote-controlled equipment which has to be installed in each tank, then removed when retrieval is completed. This process involves a variety of potentially hazardous construction activities including crane and rigging, excavation, electrical and piping work. It also requires strong attention to safety to avoid injuries to personnel and contamination of the environment.

BERRIOCHOA MV; ALCALA LJ

2009-01-06T23:59:59.000Z

133

A parametric study of double-shell tank response to internal high-frequency pressure loading  

DOE Green Energy (OSTI)

The double-shell waste tank 241SY101 (SY101) is a 3,785,400-liter tank used to store radioactive waste at the Hanford Site near Richland, Washington. The tank waste has formed two layers of sludge in the tank; a convective and a nonconvective layer. Ongoing reactions in the waste cause a buildup of hydrogen molecules that become trapped within the nonconvective layer of the waste. Various means of preventing the buildup of hydrogen molecules in the nonconvective layer have been investigated, including the use of a sonic probe that would transmit high-frequency acoustic pressure waves into the nonconvective layer of the waste. During the operation of the sonic probe, the pressure waves transmitted from the probe induce pressure time history loading on the inside surface of the primary tank. For low-frequency fluid-structure interaction loads, such as those associated with seismic events, the convective and impulsive effects of the waste-filled tank are well documented. However, for high-frequency loading, such as that associated with acoustic pressure waves, interactions between the waste and the primary tank are not understood. The pressure time history is represented by a harmonic function with a frequency range between 30 and 100 Hz. Structural analyses of the double-shell tank have been performed that address the tank`s response to the sonic probe acoustic pressure loads. This paper addresses the variations in the tank response as a function of percent waste mass considered to be effective in the dynamic excitation of the tank. It also compares results predicted by analyses that discretely model the liquid waste and presents recommendations for the simplified effective mass approach. Also considered in the parametric study is the effect of damping on the tank response for the same pressure loading.

Baliga, R.; Choi, K.; Shulman, J.S. [ADVENT Engineering Services, Inc., San Ramon, CA (United States); Strehlow, J.P.; Abatt, G. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-01T23:59:59.000Z

134

TFA Tank Focus Area - multiyear program plan FY98-FY00  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

NONE

1997-09-01T23:59:59.000Z

135

TFA Tanks Focus Area Multiyear Program Plan FY00-FY04  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50 or OST).

BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

1999-10-12T23:59:59.000Z

136

F-Tank Farm Performance Assessment, Rev 1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to support a potential determination by the Secretary pursuant Section 3116. This Draft FTF 3116 Basis Document concerns the stabilized residuals in waste tanks and ancillary structures, those waste tanks, and the ancillary structures (including integral equipment) at the SRS FTF at the time of closure.

137

F-Tank Farm Performance Assessment, Rev 1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to support a potential determination by the Secretary pursuant Section 3116. This Draft FTF 3116 Basis Document concerns the stabilized residuals in waste tanks and ancillary structures, those waste tanks, and the ancillary structures (including integral equipment) at the SRS FTF at the time of closure.

138

Criteria for temperature monitoring in ferrocyanide waste tanks at the Hanford Site  

Science Conference Proceedings (OSTI)

This report is relevant to the twenty underground waste storage tanks at the Hanford Site that have been identified as potentially containing a significant amount of ferrocyanide compounds. Tanks believed to contain > 1,000 gram moles of ferrocyanide have been classified as Watch List tanks. This report addresses temperature monitoring criteria for the Ferrocyanide Watch List tanks. These criteria must comply with governing regulations to ensure that safe continued storage of the tank wastes is not jeopardized. Temperature monitoring is defined in this report as the routine as the routine continuous measurement of a waste tank temperature with an output that is tied to an actively interrogated information collection system that includes an automated warning of temperature increases beyond the established limits.

Fowler, K.D.; Dukelow, G.T.

1994-09-01T23:59:59.000Z

139

Modifications to, and Vibration Analysis of Tank 7 Slurry Pumps, F Tank Farm  

SciTech Connect

Slurry pumps have demonstrated short life spans when operated in nuclear waste tanks. Their life approximates one thousand hours or approximately 42 days of continuous operation, evidenced by past performance in H-Area and F-Area at the Savannah River Site (SRS). Several investigations over the past six years have isolated the most significant reliability problems. These problems are seal and bearing failures caused by the vibrations of the long drive shafts in the pump, manufacturing tolerance accumulations, failures caused by material incompatibility between the waste and the lowest process bearing that is exposed to the waste, and vibrations which occur when the pump operates at critical speeds. Only vibration and material problems were corrected. Potential bearing and seal degradation still exists for those pumps with a critical speed near the operating speed. Bearing damage can be expected below 700 rpm. The pumps are used to mix or slurry nuclear waste products contained in waste storage tanks prior to transferring the tank contents for further processing. In particular, Lawrence Pumps, Inc. slurry pumps are installed on Tank 7 in F Tank Farm. Appendix A provides the initial recommendations, and further states that this follow up report would provide detailed descriptions of the pump components, failure mechanisms, and corrective actions which include tilt pad bearings, a Stellite process bearing, and modified split shaft retainers. By testing the pumps in a non-radioactive test facility, these corrections have been shown to significantly decrease the vibrations associated with bearing and seal failures, and consequently are expected to improve reliability.

Lieshear, R.A.

2002-05-10T23:59:59.000Z

140

Tank 241-S-102, Core 232 analytical results for the final report  

SciTech Connect

This document is the analytical laboratory report for tank 241-S-102 push mode core segments collected between March 5, 1998 and April 2, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-S-102 Retained Gas Sampler System Sampling and Analysis Plan (TSAP) (McCain, 1998), Letter of Instruction for Compatibility Analysis of Samples from Tank 241-S-102 (LOI) (Thompson, 1998) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Mulkey and Miller, 1998). The analytical results are included in the data summary table (Table 1).

STEEN, F.H.

1998-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

TANK 7 CHARACTERIZATION AND WASHING STUDIES  

SciTech Connect

A 3-L PUREX sludge sample from Tank 7 was characterized and then processed through a series of inhibited water washes to remove oxalate, sodium, and other soluble ions. Current plans use Tank 7 as one of the feed sources for Sludge Batch 7 (SB7). Tank 7 is high in oxalate due to the oxalic acid cleaning of the sludge heels from Tanks 5 and 6 and subsequent transfer to Tank 7. Ten decant and nine wash cycles were performed over a 47 day period at ambient temperature. Initially, seven decants and seven washes were completed based on preliminary estimates of the number of wash cycles required to remove the oxalate in the sludge. After reviewing the composition data, SRNL recommended the completion of 2 or 3 more decant/wash cycles to ensure all of the sodium oxalate had redissolved. In the first 7 washes, the slurry oxalate concentration was 12,300 mg/kg (69.6% oxalate removal compared to 96.1% removal of the other soluble ions). After all ten decants were complete, the slurry oxalate concentration was 3,080 mg/kg (89.2% oxalate removal compared to 99.0% of the other soluble ions). The rate of dissolution of oxalate increased significantly with subsequent washes until all of the sodium oxalate had been redissolved after seven decant/wash cycles. The measured oxalate concentrations agreed very well with LWO predictions for washing of the Tank 7 sample. Highlights of the analysis and washing of the Tank 7 sample include: (1) Sodium oxalate was detected in the as-received filtered solids. 95% of the oxalate was insoluble (undissolved) in the as-received slurry. (2) No sodium oxalate was detected in the post-wash filtered solids. (3) Sodium oxalate is the last soluble species that redissolves during washing with inhibited water. In order to significantly reduce the sodium oxalate concentration, the sludge must be highly washed, leaving the other soluble anions and cations (including sodium) very low in concentration. (4) The post-wash slurry had 1% of the soluble anions and cations remaining, with the exception of sodium and oxalate, for which the percentages were 2.8% and 10.8% respectively. The post-wash sodium concentration was 9.25 wt% slurry total solids basis and 0.15 M supernate. (5) The settling rate of slurry was very fast allowing the completion of one decant/wash cycle each day. (6) The measured yield stress of as-received (6.42 wt% undissolved solids) and post-wash (7.77 wt% undissolved solids) slurry was <1 Pa. For rapidly settling slurries, it can be hard to measure the yield stress of the slurry so this result may be closer to the supernate result than the slurry. The recommended strategy for developing the oxalate target for sludge preparation for Sludge Batch 7 includes the following steps: (1) CPC simulant testing to determine the percent oxalate destruction and acid mix needed to produce a predicted redox of approximately 0.2 Fe{sup +2}/{Sigma}Fe in a SME product while meeting all DWPF processing constraints. (2) Perform a DWPF melter flammability assessment to ensure that the additional carbon in the oxalate together with other carbon sources will not lead to a flammability issue. (3) Perform a DWPF glass paper assessment to ensure the glass produced will meet all DWPF glass limits due to the sodium concentration in the sludge batch. The testing would need to be repeated if a significant CPC processing change, such as an alternative reductant to formic acid, is implemented.

Lambert, D.; Pareizs, J.; Click, D.

2010-02-04T23:59:59.000Z

142

Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2011 Hanford Site C Tank Farm Meeting Summary - May 2011 Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary -...

143

Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2010 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

144

Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2009 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

145

Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

146

Hanford Waste Tank Plant PIA, Richland Operations Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford Waste Tank Plant PIA, Richland Operations Office Hanford...

147

241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity  

Science Conference Proceedings (OSTI)

This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

2013-11-19T23:59:59.000Z

148

Life Estimation of High Level Waste Tank Steel for H-Tank Farm ...  

the tanks is not considered in the analysis. Life Estimation of High Level Waste Tank ... conservative scenario in which the concrete vault has completely

149

241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity  

Science Conference Proceedings (OSTI)

This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

Barnes, Travis J.; Gunter, Jason R.

2013-08-26T23:59:59.000Z

150

System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System  

SciTech Connect

The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoring equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request.

ROMERO, S.G.

2000-02-14T23:59:59.000Z

151

Minutes of the Tank Waste Science Panel meeting July 9--1, 1991  

Science Conference Proceedings (OSTI)

The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes.

Strachan, D.M. (comp.)

1992-04-01T23:59:59.000Z

152

ATMOSPHERIC DISPERSION COEFFICIENTS AND RADIOLOGICAL AND TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS  

Science Conference Proceedings (OSTI)

This report presents the atmospheric dispersion coefficients used in Tank Farms safety analysis. The basis equations for calculating radiological and toxicological exposures are also included. In this revision, the time averaging for toxicological consequence evaluations is clarified based on a review of DOE complex guidance and a review of tank farm chemicals.

GRIGSBY KM

2011-04-07T23:59:59.000Z

153

Computer modeling of forced mixing in waste storage tanks  

SciTech Connect

Numerical simulation results of fluid dynamic and physical processes in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for a centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity and high settling velocity. It results in nonuniform distribution. The other case is with high jet velocity and low settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations.

Eyler, L.L.; Michener, T.E.

1992-04-01T23:59:59.000Z

154

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

155

EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS  

SciTech Connect

The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

Duignan, M.; Steeper, T.; Steimke, J.

2012-12-10T23:59:59.000Z

156

Characterization of Samples from Old Solvent Tanks S1 through S22  

Science Conference Proceedings (OSTI)

The Old Radioactive Waste Burial Ground (ORWBG, 643-E) contains 22 old solvent tanks (S1 - S22) which were used to receive and store spent PUREX solvent from F- and H-Canyons. The tanks are cylindrical, carbon-steel, single-wall vessels buried at varying depths. A detailed description of the tanks and their history can be found in Reference 1. A Sampling and Analysis Plan for the characterization of the material contained in the old solvent tanks was developed by the Analytical Development Section (ADS) in October of 19972. The Sampling and Analysis Plan identified several potential disposal facilities for the organic and aqueous phases present in the old solvent tanks which included the Solvent Storage Tank Facility (SSTF), the Mixed Waste Storage Facilities (MWSF), Transuranic (TRU) Pad, and/or the Consolidated Incineration Facility (CIF). In addition, the 241-F/H Tank Farms, TRU Pads, and/or the MWSF were identified as potential disposal facilities for the sludge phases present in the tanks. The purpose of this sampling and characterization was to obtain sufficient data on the material present in the old solvent tanks so that a viable path forward could be established for the closure of the tanks. Therefore, the parameters chosen for the characterization of the various materials present in the tanks were based upon the Waste Acceptance Criteria (WAC) of the SSTF3, TRU Pads4, MWSF5, CIF6, and/or 241-F/H Tank Farms7. Several of the WAC's have been revised, canceled, or replaced by new procedures since October of 1997 and hence where required, the results of this characterization program were compared against the latest revision of the appropriate WAC.

Leyba, J.D.

1999-03-25T23:59:59.000Z

157

Lessons Learned from V-Tank Waste Remediation Activities at the Idaho National Laboratory  

SciTech Connect

The purpose of this paper is to discuss major activities and lessons learned from remediation of the V-tank waste at Idaho National Laboratory's (INL's) Test Area North (TAN) complex. Remediation activities involved the on-site treatment, solidification and disposal of over 61,000 L (16,000 gal) of radioactively hazardous V-tank waste. In July, 2006, over 98% of the V-tank waste was disposed of at the Idaho CERCLA Disposal Facility (ICDF). Disposal was accomplished using the three 38,000-L (10,000-gal) V-tanks that had stored most of the V-tank waste for over 30 years. Included in V-Tank remediation was the removal of approximately 7,650 m{sup 3} (10,000 yd{sup 3}) of contaminated soil. Plans are to treat the remaining V-tank waste off-site in early 2007, with the treated residual also disposed of at the ICDF. Disposal of the treated V-tank waste at ICDF marked a major step in completing remediation of the TAN V-tanks, a task begun in 1999 when the original Record of Decision (ROD) was published. Over this time, there have been a number of stops and starts associated with remediating this waste. Although many of these stops and starts were unavoidable, there are a number of lessons learned for the V-tank remediation that could help prevent unnecessary expenses and schedule delays in future remediation activities within the Department of Energy (DOE) complex. This paper identifies major and minor lessons learned from V-tank waste remediation efforts - those that resulted in unnecessary delays/expenses, as well as those areas that accelerated V-tank remediation efforts. (authors)

Farnsworth, R.K.; Jessmore, J.J.; Eaton, D.L.; McDannel, G.E.; Sloan, P.A.; Jantz, A.E.; Tyson, D.R. [CH2M-Washington Group Idaho -Idaho Cleanup Project-a, Idaho Falls, ID (United States); Burt, B.T. [E2 Consulting Engineers, Idaho Falls ID (United States)

2007-07-01T23:59:59.000Z

158

Approach for tank safety characterization of Hanford site waste  

Science Conference Proceedings (OSTI)

The overall approach and associated technical basis for characterizing Hanford Site waste to help identify and resolve Waste Tank Safety Program safety issues has been summarized. The safety issues include flammable gas, noxious vapors, organic solvents, condensed-phase exothermic reactions (ferrocyanide and organic complexants), criticality, high heat, and safety screening. For the safety issues involving chemical reactions (i.e., flammable gas, organic solvents, ferrocyanide, and organic complexants), the approach to safety characterization is based on the fact that rapid exothermic reactions cannot occur if either fuel, oxidizer, or temperature (initiators) is not sufficient or controlled. The approach to characterization has been influenced by the progress made since mid-1993: (1) completion of safety analyses on ferrocyanide, criticality, organic solvent in tank 241-C-103, and sludge dryout. (2) successful mitigation of tank 241-SY-101; (3) demonstration of waste aging in laboratory experiments and from waste sampling, and (4) increased understanding of the information that can be obtained from headspace sampling. Headspace vapor sampling is being used to confirm that flammable gas does not accumulate in the single-shell tanks, and to determine whether organic solvents are present. The headspaces of tanks that may contain significant quantities of flammable gas will be monitored continuously using standard hydrogen monitors. For the noxious vapors safety issue, characterization will consist of headspace vapor sampling of most of the Hanford Site waste tanks. Sampling specifically for criticality is not required to confirm interim safe storage; however, analyses for fissile material will be conducted as waste samples are obtained for other reasons. High-heat tanks will be identified through temperature monitoring coupled with thermal analyses.

Meacham, J.E.; Babad, H.; Cash, R.J.; Dukelow, G.T.; Eberlein, S.J.; Hamilton, D.W.; Johnson, G.D.; Osborne, J.W.; Payne, M.A.; Sherwood, D.J. [and others

1995-03-01T23:59:59.000Z

159

Military - Tougher tanks | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Military - Tougher tanks Improving welds of heavy and light armored fighting vehicles is the target of a collaboration among Oak Ridge National Laboratory, the U.S. Army Tank...

160

Technical requirements specification for tank waste retrieval  

Science Conference Proceedings (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tanks 18/19: Sample Characterization, Method Development and ...  

Measurement of radioactive constituents in tank. ... SRS Waste Tank . 5 ... Low Level Measurements Ra-226 1*10-4

162

Savannah River Site- Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE))

This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing.

163

Field monitoring of solar domestic hot water systems based on simple tank temperature measurement  

DOE Green Energy (OSTI)

By dynamically measuring solar storage tank temperature(s), the solar storage tank effectively becomes a dynamic calorimeter to measure the energy flows in a solar system. The energy flows include solar loop gain, tank losses, and potentially draw extraction. With one-channel temperature loggers storing data over several days to several weeks, this approach provides low-cost, modest-accuracy performance assessment, useful for determination of savings persistence and diagnostics. Analysis is based upon the tank energy balance, identifying solar gain during the day and tank losses at night. These gains and losses can be compared to expectations based upon prior knowledge, and estimated weather conditions. Diagnostics include controller and pump operation, and excessive nighttime losses. With one point temperature logger, solar gain accuracy is expected to be 20 to 50%, depending on draw frequency and volume. Two examples are shown, a properly operating system and a system with excessive nighttime losses.

Burch, J.; Xie, Yuantao [National Renewable Energy Lab., Golden, CO (United States); Murley, C.S. [Sacramento Municipal Utility District, CA (United States)

1995-05-01T23:59:59.000Z

164

Tank 241-BY-107 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

Huckaby, J.L.

1995-05-05T23:59:59.000Z

165

Tank 241-S-102 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank 241-S-102 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-S-102 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution. {close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

166

Tank 41H bounding uranium enrichment  

Science Conference Proceedings (OSTI)

The intent of this document is to combine data from salt samples and historical process information to bound the uranium (U-235) enrichment which could be expected in the upper portion of the salt in Tank 41H. This bounding enrichment will be used in another document to establish a nuclear safety basis for initial salt removal operations. During the processing period of interest (4/82-4/87), waste was fed to the 2H Evaporator from Tank 43H, and the evaporator bottoms were sent to Tank 41H where the bottoms were allowed to cool (resulting in the formation of salt deposits in the tank). As Tank 41H was filled with concentrate, the supernate left after salt formation was recycled back to Tank 43H and reprocessed through the evaporator along with any additional waste which had been added to Tank 43H. As Tank 41 H filled with salt, this recycle took place with increasing frequency because it took less time to fill the decreased volume with evaporator concentrate. By determining which of the sampled waste tanks were receiving fresh waste from the canyons at the time the tanks were sampled (from published transfer records), it was possible to deduce which samples were likely representative of fresh canyon waste. The processing that was being carried out in the Separation canyons when these tanks were sampled, should be comparable to the processing while Tank 41H was being filled.

Cavin, W.S.

1994-07-12T23:59:59.000Z

167

Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank 48 Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then cleaning the tank sufficiently to support return to service Processing contents to eliminate TPB hazard August 2006 3 SRS Tank 48 ITR SRS Tank 48 ITR Overarching ITR Conclusions 1. TPB Processing is on the right track - DOE/WSRC have selected the most promising candidates - Fluidized Bed Steam Reforming (FBSR) is the most technically attractive and mature of the candidate processes August 2006 4 SRS Tank 48 ITR SRS Tank 48 ITR Overarching Conclusions (continued) 2. Heel removal and tank cleanout will be a very challenging task. Compounding issues: - Physical difficulties in cleanout (access, congestion, etc.)

168

EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first report was submitted and accepted by the Assistant Secretary for Environmental Management (EM-1) in September 2010. The EM-TWS responded to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at Hanford (WTP) under construction in Richland, Washington. EM's responses were timely, and efforts have been

169

Hanford Tank Safety Project: Minutes of the Tank Waste Science Panel meeting, February 7--8, 1991  

DOE Green Energy (OSTI)

The Tank Waste Science Panel met February 7--8, 1991, to review the latest data from the analyses of the October 24, 1990, gas release from Tank 241-SY-101 (101-SY) at Hanford; discuss the results of work being performed in support of the Hanford Tank Safety Project; and be briefed on the ferrocyanide issues included in the expanded scope of the Science Panel. The shapes of the gas release curves from the past three events are similar and correlate well with changes in waste level, but the correlation between the released volume of gas and the waste height is not as good. An analysis of the kinetics of gas generation from waste height measurements in Tank 101-SY suggests that the reaction giving rise to the gases in the tank is independent of the gas pressure and independent of the physical processes that give rise to the episodic release of the gases. Tank waste height data were also used to suggest that a floating crust formed early in the history of the tank and that the current crust is being made thicker in the eastern sector of the tank by repeated upheaval of waste slurry onto the surface. The correlation between the N{sub 2}O and N{sub 2} generated in the October release appears to be 1:1, suggesting a single mechanistic pathway. Analysis of other gas generation ratios, however, suggests that H{sub 2} and N{sub 2}O are evolved together, whereas N{sub 2} is from the air. If similar ratios are observed in planned radiolysis experiments are Argonne National Laboratory, radiolysis would appear to be generating most of the gases in Tank 101-SY. Data from analysis of synthetic waste crust using a dynamic x-ray diffractometer suggest that, in air, organics are being oxidized and liberating CO{sub 2} and NO{sub x}. Experiments at Savannah River Laboratory indicate that irradiation of solutions containing NO{sub 3} and organics can produce N{sub 2}O.

Strachan, D.M. (comp.)

1991-06-01T23:59:59.000Z

170

The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2  

SciTech Connect

The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

Lewis, BE

2003-10-07T23:59:59.000Z

171

Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks  

Science Conference Proceedings (OSTI)

A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

2009-09-01T23:59:59.000Z

172

ICPP Tank Farm planning through 2012  

SciTech Connect

Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

1998-04-01T23:59:59.000Z

173

Meeting Summaries for Development of the Hanford Site C Tank Farm  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Summaries for Development of the Hanford Site C Tank Farm Meeting Summaries for Development of the Hanford Site C Tank Farm Performance Assessment Meeting Summaries for Development of the Hanford Site C Tank Farm Performance Assessment The Meeting Summaries for Development of the Hanford Site C Tank Farm Performance Assessment cover informal discussions between representatives of the U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the Washington State Department of Ecology (Ecology) and involvement with Tribal Nations, State of Oregon, and the Hanford Advisory Board to support DOE's preparation of a new performance assessment (PA) for the Hanford Site C Tank Farm (CTF). These discussions will include the underlying assumptions, input parameters, and modeling approaches to be taken in

174

A Survey of Vapors in the Headspaces of Single-Shell Waste Tanks  

SciTech Connect

This report summarizes data on the organic vapors in the single-shell high level radioactive waste tanks at the Hanford site to support a forthcoming toxicological study. All data were obtained from the Tank Characterization Database (PNNL 1999). The TCD contains virtually all the available tank headspace characterization data from 1992 to the present, and includes data for 109 different single-shell waste tanks. Each single-shell tank farm and all major waste types are represented. Descriptions of the sampling and analysis methods have been given elsewhere (Huckaby et al. 1995, Huckaby et al. 1996), and references for specific data are available in the TCD. This is a revision of a report with the same title issued on March 1, 2000 (Stock and Huckaby 2000).

Stock, Leon M.; Huckaby, James L.

2000-10-31T23:59:59.000Z

175

Flammable gas tank safety program: Technical basis for gas analysis and monitoring  

DOE Green Energy (OSTI)

Several Hanford waste tanks have been observed to exhibit periodic releases of significant quantities of flammable gases. Because potential safety issues have been identified with this type of waste behavior, applicable tanks were equipped with instrumentation offering the capability to continuously monitor gases released from them. This document was written to cover three primary areas: (1) describe the current technical basis for requiring flammable gas monitoring, (2) update the technical basis to include knowledge gained from monitoring the tanks over the last three years, (3) provide the criteria for removal of Standard Hydrogen Monitoring System(s) (SHMS) from a waste tank or termination of other flammable gas monitoring activities in the Hanford Tank farms.

Estey, S.D.

1998-04-22T23:59:59.000Z

176

Test report of evaluation of primary exhaust ventilation flowmeters for double shell hydrogen watch list tanks  

DOE Green Energy (OSTI)

This document reports the results of testing four different flowmeters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101,241-AN- 103, 241-AN-104, 241-AN-105 and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1/78 m/s (350 ft/min). Past experiences at Hanford have forced the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter has been chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

Willingham, W.E., Westinghouse Hanford

1996-09-03T23:59:59.000Z

177

Standard guide for sampling radioactive tank waste  

E-Print Network (OSTI)

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

178

Hydrogen Peroxide Storage in Small Sealed Tanks  

DOE Green Energy (OSTI)

Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

Whitehead, J.

1999-10-20T23:59:59.000Z

179

Life Extension of Aging High-Level Waste Tanks  

Science Conference Proceedings (OSTI)

The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

Bryson, D.; Callahan, V.; Ostrom, M.; Bryan, W.; Berman, H.

2002-02-26T23:59:59.000Z

180

Evaluation of 241 AN tank farm flammable gas behavior  

DOE Green Energy (OSTI)

The 241 AN Tank Farm tanks 241-AN-103, -104, and 105 are Flammable Gas Watch List tanks. Characteristics exhibited by these tanks (i.e., surface level drops, pressure increases, and temperature profiles) are similar to those exhibited by tank 241-SY-101, which is also a Watch List tank. Although the characteristics exhibited by tank 241-SY-101 are also present in tanks 241-AN-103, -104, and 105, they are exhibited to a lesser degree in the AN Tank Farm tanks. The 241 AN Tank Farm tanks have only small surface level drops, and the pressure changes that occur are not sufficient to release an amount of gas that would cause the dome space to exceed the lower flammability limit (LFL) for hydrogen. Therefore, additional restrictions are probably unnecessary for working within the 241 AN Tank Farm, either within the dome space of the tanks or in the waste.

Reynolds, D.A.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of Occupational Exposure Limits for the Hanford Tank Farms  

SciTech Connect

Production of plutonium for the United States nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is storedin 177 underground tanks at the Hanford Site in southeastern W 18 ashington State. Recent 19 attempts to begin the retrieval and treatment of these wastes require moving the waste to 20 more modern tanks results in potential exposure of the workers to unfamiliar odors 21 emanating from headspace in the tanks. Given the unknown risks involved, workers 22 were placed on supplied air respiratory protection. CH2M HILL, the managers of the 23 Hanford Site Tank Farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an Industrial Hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPC) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1,826 chemicals were inventoried and evaluated. Over 1,500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2M HILL industrial hygiene department to evaluate these COPCs.

Still, Kenneth; Gardner, Donald; Snyder, Robert; Anderson, Thomas; Honeyman, James; Timchalk, Charles

2010-04-01T23:59:59.000Z

182

Flammable gas tank waste level reconcilliation for 241-SX-102  

SciTech Connect

Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ``Wallet Report`` is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980.

Brevick, C.H.; Gaddie, L.A.

1997-06-23T23:59:59.000Z

183

Modeling and analysis of ORNL horizontal storage tank mobilization and mixing  

SciTech Connect

The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m{sup 3} (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m{sup 3} (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents.

Mahoney, L.A.; Terrones, G.; Eyler, L.L.

1994-06-01T23:59:59.000Z

184

Progress in resolving Savannah River Site high-level waste tank safety issues  

SciTech Connect

At the Savannah River Site (SRS), near Aiken, South Carolina, approximately 35 million gallons of high-level radioactive waste are stored in 51 underground, carbon steel waste tanks. These tanks and associated facilities are distributed between the F and H areas, two processing areas at SRS, and are called the F- and H-area high-level waste tank farms. Within the last few years, issues have been raised about the safety of high-level waste tank farms throughout the DOE complex, including those at SRS. Plans for resolution of these issues were reported at the Waste Management 192 conference. This paper addresses progress made at SRS since 1992. Most of the efforts for resolving the six safety issues identified at SRS have concentrated on (1) preparing the tanks for waste removal and (2) completing construction, testing, and starting up three key facilities. These facilities will transform the waste into forms suitable for final disposal, specifically borosilicate glass and saltstone (grout). Removing the waste from the tanks and processing it is needed to resolve three of the safety issues. Two facilities -- In-Tank Precipitation and the Defense Waste Processing Facility -- are undergoing non-radioactive simulant testing (``cold runs``) at this time. The third facility -- Sludge Processing -- began testing with actual waste in October 1993. In Tank Precipitation is scheduled to be operating by the end of 1994.

d`Entremont, P.D.

1993-12-31T23:59:59.000Z

185

BY tank farm waste inventory and transfer data ITS-2 operation during January To June 1972  

Science Conference Proceedings (OSTI)

Daily record inventory of pumping activities and liquid level changes including occasional operations comments for the BY Tank Farm. Waste inventory and transfer data for ITS-2 operation during January to June 1972.

Reich, F.R., Westinghouse Hanford

1996-08-02T23:59:59.000Z

186

Enhanced Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

187

HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

Science Conference Proceedings (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al. (2006a), it is concluded that time-domain SSI analysis using ANSYS{reg_sign} is justified for predicting the global response of the DSTs. The most significant difference between the current revision (Revision 1) of this report and the original issue (Revision 0) is the treatment of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome.

MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

2009-01-15T23:59:59.000Z

188

241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect

This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-25T23:59:59.000Z

189

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS  

SciTech Connect

This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

190

241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect

This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-30T23:59:59.000Z

191

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21T23:59:59.000Z

192

Effects of plumbing attachments on heat losses from solar domestic hot water storage tanks. Final report, Part 2  

DOE Green Energy (OSTI)

The Solar Rating and Certification Corporation (SRCC) has established a standardized methodology for determining the performance rating of the Solar Domestic Hot Water (SDHW) systems it certifies under OG-300. Measured performance data for the solar collector component(s) of the system are used along with numerical models for the balance of the system to calculate the system`s thermal performance under a standard set of rating conditions. SRCC uses TRNSYS to model each of the components that comprise the system. The majority of the SRCC certified systems include a thermal storage tank with an auxiliary electrical heater. The most common being a conventional fifty gallon electric tank water heater. Presently, the thermal losses from these tanks are calculated using Q = U {center_dot} A {center_dot} {Delta}T. Unfortunately, this generalized formula does not adequately address temperature stratification both within the tank as well as in the ambient air surrounding the tank, non-uniform insulation jacket, thermal siphoning in the fluid lines attached to the tank, and plumbing fittings attached to the tank. This study is intended to address only that part of the problem that deals with the plumbing fittings attached to the tank. Heat losses from a storage tank and its plumbing fittings involve three different operating modes: charging, discharging and standby. In the charging mode, the tank receives energy from the solar collector. In the discharge mode, water flows from the storage tank through the distribution pipes to the faucets and cold city water enters the tank. In the standby mode, there is no forced water flow into or out of the tank. In this experimental study, only the standby mode was considered.

Song, J.; Wood, B.D. [Univ. of Nevada, Reno, NV (United States); Ji, L.J. [Arizona State Univ., Tempe, AZ (United States)

1998-03-01T23:59:59.000Z

193

Tank alerting system  

SciTech Connect

An armored vehicle warning and defensive system against missile and warhead attack is described comprising: a plurality of sensor means, each sensor means including a plurality of infrared and millimeter wave detectors all of which detectors are connected to a single low power local transmitter associated respectively and located within each said sensor means, said local transmitter generating coded signals in response to an output from any detector in said respective sensor means; means within the armored vehicle to receive any of said coded signals from any of said sensor means local transmitters; and means to process and initiate warning to launch screening grenades against an incoming attacking missile or warhead in response to such receipt of any of said coded signals.

Schabdach, P.G.; Barditch, I.F.

1993-07-20T23:59:59.000Z

194

A STRUCTURAL IMPACT ASSESSMENT OF FLAWS DETECTED DURING ULTRASONIC EXAMINATION OF TANK 15  

SciTech Connect

Ultrasonic (UT) inspection of Tank 15 was conducted between April and July 2007 in accordance with the Tank 15 UT inspection plan. This was a planned re-inspection of this tank, the previous one was performed in 2002. Ten cracks were characterized in the previous examination. The re-inspection was performed to verify the present models and understanding for stress corrosion cracking. During this re-examination, one indication that was initially reported as a 'possible perpendicular crack <25% through wall' in 2002, was clearly shown not to be a crack. Additionally, examination of a new area immediately adjacent to other cracks along a vertical weld revealed three new cracks. It is not known when these new cracks formed as they could very well have been present in 2002 as well. Therefore, a total of twelve cracks were evaluated during the re-examination. A critical review of the information describing stress corrosion crack behavior for the SRS waste tanks, as well as a summary review of the service history of Tank 15, was performed. Each crack was then evaluated for service exposure history, consistency of the crack behavior with the current understanding of stress corrosion cracking, and present and future impact to the structural integrity of the tank. Crack instability calculations were performed on each crack for a bounding waste removal loading condition in Tank 15. In all cases, the crack behavior was determined to be consistent with the previous understanding of stress corrosion cracking in the SRS waste tank environment. The length of the cracks was limited due to the short-range nature of the residual stresses near seam, repair and attachment welds. Of the twelve cracks, nine were located in the vapor space above the sludge layer, including the three new cracks. Comparison of the crack lengths measured in 2002 and 2007 revealed that crack growth had occurred in four of the six previously measured vapor space cracks. However, the growth remained within the residual stress zone. None of the three cracks beneath the sludge showed evidence of growth. The impact of the cracks that grew on the future service of Tank 15 was also assessed. Tank 15 is expected to undergo closure activities including sludge waste removal. A bounding loading condition for waste removal of the sludge at the bottom of Tank 15 was considered for this analysis. The analysis showed that the combination of hydrostatic, seismic, pump and weld residual stresses are not expected to drive any of the cracks identified during the Tank 15 UT inspection to instability. Wall thickness mapping for general thinning and pitting was also performed. No significant wall thinning was observed. The average wall thickness values were well above nominal. Two isolated pit-like indications were observed. Both were approximately 30 mils deep. However, the remaining wall thickness was still greater than nominal specified for the original construction plate material. It was recommended that a third examination of selected cracks in Tank 15 be performed in 2014. This examination would provide information to determine whether any additional detectable degradation is occurring in Tank 15 and to supplement the basis for characterization of conditions that are non-aggressive to tank corrosion damage. The in-service inspection program is re-evaluated on a three year periodicity. The Type I and II tanks are not active receipt tanks at present, and are therefore not a part of the In-Service Inspection Program for the Type III Tanks [1]. Changes to the mission for Tank 15 and other Type I and II tanks may be considered by the In-Service Inspection Review Committee (ISIRC) and the program adjusted accordingly.

Wiersma, B; James Elder, J

2008-08-21T23:59:59.000Z

195

HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS  

SciTech Connect

This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor bolt failure leading to global buckling of the tank under increased vacuum) could occur. After releasing Revision 0 of this report, an independent review of the Double Shell Tanks (DST) Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis was conducted by Dr. Robert P. Kennedy of RPK Structural Mechanics Consulting and Dr. Anestis S. Veletsos of Rice University. Revision I was then issued to address their review comments (included in Appendix D). Additional concerns involving the evaluation of concrete anchor loads and allowables were found during a second review by Drs. Kennedy and Veletsos (see Appendix G). Extensive additional analysis was performed on the anchors, which is detailed by Deibler et al. (2008a, 2008b). The current report (Revision 2) references this recent work, and additional analysis is presented to show that anchor loads do not concentrate significantly in the presence of a local buckle.

MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

2009-01-14T23:59:59.000Z

196

Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)  

Science Conference Proceedings (OSTI)

Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

VAN BEEK, J.E.

1999-09-02T23:59:59.000Z

197

Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)  

SciTech Connect

This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

VAN BEEK, J.E.

2000-04-19T23:59:59.000Z

198

Storage Tanks (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

199

Tank characterization report for single-shell tank 241-B-201  

SciTech Connect

This tank characterization report for Tank 241-B-201 was initially released as PNL-10100. This document is now being released as WHC-SD- WM-ER-550 in order to accommodate internet publishing.

Conner, J.M.

1996-06-06T23:59:59.000Z

200

Tank waste remediation system engineering plan  

SciTech Connect

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Double-shell tank waste pretreatment  

SciTech Connect

Double-shell tanks contain most of the transuranic/high-level chemical processing waste generated at the Hanford Site in recent years. A small mass fraction of this waste is responsible for its characterization as transuranic/high-level waste. Pretreatment will partition the waste into a small fraction containing most of the transuranic/high-level components and a large fraction that is a low-level waste. The operations for achieving this objective include dissolution of water-soluble salts, dissolution of precipitated metal oxides in acid, clarification of the resulting dissolver liquors, transuranium element removal by solvent extraction and cesium removal by ion exchange. The primary benefit of pretreatment is a reduction in the overall cost of waste disposal.

Orme, R.M.; Appel, J.N.

1990-01-01T23:59:59.000Z

202

HWMA/RCRA Closure Plan for the TRA/MTR Warm Waste System Voluntary Consent Order SITE-TANK-005 Tank System TRA-007  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure Plan was developed for portions of the Test Reactor Area/Materials Test Reactor Warm Waste System located in the Materials Test Reactor Building (TRA-603) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan SITE-TANK-005 for the Tank System TRA-007. The reactor drain tank and canal sump to be closed are included in the Test Reactor Area/Materials Test Reactor Warm Waste System. The reactor drain tank and the canal sump will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-30T23:59:59.000Z

203

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

204

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

205

Engineering task plan for Tanks 241-AN-103, 104, 105 color video camera systems  

DOE Green Energy (OSTI)

This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and installation of the video camera systems into the vapor space within tanks 241-AN-103, 104, and 105. The one camera remotely operated color video systems will be used to observe and record the activities within the vapor space. Activities may include but are not limited to core sampling, auger activities, crust layer examination, monitoring of equipment installation/removal, and any other activities. The objective of this task is to provide a single camera system in each of the tanks for the Flammable Gas Tank Safety Program.

Kohlman, E.H.

1994-11-17T23:59:59.000Z

206

Supporting document for the historical tank content estimate for AN-tank farm  

Science Conference Proceedings (OSTI)

This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

207

Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm  

Science Conference Proceedings (OSTI)

This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area.

Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

1994-06-01T23:59:59.000Z

208

Supporting document for the historical tank content estimate for BY Tank Farm  

Science Conference Proceedings (OSTI)

This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

1994-06-01T23:59:59.000Z

209

Supporting document for the historical tank content estimate for B Tank Farm  

Science Conference Proceedings (OSTI)

This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

1994-06-01T23:59:59.000Z

210

Supporting document for the historical tank content estimate for S tank farm  

SciTech Connect

This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

1994-06-01T23:59:59.000Z

211

Tank farms essential drawing plan  

SciTech Connect

The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

Domnoske-Rauch, L.A.

1998-08-04T23:59:59.000Z

212

Soil structural analysis tools and properties for Hanford site waste tank evaluation  

Science Conference Proceedings (OSTI)

As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks.

Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

1995-09-01T23:59:59.000Z

213

Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site C Tank Farm Meeting Summary - September 2009 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm...

214

Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

215

Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

216

Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

217

Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

218

Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

219

Hanford Site C Tank Farm Meeting Summary - October 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2009 Hanford Site C Tank Farm Meeting Summary - October 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

220

Development and Deployment of Advanced Corrosion Monitoring Systems for High-Level Waste Tanks  

SciTech Connect

This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest--in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and AEA Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

2002-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development and deployment of advanced corrosion monitoring systems for high-level waste tanks.  

Science Conference Proceedings (OSTI)

This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest - in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and M A Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

Terry, M. T. (Michael T.); Edgemon, G. L. (Glenn L.); Mickalonis, J. I. (John I.); Mizia, R. E. (Ronald E.)

2002-01-01T23:59:59.000Z

222

Deflagration studies on waste Tank 101-SY: Test plan  

DOE Green Energy (OSTI)

Waste slurries produced during the recovery of plutonium and uranium from irradiated fuel are stored in underground storage tanks. While a variety of waste types have been generated, of particular concern are the wastes stored in Tank 101-SY. A slurry growth-gas evolution cycle has been observed since 1981. The waste consists of a thick slurry, consisting of a solution high in NaOH, NaNO{sub 3}, NaAlO{sub 2}, dissolved organic complexants (EDTA, HEDTA, NTA, and degradation products), other salts (sulfates and phosphates), and radionuclides (primarily cesium and strontium). During a gas release the major gaseous species identified include: hydrogen and nitrous oxide (N{sub 2}O). Significant amounts of nitrogen may also be present. Traces of ammonia, carbon oxides, and other nitrogen oxides are also detected. Air and water vapor are also present in the tank vapor space. The purpose of the deflagration study is to determine risks of the hydrogen, nitrous oxide, nitrogen, and oxygen system. To be determined are pressure and temperature as a function of composition of reacting gases and the concentration of gases before and after the combustion event. Analyses of gases after the combustion event will be restricted to those tests that had an initial concentration of {le}8% hydrogen. This information will be used to evaluate safety issues related to periodic slurry growth and flammable gas releases from Tank 101-SY. the conditions to be evaluated will simulate gases in the vapor space above the salt cake as well as gases that potentially are trapped in pockets within/under the waste. The deflagration study will relate experimental laboratory results to conditions in the existing tanks.

Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

1991-07-01T23:59:59.000Z

223

Double-Shell Tank Visual Inspection Changes REsulting from the Tank 241-AY-102 Primary Tank Leak - 14193  

SciTech Connect

As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY -1 02 (A Y -1 02) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY -102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-1021eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

2013-11-14T23:59:59.000Z

224

Double Shell Tank (DST) Process Waste Sampling Subsystem Definition Report  

Science Conference Proceedings (OSTI)

This report defines the Double-Shell Tank (DST) Process Waste Sampling Subsystem (PWSS). This subsystem definition report fully describes and identifies the system boundaries of the PWSS. This definition provides a basis for developing functional, performance, and test requirements (i.e., subsystem specification), as necessary, for the PWSS. The resultant PWSS specification will include the sampling requirements to support the transfer of waste from the DSTs to the Privatization Contractor during Phase 1 of Waste Feed Delivery.

RASMUSSEN, J.H.

2000-04-25T23:59:59.000Z

225

Improved method for determining tank heel volumes  

SciTech Connect

As part of the tank calibration process, the instrument heel is that part of the tank that cannot be measured by the liquid level instrumentation. if the tank being calibrated is not a bottom drain tank, some volume of fluid will be present in the bottom of the tank after draining as much as possible. The amount of fluid remaining in the tank at the start of each run can be estimated by measuring a concentration change of an added spiking material. With the great improvement of liquid level measuring instruments, the total error associated with the instrument heel determination can be greatly affected by the laboratory method used to measure the concentration difference. At the Savannah River Site, the laboratory method used has historically been Direct Current Plasma Emission Spectroscopy, which yielded very marginal results at best. In the most recent tank calibrations, the laboratory method was changed to Absorption Spectrophotometry, which reduces the total error on the instrument heel measurement by a factor of 2.5 times. This paper describes the method used to determine tank instrument heels and the improvements made to this process.

Holt, S.H.; Livingston, R.R.; Nave, S.E.

1994-07-01T23:59:59.000Z

226

Tanks Focus Area annual report FY2000  

SciTech Connect

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01T23:59:59.000Z

227

HANFORD WASTE TANK BUMP ACCIDENT & CONSEQUENCE ANALYSIS  

DOE Green Energy (OSTI)

Postulated physical scenarios leading to tank bumps were examined. A combination of a substantial supernatant layer depth, supernatant temperatures close to saturation, and high sludge temperatures are required for a tank bump to occur. Scenarios postulated at various times for sludge layers lacking substantial supernatant, such as superheat within the layer and fumarole formation leading to a bump were ruled out.

MEACHAM, J.E.

2005-02-22T23:59:59.000Z

228

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanks (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.

West, B; Ruel Waltz, R

2008-06-05T23:59:59.000Z

229

What's going on Inside Today's Fuel Storage Tank?  

Science Conference Proceedings (OSTI)

... 14 Page 15. E85 tanks ? Minnesota has a high percentage of underground tanks at gas stations storing 85% ethanol ? Last ...

2013-08-28T23:59:59.000Z

230

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

231

DOE Selects Washington River Protection Solutions, LLC for Tank...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at...

232

Independent Oversight Review of Hanford Tank Farms Safety Basis...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to create tank vacuum exceeding their analyzed capabilities, which could result in structural failures. The vacuum relief valves and other tank vacuum 3 protection devices are...

233

Independent Oversight Review of Hanford Tank Farms Safety Basis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades November 2011 Office of Safety and Emergency Management Evaluations Office of...

234

Hanford Site C Tank Farm Meeting Summary - March 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2010 Hanford Site C Tank Farm Meeting Summary - March 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Meeting Summary for...

235

Hanford Tank Waste Treatment and Immobilization Plan Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations Office Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations...

236

Hydrogen Tank Testing R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

04.29.2010 | Presented by Joe Wong, P.Eng. 04.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing 1 POWERTECH - Hydrogen & CNG Services  Certification testing of individual high pressure components  Design Verification, Performance, End-of-Life testing of complete fuel systems  Design, construction, and operation of Hydrogen Fill Stations  Safety Studies  Standards Development 2 PRESENTATION  Discuss CNG Field Performance Data  Discuss Safety Testing of Type 4 Tanks  Current work to support Codes & Standards Development 3 Storage Tank Technologies 4 basic types of tank designs  Type 1 - all metal  Type 2 - metal liner with hoop wrapped composite  Type 3 - metal liner with fully wrapped composite  Type 4 - Plastic liner with

237

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

238

SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES  

Science Conference Proceedings (OSTI)

The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

Hay, M.; O'Rourke, P.; Ajo, H.

2012-03-08T23:59:59.000Z

239

Contingency plan for deployment of the void fraction instrument in Tank 241-AY-102  

Science Conference Proceedings (OSTI)

High-heat producing sludge from tank 241-C-106 will be sluiced and transferred to tank 241-AY-102 beginning in October 1998. Safety analyses have postulated that after retrieval, the waste in 241-AY-102 may generate and retain unsafe levels of flammable gases (Noorani 1998, Pasamebmetoglu etal. 1997). Unsafe levels of retained gas are not expected, but cannot be ruled out because of the large uncertainty in the gas generation and retention rates. The Tank Waste Remediation System Basis for Interim Operation (Noorani 1998) identifies the need for a contingency plan to add void fraction monitoring to tank 241-AY-102 within 2 weeks of the identification of flammable gas buildup that would warrant monitoring. The Tank 241-C-106 Waste Retrieval Sluicing System Process Control Plan (Carothers et al. 1998) committed to providing a contingency plan for deployment of the void fraction instrument (VFI) in tank 241-AY-102. The VFI determines the local void fraction of the waste by compressing a waste sample captured in a gas-tight test chamber. The sample chamber is mounted on the end of a 76-cm (2.5-ft) arm that can be rotated from vertical to horizontal when the instrument is deployed. Once in the waste, the arm can be positioned horizontally and rotated to sample in different areas below the riser. The VFI is deployed using a crane. The VFI has been deployed previously in 241-AW, 241-AN, and 241-SY tank farms, most recently in tank 241-SY-101 in June and July 1998. An additional test in tank 241-SY-101 is planned in September 1998. Operating instructions for the VFI are included in the Void Fraction Instrument Operation and Maintenance Manual (Pearce 1994).

CONNER, J.M.

1999-02-24T23:59:59.000Z

240

Tank SY-102 waste retrieval assessment: Rheological measurements and pump jet mixing simulations  

SciTech Connect

Wastes stored in Hanford Tank 241-SY-102 are planned to be retrieved from that tank and transferred to 200 East Area through the new pipeline Replacement Cross Site Transfer System (RCSTS). Because the planned transfer of this waste will use the RCSTS, the slurry that results from the mobilization and retrieval operations must meet the applicable waste acceptance criteria for this system. This report describes results of the second phase (the detailed assessment) of the SY-102 waste retrieval study, which is a part of the efforts to establish a technical basis for mobilization of the slurry, waste retrieval, and slurry transport. Hanford Tank 241-SY-102 is located in the SY Tank Farm in the Hanford Site`s 200 West Area. It was built in 1977 to serve as a feed tank for 242-S Evaporator/Crystallizer, receiving supernatant liquid from S, SX, T, and U tank farms. Since 1981, the primary sources of waste have been from 200 West Area facilities, e.g., T-Plant decontamination operations, Plutonium Finishing Plant operations, and the 222-S Laboratory. It is the only active-service double-shell tank (DST) in the 200 West Area and is used as the staging tank for cross-site transfers to 200 East Area DSTs. The tank currently stores approximately 470 kL (125 kgal) of sludge wastes from a variety of sources including the Plutonium Finishing Plant, T-Plant, and the 222-S Laboratory. In addition to the sludge, approximately twice this amount (about 930 kL) of dilute, noncomplexed waste forms a supernatant liquid layer above the sludge.

Onishi, Y.; Shekarriz, R.; Recknagle, K.P. [and others

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tank characterization report for single-shell tank 241-BY-104  

SciTech Connect

This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

Benar, C.J.

1996-09-26T23:59:59.000Z

242

Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations  

Science Conference Proceedings (OSTI)

Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). 5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP#8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12. Mix, LP#8-16 is recommended for inclusion in the specification for furnishing and delivering tank closure grout for Tanks 18-F and 19-F [Forty, 2011 c]. A shrinkage compensating variation of this mix, LP#16C, has not been fully developed and characterized at this time.

Langton, C. A.; Stefanko, D. B.

2013-04-23T23:59:59.000Z

243

Nuclear criticality project plan for the Hanford Site tank farms  

SciTech Connect

The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste characterization with respect to fissile material. The review indicated that the conclusion in the FSARS, that a criticality is not credible, cannot be supported for a full range of potential tank constituents. Therefore, a USQ was declared. Development of a credible scenario leading to a criticality proved to be extremely difficult, given the paucity of data on the quantity and distribution of fissile material in the tanks. The objective of this project plan is to develop a strategy and technical approach to provide a CTBSD for the FSAR and for resolution of the nuclear criticality safety issue pertaining to tank farm waste storage and transfer operations. The strategy and technical approach identified in this project plan include definition of administrative and technical tasks. Technical analyses will include mechanistic studies, historical data review, and additional limited neutronics analysis. Completion of these studies will be documented in a CTBSD to support the existing criticality technical basis. The CTBSD will be incorporated in the criticality portion of the FSAR.

Bratzel, D.R., Westinghouse Hanford

1996-08-06T23:59:59.000Z

244

Water Tanks Demolition and Deactivation (D&D) Project (4589), 5/29/2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Tanks Demolition and Deactivation (D&D) Projects (4589) Water Tanks Demolition and Deactivation (D&D) Projects (4589) Program or Field Office: Y-12 Site Office Location(s) (City/County/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is to demolish and deactivate three water tanks, an electrical services shed and related out of service diesel generator on the south ridge. The tanks have already been isolated from the Y-12 potable water system. Categorical Exclusion(s) Applied: B 1.23 - Demolition and disposal of buildings For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of 10 CFR Part 1021. Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation)

245

U.S. Department of Energy Onboard Storage Tank Workshop Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Onboard Storage Tank Workshop Workshop Notes April 29, 2010 Sandia National Laboratories - Livermore, CA 2 Report from the Onboard Storage Tank Workshop Livermore, CA April 29 th , 2010 The Onboard Storage Tank Workshop was held on April 29 th , 2010, at Sandia National Laboratories (SNL) in Livermore, CA. The Workshop was co-hosted by SNL and the United States Department of Energy (DOE). The purpose of the Workshop was to identify key issues including research and development (R&D) needs, regulations, codes and standards (RCS), and a path forward to enable the deployment of hydrogen storage tanks in early market fuel cell applications. Background The objectives of the Workshop were to: * Provide initial follow up to the DOE and Department of Transportation (DOT)

246

Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal Judge Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal Judge October 6, 2010 - 12:00am Addthis RICHLAND, Wash. - The U.S. Department of Energy and Washington State Department of Ecology (Ecology) jointly filed a motion today in U.S. District Court asking the court to approve and enter a judicial consent decree that imposes a new, enforceable, and achievable schedule for cleaning up waste from Hanford's underground tanks. The settlement also includes new milestones in the Tri-Party Agreement (TPA), an administrative order between DOE, Ecology, and the U.S. Environmental Protection Agency, which governs cleanup at DOE's Hanford Site. "Today's agreement represents an important milestone in the ongoing cleanup

247

System design specification for the 1/4-scale tank and ancillary equipment  

Science Conference Proceedings (OSTI)

The Fluid Dynamic Test Facility (FDTF) is located in the 336 Building at the 300 Area of the Hanford Site. The FDTF will contain tanks that model the average internal diameter and height of a 3875 m{sup 3} (1-million-gal) double-shell tank at both 1/12- and 1/4-scale, as well as ancillary equipment required to store, mix, and transport waste simulants. Experiments to be conducted in this facility will include investigations of sludge mobilization, slurry uniformity, aerosol generation, sludge washing, and instrumentation development to support start-up of the Hanford Waste Vitrification Project. This facility will also be used to model concepts and mitigating strategies to be used in the resolution of tank safety issues and the retrieval of waste from watch-list tanks.

Bamberger, J.A.; Bates, J.M. [Pacific Northwest Lab., Richland, WA (United States); Waters, E.D.; Heimberger, D.T. [Westinghouse Hanford Co., Richland, WA (United States)

1993-09-01T23:59:59.000Z

248

AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007  

Science Conference Proceedings (OSTI)

The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year).

MANN, F.M.

2007-07-10T23:59:59.000Z

249

Combustion modeling in waste tanks  

DOE Green Energy (OSTI)

This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

Mueller, C.; Unal, C. [Los Alamos National Lab., NM (United States); Travis, J.R. [Los Alamos National Lab., NM (United States)]|[Forschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit

1997-08-01T23:59:59.000Z

250

Savannah River Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

251

Tank 241-C-112 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank C-112 is a single-shell tank which received first-cycle decontamination waste from B Plant and was later used as a settling tank. Samples were collected from Tank C-112 using the vapor sampling system (VSS) on August 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 28 C. Air from the Tank C-112 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 4, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

252

Tank 241-C-111 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank C-111 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Results presented here represent the best available data on the headspace constituents of Tank C-111. Almost all of the data in this report was obtained from samples collected on September 13, 1994.Data from 2 other sets of samples, collected on August 10, 1993 and June 20, 1994, are in generally good agreement with the more recent data. The tank headspace temperature was determined to be 27 C. Air from the Tank C-111 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 6, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks provided by the laboratories. Tank C-111 is a single shell tank which received first-cycle decontamination waste from B Plant and was later used as a settling tank.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

253

Tank characterization report for Single-Shell Tank 241-T-107  

Science Conference Proceedings (OSTI)

Single shell tank 241-T-107 is a Hanford Site Ferrocyanide Watch List tank most recently sampled in March 1993. Analyses of materials obtained from tank T-107 were conducted to support the Ferrocyanide Unreviewed Safety Question (USQ) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-06 as well as Milestones M-44-05 and M-44-07. Characterization of the tank waste T-107 will support the ferrocyanide safety issue in order to classify the tank as safe, conditionally safe, or unsafe. This tank characterization report expands on the data found in Ferrocyanide Safety Program: Data Interpretation Report for Tank 241-T-107 Core Samples. Analysis of core samples obtained from tank T-107 strongly indicate the cyanide and oxidizer (nitrate/nitrite) concentrations in the tank waste are not significant enough to support a self-sustaining exothermic reaction. Therefore, the contents of tank T-107 present no imminent threat to the workers at the Hanford Site, the public, or the environment. Because the possibility of an exothermic reaction is remote, the consequences of an accident scenario, as proposed by the General Accounting Office, are not applicable.

Valenzuela, B.D.; Jensen, L.

1994-09-01T23:59:59.000Z

254

Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

NONE

1997-05-01T23:59:59.000Z

255

Hazard Analysis for In Tank Spray Leaks  

SciTech Connect

The River Protection Project (RPP) Authorization Basis (AB) contains controls that address spray leaks in tanks. However, there are no hazardous conditions in the Hazards Database that specifically identify in-tank spray leak scenarios. The purpose of this Hazards Evaluation is to develop hazardous conditions related to in-tank spray leaks for the Hazards Database and to provide more complete coverage of Tank Farm facilities. Currently, the in-tank spray leak is part of the ''Spray Leak in Structures or From Waste Transfer Lines'' accidents in Section 3.4.2.9 of the Final Safety Analysis Report (FSAR) (CHG, 2000a). The accident analysis for the ''Spray Leak in Structure or From Waste Transfer Lines'' states the following regarding the location of a possible spray leak: Inside ventilated waste storage tanks (DSTs, DCRTs, and some SSTs). Aerosols could be generated inside a storage tank during a transfer because of a leak from the portion of the transfer pipe inside the tank. The tank ventilation system could help disperse the aerosols to the atmosphere should the vent system HEPA filters fail. This Hazards Evaluation also evaluates the controls currently assigned to the spray leak in structure accident and determines the applicability of the controls to the new hazardous conditions. This comparison reviews both the analysis in the FSAR and the controls found in the Technical Safety Requirements (TSRs) (CHG, 2000h). If the new hazardous conditions do not match the analyzed accident conditions and controls, then additional analysis may be required. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Control decision process as defined in the AB will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

GRAMS, W.H.

2000-06-13T23:59:59.000Z

256

Enclosure 1 Additional Information on Hanford Tank Wastes  

E-Print Network (OSTI)

Enclosure 1 Additional Information on Hanford Tank Wastes Introduction The U. S. Nuclear Regulatory of Energy to the U. S. Environmental Protection Agency addressing the Hanford Tank and K Basin Wastes (CBFO stored in two tanks (designated as tanks 241-AW-103 and 241-AW-105) at the Hanford Site are not high

257

Vehicle Tank & Loading Rack Meters - 2013-04-22  

Science Conference Proceedings (OSTI)

Vehicle Tank & Loading Rack Meters. Purpose: ... Participants should bring a calculator to the training. Materials & Supplies: ...

2013-06-03T23:59:59.000Z

258

Tank 241-BY-104 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-104 using the vapor sampling system (VSS) on June 24, 1994 by WHC Sampling and Mobile Laboratories. Air from the tank BY-104 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

259

CHARACTERIZATION OF TANK 11H AND TANK 51H POST ALUMINUM DISSOLUTION PROCESS SAMPLES  

Science Conference Proceedings (OSTI)

A dip sample of the liquid phase from Tank 11H and a 3-L slurry sample from Tank 51H were obtained and sent to Savannah River National Laboratory for characterization. These samples provide data to verify the amount of aluminum dissolved from the sludge as a result of the low temperature aluminum dissolution process conducted in Tank 51H. The characterization results for the as-received Tank 11H and Tank 51H supernate samples and the total dried solids of the Tank 51H sludge slurry sample appear quite good with respect to the precision of the sample replicates and minimal contamination present in the blank. The two supernate samples show similar concentrations for the major components as expected.

Hay, M; Daniel McCabe, D

2008-05-16T23:59:59.000Z

260

Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991  

DOE Green Energy (OSTI)

Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Task Plan for the selection and evaluation of flow monitoring instrumentation to be used on the primary exhaust ventilation in Double Shell Hydrogen Watch List Tanks  

DOE Green Energy (OSTI)

This Task Plan outlines the activities required to select and evaluate flow measuring devices to be used in the primary exhaust ventilation ducts for Double Shell Tanks (DST) on the hydrogen watch list that don`t already have this capability. This currently includes tanks 101-AW, 103-AN, 104-AN, and 105-AN. The continuous measurement and recording of this flow is necessary to quantify the amount of hydrogen being off-gased by these tanks for further mitigation studies.

Hertelendy, N.A.

1995-12-01T23:59:59.000Z

262

Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promulgation of Promulgation of Renewable Fuel Storage Tank Regulations to someone by E-mail Share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Facebook Tweet about Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Twitter Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Google Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Delicious Rank Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Digg Find More places to share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on AddThis.com... More in this section... Federal

263

EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51  

Science Conference Proceedings (OSTI)

Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70 C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values of extent of dissolution, 56% to 64%, resulted from the variation in liquid phase sample data available at the time. Additional solid phase data is available from a sample taken after LTAD to refine this range. This report provides additional detailed evaluation of the LTAD process based on analytical and field data and includes: a summary of the process chronology; a determination of an acceptable blending strategy for the aluminum-laden supernate stored in Tank 11; an update to the determination of aluminum dissolved using more complete sample results; a determination of the effect of LTAD on uranium, plutonium, and other metals; a determination of the rate of heat loss from a quiescent tank; and an evaluation of the aluminum dissolution rate model and actual dissolution rate. LTAD was successfully completed in Tank 51 with minimal waste tank changes. The following general conclusions may be drawn about the LTAD process: (1) Dissolution at about 60 C for 46 days dissolved 64% of the aluminum from the sludge slurry. (2) The aluminum-laden leach solution decanted to Tank 11 can be blended with a wide variety of supernates without risk of precipitating the dissolved aluminum based on thermodynamic chemical equilibrium models. (3) Uranium and plutonium leached into solution without corresponding leaching of iron or metal other than aluminum, but the total mass leached was a small fraction of the total uranium and plutonium in the sludge. (4) The concentration of uranium and plutonium in the leach solution was indistinguishable from other tank farm supernates, thus, the leach solutions can be managed relative to the risk of criticality like any other supernate. (5) A small amount of mercury leached into solution from the sludge causing the liquid phase concentration to increase 6 to 10 fold, which is consistent with the 4 to 14 fold increase observed during the 1982 aluminum dissolution demonstration. (6) Chromium did not dissolve during LTAD. (7) Chloride concentration increased in the liquid phase during LTAD due to chloride contamination in the 50% sodium hydroxide solution. (8) The rate of heat loss from Tank 51 at temperatures above 45 C appeared linear and predictable at 8E+7 cal/hr. (9) The rate of heat transfer from Tank 51 did not follow a simplified bulk heat transfer model. (10) Prediction of the aluminum dissolution rate was prone to error due to a lack of active specific surface area data of sludge particles. (11) The higher than expected dissolution rate during LTAD was likely due to smaller than expected particle sizes of most of the sludge particles. While evaluating the LTAD process, the dissolved salt solution from Tank 41 that was stored and sampled in Tank 49 was determined to be supersaturated relative to alu

Pike, J

2008-09-04T23:59:59.000Z

264

Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks  

DOE Green Energy (OSTI)

The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method. Retrieval operations will hydraulically erode and dissolve the saltcake waste, and the resulting brine will then be pumped to a double-shell tank (DST). Waste gases residing in the solid waste matrix will be released into the tank headspace when the matrix is eroded or dissolved. These retained waste gases include the flammable species hydrogen, methane, and ammonia, and there is a concern that these flammable gases could produce a flammable mixture in the tank headspaces during the retrieval operations. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during waste retrieval operations. The SSTs considered here are ten of the twelve 241-S farm tanks (tanks 241-S-107 and 241-S-111 are excluded from consideration here) and tank 241-U-107 (U-107).

Huckaby, James L.; Wells, Beric E.

2003-05-13T23:59:59.000Z

265

Alternative Fuels Data Center: Filling CNG Fuel Tanks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Filling CNG Fuel Tanks Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Filling CNG Fuel Tanks Unlike liquid fuel, which consistently holds about the same volume of fuel

266

Auto dealer resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

267

EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

incorporating chemistry. Such tools would allow the facile evaluation of the impacts of treatment and waste form alternatives on the overall disposition path for Hanford tank...

268

Tank characterization report for single-shell tank 241-BY-110  

Science Conference Proceedings (OSTI)

This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-BY-110.

Schreiber, R.D.

1996-09-16T23:59:59.000Z

269

SLUDGE BATCH 7 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB7 QUALIFICATION SAMPLE PREPARED AT SRNL  

SciTech Connect

Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Seven (SB7) for processing in the Defense Waste Processing Facility (DWPF). The SB7 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB6. The radionuclide concentrations were measured or estimated in the Tank 51 SB7 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter qualification sample of Tank 51 sludge slurry (HTF-51-10-125) received on September 18, 2010. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. With consultation from the Liquid Waste Organization, the qualification sample was then modified by several washes and decants, which included addition of Pu from H Canyon and sodium nitrite per the Tank Farm corrosion control program. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB7 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2010-0031. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task III.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB7 will be taken and transferred to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB7 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated.

Pareizs, J.; Hay, M.

2011-02-22T23:59:59.000Z

270

Maine Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Maine Tow Tank Overseeing Organization University of Maine Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 2.4 Depth(m) 1.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Simulated beach is framed with PVC/mesh. Has a 4:9 slope. Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

271

Davidson Laboratory Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Laboratory Tow Tank Laboratory Tow Tank Jump to: navigation, search Basic Specifications Facility Name Davidson Laboratory Tow Tank Overseeing Organization Stevens Institute of Technology Hydrodynamic Testing Facility Type Tow Tank Length(m) 97.5 Beam(m) 4.9 Depth(m) 2.0 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 18.3 Length of Effective Tow(m) 30.5 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 15.2 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Menu driven selection of standard spectra or user specified Wave Direction Uni-Directional Simulated Beach Yes

272

Ship Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ship Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 100.0 Beam(m) 3.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mapping Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 75.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.0 Maximum Wave Length(m) 6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable using LabView for regular or irregular waves

273

Ohmsett Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Ohmsett Tow Tank Ohmsett Tow Tank Jump to: navigation, search Basic Specifications Facility Name Ohmsett Tow Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3.4 Length of Effective Tow(m) 155.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.1 Maximum Wave Length(m) 18 Wave Period Range(s) 4.1 Current Velocity Range(m/s) 3.4 Programmable Wavemaking Yes Wavemaking Description Programmable frequency Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Wave dampening at downstream end Channel/Tunnel/Flume

274

MHL Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name MHL Tow Tank Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 109.7 Beam(m) 6.7 Depth(m) 3.7 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 6.7 Length of Effective Tow(m) 103.6 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Concrete beach Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None

275

Stennis Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Stennis Tow Tank Stennis Tow Tank Jump to: navigation, search Basic Specifications Facility Name Stennis Tow Tank Overseeing Organization United States Geological Survey, HIF Hydrodynamic Testing Facility Type Tow Tank Length(m) 137.2 Beam(m) 3.7 Depth(m) 3.7 Cost(per day) $1200(+ setup charges) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 4.6 Length of Effective Tow(m) 114.3 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Fully automated data collection/carriage control computer system for mechanical current meters only. Number of channels 4 Cameras None Available Sensors Acceleration, Velocity Data Generation Capability

276

Penn Reverberant Tank | Open Energy Information  

Open Energy Info (EERE)

Penn Reverberant Tank Penn Reverberant Tank Jump to: navigation, search Basic Specifications Facility Name Penn Reverberant Tank Overseeing Organization Pennsylvania State University Hydrodynamics Hydrodynamic Testing Facility Type Reverberant Tank Length(m) 7.9 Beam(m) 5.3 Depth(m) 5.5 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Structurally isolated hydrodynamic acoustics testing. Lined with an absorber on four sides and bottom with three 0.5x0.5 meter underwater viewing ports. Mechanical oscillation of a small-scale test unit-simulation of oscillating flow for wave or tidal excitation. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities

277

Alden Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Alden Tow Tank Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 1.2 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities Yes Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) Designed as needed for study objectives Other Characteristics Point measurement capability Control and Data Acquisition Description Differential pressure transducers, acoustic profiling, propeller meters, load cells, computer data acquisition systems. Number of channels Designed as needed

278

Small Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Small Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 3.7 Beam(m) 0.6 Depth(m) 0.8 Cost(per day) Contact POC Special Physical Features Flows up to 5 gallons per minute Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.03 Length of Effective Tow(m) 3.0 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None Available Sensors Acoustics, Thermal, Turbulence, Velocity Data Generation Capability Real-Time Yes Test Services Test Services Yes On-Site fabrication capability/equipment Machine shop, carpenter shop, welding shop, instrumentation and electronics shop

279

Cryogenic Fuel Tank Draining Analysis Model  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection i...

Donald Greer Research; Donald Greer

1999-01-01T23:59:59.000Z

280

Ice Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Ice Towing Tank Ice Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ice Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 21.2 Beam(m) 5.0 Depth(m) 1.3 Cost(per day) Contact POC Special Physical Features Specialized for cold regions research, room temperature can be decreased to -10°F Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.5 Length of Effective Tow(m) 15.0 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras Yes Description of Camera Types Underwater Available Sensors Acoustics, Thermal, Turbulence, Velocity Data Generation Capability

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Analyses and characterization of double shell tank  

Science Conference Proceedings (OSTI)

Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams.

Not Available

1994-10-04T23:59:59.000Z

282

Summary of Group Development and Testing for Single Shell Tank Closure at Hanford  

Science Conference Proceedings (OSTI)

This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closure which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.

Harbour, John, R.

2005-04-28T23:59:59.000Z

283

Analysis of organic carbon and moisture in Hanford single-shell tank waste  

SciTech Connect

This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

1995-05-01T23:59:59.000Z

284

Progress in resolving Hanford Site high-level waste tank safety issues  

DOE Green Energy (OSTI)

Interim storage of alkaline, high-level radioactive waste, from two generations of spent fuel reprocessing and waste management activities, has resulted in the accumulation of 238 million liters of waste in Hanford Site single and double-shell tanks. Before the 1990`s, the stored waste was believed to be: (1) chemically unreactive under its existing storage conditions and plausible accident scenarios; and (2) chemically stable. This paradigm was proven incorrect when detailed evaluation of tank contents and behavior revealed a number of safety issues and that the waste was generating flammable and noxious gases. In 1990, the Waste Tank Safety Program was formed to focus on identifying safety issues and resolving the ferrocyanide, flammable gas, organic, high heat, noxious vapor, and criticality issues. The tanks of concern were placed on Watch Lists by safety issue. This paper summarizes recent progress toward resolving Hanford Site high-level radioactive waste tank safety issues, including modeling, and analyses, laboratory experiments, monitoring upgrades, mitigation equipment, and developing a strategy to screen tanks for safety issues.

Babad, H.; Eberlein, S.J.; Johnson, G.D.; Meacham, J.E.; Osborne, J.W.; Payne, M.A.; Turner, D.A.

1995-02-01T23:59:59.000Z

285

Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design  

Science Conference Proceedings (OSTI)

The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits.

Cramer, E.R.

1994-11-10T23:59:59.000Z

286

Waste Characterization Data Manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge National Laboratory (ORNL) Federal Facility Agreement (FFA), Section IX.G.1. Section IX.G.1 of the FFA requires waste characterizations be conducted and provided to EPA and TDEC for all LLLW tanks that are removed from service. These waste characterizations shall include the results of sampling and analysis of the tank contents, including wastes, liquids, and sludges. This manual was first issued as ORNL/ER-80 in June 1992. The waste characterization data were extracted from ORNL reports that described tank sampling and analysis conducted in 1988 for 32 out-of-service tanks. This revision of the manual contains waste characterization data for 54 tanks, including the 32 tanks from the 1988 sampling campaign (Sects. 2.1 through 2.32) and the 22 additional tanks from a subsequent sampling campaign in 1992 and 1993 (Sects. 2.33 through 2.54). Data are presented from analyses of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls (PCBs), pesticides, radiochemical compounds, and inorganic compounds. As additional data resulting from analyses of out-of-service tank samples become available, they will be added to this manual.

Not Available

1993-06-01T23:59:59.000Z

287

Environmental Program Description for the Tank Farm Contractor  

SciTech Connect

This Environmental Program Description has been developed in support of the Integrated Environmental, Safety, and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan. This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Description for the Tank Farm Contractor (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of five core functions. Each section of this plan describes the activities (formerly known as the Tank Waste Remediation System) of the Tank Farm Contractor (TFC) environmental organization according to the following core functions: Establish Environmental Policy and Define Work Scope; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Provide Feedback and Continuous Improvement; and Perform Work within Controls.

POWELL, P.A.

2000-04-20T23:59:59.000Z

288

Analysis of ICPP tank farm infiltration  

SciTech Connect

This report addresses water seeping into underground vaults which contain high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP). Each of the vaults contains from one to three sumps. The original purpose of the sumps was to serve as a backup leak detection system for release of HLLW from the storage tanks. However, water seeps into most of the vaults, filling the sumps, and defeating their purpose as a leak detection system. Leak detection for the HLLW storage tanks is based on measuring the level of liquid inside the tank. The source of water leaking into the vaults was raised as a concern by the State of Idaho INEL Oversight Group because this source could also be leaching contaminants released to soil in the vicinity of the tank farm and transporting contaminants to the aquifer. This report evaluates information concerning patterns of seepage into vault sumps, the chemistry of water in sumps, and water balances for the tank farm to determine the sources of water seeping into the vaults.

Richards, B.T.

1993-10-01T23:59:59.000Z

289

Underground storage tank management plan  

Science Conference Proceedings (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

290

TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS  

SciTech Connect

Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. (4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). (5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP-8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12.

Stefanko, D.; Langton, C.

2011-11-01T23:59:59.000Z

291

HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)  

Science Conference Proceedings (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

S. K. Evans

2006-08-15T23:59:59.000Z

292

Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants  

DOE Green Energy (OSTI)

Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

1996-09-01T23:59:59.000Z

293

ICPP tank farm closure study. Volume 2: Engineering design files  

SciTech Connect

Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

NONE

1998-02-01T23:59:59.000Z

294

Tank Vapor Characterization Project -- Headspace vapor characterization of Hanford waste Tank 241-C-107: Results from samples collected on 01/17/96  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report were obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system with and without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane hydrocarbons (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1996-07-01T23:59:59.000Z

295

Tank 241-BY-110 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

296

Tank 241-BY-106 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-106 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-106 using the vapor sampling system (VSS) on July 8, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-106 headspace was withdrawn via a heated sampling probe mounted in riser 10B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

297

Tank 241-BY-105 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

298

Tank 241-BY-108 vapor sampling and analysis tank characterization report  

DOE Green Energy (OSTI)

Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

299

Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102-14222  

SciTech Connect

A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints.

Harrington, Stephanie J.; Sams, Terry L.

2013-11-06T23:59:59.000Z

300

Tank characterization report for single-shell tank 241-S-104  

SciTech Connect

In July and August 1992, Single-Shell Tank 241-S-104 was sampled as part of the overall characterization effort directed by the Hanford Federal Facility Agreement and Consent Order. Sampling was also performed to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also presents expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background historical and surveillance tank information. Finally, this report makes recommendations and conclusions regarding operational safety. The purpose of this report is to describe the characteristics the waste in Single-Shell Tank 241-S-104 (hereafter, Tank 241-S-104) based on information obtained from a variety of sources. This report summarizes the available information regarding the chemical and physical properties of the waste in Tank 241-S-104, and using the historical information to place the analytical data in context, arranges this information in a format useful for making management and technical decisions concerning waste tank safety and disposal issues. In addition, conclusions and recommendations are presented based on safety issues and further characterization needs.

DiCenso, A.T.; Simpson, B.C.

1994-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

302

Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102  

SciTech Connect

A routine video inspection of the annulus region of double-shell tank 241-A Y-102 in August of 2012 indicated the presence material in the annulus space between the primary and secondary liners. A comparison was made to previous inspections perfom1ed in 2006 and 2007. which indicated that a change had occurred. The material was observed at two locations on the floor of the annulus and one location at the top of the annulus region where the primary and secondary top knuckles meet (RPP-ASMT-53793). Subsequent inspections were performed. leading to additional material observed on the floor of the annulus space in a region that had not previously been inspected (WRPS-PER-2012-1363). The annulus Continuous Air Monitor (CAM) was still operational and was not indicating elevated radiation levels in the annulus region. When the camera from the inspections was recovered. it also did not indicate increased radiation above minimum contamination levels (WRPS-PER-2012-1363). A formal leak assessment team was established August 10, 2012 to review tank 241-AY-102 construction and operating histories and to determine whether the material observed in the annulus had resulted from a leak in the primary tank. The team consisted of individuals from Engineering. Base Operations.and Environmental Protection. As this was a first-of-its-kind task. a method for obtaining a sample of the material in the annulus was needed. The consistency of the material was unknown.and the location of a majority of the material was not conducive to using the sampling devices that were currently available at Hanford. A subcontractor was tasked with the development fabrication.and testing of a sampling device that would be able to obtain multiple samples from the material on the annulus floor. as well as the material originating from a refractory air-slot near the floor of the annulus space. This sampler would need to be able to collect and dispense the material it collected into a sample jar retrieval device for transportation of the material to the 222-S laboratory on the Hanford site for analysis. The subcontractor agency fabricated a remote underground sampler by modifying off-the-shelf robotics and parts. Limited testing of the sampler was conducted using a mock-up of the tank annulus and one simulated material type -a salt block. The mock-up testing indicated that the sampler would be able to maneuver within the confined space and that the device worked with full functionality. A total of six weeks had passed from initiation to implementation of the new sampler in the 241-AY-102 tank annulus. Initial sample material was obtained from the annulus floor using the Off-Riser Sampler System that has been used at Hanford tor years to obtain material from the primary tanks. This could be used at the location near Riser 83 since the material was collected directly from the annulus floor and not from a location on the wall or behind a pipe, as was needed from the two locations near Riser 90. After obtaining a small sample of the material on the annulus floor.this sampler sustained terminal damage due to conduit pipes it had to transverse in order to collect and recover material from this location. Several issues were also encountered during deployment of the new sampler into the annulus near Riser 90. These included: Difficulty fitting the sampler down the 12-inch riser into the annulus due to a small tolerance in the size ofthe sampler Failure of sampler components and functions during deployment including the camera. pneumatics.and bearing seals Delays in the field due to supporting equipment issues including cables. cameras. and scaffolding Low recovery of sample material obtained for analysis The complications that occurred during deployment and use of the new sampler during the sampling event ultimately resulted in lower recovery of material from these locations in the annulus than was obtained using the Off-Riser Sampler System and limited the analyses that could be performed for determining the origin of the material. Following completion of th

Harrington, Stephanie J.; Sams, Terry L.

2013-08-15T23:59:59.000Z

303

Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternate processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.

TERRI, FELLINGER

2004-12-21T23:59:59.000Z

304

Independent Activity Report, Hanford Tank Farms - April 2013 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Farms - April 2013 Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms [HIAR-HANFORD-2013-04-15] The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to tour the Hanford Tank Farms, observe video inspection of single shell and double shell tanks, and observe Tank Farm project and staff meetings. Independent Activity Report, Hanford Tank Farms - April 2013 More Documents & Publications Independent Oversight Activity Report, Office of River Protection - May 2013 Independent Oversight Activity Report, Hanford Tank Farms - June 2013 Independent Activity Report, Office of River Protection Waste Treatment

305

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

306

Independent Oversight Review, Hanford Tank Farms - November 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Hanford Tank Farms - November 2011 Review, Hanford Tank Farms - November 2011 Independent Oversight Review, Hanford Tank Farms - November 2011 November 2011 Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an independent oversight review of the draft amendment to the Hanford Tank Farms safety basis for upgrading the double-shell tank (DST) primary tank ventilation (PTV) systems to safety-significant designation. The Tank Farms are Hazard Category 2 DOE nuclear facilities. The review was performed during the period July 25 - August 12, 2011 by the HSS Office of Enforcement and Oversight's Office of Safety and Emergency Management

307

Microsoft Word - Tank Waste Report 9-30-05.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Tank Waste Retrieval Accelerated Tank Waste Retrieval Activities at the Hanford Site DOE/IG-0706 October 2005 REPORT ON THE ACCELERATED TANK WASTE RETRIEVAL ACTIVITIES AT THE HANFORD SITE TABLE OF CONTENTS Tank Waste Retrieval Details of Finding 1 Recommendations and Comments 4 Appendices Objective, Scope, and Methodology 6 Prior Reports 7 Management Comments 8 Tank Waste Retrieval Page 1 Details of Finding Tank Waste The Department will not meet Tri-Party Agreement (Agreement) Retrieval Activities milestones for the retrieval of waste from the single-shell tanks located at the C-Tank Farm within schedule and cost. Based on the current C-Tank Farm retrieval schedule and the amount of waste retrieved to date, the Department will not accomplish its

308

System for removing liquid waste from a tank  

DOE Patents (OSTI)

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

1994-01-01T23:59:59.000Z

309

System for removing liquid waste from a tank  

DOE Patents (OSTI)

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

Meneely, T.K.; Sherbine, C.A.

1994-04-26T23:59:59.000Z

310

Tank characterization report for single-shell tank 241-C-109  

SciTech Connect

One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

Simpson, B.C.

1997-05-23T23:59:59.000Z

311

Fire protection of railroad tank cars carrying hazardous materials - analytical calculations and laboratory screening of thermal insulation candidates  

SciTech Connect

In recent years there have been a number of incidents in which railroad tank cars carrying liquefied petroleum gas (LPG) have been engulfed in fires. The LPG cars have ruptured from the fires, causing extensive property damage and loss of life. This report describes a laboratory screening program to select two thermal insulation candidates for use in future fire tests of fifth-scale and full scale LPG tank cars. Also included are analytical calculations to predict pressures and liquid levels in LPG tank cars being heated by fires.

Levine, D.; Dancer, D.M.

1972-07-21T23:59:59.000Z

312

Feasibility study of tank leakage mitigation using subsurface barriers  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulating air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report.

Treat, R.L.; Peters, B.B.; Cameron, R.J.; McCormak, W.D.; Trenkler, T.; Walters, M.F. [Ensearch Environmental, Inc. (United States); Rouse, J.K.; McLaughlin, T.J. [Bovay Northwest, Inc., Richland, WA (United States); Cruse, J.M. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-21T23:59:59.000Z

313

HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS  

SciTech Connect

This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the design waste temperature of 350 F and the full 60-year corrosion allowance on the tank wall of 0.060 inch. However, analysis at a more realistic temperature of 250 F or corrosion allowance of 0.025 inch results in an acceptable demand/capacity ratio according to the ASME code criteria. Thus, buckling of the primary tank is judged to be unlikely for the current lack of corrosion in the tanks, and the expectation that the maximum waste temperature will not exceed 210 F. The reinforced concrete structure was evaluated as specified by the American Concrete Institute (ACI) code requirements for nuclear safety-related structures (ACI-349). The demand was demonstrated to be lower than the capacity at all locations. Revision 1 is being issued to document changes to the anchor bolt evaluation. RPP-RPT-32237 Rev. 1, Hanford Double-Shell Tank Thermal and Seismic Project-Increased Liquid Level Analysis for 241AP Tank Farms, described changes to the anchor bolt modeling and evaluation which were implemented in response to the independent reviewer's comments. Similar changes have been made in the bounding tank analysis and are documented in RPP-RPT-28968 Rev. 1. The conclusions of the previous releases of this report remain unchanged.

MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

2009-01-15T23:59:59.000Z

314

Single-shell tank closure work plan. Revision A  

SciTech Connect

In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

NONE

1995-06-01T23:59:59.000Z

315

TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS  

SciTech Connect

The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.

Stefanko, D.; Langton, C.

2011-12-15T23:59:59.000Z

316

TANK 40 FINAL SLUDGE BATCH 8 CHEMICAL CHARACTERIZATION RESULTS  

SciTech Connect

A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon? vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.

Bannochie, C.

2013-09-19T23:59:59.000Z

317

Computer modeling of ORNL storage tank sludge mobilization and mixing  

SciTech Connect

This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.

Terrones, G.; Eyler, L.L.

1993-09-01T23:59:59.000Z

318

Vapor sampling of the headspace of radioactive waste storage tanks  

DOE Green Energy (OSTI)

This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

Reynolds, D.A., Westinghouse Hanford

1996-05-22T23:59:59.000Z

319

Tank Waste Remediation System retrieval and disposal mission technical baseline summary description  

SciTech Connect

This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

McLaughlin, T.J.

1998-01-06T23:59:59.000Z

320

Ferrocyanide tank waste stability. Supplement 2  

Science Conference Proceedings (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Rethinking the Hanford Tank Waste Program  

Science Conference Proceedings (OSTI)

The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

Parker, F. L.; Clark, D. E.; Morcos, N.

2002-02-26T23:59:59.000Z

322

Use of Multiple Innovative Technologies for Retrieval and Handling of Low-Level Radioactive Tank Wastes at Oak Ridge National Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) successfully implemented an integrated tank waste management plan at Oak Ridge National Laboratory (ORNL) (1), which resulted in the cleanup, removal, or stabilization of 37 inactive underground storage tanks (USTs) since 1998, and the reduction of risk to human health and the environment. The integrated plan helped accelerate the development and deployment of innovative technologies for the retrieval of radioactive sludge and liquid waste from inactive USTs. It also accelerated the pretreatment of the retrieved waste and newly generated waste from ORNL research and development activities to provide for volume and contamination reduction of the liquid waste. The integrated plan included: retrieval of radioactive sludge, contaminated material, and other debris from USTs at ORNL using a variety of robotic and remotely operated equipment; waste conditioning and transfer of retrieved waste to pretreatment facilities and interim, double contained storage tanks; the development and deployment of technologies for pretreating newly generated and retrieved waste transferred to interim storage tanks; waste treatment and packaging for final off-site disposal; stabilization of the inactive USTs that did not meet the regulatory requirements of the Federal Facilities Agreement between the DOE, the Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC); and the continued monitoring of the active USTs that remain in long-term service. This paper summarizes the successful waste retrieval and tank stabilization operations conducted during two ORNL tank remediation projects (The Gunite Tanks Remediation Project and the Old Hydrofracture Facility Tanks Remediation Project), the sludge retrieval operations from the active Bethel Valley Evaporator Service Tanks, and pretreatment operations conducted for the tank waste. This paper also provides the status of ongoing activities conducted in preparation of treating the retrieved tank waste for final disposition, and the efforts to improve monitoring capabilities for waste collection and storage tanks that will remain in long-term service at ORNL.

Noble-Dial, J.; Riner, G.; Robinson, S.; Lewis, B.; Bolling, D.; Ganapathi, G.; Harper, M.; Billingsley, K.; Burks, B.

2002-02-26T23:59:59.000Z

323

MIT Tow Tank | Open Energy Information  

Open Energy Info (EERE)

MIT Tow Tank MIT Tow Tank Overseeing Organization Massachusetts Institute of Technology Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 2.4 Depth(m) 1.2 Water Type Saltwater Cost(per day) $750 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 1.5 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.1 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 4.6 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Arbitrary spectrum Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

324

Tank Waste System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

325

Hanford Single-Shell Tank Integrity Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operations Contract Hanford Single Hanford Single- -Shell Shell Hanford Single Hanford Single Shell Shell Tank Integrity Tank Integrity Program Program Herbert S Berman Herbert S Berman Herbert S. Berman Herbert S. Berman July 29, 2009 July 29, 2009 1 Page 1 Tank Operations Contract Introduction * The Hanford site's principle historic mission was plutonium production for the manufacture of nuclear weapons. * Between 1944 and 1988, the site operated nine graphite- moderated light-water production reactors to irradiate moderated, light-water, production reactors to irradiate fuel and produce plutonium. * Four large chemical separations plants were run to extract plutonium from the fuel, and a variety of laboratories, support facilities, and related infrastructure to support production

326

Tank Stabilization September 30, 1999 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Court Easter District of Washington United States Court Easter District of Washington Consent Decree (as amended on September 19, 2000.) State Washington Agreement Type Consent Decree Legal Driver(s) RCRA Scope Summary Renegotiate a schedule to pump liquid radioactive hazardous waste from single-shell tanks to double-shell tanks Parties DOE; State of Washington, Department of Ecology Date 09/30/1999; Amended 09/19/2000 SCOPE * Address DOE's obligations to the State of Washington, Department of Ecology concerning missed and remaining milestones under the Hanford Federal Facility Agreement (HFFACO) and Consent Order of May 15, 1989. * Establish a judicially enforceable schedule for pumping radioactive hazardous waste from single-shell to double-shell tanks. ESTABLISHING MILESTONES

327

Double Shell Tank (DST) Utilities Specification  

SciTech Connect

This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

SUSIENE, W.T.

2000-04-27T23:59:59.000Z

328

Realistic Probability Estimates For Destructive Overpressure Events In Heated Center Wing Tanks Of Commercial Jet Aircraft  

SciTech Connect

The Federal Aviation Administration (FAA) identified 17 accidents that may have resulted from fuel tank explosions on commercial aircraft from 1959 to 2001. Seven events involved JP 4 or JP 4/Jet A mixtures that are no longer used for commercial aircraft fuel. The remaining 10 events involved Jet A or Jet A1 fuels that are in current use by the commercial aircraft industry. Four fuel tank explosions occurred in center wing tanks (CWTs) where on-board appliances can potentially transfer heat to the tank. These tanks are designated as ''Heated Center Wing Tanks'' (HCWT). Since 1996, the FAA has significantly increased the rate at which it has mandated airworthiness directives (ADs) directed at elimination of ignition sources. This effort includes the adoption, in 2001, of Special Federal Aviation Regulation 88 of 14 CFR part 21 (SFAR 88 ''Fuel Tank System Fault Tolerance Evaluation Requirements''). This paper addresses SFAR 88 effectiveness in reducing HCWT ignition source probability. Our statistical analysis, relating the occurrence of both on-ground and in-flight HCWT explosions to the cumulative flight hours of commercial passenger aircraft containing HCWT's reveals that the best estimate of HCWT explosion rate is 1 explosion in 1.4 x 10{sup 8} flight hours. Based on an analysis of SFAR 88 by Sandia National Laboratories and our independent analysis, SFAR 88 reduces current risk of historical HCWT explosion by at least a factor of 10, thus meeting an FAA risk criteria of 1 accident in billion flight hours. This paper also surveys and analyzes parameters for Jet A fuel ignition in HCWT's. Because of the paucity of in-flight HCWT explosions, we conclude that the intersection of the parameters necessary and sufficient to result in an HCWT explosion with sufficient overpressure to rupture the HCWT is extremely rare.

Alvares, N; Lambert, H

2007-02-07T23:59:59.000Z

329

Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report  

SciTech Connect

The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

Kos, S.E.

1997-02-01T23:59:59.000Z

330

Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101  

SciTech Connect

The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus, natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.

Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.; Mahoney, Lenna A.

2003-10-01T23:59:59.000Z

331

Tank characterization report for single-shell tank 241-SX-106  

SciTech Connect

A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-106. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-106 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Documents developed for 1998.''

FIELD, J.G.

1999-02-24T23:59:59.000Z

332

Tank characterization report for single-shell tank 241-U-103  

Science Conference Proceedings (OSTI)

A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

SASAKI, L.M.

1999-02-24T23:59:59.000Z

333

Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A  

Science Conference Proceedings (OSTI)

This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

NONE

1995-09-01T23:59:59.000Z

334

High-Pressure Tube Trailers and Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

Berry Berry Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE Delivery Tech Team Presentation Chicago, Illinois February 8, 2005 Inexpensive delivery of compressed hydrogen with ambient temperature or cryogenic compatible vessels * Pressure vessel research at LLNL Conformable (continuous fiber and replicants) Cryo-compressed * Overview of delivery options * The thermodynamics of compressed and cryo-compressed hydrogen storage * Proposed analysis activities * Conclusions Outline We are investigating two techniques for reduced bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize bending stresses Spherical and cylindrical tanks

335

Alternative Inspection Methods for Single Shell Tanks  

Science Conference Proceedings (OSTI)

This document was prepared to provide evaluations and recommendations regarding nondestructive evaluation methods that might be used to determine cracks and bowing in the ceiling of waste storage tanks on the Hanford site. The goal was to determine cracks as small as 1/16 in. wide in the ceiling, and bowing as small as 0.25 in. This report describes digital video camera methods that can be used to detect a crack in the ceiling of the dome, and methods for determining the surface topography of the ceiling in the waste storage tanks to detect localized movements in the surface. A literature search, combined with laboratory testing, comprised this study.

Peters, Timothy J.; Alzheimer, James M.; Hurley, David E.

2010-01-19T23:59:59.000Z

336

Independent Oversight Activity Report, Hanford Tank Farms - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Activity Report, Hanford Tank Farms - June Oversight Activity Report, Hanford Tank Farms - June 2013 Independent Oversight Activity Report, Hanford Tank Farms - June 2013 June 2013 Office of River Protection Assessment of Contractor Quality Assurance, Operational Awareness at the Hanford Tank Farms [HIAR NNSS-2012-12-03] The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) Site Lead conducted an operational awareness visit to the ORP Hanford Tank Farms, observed a Tank Farms morning meeting, toured the C Tank Farm, and observed a heavy (34,000 pound) lift. Independent Oversight Activity Report, Hanford Tank Farms - June 2013 More Documents & Publications Independent Activity Report, Office of River Protection Waste Treatment

337

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Publications » Technology Bulletins Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg Find More places to share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on AddThis.com... Propane Tank Overfill Safety Advisory

338

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

339

Savings Project: Insulate Your Water Heater Tank | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Your Water Heater Tank Addthis Project Level medium Energy Savings 20-45 annually Time to Complete 1.5 hours Overall Cost 30 Insulate your hot water tank to save energy and...

340

EIS-0391: Hanford Tank Closure and Waste Management, Richland...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal...

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY  

SciTech Connect

This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

HOLM MJ

2009-06-25T23:59:59.000Z

342

Authorization basis status report (miscellaneous TWRS facilities, tanks and components)  

SciTech Connect

This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

Stickney, R.G.

1998-04-29T23:59:59.000Z

343

Tank SY-101 void fraction instrument functional design criteria  

DOE Green Energy (OSTI)

This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations.

McWethy, L.M.

1994-10-18T23:59:59.000Z

344

LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS  

Science Conference Proceedings (OSTI)

This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

BAKER, D.M.

2004-08-03T23:59:59.000Z

345

Functional Analysis for Double Shell Tank (DST) Subsystems  

Science Conference Proceedings (OSTI)

This functional analysis identifies the hierarchy and describes the subsystem functions that support the Double-Shell Tank (DST) System described in HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System. Because of the uncertainty associated with the need for upgrades of the existing catch tanks supporting the Waste Feed Delivery (WFD) mission, catch tank functions are not addressed in this document. The functions identified herein are applicable to the Phase 1 WFD mission only.

SMITH, D.F.

2000-08-22T23:59:59.000Z

346

Operational test report for WESF diesel generator diesel tank installation  

Science Conference Proceedings (OSTI)

The WESF Backup Generator Underground Diesel Tank 101 has been replaced with a new above ground 1000 gallon diesel tank. Following the tank installation, inspections and tests specified in the Operational Test Procedure, WHC-SD-WM-OTP-155, were performed. Inspections performed by a Quality Control person indicated the installation was leak free and the diesel generator/engine ran as desired. There were no test and inspection exceptions, therefore, the diesel tank installation is operable.

Schwehr, B.A.

1994-08-02T23:59:59.000Z

347

Sloshing response of a reactor tank with internals  

Science Conference Proceedings (OSTI)

The sloshing response of a large reactor tank with in-tank components is presented. The study indicates that the presence of the internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequency of a tank with internals is considerably higher than that of a tank without internal. The higher sloshing frequency reduces the sloshing wave height on the free-surface but increases the dynamic pressure in the fluid.

Ma, D.C.; Gvildys, J.; Chang, Y.W.

1984-01-01T23:59:59.000Z

348

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

349

Tank Waste Corporate Board Meeting 07/24/08  

Energy.gov (U.S. Department of Energy (DOE))

The following documents are associated with the Tank Waste Corporate Board Meeting held on July 24th, 2008.

350

System Specification for the Double Shell Tank (DST) System  

Science Conference Proceedings (OSTI)

This document establishes the functional, performance, design, development, interface and test requirements for the Double-Shell Tank System.

GRENARD, C.E.

2000-04-21T23:59:59.000Z

351

5th Symposium on Railroad Tank Cars - Programmaster.org  

Science Conference Proceedings (OSTI)

... processing strategies, correlation of material properties with puncture performance, safety and security of tank cars, non destructive testing, maintenance and...

352

Evaluation of mitigation strategies in Facility Group 1 double-shell flammable-gas tanks at the Hanford Site  

SciTech Connect

Radioactive nuclear waste at the Hanford Site is stored in underground waste storage tanks at the site. The tanks fall into two main categories: single-shell tanks (SSTs) and double-shell tanks (DSTs). There are a total of 149 SSTs and 28 DSTs. The wastes stored in the tanks are chemically complex. They basically involve various sodium salts (mainly nitrite, nitrate, carbonates, aluminates, and hydroxides), organic compounds, heavy metals, and various radionuclides, including cesium, strontium, plutonium, and uranium. The waste is known to generate flammable gas (FG) [hydrogen, ammonia, nitrous oxide, hydrocarbons] by complex chemical reactions. The process of gas generation, retention, and release is transient. Some tanks reach a quasi-steady stage where gas generation is balanced by the release rate. Other tanks show continuous cycles of retention followed by episodic release. There currently are 25 tanks on the Flammable Gas Watch List (FGWL). The objective of this report is to evaluate possible mitigation strategies to eliminate the FG hazard. The evaluation is an engineering study of mitigation concepts for FG generation, retention, and release behavior in Tanks SY-101, AN-103, AN 104, An-105, and Aw-101. Where possible, limited quantification of the effects of mitigation strategies on the FG hazard also is considered. The results obtained from quantification efforts discussed in this report should be considered as best-estimate values. Results and conclusions of this work are intended to help in establishing methodologies in the contractor`s controls selection analysis to develop necessary safety controls for closing the FG unreviewed safety question. The general performance requirements of any mitigation scheme are discussed first.

Unal, C.; Sadasivan, P.; Kubic, W.L.; White, J.R.

1997-11-01T23:59:59.000Z

353

SINGLE-SHELL TANK INTEGRITY PROJECT ANALYSIS OF RECORD-PRELIMINARY MODELING PLAN FOR THERMAL AND OPERATING LOADS  

SciTech Connect

This document is a Phase I deliverable for the Single-Shell Tank Analysis of Record effort. This document is not the Analysis of Record. The intent of this document is to guide the Phase II detailed modeling effort. Preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. The preliminary analysis document reviews and preliminary modeling analysis results are reported herein. In addition, this report provides recommendations for the next phase of the SST AOR project, SST detailed modeling. Efforts and results discussed in this report do not include seismic modeling as seismic modeling is covered by a separate report. The combined results of both static and seismic models are required to complete this effort. The SST AOR project supports the US Department of Energy's (DOE) Office of River Protection (ORP) mission for obtaining a better understanding of the structural integrity of Hanford's SSTs. The 149 SSTs, with six different geometries, have experienced a range of operating histories which would require a large number of unique analyses to fully characterize their individual structural integrity. Preliminary modeling evaluations were conducted to determine the number of analyses required for adequate bounding of each of the SST tank types in the Detailed Modeling Phase of the SST AOR Project. The preliminary modeling was conducted in conjunction with the Evaluation Criteria report, Johnson et al. (2010). Reviews of existing documents were conducted at the initial stage of preliminary modeling. These reviews guided the topics that were explored in the SST preliminary modeling. The reviews determined the level of detail necessary to perform the analyses of the SSTs. To guide the Phase II detailed modeling effort, preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. Conclusions were derived from case studies on one of the tank types when no additional runs of similar cases on other types of tanks were found necessary to derive those conclusions. The document reviews provided relatively complete temperature histories for Type IV tanks. The temperature history data for Type I, II, and III tanks was almost nonexistent for years prior to 1975. Document reviews indicate that there might be additional useful data in the US Department of Energy, Richland Operations Office (DOE-RL) records in Seattle, WA, and these records need to be reviewed to extract data that might have been disregarded during previous reviews. Thermal stress analyses were conducted using different temperature distribution scenarios on Type IV tanks. Such studies could not be carried out for other tank types due to lack of temperature history data. The results from Type IV tank analyses indicate that factors such as temperature distribution in the tank waste and rate of rise in waste temperature have a significant impact on the thermal stresses in the tank structures. Overall, the conclusion that can drawn from the thermal stress analyses is that these studies should be carried out for all tank types during the detailed analysis phase with temperature values that are reasonably close to the typical temperature histories of the respective tank types. If and/or when additional waste temperature data

RAST RS; RINKER MW; BAPANAALLI SK; DEIBLER JE; GUZMAN-LEONG CE; JOHNSON KI; KARRI NK; PILLI SP; SANBORN SE

2010-10-22T23:59:59.000Z

354

SAFETY EVALUATION OF OXALIC ACID WASTE RETRIEVAL IN SINGLE SHELL TANK (SST) 241-C-106  

Science Conference Proceedings (OSTI)

This report documents the safety evaluation of the process of retrieving sludge waste from single-shell tank 241-C-106 using oxalic acid. The results of the HAZOP, safety evaluation, and control allocation/decision are part of the report. This safety evaluation considers the use of oxalic acid to recover residual waste in single-shell tank (SST) 241-C-106. This is an activity not addressed in the current tank farm safety basis. This evaluation has five specific purposes: (1) Identifying the key configuration and operating assumptions needed to evaluate oxalic acid dissolution in SST 241-C-106. (2) Documenting the hazardous conditions identified during the oxalic acid dissolution hazard and operability study (HAZOP). (3) Documenting the comparison of the HAZOP results to the hazardous conditions and associated analyzed accident currently included in the safety basis, as documented in HNF-SD-WM-TI-764, ''Hazard Analysis Database Report''. (4) Documenting the evaluation of the oxalic acid dissolution activity with respect to Accident analyses described in HNF-SD-WM-SAR-067, ''Tank Farms Final Safety Analysis Report'' (FSAR). (5)Controls specified in HNF-SD-WM-TSR-006, ''Tank Farms Technical Safety Requirements'' (TSR). Documenting the process and results of control decisions as well as the applicability of preventive and/or mitigative controls to each oxalic acid addition hazardous condition.

GOETZ, T.G.

2003-07-21T23:59:59.000Z

355

TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1  

DOE Green Energy (OSTI)

The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User`s Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications.

Shadday, M.A. Jr.

1996-04-01T23:59:59.000Z

356

Nested Fixed Depth Fluidic Sampler and At Tank Analysis System Deployment Strategy and Plan  

Science Conference Proceedings (OSTI)

Under the Hanford Site River Protection Project (RPP) privatization strategy, the U.S. Department of Energy (DOE) Office of River Protection (ORP) requires the CH2M Hill Hanford Group, Inc. (CHG) to supply tank waste to the privatization contractor, BNFL Inc. (BNFL), for separation and/or treatment and immobilization (vitrification). Three low-activity waste (LAW) specification envelopes represent the range of liquid waste types in the large, Hanford Site underground waste storage tanks. The CHG also is expected to supply high-level waste (HLW) separation and/or treatment and disposal. The HLW envelope is an aqueous slurry of insoluble suspended solids (sludge). The Phase 1 demonstration will extend over 24 years (1996 through 2019) and will be used to resolve technical uncertainties. About one-tenth of the total Hanford Site tank waste, by mass, will be processed during this period. This document provides a strategy and top-level implementation plan for demonstrating and deploying an alternative sampling technology. The alternative technology is an improvement to the current grab sampling and core sampling approaches that are planned to be used to support the RPP privatization contract. This work also includes adding the capability for some at-tank analysis to enhance the potential of this new technology to meet CHG needs. The first application is to LAW and HLW feed staging for privatization; the next is to support cross-site waste transfer from 200 West Area tanks.

REICH, F.R.

2000-02-01T23:59:59.000Z

357

Numerical simulation of sloshing in LNG tanks with a compressible two-phase model  

E-Print Network (OSTI)

The study of liquid dynamics in LNG tanks is getting more and more important with the actual trend of LNG tankers sailing with partially filled tanks. The effect of sloshing liquid in the tanks on pressure levels at the tank walls and on the overall ship motion indicates the relevance of an accurate simulation of the fluid behaviour. This paper presents the simulation of sloshing LNG by a compressible two-phase model and the validation of the numerical model on model-scale sloshing experiments. The details of the numerical model, an improved Volume Of Fluid (iVOF) method, are presented in the paper. The program has been developed initially to study the sloshing of liquid fuel in spacecraft. The micro-gravity environment requires a very accurate and robust description of the free surface. Later, the numerical model has been used for calculations for different offshore applications, including green water loading. The model has been extended to take two-phase flow effects into account. These effects are particularly important for sloshing in tanks. The complex mixture of the liquid and gas phase around

Rik Wemmenhove; Arthur E. P. Veldman; Tim Bunnik

2007-01-01T23:59:59.000Z

358

A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion  

Science Conference Proceedings (OSTI)

In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scale tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.

Baer, M.R.; Gross, R.J.

1998-10-02T23:59:59.000Z

359

Solar water heater installation guidelines. A manual for homeowners and professionals. [Includes glossary  

SciTech Connect

The guidelines include detailed diagrams, a selected glossary, a bibliography of books and manuals which might prove useful and a checklist which should be used during and after the installation. The guidelines explain generally how to install a liquid solar hot water heater, but not a specific system. The following are covered: collector location, collector installation, plumbing, solar storage tanks, electrical, and insulation. (MHR)

1978-04-01T23:59:59.000Z

360

Mixer pump test plan for double shell tank AZ-101  

Science Conference Proceedings (OSTI)

Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

STAEHR, T.W.

1999-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Justification for Continued Operation for Tank 241-Z-361  

Science Conference Proceedings (OSTI)

This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford.

BOGEN, D.M.

1999-09-01T23:59:59.000Z

362

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents (OSTI)

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

363

Calculation of SY tank annulus continuous air monitor readings after postulated leak scenarios  

Science Conference Proceedings (OSTI)

The objective of this work was to determine whether or not a continuous air monitor (CAM) monitoring the annulus of one of the SY Tanks would be expected to alarm after three postulated leak scenarios. Using data and references provided by Lockheed Martin`s Tank Farm personnel, estimated CAM readings were calculated at specific times after the postulated scenarios might have occurred. Potential CAM readings above background at different times were calculated for the following leak scenarios: Leak rate of 0.01 gal/min; Leak rate of 0.03 gal/min (best estimate of the maximum probable leak rate from a single-shell tank); and Leak of 73 gal (equivalent to a {1/4}-in. leak on the floor of the annulus). The equation used to make the calculations along with descriptions and/or explanations of the terms are included, as is a list of the assumptions and/or values used for the calculations.

Kenoyer, J.L.

1998-08-01T23:59:59.000Z

364

Comparison of Sludge Digestion Methods for High Organic Hanford Tank 241-C-204  

SciTech Connect

This report presents the results of an investigation into methods for digesting sludge in tank 241-C-204 at the Hanford Site in south-central Washington State. The objective of this study was to compare the recovery of uranium, neptunium, and plutonium using three digestion methods: EPA Method 3052, EPA Method 3050B, and alkaline fusion. Results show that EPA Method 3052, microwave assisted acid digestion, is the most efficient digestion method with higher recoveries for both uranium and plutonium. This may also be the case for neptunium; however, the analytical results are uncertain for this element. The microwave digestion method also has the added benefits of being quicker and producing less waste, which lowers the overall cost per sample. Further testing with samples from other tanks will confirm that microwave assisted digestion is a viable method of digesting Hanford tank sludges (including those with a high organic content) for chemical analysis.

Lindberg, Michael J.; Deutsch, William J.

2006-12-01T23:59:59.000Z

365

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents (OSTI)

A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, John W. (Sag Harbor, NY)

1983-06-28T23:59:59.000Z

366

Continuous-flow stirred-tank reactor 20-L demonstration test: Final report  

SciTech Connect

One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

Lee, D.D.; Collins, J.L.

2000-02-01T23:59:59.000Z

367

Tank 241-AY-102 Leak Assessment Supporting Documentation: Miscellaneous Reports, Letters, Memoranda, And Data  

SciTech Connect

This report contains reference materials cited in RPP-ASMT -53793, Tank 241-AY-102 Leak Assessment Report, that were obtained from the National Archives Federal Records Repository in Seattle, Washington, or from other sources including the Hanford Site's Integrated Data Management System database (IDMS).

Engeman, J. K.; Girardot, C. L.; Harlow, D. G.; Rosenkrance, C. L.

2012-12-20T23:59:59.000Z

368

Tank characterization report for single-shell tank 241-BX-111  

Science Conference Proceedings (OSTI)

This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste, stored in Tank 241-BX-111. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB.

Anantatmula, R.P.

1998-05-05T23:59:59.000Z

369

Tank characterization report for single-shell tank 241-BY-107  

Science Conference Proceedings (OSTI)

One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-BY-107. The objectives of this report are (1) to use characterization data in response to technical issues associated with 241-BY-107 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status and additional sampling needs. The appendices contain supporting data and information.

Mccain, D.J.

1997-04-09T23:59:59.000Z

370

Potential for criticality in Hanford tanks resulting from retrieval of tank waste  

SciTech Connect

This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

1996-09-01T23:59:59.000Z

371

Chase Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Chase Tow Tank Chase Tow Tank Jump to: navigation, search Basic Specifications Facility Name Chase Tow Tank Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 3.7 Depth(m) 2.4 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.5 Length of Effective Tow(m) 20.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 3.1 Wave Period Range(s) 3.1 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView-based data acquistion software/components. Optical measurement system for observing kinematics of a model under test in the wave mode.

372

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, B.; Waltz, R.

2009-06-11T23:59:59.000Z

373

Explosion proof vehicle for tank inspection  

Science Conference Proceedings (OSTI)

An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

2012-02-28T23:59:59.000Z

374

Annual Radioactive Waste Tank Inspection Program - 2000  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2000 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, W.R.

2001-04-17T23:59:59.000Z

375

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS  

Science Conference Proceedings (OSTI)

This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global buckling of the tank under increased vacuum) could occur.

MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

2007-02-14T23:59:59.000Z

376

Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system  

SciTech Connect

Hanford`s underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report.

Bitz, D.A. [Independent Consultant, Kirkland, WA (United States); Berry, D.L. [Sandia National Labs., Albuquerque, NM (United States); Jardine, L.J. [Lawrence Livermore National Lab., CA (United States)

1994-03-01T23:59:59.000Z

377

SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

Peters, T.; Fink, S.

2012-04-24T23:59:59.000Z

378

Results of Waste Transfer and Back-Dilution in Tanks 241-SY-101 and 241-SY-102  

Science Conference Proceedings (OSTI)

This report chronicles the process of remediation of the flammable gas hazard in Tank 241-SY-101 (SY-101) by waste transfer and back-dilution from December 18, 1999 through April 2, 2000. A brief history is given of the development of the flammable gas retention and release hazard in this tank, and the transfer and dilution systems are outlined. A detailed narrative of each of the three transfer and dilution campaigns is given to provide structure for the balance of the report. Details of the behavior of specific data are then described, including the effect of transfer and dilution on the waste levels in Tanks SY-101 and SY-102, data from strain gauges on equipment suspended from the tank dome, changes in waste configuration as inferred from neutron and gamma logs, headspace gas concentrations, waste temperatures, and the mixerpump operating performance. Operating data and performance of the transfer pump in SY-101 are also discussed.

LA Mahoney; ZI Antoniak; WB Barton; JM Conner; NW Kirch; CW Stewart; BE Wells

2000-07-26T23:59:59.000Z

379

Headspace vapor characterization of Hanford waste Tank 241-C-201: Results from samples collected on 06/19/96  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-201 (Tank C-201) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary, of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. Detailed descriptions of the analytical results appear in the appendices.

Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

380

Headspace vapor characterization of Hanford waste Tank 241-C-202: Results from samples collected on 06/25/96  

DOE Green Energy (OSTI)

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-202 (Tank C-202) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. Detailed descriptions of the analytical results appear in the appendices.

Pool, K.H.; Evans, J.C.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include dealer tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Supporting document for the North East Quandrant Historical Tank Content Estimate Report for BX-Tank Farm  

Science Conference Proceedings (OSTI)

This supporting document provides historical in-depth characterization information gathered on BX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quandrant and the Hanford 200 East Areas.

Brevick, C.H.

1994-06-01T23:59:59.000Z

382

Tank characterization report for single-shell tank 241-BX-110  

SciTech Connect

A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-BX-110. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-BX-110 waste, and (2) to provide a standard characterization of the waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the tank's safety status and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998.''

RASMUSSEN, J.H.

1999-02-23T23:59:59.000Z

383

DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION  

DOE Green Energy (OSTI)

An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy) for an inhibited waste to a range of 5 to 23.4 mpy, depending on sludge chemistry. F-area-based effluents were, in general, more corrosive. Effective corrosion control measures included evaporation, hydroxide additions and mixing with supernates containing a representative supernate chemistry (5 M hydroxide and 1.5 M nitrite). Corrosion rates with these measures were generally 0.2 mpy. The A537 carbon steel was found to be susceptible to pitting when the corrosion control measure involved mixing the ECC effluent with a supernate chemistry having minimal inhibitor concentrations (0.5 M hydroxide and 0.3 M nitrite). Corrosion rates in this case were near 1 mpy.

Mickalonis, J.

2011-08-29T23:59:59.000Z

384

WRPS MEETING THE CHALLENGE OF TANK WASTE  

SciTech Connect

Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

BRITTON JC

2012-02-21T23:59:59.000Z

385

Tank 241-S-102 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 11, 1997. Tank vapor characterization project  

DOE Green Energy (OSTI)

This report presents tile results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurlsys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by tile Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based oil measured sample volumes provided by SESC. Ammonia was determined to be above tile immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 1.150% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.624% of the LFL, Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of tile analytical results are provided in Section 3.0.

Mitroshkov, A.V.; Evans, J.C.; Hayes, J.C. [and others

1997-09-01T23:59:59.000Z

386

Tank 241-BY-108 fifth temporal study: Headspace gas and vapor characterization results from samples collected on January 30, 1997. Tank vapor characterization project  

DOE Green Energy (OSTI)

This report presents the results from analyses of samples taken from tile headspace of waste storage tank 241-B-108 (Tank BY - 108) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) and analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 0.888% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.979% of tile LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Olsen, K.B. [and others

1997-09-01T23:59:59.000Z

387

Tank 241-C-107 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 7, 1997. Tank vapor characterization project  

DOE Green Energy (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 3.233% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.342% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Hayes, J.C.; Pool, K.H.; Evans, J.C. [and others

1997-08-01T23:59:59.000Z

388

Tank 241-BX-104 third temporal study: Headspace gas and vapor characterization results from samples collected on February 6, 1997. Tank vapor characterization project  

DOE Green Energy (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.178 % of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.458% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Evans, J.C.; Pool, K.H.; Hayes, J.C. [and others

1997-09-01T23:59:59.000Z

389

Tank vapor characterization project: Tank 241-BX-104 fifth temporal study: Headspace gas and vapor characterization results from samples collected on June 10, 1997  

DOE Green Energy (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.270% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.675% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Hayes, J.C.; Pool, K.H.; Evans, J.C.; Olsen, K.B. [and others

1997-07-01T23:59:59.000Z

390

Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996  

DOE Green Energy (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

Pool, K.H.; Evans, J.C.; Olsen, K.B.; Hayes, J.C. [and others

1997-08-01T23:59:59.000Z

391

Tank Vapor Characterization Project: Tank 241-C-107 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 17, 1996  

DOE Green Energy (OSTI)

This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 2.825% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.935% of the LFL. Average measured concentrations of targeted gases, inorganic vapors,