Powered by Deep Web Technologies
Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Compressed natural gas measurement issues  

SciTech Connect

The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

1993-12-31T23:59:59.000Z

2

Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Compressed Natural Gas Stations

3

A Natural Gas, High Compression Ratio, High Efficiency ICRE ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Natural Gas, High Compression Ratio, High Efficiency ICRE A Natural Gas, High Compression Ratio, High Efficiency ICRE Using natural gas and gasoline modeling, indications are...

4

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

5

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

6

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

7

Copper laser modulator driving assembly including a magnetic compression laser  

DOE Patents (OSTI)

A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.

Cook, Edward G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Ball, Don G. (Livermore, CA)

1994-01-01T23:59:59.000Z

8

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

9

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on AddThis.com...

10

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Inspection to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on AddThis.com...

11

Business Case for Compressed Natural Gas in Municipal Fleets...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets This report describes how NREL used the CNG Vehicle and...

12

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...  

Energy Savers (EERE)

1976: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential...

13

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels,...

14

Regulated Emissions from Diesel and Compressed Natural Gas Transit...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions from Diesel and Compressed Natural Gas Transit Buses Regulated Emissions from Diesel and Compressed Natural Gas Transit Buses Poster presentaiton at the 2007 Diesel...

15

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells...

16

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Digg Find More places to share Alternative Fuels Data Center: Compressed

17

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Digg Find More places to share Alternative Fuels Data Center: Compressed

18

compressed natural gas | OpenEI  

Open Energy Info (EERE)

compressed natural gas compressed natural gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (3 years ago) Date Updated December 13th, 2010 (3 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

19

2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2014 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas...

20

Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Compressed Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL to someone by E-mail Share Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Facebook Tweet about Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Twitter Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Google Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Delicious Rank Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Digg Find More places to share Alternative Fuels Data Center: Reduced

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Dealer Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Dealer Permit

22

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax CNG is taxed at a rate of $0.10 per gallon when used as a motor fuel. CNG

23

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

24

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Permit Anyone dispensing CNG for use in vehicles must obtain a permit from the

25

Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Compressed Natural Gas (CNG) Study to someone by E-mail Share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Facebook Tweet about Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Twitter Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Google Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Delicious Rank Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Digg Find More places to share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Compressed Natural Gas (CNG) Study At the direction of the Alaska Legislature, the Department of

26

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

27

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas Compressed Natural Gas and Hydrogen Fuels Workshop to someone by E-mail Share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Facebook Tweet about Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Twitter Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Google Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Delicious Rank Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Digg Find More places to share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

28

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on AddThis.com... More in this section... Federal State Advanced Search

29

Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas School Buses Grant and Loan Pilot Program to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on AddThis.com...

30

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Regulatory Authority to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on AddThis.com...

31

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Digg Find More places to share Alternative Fuels Data Center: Compressed

32

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

33

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Digg Find More places to share Alternative Fuels Data Center: Compressed

34

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to ensure safe use of onboard and bulk storage hydrogen and compressed natural gas tanks * Enhance domestic and international harmonization between natural gas and hydrogen...

35

Alternative Fuels Data Center: Public Access to State Compressed Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Access to State Public Access to State Compressed Natural Gas (CNG) Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Google Bookmark Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Delicious Rank Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on

36

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

37

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

38

State Energy Program Helping Arkansans Convert to Compressed Natural Gas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Helping Arkansans Convert to Compressed State Energy Program Helping Arkansans Convert to Compressed Natural Gas State Energy Program Helping Arkansans Convert to Compressed Natural Gas January 25, 2012 - 4:30pm Addthis The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas (CNG). | All Rights Reserved. The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas (CNG). | All Rights Reserved. Grayson Bryant Project Officer -- State Energy Program

39

Optimal Location of Compressed Natural Gas (CNG) Refueling Station Using the Arc Demand Coverage Model  

Science Journals Connector (OSTI)

In this paper a model that locates Compressed Natural Gas (CNG) refueling stations to cover the full volume of vehicle flows is developed and applied. The model inputs consist of a road network include nodes and arcs, the volume of vehicle flows between ... Keywords: Compressed Natural Gas, Arc Demand Coverage Model, Optimal Location, Network

Abtin Boostani; Reza Ghodsi; Ali Kamali Miab

2010-05-01T23:59:59.000Z

40

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer License to someone by E-mail Dealer License to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Workshop Notes from...

42

Compressed Gas Cylinder Safety I. Background. Due to the nature  

E-Print Network (OSTI)

Compressed Gas Cylinder Safety I. Background. Due to the nature of gas cylinders hazards of a ruptured cylinder. There are almost 200 different types of materials in gas cylinders, there are several general procedures to follow for safe storage and handling of a compressed gas cylinder: II

Suzuki, Masatsugu

43

Business Case for Compressed Natural Gas in Municipal Fleets  

SciTech Connect

This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

Johnson, C.

2010-06-01T23:59:59.000Z

44

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant Emera’s CNG plant would include facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the trailers a distance of a quarter mile from its proposed CNG facility to a berth at the Port of Palm Beach, where the trailers will be loaded onto a roll-on/roll-off ocean going carrier. Emera plans to receive natural gas at its planned compression facility from the Riviera Lateral, a pipeline owned and operated by Peninsula Pipeline Company. Although this would be the principal source of natural gas to Emera’s CNG facility for export, during periods of maintenance at Emera’s facility, or at the Port of Palm Beach, Emera may obtain CNG from other sources and/or export CNG from other general-use Florida port facilities. The proposed Emera facility will initially be capable of loading 8 million cubic feet per day (MMcf/day) of CNG into ISO containers and, after full build-out, would be capable to load up to 25 MMcf/day. For the initial phase of the project, Emera intends to send these CNG ISO containers from Florida to Freeport, Grand Bahama Island, where the trailers will be unloaded, the CNG decompressed, and injected into a pipeline for transport to electric generation plants owned and operated by Grand Bahama Power Company (GBPC). DOE authorizing the exportation of CNG and is not providing funding or financial assistance for the Emera Project.

45

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax and Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax and Permit

46

Novel Spark Plugs Improve Energy Efficiency of Compressed Natural  

E-Print Network (OSTI)

by 99 percent and reduce greenhouse gas emissions by 29 percent relative to gasoline. In California technologies that reduce greenhouse gas emissions and air pollution beyond applicable standards of compressed natural gas light duty vehicles, thereby reducing harmful air emissions. The proposed innovation

47

Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure  

SciTech Connect

This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

Smith, M.; Gonzales, J.

2014-09-01T23:59:59.000Z

48

DOE Considers Natural Gas Utility Service Options: Proposal Includes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Considers Natural Gas Utility Service Options: Proposal Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering natural gas transportation and distribution requirements to support the Waste Treatment Plant (WTP) and evaporator operations at the Hanford Site in southeastern Washington State. DOE awarded a task order worth up to $5 million to the local, licensed supplier of natural gas in the Hanford area, Cascade Natural Gas Corporation (Cascade). Cascade will support DOE and its Environmental

49

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA AGENDA U. S. Department of Transportation and U.S. Department of Energy Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 10-11, 2009 - Washington, DC A workshop to promote exchange of information among experts on compressed natural gas and hydrogen fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. Workshop Objectives: * To coordinate lessons learned by identifying similarities and critical differences between compressed natural gas and hydrogen properties, including CNG-H2 blends, and their industries and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

50

SEP Success Story: State Energy Program Helping Arkansans Convert to Compressed Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas. Learn more.

51

Business Case for Compressed Natural Gas in Municipal Fleets  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Technical Report Technical Report NREL/TP-7A2-47919 June 2010 Business Case for Compressed Natural Gas in Municipal Fleets Caley Johnson National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-47919 June 2010 Business Case for Compressed Natural Gas in Municipal Fleets C Johnson aley Prepared under Task No. FC08.0032 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

52

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate

53

Planning and Installation Guide: North Carolina Compressed Natural Gas Fueling Stations  

E-Print Network (OSTI)

1 Planning and Installation Guide: North Carolina Compressed Natural Gas Fueling Stations Introduction Are you considering installing a compressed natural gas (CNG) fueling station for your fleet of important items to consider when planning for a CNG station. Natural gas infrastructure, which is commonly

54

Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE  

Energy.gov (U.S. Department of Energy (DOE))

performance of a high compression ratio (32:1 to 74:1) high efficiency (50 to 60% BTE) ICRE operating on natural gas and gasoline

55

Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder  

NLE Websites -- All DOE Office Websites (Extended Search)

Defect Analysis of Vehicle Defect Analysis of Vehicle Compressed Natural Gas Composite Cylinder A China Paper on Type 4 Cylinder, translated and presented by J. P. Hsu, PhD, Smart Chemistry Reason for Defect Analysis of CNG Composite Cylinder * Safety Issue - Four explosion accidents of auto used CNG composite material cylinders resulting huge personnel and vehicles loss. * Low Compliance Rate - Inspect 12119 Auto used CNG composite cylinders and only 3868 are qualified with compliance rate of 32%. Plastic CNG Composite Cylinder Process Fitting Internal Plastic Liner External Composite Layer Metal Fitting HDPE Cylinder Liner * HDPE has a high density, great stiffness, good anti-permeability and high melting point, but poor environmental stress cracking Resistance (ESCR). * The defects of cylinder liner quality can be

56

Business Case for Compressed Natural Gas in Municipal Fleets | Open Energy  

Open Energy Info (EERE)

Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Business Case for Compressed Natural Gas in Municipal Fleets Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Analysis Tools, Best Practices Website: www.afdc.energy.gov/afdc/pdfs/47919.pdf This report describes how the compressed natural gas (CNG) Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model can be used to establish guidance for fleets making decisions about using CNG. The model assists fleets and businesses in evaluating the profitability of potential CNG projects by demonstrating the relationship between project profitability and fleet operating parameters.

57

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

This agenda provides information about the Compressed Natural Gas and Hydrogen Fuels workshop hosted by the U.S. departments of Energy and Transportation on December 10-11, 2009 in Washington, D.C.

58

Risk-based performance analysis for regional hybrid fuel with compressed natural gas option  

Science Journals Connector (OSTI)

Compressed natural gas is widely used for transportation due to its competitive price and less environmental impacts compared with traditional gasoline. With the recent push to implement electric vehicles, it became important to evaluate the current transportation fuelling status and identify best scenarios to move towards greener transportation. This paper presents analysis of hybrid transportation with compressed natural gas as a fuelling option to determine the most effective way to implement regional green transportation. Intelligent modelling and simulation techniques are proposed to model transportation and fuelling process and used as basis for performance modelling and analysis for different scenarios. Compressed natural gas is found to be a superior fuel to gasoline based on given scenario conditions and criteria for regional green hybrid transportation. The proposed scenarios are applied on case studies in Ontario to confirm the high value of compressed natural gas as viable fuelling scenarios.

Hossam A. Gabbar; Raymond Bedard

2012-01-01T23:59:59.000Z

59

Percentage of Total Natural Gas Industrial Deliveries included...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download...

60

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance of Lube  

E-Print Network (OSTI)

Using Gasoline, Diesel, and Compressed Natural Gas (CNG) Vehicles, Characterize the Significance from natural gas vehicles will help in the development of PM mitigation technologies. This in turn emissions beyond applicable standards, and that benefit natural gas ratepayers (Public Resources Code 25620

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 63.3 59.3 57.9 57.0 57.4 61.3 1983-2013 Alabama 71.7 71.0 68.5 68.2 68.4 66.7 1989-2013 Alaska 94.1 91.6 91.1 91.0 92.3 92.6 1989-2013 Arizona 84.0 83.0 81.6 80.3 82.8 82.7 1989-2013 Arkansas 37.8 28.3 28.1 28.6 26.7 28.0 1989-2013

62

Percentage of Total Natural Gas Industrial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 16.5 16.3 16.0 16.2 16.6 16.9 2001-2013 Alabama 22.1 21.7 21.6 22.8 22.0 22.7 2001-2013 Alaska 100.0 100.0 100.0 100.0 100.0 100.0 2001-2013 Arizona 13.4 15.7 15.3 13.8 13.7 13.9 2001-2013 Arkansas 1.7 1.4 1.2 1.4 1.3 1.5 2001-2013

63

Guidelines for Conversion of Diesel Buses to Compressed Natural Gas | Open  

Open Energy Info (EERE)

Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Agency/Company /Organization: United Nations Economic and Social Commission for Asia and the Pacific Sector: Energy Focus Area: Energy Efficiency, Transportation Topics: Implementation, Policies/deployment programs, Technology characterizations Resource Type: Guide/manual Website: www.unescap.org/ttdw/Publications/TIS_pubs/pub_1361/pub_1361_fulltext. UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

64

Compressed Natural Gas and Hydrogen Fuels Workshop | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing) Identify research...

65

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited

66

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.  

E-Print Network (OSTI)

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits III locomotive to serve power generating station. Catawba $200,000 $203,000 $403,000 Dylex Partners

67

The slow-mode nature of compressible wave power in solar wind turbulence  

E-Print Network (OSTI)

We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross correlation C(delta n, delta B_parallel) between proton density fluctuations delta n and the field-aligned (compressible) component of the magnetic field delta B_parallel is negative and close to -1. The typical dependence of C(delta n,delta B_parallel) on the ion plasma beta_i is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.

Howes, G G; Klein, K G; Chen, C H K; Salem, C S; TenBarge, J M

2011-01-01T23:59:59.000Z

68

Compressed natural gas behavior in a natural gas vehicle fuel tank during fast filling process: Mathematical modeling, thermodynamic analysis, and optimization  

Science Journals Connector (OSTI)

Abstract Every CNG station includes two main parts: a compressor equipped with inter- and after-coolers and a fast filling process (FFP). In this study, both processes were simulated in a FORTRAN based computer program. To model the compression process of real natural gas, the polytropic work of a three-stage compressor was considered. Moreover, the FFP was modeled based on mass conservation and first law of thermodynamics for a non-adiabatic cylinder. Due to high operating pressure, AGA-8 equation of state (EOS) was utilized for accurate computation of necessary thermodynamic properties. Both applied models for compression and FFP were compared with the real data. In particular, the FFP model was evaluated using experimental data obtained from an operating compressed natural gas (CNG) station in Sanandaj, Iran. The comparison showed a good agreement between model and experimental data. In the last part of this paper, the best operating condition for attaining either the minimum energy consumption in compressors and coolers or the maximum final accumulated mass of gas within NGV cylinders was determined using particle swarm optimization (PSO) algorithm.

Mehrdad Khamforoush; Rahil Moosavi; Tahmasb Hatami

2014-01-01T23:59:59.000Z

69

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents (OSTI)

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

70

Optimization of the distribution of compressed natural gas (CNG) refueling stations: Swiss case studies  

Science Journals Connector (OSTI)

To become a mass-market product, compressed natural gas (CNG) cars will need a dense network of filling stations. The Swiss natural gas industry plans to invest in 350 additional CNG stations to supplement the existing 50 sites. Cost–benefit analysis is used to define the optimal locations for these among the existing 3470 petrol filling stations. It is found using two simulations looking at equitable location of sites and socially optimal ones, that the investment in additional CNG infrastructure is unlikely to be socially advantageous.

Martin Frick; K.W. Axhausen; Gian Carle; Alexander Wokaun

2007-01-01T23:59:59.000Z

71

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

SciTech Connect

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

72

Design and implementation of an integrated safety management system for compressed natural gas stations using ubiquitous sensor network  

Science Journals Connector (OSTI)

To increase awareness of safety in facilities where hazards may exist, operators, managers, and executive officers on the site should be able to monitor such facilities. However, most compressed natural gas (CNG)...

Jae Mo Yang; Byung Seok Ko; Chulhwan Park…

2014-03-01T23:59:59.000Z

73

Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010  

SciTech Connect

This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

Adams, R.; Horne, D. B.

2010-09-01T23:59:59.000Z

75

Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME  

SciTech Connect

The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: • Substantially lower intake temperature needed for stable HCCI combustion • Inconclusive impact on engine BMEP and power produced, • Small reduction in the thermal efficiency of the engine, • Moderate reduction in the unburned hydrocarbons in the exhaust, • Slight increase in NOx emissions in the exhaust, • Slight reduction in CO2 in the exhaust. • Increased knocking at rich stoichiometry The major accomplishments and findings from the project can be summarized as follows: 1. A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. 2. A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen.

Pratapas, John; Mather, Daniel; Kozlovsky, Anton

2013-03-31T23:59:59.000Z

76

Effect of focal size on the laser ignition of compressed natural gas–air mixture  

Science Journals Connector (OSTI)

Abstract Laser ignition of compressed natural gas–air mixtures was investigated in a constant volume combustion chamber (CVCC) as well as in a single cylinder engine. Laser ignition has several potential advantages over conventional spark ignition system. Laser ignition relies on the fact that optical breakdown (plasma generation) in gases occurs at high intensities of ?1011 W/cm2. Such high intensities can be achieved by focusing a pulsed laser beam to small focal sizes. The focal spot size depends on several parameters such as laser wavelength, beam diameter at the converging lens, beam quality and focal length. In this investigation, the focal length of the converging lens and the beam quality were varied and the corresponding effects on minimum ignition energy as well as pressure rise were recorded. The flame kernel was visualized and correlated with the rate of pressure rise inside the combustion chamber. This investigation will be helpful in the optimization of laser and optics parameters in laser ignition. It was found that beam quality factor and focal length of focusing lens have a strong impact on the minimum ignition energy required for combustion. Combustion duration depends on the energy density at the focal spot and size of the flame kernel.

Dhananjay Kumar Srivastava; Ernst Wintner; Avinash Kumar Agarwal

2014-01-01T23:59:59.000Z

77

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

SciTech Connect

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

78

Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Round 1 Emissions Results from Compressed Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc.

79

Price of Compressed U.S. Natural Gas Exports to Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

2014 Next Release Date: 1302015 Referring Pages: U.S. Natural Gas Exports by Country U.S. Price of Compressedd Natural Gas Exports by Point of Exit U.S. Natural Gas Exports to...

80

Compression embedding  

DOE Patents (OSTI)

A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

Sandford, II, Maxwell T. (Los Alamos, NM); Handel, Theodore G. (Los Alamos, NM); Bradley, Jonathan N. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An investigation of high pressure/late cycle injection of CNG (compressed natural gas) as a fuel for rail applications  

SciTech Connect

This report describes a demonstration effort to investigate the use of natural gas in a medium-speed diesel engine. The effort was unique in the sense that natural gas was injected directly into the combustion chamber late in the compression stroke, as a high pressure gas rather than through low pressure fumigation or low pressure injection early in the compression stroke. Tests were performed on a laboratory two-cylinder, two-stroke cycle medium-speed diesel engine in an attempt to define its ability to operate on the high pressure/late cycle injection concept and to define the performance and emission characteristics of the engine under such operation. A small quantity of No.-2 diesel fuel was injected into the cylinder slightly before the gas injection to be used as an ignition source for the gas. Pilot (diesel fuel) and main (natural gas) timing and injection duration were systematically varied to optimize engine performance. The test demonstrated that the medium-speed engine was capable of attaining full rated speed and load (unlike the low pressure approach) with very low percentages of pilot injection with the absence of knock. Thermal efficiency was as much as 10 percent less than thermal efficiency levels obtained with neat diesel fuel. This was primarily due to the placement and injection characteristics of the pilot and main injectors. Optimization of the injection system would undoubtedly result in increased thermal efficiency. 11 figs., 4 tabs.

Wakenell, J.F.; O'Neal, G.G.; Baker, Q.A.; Urban, C.M.

1988-04-01T23:59:59.000Z

82

Price of Compressed U.S. Natural Gas Exports to Canada (Dollars...  

Annual Energy Outlook 2012 (EIA)

12312014 Next Release Date: 1302015 Referring Pages: U.S. Natural Gas Exports by Country U.S. Price of Compressedd Natural Gas Exports by Point of Exit U.S. LNG Imports from...

83

Effects of gas composition on the performance and emissions of compressed natural gas engines  

Science Journals Connector (OSTI)

Natural gas is considered to be a promising alternative ... energy security. However, since the composition of natural gas fuel varies with location, climate and other ... emission characteristics and performance...

Byung Hyouk Min; Jin Taek Chung; Ho Young Kim; Simsoo Park

2002-02-01T23:59:59.000Z

84

23. Gray{Scott equations Patterns are everywhere in nature. Examples include spots on butter ies, stripes on zebras, tri-  

E-Print Network (OSTI)

23. Gray{Scott equations Patterns are everywhere in nature. Examples include spots on butter ies variety. The Gray{Scott equations were formulated originally by Gray and Scott in 1983; we shall advantage of this principle. References P. Gray and S. K. Scott, papers in Chem. Eng. Sci. 38 (1983), 29

Trefethen, Nick

85

The redox nature of copper is utilized in a large number of enzymatic processes, including that catalysed by mitochondrial  

E-Print Network (OSTI)

The redox nature of copper is utilized in a large number of enzymatic processes, including that catalysed by mitochondrial cytochrome c oxidase, which makes copper an essential element for all aerobic organisms (Soloman and Lowery, 1993). However, the redox properties of copper can cause rapid generation

Grosell, Martin

86

Use of piston expanders in plants utilizing energy of compressed natural gas  

Science Journals Connector (OSTI)

A comparative analysis has been performed of the suitability of using turbo-and piston (reciprocating) expanders in low-consumption units of natural gas...i...= 3–5 MPa. Two versions have been investigated: 1) mo...

A. I. Prilutskii

2008-03-01T23:59:59.000Z

87

New Jersey: Atlantic City Jitneys Running on Natural Gas | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

approximately 15 million in funding allowed he city to purchase nearly 300 compressed natural gas vehicles, including 190 Atlantic City "jitneys." The jitneys, minibuses run by...

89

Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis  

Science Journals Connector (OSTI)

Abstract Power-to-Substitute Natural Gas processes are investigated to offer solutions for renewable energy storing or transportation. In the present study, an original Power-to-SNG process combining high-temperature steam electrolysis and CO2 methanation is implemented and simulated. A reference process is firstly defined, including a specific modelling approach of the electrolysis and a methanation modelling including a kinetic law. The process also integrates a unit to clean the gas from residual CO2, H2 and H2O for gas network injection. Having set all the units, simulations are performed with ProsimPlus 3™ software for a reference case where the electrolyser and the methanation reactors are designed. The reference case allows to produce 67.5 Nm3/h of SNG with an electrical energy consumption of 14.4 kW h/Nm3. The produced SNG satisfies specifications required for network injection. From this reference process, two sensitivity analyses on electrolysis and methanation working points and on external parameters and constraints are considered. As a main result, we observe that the reference case maximises both process efficiency and SNG production when compared with other studied cases.

Myriam De Saint Jean; Pierre Baurens; Chakib Bouallou

2014-01-01T23:59:59.000Z

90

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Development and Demonstration Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005 Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado

91

Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles" Workshop, December 10-11, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Department of Energy and S. Department of Energy and U.S. Department of Transportation Workshop Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles Workshop Notes December 10-11, 2009 The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted a workshop to exchange information among experts from China, India, and the U.S. on compressed natural gas (CNG) and hydrogen (H 2 ) fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. The workshop had five major objectives, and the success of the workshop in addressing these objectives is summarized below. 1. Coordinate lessons learned by identifying similarities and critical

92

Chapter 6 - Compression  

Science Journals Connector (OSTI)

Publisher Summary Compression is crucial to all gas well production as it is the primary means to transport gas to market. Compression is also vital to deliquification, lowering wellhead pressure, and increasing gas velocity. The lower bottom hole producing pressure from deliquifying wells and lowering surface pressures with compression can result in substantial production and reserves increases. Compressing associated gas in oil wells is often seen as a simple “rate acceleration” project that seldom has good economics. Compression and reduced surface pressure is usually the first tool used in the life of a gas well to keep it deliquified and sometimes the only artificial lift method used, but compression can also be used to increase the effectiveness of other artificial lift deliquification methods including foamers, gas lift, beam pumping, ESPs, and velocity strings. There are many different types of compressors, each of which has its own operating ranges, efficiencies, strengths, and weaknesses. A majority of the applications for gas well deliquification involve the use of reciprocating or screw compressors. In addition, the study discusses compression horsepower and critical velocity; compression horsepower is related to the ratio of the discharge and suction pressures in psia commonly known as the compression ratio. Along with this, the effect of permeability on compression, pressure drop in compression suction, downstream gathering, and compression's effect on uplift from deliquifying individual gas wells are briefly discussed in this chapter.

James F. Lea; Henry V. Nickens; Mike R. Wells

2008-01-01T23:59:59.000Z

93

Compressed Air  

NLE Websites -- All DOE Office Websites (Extended Search)

BPA Utility Reimbursement Programs for Compressed Air Projects Customer Proposal Template Measurement & Verification Plan for Compressed Air CA 2006-15 A template for utilities to...

94

INTEGRATION OF WIND TURBINES WITH COMPRESSED AIR ENERGY STORAGE  

E-Print Network (OSTI)

and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air

I. Arsie; V. Marano; G. Rizzo; M. Moran

95

Modeling Hot Mix Asphalt Compaction Using a Thermodynamics Based Compressible Viscoelastic Model within the Framework of Multiple Natural Configurations  

E-Print Network (OSTI)

asphalt (HMA) using the notion of multiple natural configurations. A thermodynamic framework is employed to study the non-linear dissipative response associated with HMA by specifying the forms for the stored energy and the rate of dissipation function...

Koneru, Saradhi

2011-10-21T23:59:59.000Z

96

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

97

Containerized compressed natural gas shipping  

E-Print Network (OSTI)

In the last decades, the demand for energy is increasing. It is necessary to develop new ways to distribute the energy using economically feasible solutions. In this project an Ultra Large Container Ship is used that can ...

Skarvelis, Georgios V

2013-01-01T23:59:59.000Z

98

Clearing the air with natural gas engines  

SciTech Connect

This article examines the increased popularity of natural gas vehicles which has spurred engine designers to manipulate fuel-air ratios, compression ratios, ignition timing, and catalytic converters in ways to minimize exhaust pollutants. The topics of the article include reducing pollutants, high-octane engineering, diesel to natural gas, and the two-fuel choice.

O'Connor, L.

1993-10-01T23:59:59.000Z

99

Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed Natural Gas (CNG)-Powered Vehicles Lung Toxicity and Mutagenicity of Emissions From Heavy-Duty Compressed...

100

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss  

E-Print Network (OSTI)

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss P: 847-768-0753; E: william hurdles facing on-board liquid fuel reforming. This program leverages efforts to develop natural gas for compressed natural gas vehicles. The integrated natural gas-to-hydrogen system includes a high efficiency

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advances in compressible turbulent mixing  

SciTech Connect

This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

1992-01-01T23:59:59.000Z

102

Chapter 22: Compressed Air Evaluation Protocol  

SciTech Connect

Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

Benton, N.

2014-11-01T23:59:59.000Z

103

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

104

Feasibility study of a 6V-92TA homogeneous auto-ignited two-stroke (HAT) compressed-natural-gas-engine. Topical report, August 1989-May 1990  

SciTech Connect

The objective of the project was to modify a two-stroke 6V-92TA diesel engine to operate on natural gas using a simple system with gas addition to the compressor inlet and a spark plug for cold start and non-autoignition engine operation. The engine was to be operated at most speed-load conditions by autoignition of the premixed gas-air mixture. This concept is referred to as the Homogeneous Auto-Ignited Two-Stroke (HAT). Autoignition of carbureted natural gas was achieved at various loads and speeds in a 6V-92TA engine modified for operating on natural gas with the HAT concept. However, HAT engine operation up to 277 hp at 2100 rpm (diesel coach rating) was not achieved because early ignition in some cylinders caused knock and excessive heat transfer. Instead, the engine was operated up to 226 hp (767 N.m) at 2100 rpm, 181 hp (780 N.m) at 1650 rpm, 130 hp (773 N.m) at 1200 rpm, and 34 hp (368 N.m) at 650 rpm. Maximum brake thermal efficiency measured was 33.4% at 2100 rpm/219 hp. The corrected efficiency (to compensate for the unburned natural gas lost during the scavenging process) was higher than this. Steady-state emissions show very low NOx, total unburned HC lower than expected and reasonable CO levels. The lean air-fuel mixture and unburned exhaust gases in the cylinder resulted in very low NOx emissions.

Kakwani, R.M.; Winsor, R.E.

1990-08-01T23:59:59.000Z

105

Industrial Compressed Air System Energy Efficiency Guidebook.  

SciTech Connect

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

106

Semantic Multimodal Compression for Wearable Sensing Systems  

E-Print Network (OSTI)

sensors in the shoe follow natural human motion, in airborne, landing, and take-off phases. The key. Such systems can be expensive and power hungry due to their multi- sensor implementations that require constant use, yet by nature they demand low-cost and low-power implementations. Semantic multimodal compression

Potkonjak, Miodrag

107

Minimize Compressed Air Leaks  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations.

108

Parametric internal waves in a compressible fluid  

E-Print Network (OSTI)

We describe the effect of vibration on a confined volume of fluid which is density stratified due to its compressibility. We show that internal gravity-acoustic waves can be parametrically destabilized by the vibration. The resulting instability is similar to the classic Faraday instability of surface waves, albeit modified by the compressible nature of the fluid. It may be possible to observe experimentally near a gas-liquid critical point.

Kausik S. Das; Stephen W. Morris; A. Bhattacharyay

2007-10-11T23:59:59.000Z

109

Parametric internal waves in a compressible fluid  

E-Print Network (OSTI)

We describe the effect of vibration on a confined volume of fluid which is density stratified due to its compressibility. We show that internal gravity-acoustic waves can be parametrically destabilized by the vibration. The resulting instability is similar to the classic Faraday instability of surface waves, albeit modified by the compressible nature of the fluid. It may be possible to observe experimentally near a gas-liquid critical point.

Das, Kausik S; Bhattacharyay, A

2007-01-01T23:59:59.000Z

110

The effect of bulge height and length on the lateral crash behaviour of front platform of a compressed natural gas vehicle  

Science Journals Connector (OSTI)

This paper describes the crash analysis of a mild steel front platform of a natural gas vehicle. The objective is to determine the effect of bulge height, H, and bulge length, L, on the crashworthiness properties. Catia V5, Hypermesh and LSDYNA3D softwares were used in the analysis. The crashworthiness parameters are energy adsorption and crash distance. For the effect of bulge height on energy absorbed and crash distance, a platform with L = 750.0 mm was used with H varied from 0 to 140 mm. For the effect of L, a platform with H = 140.0 mm was used with L varied from 200.0 to 1350.0 mm. For all cases, the bulge diameter, D, was 200.0 mm. The crash was due to lateral impact of a rigid wall with velocity of 50 km/h (13.9 m/s). The results showed that the maximum energy absorption of 7914.0 J was obtained for L = 750.0 mm and H = 120.0 mm.

B.B. Sahari; A.R. Norwazan; A.M. Hamouda; Y.A. Khalid; S.V. Wong

2007-01-01T23:59:59.000Z

111

Hydrogen Delivery Liquefaction and Compression  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

112

Edge compression manifold apparatus  

DOE Patents (OSTI)

A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) device to apply an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.

Renzi, Ronald F. (Tracy, CA)

2007-02-27T23:59:59.000Z

113

Climate and Environmental Effects of Electric Vehicles versus Compressed Natural Gas Vehicles in China: A Life-Cycle Analysis at Provincial Level  

Science Journals Connector (OSTI)

Under such circumstances, there will be a battle between coal and NG in many sectors, particularly the on-road transport sector, which is exclusively petroleum-dependent but currently facing a worldwide oil shortage. ... Consumption-based power mixes estimated based on provincial data provided by China Energy Statistical Yearbook 2011(4) (data include amount of electricity produced from coal, NG, hydro and others, and amount of electricity imported from and exported to other provinces), under the following assumptions: (1) Electricity-imported provinces first import electricity from other provinces under the same interprovincial power grid, then from neighboring grids (China has six interprovincial power grids serving six regions, respectively; for details refer to our previous study(13)); (2) the mix of exported electricity is 100% coal considering the marginal effect, except for provinces (e.g., Hubei and Sichuan) where huge hydropower projects (e.g., the Three Gorges project) are built with intent to export hydropower outside the province. ... China’s oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. ...

Hong Huo; Qiang Zhang; Fei Liu; Kebin He

2012-12-31T23:59:59.000Z

114

NETL: CO2 Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Compression CO2 Compression The CO2 captured from a power plant will need to be compressed from near atmospheric pressure to a pressure between 1,500 and 2,200 psi in order to be transported via pipeline and then injected into an underground sequestration site. Read More! CO2 Compression The compression of CO2 represents a potentially large auxiliary power load on the overall power plant system. For example, in an August 2007 study conducted for DOE/NETL, CO2 compression was accomplished using a six-stage centrifugal compressor with interstage cooling that required an auxiliary load of approximately 7.5 percent of the gross power output of a subcritical pressure, coal-fired power plant. As a result, DOE/NETL is sponsoring R&D to develop novel methods that can significantly decrease the

115

Compressed Gas Safety for Experimental Fusion Facilities  

SciTech Connect

Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

Lee C. Cadwallader

2004-09-01T23:59:59.000Z

116

Case Study - Compressed Natural Gas Refuse Fleets  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

for added range on vehicles for Round Lake. x The City of Milwaukee found that the fuel tanks installed in the first two CNG refuse trucks were too small, limiting the trucks'...

117

BNL Compressed Natural Gas Release Investigation  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Michael Kretschmann, P.E., Manager, Fire Protection Engineering - Brookhaven National Laboratory

118

Compressed Air Storage Strategies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

119

Compressibility of graphene  

Science Journals Connector (OSTI)

We develop a theory for the compressibility and quantum capacitance of disordered monolayer and bilayer graphene, including the full hyperbolic band structure and band gap in the latter case. We include the effects of disorder in our theory, which are of particular importance at the carrier densities near the Dirac point. We account for this disorder statistically using two different averaging procedures: first via averaging over the density of carriers directly, and then via averaging in the density of states to produce an effective density of carriers. We also compare the results of these two models with experimental data, and to do this we introduce a model for interlayer screening which predicts the size of the band gap between the low-energy conduction and valence bands for arbitrary gate potentials applied to both layers of bilayer graphene. We find that both models for disorder give qualitatively correct results for gapless systems, but when there is a band gap in the low-energy band structure, the density of states averaging is incorrect and disagrees with the experimental data.

D. S. L. Abergel; E. H. Hwang; S. Das Sarma

2011-02-28T23:59:59.000Z

120

Hydrogen Delivery Liquefaction & Compression  

E-Print Network (OSTI)

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LAPPED TRANSFORMS COMPRESSION  

E-Print Network (OSTI)

Chapter 6 LAPPED TRANSFORMS FOR IMAGE COMPRESSION Ricardo L. de Queiroz Digital Imaging Technology aspects of lapped transforms and their applications to image compression. It is a subject that has been extensively studied mainly because lapped transforms are closely related to filter banks, wavelets, and time

de Queiroz, Ricardo L.

122

ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)  

SciTech Connect

The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

2005-12-01T23:59:59.000Z

123

Fundamentals of Compressed Air Systems  

Energy.gov (U.S. Department of Energy (DOE))

Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

124

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

DOE Patents (OSTI)

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

125

System using data compression and hashing adapted for use for multimedia encryption  

DOE Patents (OSTI)

A system and method is disclosed for multimedia encryption. Within the system of the present invention, a data compression module receives and compresses a media signal into a compressed data stream. A data acquisition module receives and selects a set of data from the compressed data stream. And, a hashing module receives and hashes the set of data into a keyword. The method of the present invention includes the steps of compressing a media signal into a compressed data stream; selecting a set of data from the compressed data stream; and hashing the set of data into a keyword.

Coffland, Douglas R. (Livermore, CA)

2011-07-12T23:59:59.000Z

126

Compressive sensing of object-signature  

Science Journals Connector (OSTI)

Compressive sensing is a new framework for signal acquisition, compression, and processing. Of specific interest are two-dimensional signals such as images where an optical unit performs the acquisition and compression (i.e., compressive sensing or compressive ... Keywords: compressive imaging, compressive sampling, compressive sensing, digital signal processing, optical super computing

Dan E. Tamir; Natan T. Shaked; Wilhelmus J. Geerts; Shlomi Dolev

2010-11-01T23:59:59.000Z

127

Muon Cooling: Longitudinal Compression  

Science Journals Connector (OSTI)

A 10??MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon “swarm” has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2???s. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 107. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 104.

Yu Bao; Aldo Antognini; Wilhelm Bertl; Malte Hildebrandt; Kim Siang Khaw; Klaus Kirch; Angela Papa; Claude Petitjean; Florian M. Piegsa; Stefan Ritt; Kamil Sedlak; Alexey Stoykov; David Taqqu

2014-06-04T23:59:59.000Z

128

Padding with Compressed Air  

E-Print Network (OSTI)

We commonly find plants using padding to transport liquids or light solids short distances from tankers into storage tanks. Padding can wreck havoc in compressed air systems with limited storage, undersized cleanup equipment (dryers and filters...

Beals, C.

2004-01-01T23:59:59.000Z

129

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

130

Techniques for optically compressing light intensity ranges  

DOE Patents (OSTI)

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

Rushford, Michael C. (Livermore, CA)

1989-01-01T23:59:59.000Z

131

Fast electron microscopy via compressive sensing  

DOE Patents (OSTI)

Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

2014-12-09T23:59:59.000Z

132

Techniques for optically compressing light intensity ranges  

DOE Patents (OSTI)

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

Rushford, M.C.

1989-03-28T23:59:59.000Z

133

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Rateman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klinger, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2005-11-08T23:59:59.000Z

134

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2005-05-03T23:59:59.000Z

135

Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2003-06-24T23:59:59.000Z

136

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

2007-05-22T23:59:59.000Z

137

STATE OF CALIFORNIA --THE NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

Management Sun Valley Liquefied Natural Gas/Liquefied Compressed Natural Gas Refueling Station · Bay Area Air Compressed Natural Gas Station · South Coast Air Quality Management District Alternative and Renewable Fuel and Vehicle Technology Program · City of Lemoore Compressed Natural Gas Fueling Station · San Diego

138

Chapter 1 - Natural Gas Fundamentals  

Science Journals Connector (OSTI)

Natural gas is the most energy-efficient fossil fuel; it offers important energy-saving benefits when it is used instead of oil or coal. Although the primary use of natural gas is as a fuel, it is also a source of hydrocarbons for petrochemical feedstocks and a major source of elemental sulfur, an important industrial chemical. Its popularity as an energy source is expected to grow substantially in the future because natural gas can help achieve two important energy goals for the twenty-first century: providing the sustainable energy supplies and services needed for social and economic development and reducing adverse impacts on global climate and the environment in general. Natural gas consumption and trade have been growing steadily over the past two decades, and natural gas has strengthened its position in the world energy mix. Although natural gas demand declined in 2009, as a result of the economic slowdown, it is expected to resume growth in both emerging and traditional markets in the coming decades. Such increase in the near future will be driven because of additional demand in current uses, primarily power generation. There is yet little overlap between the use of natural gas and oil in all large markets. However, there are certain moves in the horizon, including the electrifying of transportation, that will push natural gas use to ever higher levels. This book gives the reader an introduction to natural gas by describing the origin and composition of natural gas, gas sources, phase behavior and properties, and transportation methods. Keywords: Absolute Open Flow, bulk modulus of elasticity, coal-bed methane, cricondenbar, cricondentherm, Expected Ultimate Recovery, gas deviation factor, higher heating value, Inflow Performance Relationship, kerogen, laminar flow, liquefied natural gas, primary thermogenic gas, pyrobitumen, secondary thermogenic gas, super-compressibility factor, thiol, Tubing Performance Curve, turbulent flow, unconventional gas resources, Wobbe Index, Wobbe Number.

Saeid Mokhatab; William A. Poe

2012-01-01T23:59:59.000Z

139

Compressed Air Systems | Department of Energy  

Energy Savers (EERE)

Maintenance Strategies for Compressed Air Systems Remove Condensate with Minimal Air Loss Stabilizing System Pressure Compressed Air Training Compressed Air Systems Tools...

140

Solvable Compressible Ising Model  

Science Journals Connector (OSTI)

The results for the solvable Baker-Essam model of a compressible Ising lattice are rederived by utilizing the equivalence of the system to a set of linear chains each described by the Mattis-Schultz one-dimensional magnetostriction model.

Marshall Luban

1973-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lattice Boltzmann model for compressible fluids  

Science Journals Connector (OSTI)

We formulate a lattice Boltzmann model which simulates compressible fluids. By choosing the parameters of the equilibrium distribution appropriately, we are able to select the sound speed (which may be set arbitrarily low), bulk viscosity, and kinematic viscosity. This model simulates compressible flows and can include shocks. With a proper rescaling and zero-sound speed, this model simulates Burgers’s equation. The viscosity determined by a Chapman-Enskog expansion compares well with that measured from simulations. We also compare the exact solutions of Burgers’s equation on the unit circle to solutions of our lattice Boltzmann model, again finding reasonable agreement.

F. J. Alexander; H. Chen; S. Chen; G. D. Doolen

1992-08-15T23:59:59.000Z

142

Plasma-based Accelerator with Magnetic Compression  

SciTech Connect

Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method is proposed to overcome dephasing, in which the modulation of a modest (#24; O(10 kG)), axial, uniform magnetic field in the acceleration channel leads to densification of the plasma through magnetic compression, enabling direct, time-resolved control of the plasma wave properties. The methodology is broadly applicable and can be optimized to improve the leading acceleration approaches, including plasma beat-wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic compression compared to other proposed schemes to overcome dephasing are identified.

Paul F. Schmit and Nathaniel J. Fisch

2012-06-28T23:59:59.000Z

143

Compressed Hydrogen Storage Workshop Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Agenda for the first day of the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

144

Compressed Air System Control Strategies  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet briefly discusses compressed air system control strategies as a means to improving and maintaining system performance.

145

Compressed Air Energy Storage System  

E-Print Network (OSTI)

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

146

Analyzing Your Compressed Air System  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines the process to analyze industrial compressed air systems and ensure proper system configuration.

147

Modeling and Analysis of Natural Gas and Gasoline In A High Compressio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High...

148

Pump apparatus including deconsolidator  

DOE Patents (OSTI)

A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

2014-10-07T23:59:59.000Z

149

Nuclear Compressibility and Symmetry Energy  

Science Journals Connector (OSTI)

A modification and generalization of the Puff-Martin model for many-fermion systems is employed to calculate nuclear compressibility and symmetry energy in order to provide a practical test of the model and at the same time obtain useful information about these interesting quantities. An alternative, heuristic, derivation of the Puff-Martin equations is presented in order to exhibit the role of the exclusion principle. The condition stated for normal nuclear matter is that the mean binding energy be minimal (with respect to variation of the Fermi momentum) rather than the Puff-Martin condition that the mean binding energy equal the "single particle" energy at the Fermi surface. These two quantities differ from each other by the rearrangement energy, which is found to be 10 Mev. Employing Puff's potential (hard-shell potential plus a separable Yamaguchi potential, acting only in relative S states), satisfactory agreement is obtained with observed binding energy and density. The value of nuclear compressibility, 214 Mev, falls within the wide range of semiempirical values. The symmetry energy coefficient, 43 Mev, is larger, by 40-80%, than those usually quoted in semiempirical mass formulas. However, our value of the symmetry coefficient is the same as that calculated by Brueckner and Gammel in the absence of odd-state forces; they found the coefficient to be reduced to 26 Mev when a more realistic potential, including odd-state contributions, is employed.

David S. Falk and Lawrence Wilets

1961-12-15T23:59:59.000Z

150

OPTIMAL CONTROL EXPERIMENTATION OF COMPRESSION TRAJECTORIES FOR A LIQUID PISTON AIR COMPRESSOR  

E-Print Network (OSTI)

compressor is the critical part of a Compressed Air En- ergy Storage (CAES) system. Efficient and fast and expansion has many applications in pneumatic and hydraulic systems, including in the Compressed Air Energy CAES system, high pressure (20-30MPa) compressed air is stored in a dual chamber storage vessel

Li, Perry Y.

151

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

amendment was to allow CCP to install electric motor-driven natural gas compression equipment to be located

152

Finding Structure via Compression Jason L. Hutchens  

E-Print Network (OSTI)

Structurevia Compression Jason L. Hutchens and Michael D. Alder (1998) Finding Structure via Compression. In D.M.W

153

Recap Compression Term statistics Dictionary compression Postings compression Web Search and Text Mining  

E-Print Network (OSTI)

as they occur. With these two ideas we can generate a complete inverted index for each block. These separate Mining http://www.cc.gatech.edu/~agray/6240spr11 IIR 5: Index Compression Alexander Gray Georgia Institute of Technology, College of Computing 2011 Gray: Index Compression 1 / 60 #12;Recap Compression Term

Gray, Alexander

154

Improving Floating Point Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

155

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

156

The role of natural gas as a vehicle transportation fuel  

E-Print Network (OSTI)

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

157

AIRMaster: Compressed air system audit software  

SciTech Connect

The project goal was to develop a software tool, AIRMaster, and a methodology for performing compressed air system audits. AIRMaster and supporting manuals are designed for general auditors or plant personnel to evaluate compressed air system operation with simple instrumentation during a short-term audit. AIRMaster provides a systematic approach to compressed air system audits, analyzing collected data, and reporting results. AIRMaster focuses on inexpensive Operation and Maintenance (O and M) measures, such as fixing air leaks and improving controls that can significantly improve performance and reliability of the compressed air system, without significant risk to production. An experienced auditor can perform an audit, analyze collected data, and produce results in 2--3 days. AIRMaster reduces the cost of an audit, thus freeing funds to implement recommendations. The AIRMaster package includes an Audit Manual, Software and User's manual, Analysis Methodology Manual, and a Case Studies summary report. It also includes a Self-Guided Tour booklet to help users quickly screen a plant for efficiency improvement potentials, and an Industrial Compressed Air Systems Energy Efficiency Guidebook. AIRMaster proved to be a fast and effective audit tool. In sever audits AIRMaster identified energy savings of 4,056,000 kWh, or 49.2% of annual compressor energy use, for a cost savings of $152,000. Total implementation costs were $94,700 for a project payback period of 0.6 years. Available airflow increased between 11% and 51% of plant compressor capacity, leading to potential capital benefits from 40% to 230% of first year energy savings.

Wheeler, G.M.; Bessey, E.G.; McGill, R.D.; Vischer, K.

1997-07-01T23:59:59.000Z

158

Shock compression of precompressed deuterium  

SciTech Connect

Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high-density dynamic compression of hydrogen may be possible on microscopic length scales.

Armstrong, M R; Crowhurst, J C; Zaug, J M; Bastea, S; Goncharov, A F; Militzer, B

2011-07-31T23:59:59.000Z

159

ECG Compression: Fast Block-Sorting Compression John Halloran  

E-Print Network (OSTI)

ECG Compression: Fast Block-Sorting Compression John Halloran Department of Electrical Engineering University of Hawaii at Manoa EE 628 Fall 2008 April 13, 2010 1 Introduction Electrocardiography(ECG. Given ECG data, a patient may be diagnosed with health issues such as a heart attack or improper levels

Noble, William Stafford

160

cleanenergyfuels.com Natural Gas Solutions  

E-Print Network (OSTI)

1 cleanenergyfuels.com Natural Gas Solutions for Transportation December 7, 2012 #12;2 cleanenergyfuels.com Compressed Natural Gas (CNG) Taxis Airport Vehicles Transit Buses Leading Provider of Natural Gas As a Transportation Fuel About Clean Energy Liquefied Natural Gas (LNG) Port Trucking LNG Station

Minnesota, University of

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen...

162

Data Compression with Prime Numbers  

E-Print Network (OSTI)

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

163

Contemporary Mathematics Wavelet Image Compression  

E-Print Network (OSTI)

fundamental problems in science and engineering, such as audio de-noising, signal compression, object in a way to fit the engineering model of image compression. 1. Introduction Wavelets are functions which and engineering. This thesis focuses on the processing of color images with the use of custom designed wavelet

Song, Myung-Sin

164

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect

Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

None

2012-11-30T23:59:59.000Z

165

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

Lasche, G.P.

1983-09-29T23:59:59.000Z

166

Reliability Analysis of Settlement Using an Updated Probabilistic Unified Soil Compression Model  

E-Print Network (OSTI)

data from a site on the Venice Lagoon using a Bayesian approach. The model to estimate settlement was developed based on this probabilistic soil compression model and is unbiased in nature. Using this model, unbiased settlement estimates were obtained...

Ambrose, Avery

2012-02-14T23:59:59.000Z

167

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

168

Nitrogen Removal From Low Quality Natural Gas  

SciTech Connect

Natural gas provides more than one-fifth of all the primary energy used in the United States. It is especially important in the residential sector, where it supplies nearly half of all the energy consumed in U.S. homes. However, significant quantities of natural gas cannot be produced economically because its quality is too low to enter the pipeline transportation system without some type of processing, other than dehydration, to remove the undesired gas fraction. Such low-quality natural gas (LQNG) contains significant concentration or quantities of gas other than methane. These non- hydrocarbons are predominantly nitrogen, carbon dioxide, and hydrogen sulfide, but may also include other gaseous components. The nitrogen concentrations usually exceeds 4%. Nitrogen rejection is presently an expensive operation which can present uneconomic scenarios in the potential development of natural gas fields containing high nitrogen concentrations. The most reliable and widely used process for nitrogen rejection from natural gas consists of liquefying the feed stream using temperatures in the order of - 300{degrees}F and separating the nitrogen via fractionation. In order to reduce the gas temperature to this level, the gas is compressed, cooled by mullet-stream heat exchangers, and expanded to low pressure. Significant energy for compression and expensive materials of construction are required. Water and carbon dioxide concentrations must be reduced to levels required to prevent freezing. SRI`s proposed research involves screening new nitrogen selective absorbents and developing a more cost effective nitrogen removal process from natural gas using those compounds. The long-term objective of this project is to determine the technical and economical feasibility of a N{sub 2}2 removal concept based on complexation of molecular N{sub 2} with novel complexing agents. Successful development of a selective, reversible, and stable reagent with an appropriate combination of capacity and N{sub 2} absorption/desorption characteristics will allow selective separation of N{sub 2} from LQNG.

Alvarado, D.B.; Asaro, M.F.; Bomben, J.L.; Damle, A.S.; Bhown, A.S.

1997-10-01T23:59:59.000Z

169

Power generation method including membrane separation  

DOE Patents (OSTI)

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

170

Alternative Fuels Data Center: Natural Gas Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Delicious Rank Alternative Fuels Data Center: Natural Gas Benefits on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Benefits on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Benefits and Considerations Compressed and liquefied natural gas are clean, domestically produced alternative fuels. Using these fuels in natural gas vehicles increases

171

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901 562 413 582 294 580 1,216 1,523 1996 1,963 1,919 1,606 1,251 757 446 421 443 581 648 972 1,290 1997 1,694 1,744 1,739 1,144 892 537 430 399 460 637 1,211 1,416 1998 1,817 1,642 1,518 1,141 694 506 496 195 483 628 1,019 1,338

172

Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 96,012 79,547 77,363 52,992 33,092 26,098 25,208 27,662 29,499 38,457 46,614 63,083 2002 80,458 74,651 70,773 53,368 38,209 33,401 32,700 34,743 30,425 40,462 58,542 83,877 2003 101,975 96,176 79,246 53,759 36,015 29,095 30,298 32,640 26,799 39,895 47,467 78,054 2004 100,298 95,715 73,189 54,937 42,873 33,367 36,047 33,735 32,060 34,578 50,908 74,224 2005 90,958 84,388 85,058 50,137 38,196 34,547 36,133 37,648 32,674 35,439 50,234 80,301 2006 76,519 77,324 76,877 49,039 37,224 36,803 44,307 41,471 31,545 40,867 49,703 63,941 2007 78,283 95,894 81,570 63,089 41,955 37,217 42,996 50,308 38,092 42,936 57,228 82,068

173

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644 6,611 4,717 2,954 1,875 1,384 1,364 1,256 1,384 1,475 2,207 4,632 1995 6,358 6,001 5,160 2,968 2,354 1,794 1,558 1,524 1,903 1,836 3,020 5,164 1996 7,808 7,923 5,595 4,413 2,222 1,770 1,798 1,678 1,759 1,900 3,273 6,014

174

Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 41,541 34,864 34,025 32,667 33,129 48,517 59,935 87,118 2002 106,011 98,576 94,429 70,082 51,854 40,885 40,538 38,774 34,999 51,972 76,275 108,800 2003 140,436 123,688 99,629 65,861 43,326 32,959 33,810 37,562 32,918 52,253 65,617 103,846 2004 137,568 117,976 93,845 67,347 46,827 33,561 34,567 34,689 34,129 47,268 64,279 99,290 2005 122,404 107,459 105,183 63,669 47,239 37,221 35,833 37,060 33,808 42,569 65,578 113,292 2006 95,548 97,666 85,732 52,957 42,766 33,443 36,271 36,307 35,048 54,845 69,951 88,329 2007 105,108 128,279 87,809 70,627 41,797 34,877 33,361 40,637 34,554 41,730 69,858 102,787

175

Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,481 15,747 13,983 11,129 7,094 5,429 8,556 6,368 5,506 5,854 10,730 11,012 2002 16,123 14,049 12,938 10,424 6,676 4,984 8,748 7,414 6,786 6,218 9,753 13,269 2003 15,675 15,319 13,354 8,644 6,232 4,472 7,653 7,469 5,904 6,758 8,775 13,011 2004 16,104 16,445 12,058 7,983 6,255 5,830 6,952 6,641 4,338 5,935 8,995 13,129 2005 17,242 14,641 11,440 8,360 6,579 5,853 7,874 8,028 6,345 6,081 8,200 13,733 2006 15,551 13,741 13,940 10,766 7,411 7,500 9,685 9,019 6,665 7,092 10,375 13,432 2007 17,851 19,390 16,040 10,333 9,436 7,602 10,286 11,264 8,529 7,818 10,704 15,974 2008 20,241 20,433 17,488 13,024 9,556 9,390 10,050 10,893 8,126 10,847 13,250 17,360

176

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636 14,979 23,071 1994 33,573 29,301 22,713 14,498 7,933 5,111 4,027 4,287 4,492 7,331 12,594 20,936 1995 28,306 29,814 21,860 14,128 8,132 4,979 4,697 4,406 4,623 7,916 18,650 27,649 1996 33,993 29,732 26,650 16,833 8,960 7,661 4,569 4,401 4,048 8,548 18,274 26,298

177

Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,414 34,292 35,867 25,368 20,633 20,544 24,229 26,863 21,857 25,679 23,983 34,450 2002 44,041 37,992 33,260 23,775 22,612 24,924 30,113 29,701 24,899 23,785 32,829 47,106 2003 56,470 43,704 31,355 30,232 21,920 20,512 23,789 26,828 21,628 22,981 26,920 45,508 2004 52,486 48,806 31,529 28,718 26,610 24,562 26,132 26,093 22,927 22,025 29,012 49,125 2005 47,756 39,503 39,085 25,191 23,198 26,957 31,619 33,089 28,453 26,199 32,483 52,399 2006 39,904 45,015 35,118 26,670 26,891 30,790 36,980 38,808 25,412 31,321 35,677 40,816 2007 49,163 47,589 32,236 31,955 27,318 31,415 32,039 49,457 31,028 27,420 33,851 41,413

178

Natural Gas Delivered to Consumers in New Hampshire (Including Vehicle  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 3,171 3,309 2,951 2,280 1,441 1,134 1,003 888 1,182 1,589 1,904 2,520 2002 2,917 3,188 2,833 2,179 1,815 1,423 1,657 1,055 1,381 1,038 1,847 3,507 2003 6,844 6,457 5,490 3,772 3,085 2,034 3,900 5,640 4,166 4,643 3,574 4,515 2004 5,204 7,595 6,870 6,131 2,712 4,473 4,167 4,306 4,766 3,194 5,704 6,026 2005 6,958 7,545 6,875 5,691 6,049 5,824 5,780 6,010 4,491 4,069 5,173 5,988 2006 7,782 6,823 7,852 4,511 2,505 2,608 3,895 5,107 5,407 5,917 3,850 6,263 2007 6,645 5,329 5,157 5,429 3,826 4,223 5,642 5,420 5,969 4,295 4,527 5,641 2008 7,786 7,653 7,558 5,076 4,511 4,124 5,536 4,876 5,352 5,548 6,443 6,692

179

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 1,639 1,249 996 830 680 362 272 248 269 449 873 1,233 1992 1,404 1,078 821 668 438 309 264 269 287 439 760 1,271 1993 1,631 1,376 1,262 882 639 400 362 389 378 667 874 1,407 1994 1,351 1,412 1,065 869 544 369 291 270 308 550 915 1,287 1995 1,671 1,247 1,217 987 873 594 373 258 NA NA NA NA 1996 1,176 1,203 1,030 925 712 342 197 197 250 640 1,301 1,748 1997 1,570 1,309 1,403 1,189 958 491 623 287 316 554 966 1,088 1998 1,628 1,322 1,279 936 597 442 371 253 343 493 927 1,822

180

Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28,398 21,618 21,408 13,900 9,252 8,342 9,046 11,007 9,109 12,662 13,558 17,125 2002 24,221 22,802 20,670 12,534 8,846 8,846 10,514 12,842 10,157 12,911 20,408 28,827 2003 31,739 28,530 21,240 15,685 9,809 8,723 8,128 7,986 7,131 11,863 16,167 27,049 2004 33,576 27,062 20,558 14,623 9,867 8,560 7,704 8,271 7,535 11,725 16,222 26,279 2005 29,469 25,497 24,272 13,414 10,273 10,104 9,641 11,634 8,302 12,060 16,807 28,263 2006 24,101 24,846 19,870 11,807 9,034 9,251 11,438 11,236 8,042 11,895 16,300 21,239 2007 24,841 32,498 20,950 15,805 8,835 9,239 9,540 12,974 9,655 10,242 17,911 25,311 2008 28,394 26,094 20,551 12,340 9,832 9,808 10,778 7,669 8,974 12,394 20,316 25,502

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,475 6,484 5,643 5,505 4,182 3,864 3,515 3,541 3,688 4,790 5,518 6,170 2002 6,844 5,846 6,319 5,737 5,034 4,070 4,980 4,124 4,599 6,126 7,421 8,523 2003 7,672 7,313 7,026 5,737 4,976 4,408 4,112 4,164 4,356 5,062 5,554 7,236 2004 7,555 7,180 6,077 5,400 4,775 4,216 4,064 4,187 4,024 5,032 6,153 6,963 2005 7,585 6,443 6,231 5,612 5,092 4,247 4,081 3,903 4,080 4,829 5,360 7,262 2006 7,304 6,824 6,957 5,389 4,762 4,109 4,108 4,063 3,935 5,157 5,893 6,958 2007 7,982 7,322 6,900 5,469 4,958 4,253 3,873 3,944 4,150 5,003 6,095 7,723 2008 8,446 7,443 6,660 5,737 5,057 4,098 3,749 3,805 3,520 4,922 5,595 7,419

182

Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 57,089 50,447 49,042 41,157 30,506 23,904 22,403 22,033 19,905 22,672 30,231 42,797 2002 47,541 44,713 45,909 30,319 24,230 22,105 26,301 21,119 21,764 34,563 38,884 46,826 2003 44,971 47,164 38,292 25,380 24,811 18,484 23,772 23,529 20,981 22,248 39,408 48,023 2004 47,548 44,859 30,853 28,458 23,766 20,408 22,895 21,210 20,651 26,731 39,719 50,977 2005 50,356 41,495 39,617 33,501 25,108 20,725 26,350 23,387 22,698 29,399 38,140 54,566 2006 45,074 45,360 42,614 26,074 20,799 20,115 23,277 22,817 18,928 30,373 38,546 49,332 2007 62,803 46,554 33,579 30,243 25,136 25,014 28,465 26,787 27,444 32,786 39,145 57,263

183

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487 361 346 392 591 997 1,300 1996 1,734 1,783 1,359 996 710 477 346 354 421 597 1,107 1,621 1997 1,810 1,778 1,341 1,037 684 397 372 354 409 584 979 1,687 1998 1,969 1,564 1,417 1,072 686 535 405 380 386 577 1,045 1,640

184

Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090 5,138 4,996 6,505 5,264 5,580 6,835 5,939 5,217 2007 6,180 5,355 4,869 4,768 4,222 4,680 6,405 6,403 4,340 3,731 4,999 6,480 2008 6,142 5,066 5,389 5,928 5,679 4,545 6,177 5,002 5,965 5,812 6,785 6,712

185

Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,164 1,003 1,084 834 544 381 304 307 361 438 658 827 2002 1,127 1,149 960 808 575 428 330 336 348 485 803 1,003 2003 1,153 1,191 1,062 906 539 367 293 312 325 502 708 1,029 2004 1,154 1,381 1,072 829 517 421 331 342 365 479 769 1,011 2005 1,211 1,280 1,199 776 558 404 310 298 295 418 666 943 2006 1,112 1,063 1,190 745 501 415 318 318 347 481 658 893 2007 1,104 1,375 1,250 915 536 382 340 331 342 423 696 1,158 2008 1,202 1,217 1,137 865 512 384 331 333 361 480 702 1,084 2009 1,407 1,307 1,076 794 507 409 348 321 337 508 684 922 2010 1,270 1,126 897 685 488 376 344 335 348 581 801 1,177

186

Percentage of Total Natural Gas Commercial Deliveries included in Prices  

Gasoline and Diesel Fuel Update (EIA)

80.4 79.7 77.8 77.5 67.3 65.2 1987-2012 80.4 79.7 77.8 77.5 67.3 65.2 1987-2012 Alabama 79.8 80.2 78.8 79.3 78.9 76.2 1990-2012 Alaska 76.0 74.9 85.3 87.7 88.6 94.9 1990-2012 Arizona 93.4 93.1 88.0 88.7 87.8 86.6 1990-2012 Arkansas 70.4 64.5 59.4 55.6 51.5 40.2 1990-2012 California 60.7 56.7 54.9 54.1 54.3 50.0 1990-2012 Colorado 95.7 95.2 94.8 94.6 93.8 92.2 1990-2012 Connecticut 71.5 70.7 69.0 65.4 65.4 65.1 1990-2012 Delaware 74.8 70.6 53.5 49.8 53.4 43.7 1990-2012 District of Columbia 100.0 100.0 100.0 100.0 16.9 17.9 1990-2012 Florida 100.0 100.0 100.0 100.0 38.5 37.0 1990-2012 Georgia 100.0 100.0 100.0 100.0 100.0 100.0 1990-2012 Hawaii 100 100 100 100 100 100 1990-2012 Idaho 84.8 86.0 83.7 82.0 80.8 77.0 1990-2012 Illinois

187

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740 785 1,082 1,658 1995 2,280 2,583 2,089 1,607 1,158 884 820 744 766 794 1,116 2,194 1996 2,147 1,942 1,551 1,925 1,233 824 878 750 774 804 1,195 2,325 1997 2,334 2,315 2,183 1,738 1,372 951 782 853 852 899 1,354 2,379

188

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909 978 1,146 1,541 2,625 1995 2,551 2,139 1,868 1,784 1,558 1,268 1,082 978 1,009 1,151 1,444 1,871 1996 2,466 2,309 2,268 1,811 1,454 1,286 1,145 1,062 1,116 1,269 1,817 2,417 1997 2,717 2,634 2,447 1,900 1,695 1,412 1,099 1,148 1,195 1,273 1,800 2,638

189

Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 52,126 51,020 52,466 24,969 17,238 15,421 16,478 16,540 16,716 25,355 26,981 41,400 2002 49,850 43,815 48,646 31,946 24,278 16,100 16,531 15,795 16,659 28,429 39,330 49,912 2003 62,523 55,695 44,756 32,270 20,752 15,502 15,630 18,099 16,485 24,636 36,907 47,677 2004 65,038 48,498 41,599 27,544 21,106 15,420 15,949 14,951 16,063 23,268 33,602 56,693 2005 59,667 45,463 47,647 29,885 23,265 22,788 21,959 22,549 19,566 23,868 35,232 54,600 2006 44,700 49,036 42,628 24,331 20,527 17,607 20,221 19,919 18,038 31,566 36,227 44,483 2007 53,637 61,738 41,274 32,627 19,348 17,305 18,156 21,627 17,044 22,827 36,770 53,091

190

Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 35,585 27,368 26,284 16,906 10,552 11,171 18,862 17,962 13,422 11,375 14,263 20,610 2002 28,513 25,068 25,566 17,348 13,424 13,947 18,253 20,062 15,937 13,007 21,946 26,371 2003 31,180 29,594 25,952 16,337 13,386 11,371 15,614 15,421 13,725 13,096 15,980 25,771 2004 30,087 29,036 21,955 15,496 13,148 12,282 11,912 13,013 13,177 13,809 15,207 23,992 2005 29,876 25,291 20,604 15,459 12,953 11,687 13,164 13,264 12,147 11,254 14,924 25,902 2006 25,596 23,451 22,320 16,673 12,748 14,289 18,023 17,171 12,559 13,555 17,451 24,135 2007 29,886 31,709 22,007 16,753 13,449 14,165 16,842 20,565 16,098 15,324 19,705 29,579

191

Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,337 36,026 35,468 29,023 26,153 28,194 41,056 38,697 30,910 29,194 26,719 33,193 2002 42,957 42,546 40,981 36,989 28,784 31,741 39,440 43,092 34,007 26,058 27,197 34,574 2003 44,633 43,363 39,395 32,941 30,147 32,417 46,076 47,914 30,139 28,937 26,588 39,627 2004 44,286 47,720 40,198 35,528 36,608 33,843 39,855 38,791 36,056 30,069 25,036 35,444 2005 42,941 41,516 38,987 36,599 35,972 45,327 48,696 49,698 42,454 32,097 30,402 42,813 2006 42,641 45,534 43,562 45,754 43,689 44,512 51,955 56,344 37,425 35,388 34,881 46,374 2007 55,048 57,329 44,646 43,762 41,758 42,250 47,969 58,650 43,759 42,172 36,392 49,540

192

Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122 14,104 19,304 29,050 2006 23,093 23,721 20,380 14,447 13,054 12,108 12,861 13,777 11,131 14,865 17,982 22,930 2007 26,916 29,946 20,044 17,410 12,573 11,418 10,304 16,709 11,848 13,874 18,696 24,799

193

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947 1,089 1,361 1,843 1995 2,600 2,626 2,111 1,382 1,045 1,013 950 956 1,044 1,054 1,674 2,414 1996 3,136 2,782 2,190 1,884 1,154 997 940 957 1,041 1,157 1,644 2,447 1997 2,378 2,381 1,793 1,202 1,268 1,096 989 1,004 1,884 1,167 1,757 2,639

194

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994 7,247 6,269 4,727 2,761 1,844 1,605 1,487 1,647 1,831 2,115 2,817 4,592 1995 5,839 6,031 4,241 3,065 1,766 1,579 1,487 1,475 1,597 1,740 3,263 5,279 1996 6,913 6,421 4,851 3,760 1,970 1,586 1,415 1,575 1,658 1,917 3,240 5,160

195

Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,014 4,742 5,389 3,439 2,924 3,276 3,324 4,609 4,923 5,078 3,908 3,419 2002 5,258 4,880 4,847 3,830 2,810 2,738 6,396 3,816 4,170 3,843 3,936 5,597 2003 6,397 5,499 5,102 3,399 2,081 2,433 3,570 3,550 2,728 2,949 3,547 4,833 2004 6,827 5,602 4,600 3,387 3,731 2,595 2,620 2,437 2,880 2,484 4,033 6,759 2005 6,870 5,543 5,427 2,696 2,517 2,866 3,287 3,735 2,652 2,870 3,515 4,876 2006 5,025 4,699 4,451 2,549 2,659 3,204 3,812 3,447 2,516 2,972 3,454 4,379 2007 4,855 5,154 4,783 3,486 2,804 3,196 3,833 4,160 3,127 3,346 3,838 5,551 2008 5,197 5,132 4,474 3,574 2,885 3,871 4,077 3,567 3,009 2,937 4,178 5,239

196

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767 10,193 16,875 23,833 1994 33,440 31,356 24,263 16,330 10,123 6,207 5,343 5,363 5,719 8,796 14,511 21,617 1995 27,945 29,223 23,980 18,384 11,004 6,372 5,664 5,778 6,417 9,647 19,742 29,922 1996 32,468 30,447 27,914 19,664 12,272 6,343 5,673 5,383 6,146 9,472 19,486 26,123

197

Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,804 23,088 21,742 19,153 21,113 17,703 18,312 16,919 14,352 14,127 12,164 19,204 2002 19,840 19,954 18,340 14,544 14,463 17,262 23,546 22,088 20,988 19,112 17,712 21,662 2003 20,639 18,895 21,753 16,848 14,559 16,858 28,981 30,940 25,278 24,409 16,317 18,043 2004 25,379 30,143 26,925 23,982 26,878 29,819 35,860 33,244 27,591 23,349 23,090 26,140 2005 24,400 22,209 17,591 20,779 22,660 23,609 35,036 34,587 26,451 24,130 22,651 28,011 2006 26,212 24,177 22,606 21,814 22,339 30,548 34,718 36,448 30,678 32,378 24,493 29,027 2007 34,237 26,857 17,051 20,379 28,959 35,463 43,104 40,305 33,790 29,544 27,001 33,835

198

Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 33,183 29,626 26,788 17,172 12,430 10,449 10,249 10,177 10,494 14,476 16,865 23,400 2002 28,527 25,072 25,693 18,706 13,413 10,076 9,731 9,815 10,403 14,561 22,219 27,225 2003 31,445 32,450 25,482 16,870 12,421 10,288 9,892 10,030 10,550 13,644 20,542 26,599 2004 32,639 30,955 23,081 15,569 11,543 10,481 9,546 10,080 10,193 14,132 20,759 27,591 2005 34,272 27,838 24,671 18,370 13,180 12,206 11,888 11,542 11,838 13,551 19,595 30,763 2006 26,997 26,909 23,941 17,158 14,088 12,588 13,244 11,886 12,277 18,360 22,732 25,747 2007 35,848 38,728 28,204 22,726 17,742 14,922 15,363 15,754 14,595 18,051 24,001 35,021

199

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,976 3,700 4,247 2,586 1,701 1,154 968 941 978 1,220 1,801 3,647 1990 4,168 3,115 3,057 2,477 1,557 1,131 1,049 961 1,016 1,095 1,686 2,738 1991 5,709 5,334 4,545 3,320 2,108 1,602 1,545 1,465 1,486 2,289 3,582 5,132 1992 6,323 6,382 5,073 3,807 2,391 1,784 1,553 1,586 1,615 2,491 3,895 5,565 1993 6,273 6,568 6,232 3,772 2,110 1,861 1,507 1,567 1,700 2,231 3,898 5,915 1994 8,122 6,354 5,634 2,844 2,547 1,709 1,732 1,588 2,016 2,531 3,582 5,475 1995 6,743 7,826 4,472 3,736 2,388 1,994 1,612 1,722 2,065 1,907 4,871 7,538 1996 7,648 6,515 5,476 3,766 2,672 1,816 1,608 1,866 1,922 2,427 4,693 5,433

200

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619 3,941 3,853 3,374 3,078 2,937 2,855 2,909 2,896 2,814 3,089 3,570 1995 4,274 4,361 3,900 3,433 3,055 2,930 2,970 2,751 2,818 2,840 3,171 3,883 1996 4,731 4,272 4,167 3,918 3,336 3,029 2,836 2,716 2,840 2,957 3,179 3,830

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101 4,707 3,388 2,306 1,360 1,107 990 887 1,253 1,275 1,897 3,136 1995 4,387 4,171 3,478 2,027 1,337 1,156 1,015 1,021 1,060 1,183 2,265 4,311 1996 5,411 5,249 3,895 2,964 1,519 1,052 1,056 1,060 1,106 1,356 2,462 3,876

202

Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,139 20,654 21,940 16,528 13,819 12,558 14,779 16,061 15,014 18,239 19,675 22,233 2002 24,431 24,940 22,284 19,166 15,635 16,964 18,741 17,700 16,789 16,932 17,770 21,567 2003 27,116 27,256 22,904 18,625 17,603 17,849 18,208 18,467 15,282 16,402 16,960 20,603 2004 24,746 25,909 21,663 16,382 15,991 14,085 14,456 14,551 11,956 14,094 13,138 18,337 2005 22,386 19,719 19,170 15,597 14,643 15,315 16,703 17,392 13,113 13,511 15,272 20,113 2006 19,984 19,909 19,394 17,499 17,865 19,198 19,107 19,963 16,976 17,107 15,346 19,021 2007 20,936 22,984 17,280 15,779 16,099 17,982 17,998 22,294 15,747 13,225 15,235 18,728

203

Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 20,043 17,426 13,012 11,173 7,791 7,056 6,214 6,023 6,572 9,189 11,646 18,505 2002 19,727 17,659 15,165 8,453 7,113 5,260 5,915 6,481 7,591 11,589 13,814 16,447 2003 16,474 16,494 12,825 10,664 6,942 5,612 6,174 6,166 6,229 7,898 13,299 16,533 2004 21,414 17,627 10,247 9,033 6,775 5,344 6,398 5,617 6,456 8,714 13,097 17,058 2005 18,357 16,430 13,763 12,951 9,253 7,461 7,380 6,187 6,053 6,449 9,027 16,786 2006 19,708 17,533 16,428 13,496 8,309 8,516 8,734 8,180 8,599 9,422 13,464 19,710 2007 27,918 22,251 16,927 13,476 12,260 11,106 9,771 9,790 10,976 12,425 15,630 20,497 2008 27,371 26,146 20,495 17,995 13,506 10,286 10,157 10,919 10,422 11,249 14,386 19,141

204

Natural Gas Delivered to Consumers in North Carolina (Including Vehicle  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 29,800 21,808 20,434 14,585 11,544 11,979 13,229 15,763 11,364 14,905 15,898 19,179 2002 27,750 25,444 22,993 16,550 13,274 14,816 16,400 17,088 13,640 15,047 19,024 27,257 2003 32,135 30,180 20,979 15,717 12,038 9,338 12,359 13,177 11,210 12,814 16,520 25,999 2004 31,785 30,416 22,379 16,242 16,033 12,711 12,866 13,027 11,970 11,729 15,635 24,946 2005 30,538 27,324 26,203 17,851 13,162 12,669 15,688 16,197 12,616 12,082 15,331 25,731 2006 25,596 23,904 23,271 15,873 13,091 13,120 17,476 19,153 11,452 14,070 18,457 22,889 2007 26,988 29,743 21,686 17,606 13,644 14,343 14,640 22,849 15,744 14,159 17,540 23,411

205

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995 4,244 3,324 2,948 2,429 1,675 1,122 861 899 1,088 1,905 2,605 3,724 1996 4,549 4,604 3,129 2,479 1,356 892 904 874 1,279 2,073 3,185 4,220 1997 5,030 4,454 3,350 2,664 1,263 942 923 939 1,120 2,012 3,174 5,257

206

Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 133,140 112,047 111,301 76,191 48,707 41,686 43,845 44,577 40,142 59,283 71,352 92,053 2002 119,902 108,891 104,208 87,138 63,810 52,457 51,899 47,094 40,938 53,419 82,015 114,268 2003 140,545 133,702 114,085 80,651 53,258 37,279 35,261 42,115 32,744 49,901 69,659 99,067 2004 137,906 127,671 102,442 76,978 54,610 41,310 38,001 37,565 37,285 48,239 71,870 107,025 2005 133,079 112,812 108,608 72,884 50,886 47,768 50,667 44,890 35,502 42,661 64,574 111,058 2006 104,803 99,454 96,633 65,814 43,901 35,824 43,332 39,459 31,740 50,167 70,643 85,634 2007 100,406 124,441 98,314 69,491 43,699 33,353 30,415 38,655 30,211 36,831 59,171 97,411

207

Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 90,750 82,773 86,038 87,577 81,223 77,877 93,937 105,743 93,365 92,353 85,277 92,797 2002 102,807 96,945 102,315 94,281 91,511 97,058 107,870 109,348 97,986 94,054 96,857 102,289 2003 106,504 91,821 89,554 89,376 88,426 78,863 91,469 95,243 85,824 84,198 83,677 94,139 2004 101,114 98,005 96,851 86,763 89,143 89,075 96,344 98,583 93,156 94,397 89,577 99,046 2005 102,652 87,403 100,620 97,398 104,027 102,860 104,234 99,244 82,252 75,899 72,958 91,598 2006 80,495 79,755 88,341 86,459 88,047 89,170 97,472 103,508 88,124 89,721 89,141 94,300 2007 100,669 93,075 95,251 91,900 94,668 99,373 92,367 104,606 87,792 91,661 83,575 89,348

208

Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,086 30,338 35,463 39,708 42,466 46,947 53,430 53,352 55,306 52,955 42,205 47,598 2002 50,177 41,302 50,453 55,845 56,767 62,343 67,197 70,144 65,136 64,259 47,600 45,144 2003 53,384 43,538 54,761 51,487 62,575 58,312 64,041 61,764 62,150 59,558 56,488 50,525 2004 50,877 49,866 51,687 53,442 62,663 69,628 72,443 70,540 70,259 66,961 50,122 53,169 2005 59,417 49,956 60,238 55,269 64,436 69,719 90,376 84,114 67,877 63,782 55,683 46,489 2006 54,827 56,557 68,707 73,645 85,346 87,268 88,949 86,772 83,397 76,817 58,594 56,867 2007 57,409 56,412 60,397 70,366 76,461 81,312 93,683 97,040 88,865 89,976 66,512 67,153

209

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 28,465 29,564 21,880 18,656 19,249 21,469 15,319 17,351 19,452 19,856 21,665 26,192 1990 30,798 34,767 27,425 23,423 18,540 17,392 21,030 17,705 23,233 17,384 22,637 30,759 1991 31,793 23,911 26,128 28,375 21,468 20,003 22,080 16,547 23,307 26,510 20,109 27,379 1992 38,234 23,834 24,413 18,379 27,118 22,150 21,150 21,633 19,247 19,112 20,999 28,738 1993 27,151 31,334 21,654 18,276 18,032 15,638 18,341 14,348 16,845 19,708 20,404 28,553 1994 29,342 27,032 23,156 18,463 22,621 18,091 25,752 14,123 14,604 17,844 25,032 25,929 1995 31,883 25,693 23,399 23,976 24,831 19,028 21,954 18,362 19,391 21,272 22,818 26,152

210

Natural Gas Delivered to Consumers in Colorado (Including Vehicle...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 272,530 289,945 288,147 2000's 321,784 412,773 404,873 377,794 378,894 405,509 383,452 435,360...

211

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,109 11,224 12,435 1970's 14,500 16,073 17,005 15,420 16,247 15,928 16,694 16,813 16,940 16,830...

212

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358...

213

Natural Gas Delivered to Consumers in Connecticut (Including...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 142,216 130,664 149,294 2000's 156,692 143,330 175,072 150,692 159,259 164,740 169,504 175,820...

214

Natural Gas Delivered to Consumers in Connecticut (Including...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 18,442 15,861 16,485 10,646 7,197 7,730 7,420 9,010 11,276 11,370 12,345 15,400 2002 19,009 18,410 17,585 13,782 12,805...

215

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

Dec 1989 21,163 22,930 20,215 15,779 11,310 10,731 12,786 11,350 9,367 10,345 12,823 23,871 1990 21,376 16,323 17,118 14,054 12,299 14,204 14,184 11,592 9,448 9,571 12,192 19,981...

216

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

285,213 323,054 347,818 1950's 387,838 464,309 515,669 530,650 584,957 629,219 716,871 775,916 871,774 975,107 1960's 1,020,222 1,076,849 1,206,668 1,267,783 1,374,717...

217

Natural Gas Delivered to Consumers in Ohio (Including Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 877,039 792,617 823,448 2000's 871,444 787,719 813,735 832,563 812,084 811,759 729,264 791,733 780,187 723,471 2010's...

218

Natural Gas Delivered to Consumers in Rhode Island (Including...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 116,871 130,415 117,758 2000's 88,124 95,326 87,472 78,074 72,301 80,070 76,401 87,150 88,391...

219

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Annual Energy Outlook 2012 (EIA)

40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635...

220

Natural Gas Delivered to Consumers in North Dakota (Including...  

Gasoline and Diesel Fuel Update (EIA)

1,988 3,550 3,908 4,743 2003 5,308 4,986 4,115 2,464 2,072 1,511 1,109 963 1,664 2,336 3,871 6,879 2004 5,976 4,565 4,243 2,998 2,087 1,270 1,207 1,858 2,219 2,970 3,638 4,990 2005...

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 25,565 24,630 25,344 18,494 12,079 8,747 8,382 8,305 8,812 11,741 16,631 27,650 1990 24,659 23,697 22,939 17,706 11,586 10,272 9,602 9,683 10,261 12,661 17,210 24,715 1991 28,442 25,685 23,462 17,684 11,669 9,641 10,331 9,764 9,195 11,571 17,033 25,121 1992 29,246 29,912 27,748 23,039 13,518 9,915 9,327 9,456 9,582 12,860 16,804 25,808 1993 28,857 29,740 28,926 20,266 11,667 11,221 10,477 10,502 9,972 13,970 18,205 26,928 1994 31,014 32,757 29,376 21,207 13,641 11,207 10,158 10,485 10,002 12,399 16,783 24,226 1995 28,329 29,345 28,182 20,813 14,459 11,501 11,281 10,797 10,619 13,394 22,325 30,309 1996 NA NA NA NA NA NA NA NA NA NA NA NA

222

Natural Gas Delivered to Consumers in South Carolina (Including Vehicle  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,028 13,472 12,569 10,957 8,683 9,367 10,138 11,625 9,077 11,870 11,334 12,725 2002 20,494 17,611 16,270 14,448 14,921 14,889 16,325 15,616 11,675 10,993 12,221 16,164 2003 18,666 17,514 12,917 11,948 9,803 8,615 10,304 12,231 8,766 8,909 9,675 14,460 2004 19,029 19,575 14,664 11,619 12,602 10,686 12,311 13,363 11,234 9,815 10,497 15,861 2005 19,494 16,945 17,212 12,523 11,619 12,506 16,813 18,833 10,439 8,087 9,210 15,920 2006 14,609 15,594 14,881 12,013 11,535 13,578 18,401 19,755 10,930 12,902 14,061 14,246 2007 18,348 19,666 12,154 11,405 11,154 12,705 14,438 22,784 13,231 12,270 11,398 13,530

223

Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 77,275 61,840 57,608 37,045 27,762 26,685 25,473 29,184 25,697 34,650 39,146 51,997 2002 65,893 58,962 58,569 44,882 32,659 27,696 30,899 30,668 28,357 37,204 49,556 68,056 2003 80,534 70,155 52,368 35,903 31,266 25,652 24,580 26,666 27,072 34,914 46,556 64,253 2004 80,680 70,341 53,056 37,842 30,840 25,006 25,592 27,498 26,658 33,102 43,630 65,054 2005 72,775 58,428 61,390 39,473 30,697 28,897 28,628 29,602 26,476 32,838 44,576 70,488 2006 56,899 57,392 54,200 34,311 30,004 26,873 29,579 29,996 27,630 39,210 47,253 56,403 2007 66,914 76,347 49,045 40,498 29,129 27,272 28,150 34,503 29,267 35,013 48,878 63,510

224

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

225

General Compression | Open Energy Information  

Open Energy Info (EERE)

Compression Compression Jump to: navigation, search Name General Compression Place Newton, Massachusetts Zip 2458 Product Massachusetts-based developer of compressed air energy storage systems. Coordinates 43.996685°, -87.803724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996685,"lon":-87.803724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Compressed/Liquid Hydrogen Tanks  

Energy.gov (U.S. Department of Energy (DOE))

Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

227

Spinning disk for compressive imaging  

Science Journals Connector (OSTI)

We report the first, to the best of our knowledge, experimental implementation of a spinning-disk configuration for high-speed compressive image acquisition. A single rotating mask...

Shen, H; Gan, L; Newman, N; Dong, Y; Li, C; Huang, Y; Shen, Y C

2012-01-01T23:59:59.000Z

228

Compressed Air Audits using AIRMaster  

E-Print Network (OSTI)

Air compressors are a significant industrial energy user and therefore a prime target for industrial energy audits. The project goal was to develop a software tool, AIRMaster, and supporting methodology for performing compressed air system audits...

Wheeler, G. M.; McGill, R. D.; Bessey, E. G.; Vischer, K.

229

Fast Progressive Lossless Image Compression  

E-Print Network (OSTI)

We present a method for progressive lossless compression of still grayscale images that combines the speed of our earlier FELICS method with the progressivity of our earlier MLP method We use MLP s pyramid based pixel ...

Howard, Paul G.; Vitter, Jeffrey Scott

1994-02-01T23:59:59.000Z

230

Critical point anomalies include expansion shock waves  

SciTech Connect

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

231

Porous media experience applicable to field evaluation for compressed air energy storage  

SciTech Connect

A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

Allen, R.D.; Gutknecht, P.J.

1980-06-01T23:59:59.000Z

232

PERFORMANCE STUDY OF COMPRESSIVE SAMPLING FOR ECG SIGNAL COMPRESSION IN NOISY AND VARYING SPARSITY ACQUISITION  

E-Print Network (OSTI)

PERFORMANCE STUDY OF COMPRESSIVE SAMPLING FOR ECG SIGNAL COMPRESSION IN NOISY AND VARYING SPARSITY of compressive sam- pling (CS) for ECG compression in telecardiology, when the signal acquisition is noisy transform (TH-DWT), which is the best technique for real-time ECG compression. We show that CS is quite

Durrani, Salman

233

Used Fuel Disposition Campaign Phase I Ring Compression Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression...

234

Forecourt Storage and Compression Options | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage and Compression Options Forecourt Storage and Compression Options Presentation by Mark Richards on forecourt storage and compression options. wkshpstoragerichards.pdf...

235

Cryo-Compressed Hydrogen Storage: Performance and Cost Review...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cryo-Compressed Hydrogen Storage: Performance and Cost Review Cryo-Compressed Hydrogen Storage: Performance and Cost Review Presented at the R&D Strategies for Compressed,...

236

Fact Sheet: Isothermal Compressed Air Energy Storage (October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isothermal Compressed Air Energy Storage (October 2012) Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) SustainX will demonstrate an isothermal compressed air...

237

Mechanical compression attenuates normal human bronchial epithelial wound healing  

E-Print Network (OSTI)

Open Access Research Mechanical compression attenuatesto the application of mechanical compression in the presenceResults: We found that mechanical compression and scrape

Arold, Stephen P.; Malavia, Nikita; George, Steven C.

2009-01-01T23:59:59.000Z

238

Warner College of Natural Resources Warner College of Natural  

E-Print Network (OSTI)

, and scientific investigation of renewable and nonrenewable natural resources. Programs include the study of everyWarner College of Natural Resources Warner College of Natural Resources Office in Natural Resources, and Conservation Biology Forestry Geology Natural Resource Recreation and Tourism Natural Resources Management

Collett Jr., Jeffrey L.

239

Solubility of water in compressed nitrogen, argon, and methane  

Science Journals Connector (OSTI)

Solubility of water in compressed nitrogen, argon, and methane ... The accurate determination of water content in hydrocarbons is critical for the petroleum and natural gas industries due to corrosion and ... ... Predicting the Phase Equilibria, Critical Phenomena, and Mixing Enthalpies of Binary Aqueous Systems Containing Alkanes, Cycloalkanes, Aromatics, Alkenes, and Gases (N2, CO2, H2S, H2) with the PPR78 Equation of State ...

Maurice Rigby; John M. Prausnitz

1968-01-01T23:59:59.000Z

240

Geometrical constraints on plasma couplers for Raman compression  

SciTech Connect

Backward Raman compression in plasma is based on a 3-wave resonant interaction, which includes two counter-propagating laser pulses (pump and seed pulses) and an electron plasma wave (Langmuir wave). The resonant interaction can be ensured in nearly homogeneous plasmas. However, for high-power, large-aperture experiments, the homogeneous region becomes pancake-shaped and would likely be surrounded by thicker regions of inhomogeneous plasma. When these inhomogeneous plasma regions are extensive, significant inverse bremsstrahlung and seed dispersion may impede the compression effect. These deleterious effects may, however, be mitigated by chirping the seed and pump pulses.

Toroker, Z. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Malkin, V. M. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Balakin, A. A.; Fraiman, G. M. [Institute of Applied Physics RAS, Nizhnii Novgorod 603950 (Russian Federation); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Compressive Evaluation in Human Motion Tracking  

Science Journals Connector (OSTI)

The powerful theory of compressive sensing enables an efficient way to recover sparse or compressible signals from non-adaptive, sub-Nyquist-rate linear measurements. In particular, it has been shown that rand...

Yifan Lu; Lei Wang; Richard Hartley; Hongdong Li; Dan Xu

2011-01-01T23:59:59.000Z

242

Video Compression Standards and Quality of Service  

Science Journals Connector (OSTI)

...Article Video Compression Standards and Quality of Service W. Tawbi...into account for the construction of systems handling video representation media. The different existing video compression standards and their coding schemes are analyzed......

W. Tawbi; F. Horn; E. Horlait; J.-B. Stéfani

1993-01-01T23:59:59.000Z

243

Advanced Management of Compressed Air Systems  

Energy.gov (U.S. Department of Energy (DOE))

Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

244

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network (OSTI)

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006 .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems ......................................................................................18 APPENDIX C: Presentation to the FreedomCAR & Fuel Hydrogen Storage Technical Team

245

Stream programming for image and video compression  

E-Print Network (OSTI)

Video playback devices rely on compression algorithms to minimize storage, transmission bandwidth, and overall cost. Compression techniques have high realtime and sustained throughput requirements, and the end of CPU clock ...

Drake, Matthew Henry

2006-01-01T23:59:59.000Z

246

Compressed Gas Cylinder Safe Handling, Use and  

E-Print Network (OSTI)

Compressed Gas Cylinder Safe Handling, Use and Storage 2012 Workplace Safety and Environmental Protection #12;i College/Unit: Workplace Safety and Environmental Protection Procedure Title: Compressed Gas................................................ 4 7 General Gas Cylinder Information

Saskatchewan, University of

247

Compressed Air Energy Storage for Offshore  

E-Print Network (OSTI)

transmitting peak power levels. A solution to these issues is a novel high-efficiency compressed air energy

Perry Y. Li; Eric Loth; Terrence W. Simon; James D. Van De Ven; Stephen E. Crane

2011-01-01T23:59:59.000Z

248

Preventive Maintenance Strategies for Compressed Air Systems  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet discusses preventive maintenance strategies for compressed air systems to avoid high equipment repair and replacement costs.

249

Optimization Online - Compressed Sensing Off the Grid  

E-Print Network (OSTI)

Sep 13, 2012 ... Keywords: atomic norm, basis mismatch, compressed sensing, continuous dictionary, line spectral estimation, nuclear norm relaxation, Prony's ...

Gongguo Tang

2012-09-13T23:59:59.000Z

250

Video Compressive Sensing Using Gaussian Mixture Models  

E-Print Network (OSTI)

photography [15, 16, 17, 18]. In particular, [3] introduced the per-pixel programmable compressive camera (P2C

Carin, Lawrence

251

Compressible Turbulence and Interactions with Shock Waves and Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressible Turbulence Compressible Turbulence and Interactions with Shock Waves and Material Interfaces Compressible Turbulence and Interactions with Shock Waves and Material Interfaces Lele.jpg Alternate Title: High-fidelity simulations of supersonic turbulent mixing and combustion Key Challenges: Direct numerical simulation (DNS) of isotropic turbulence interacting with a normal shock wave and turbulent multi-material mixing in the Richtmyer-Meshkov instability (RMI) Why it Matters: Shock/turbulence interaction is a fundamental phenomenon in fluid mechanics that occurs in a wide range of interesting problems in various disciplines, including supernova explosions, inertial confinement fusion, hypersonic flight and propulsion, and shock wave lithotripsy. Accomplishments: A novel solution-adaptive algorithm that applies different

252

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt051tifeinberg2011...

253

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt051feinberg2010...

254

Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

hydrogen blends, and their industries and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing). In the keynote...

255

Costs Associated With Compressed Natural Gas Vehicle Fueling...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

stations, vehicles are generally filled directly from the compressor, not from storage tanks. At fast-fill stations, vehicles are filled from high-pressure storage tanks or...

256

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

257

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

258

DOE Announces Webinars on Compressed Natural Gas Infrastructure...  

Energy Savers (EERE)

webcast will present an overview of the costs and design of CNG fueling stations. Mark Smith from the Energy Department and John Gonzales from the National Renewable Energy...

259

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

260

Natural gas annual 1995  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Wave energy devices with compressible volumes  

Science Journals Connector (OSTI)

...author and source are credited. Wave energy devices with compressible volumes Adi...1BJ, UK We present an analysis of wave energy devices with air-filled compressible...wave period range of about-4s. wave energy|compressible volume|axisymmetric device...

2014-01-01T23:59:59.000Z

262

Outline Inverted File Building Compression for Inverted Files Building and Compression Techniques for Inverted  

E-Print Network (OSTI)

Outline Inverted File Building Compression for Inverted Files Building and Compression Techniques for Inverted Files Roi Blanco Dpt. Computing Science, University of A Coruna December 13, 2005 Roi Blanco Building and Compression Techniques for Inverted Files #12;Outline Inverted File Building Compression

Barreiro, Alvaro

263

Ultrafine PM Emissions from Natural Gas, Oxidation-Catalyst Diesel, and Particle-Trap Diesel Heavy-Duty Transit Buses  

Science Journals Connector (OSTI)

In urban areas, transit buses are a significant source of heavy-duty vehicle traffic, and many municipalities, including Los Angeles, Sacramento, Cleveland, and Atlanta, have recently modified their fleets to compressed natural gas (CNG) as the “clean” alternative to conventional uncontrolled diesel vehicles to meet increasingly strict particulate matter (PM) air quality regulations. ... ARB's mission is to promote and protect public health, welfare, and ecological resources through effective reduction of air pollutants while recognizing and considering effects on the economy. ...

Britt A. Holmén; Alberto Ayala

2002-11-05T23:59:59.000Z

264

The conservative cascade of kinetic energy in compressible turbulence  

E-Print Network (OSTI)

The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional "conversion" scale-range despite not being an invariant of the compressible flow dynamics. We use high-resolution three-dimensional simulations of compressible hydrodynamic turbulence on $512^3$ and $1024^3$ grids. We probe regimes of forced steady-state isothermal flows and of unforced decaying ideal gas flows. The key quantity we measure is pressure dilatation cospectrum, $E^{PD}(k)$, where we provide the first numerical evidence that it decays at a rate faster than $k^{-1}$ as a function of wavenumber. This is sufficient to imply that mean pressure dilatation acts primarily at large-scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale-range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbulence is possible.

Hussein Aluie; Shengtai Li; Hui Li

2011-07-28T23:59:59.000Z

265

The conservative cascade of kinetic energy in compressible turbulence  

E-Print Network (OSTI)

The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional "conversion" scale-range despite not being an invariant of the compressible flow dynamics. We use high-resolution three-dimensional simulations of compressible hydrodynamic turbulence on $512^3$ and $1024^3$ grids. We probe regimes of forced steady-state isothermal flows and of unforced decaying ideal gas flows. The key quantity we measure is pressure dilatation cospectrum, $E^{PD}(k)$, where we provide the first numerical evidence that it decays at a rate faster than $k^{-1}$ as a function of wavenumber. This is sufficient to imply that mean pressure dilatation acts primarily at large-scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale-range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbu...

Aluie, Hussein; Li, Hui

2011-01-01T23:59:59.000Z

266

Meals included in Conference Registrations  

E-Print Network (OSTI)

Meals included in Conference Registrations Meals included as part of the cost of a conference the most reasonable rates are obtained. Deluxe hotels and motels should be avoided. GSA rates have been for Georgia high cost areas. 75% of these amounts would be $21 for non- high cost areas and $27 for high cost

Arnold, Jonathan

267

Making Compressed Air System Decisions  

E-Print Network (OSTI)

. Today, modern, high quality manufacturing facilities require a more scientific approach. Many manufacturing processes require strict controls over compressed air pressure, temperature and purity levels. Competitive pressures also force manufacturers...-lubricated cylinder designs. Reciprocating compressor designs remained the standard for industry until the mid 1970s. During the late 1960s and early 1970s, material and manufacturing advances led to the development of 219 Ingersoll-Rand Co. Davidson, N...

Porri, R. E.

268

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

269

Natural Gas Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Vehicle Basics Natural Gas Vehicle Basics Natural Gas Vehicle Basics August 20, 2013 - 9:15am Addthis Photo of a large truck stopped at a gas station that reads 'Natural Gas for Vehicles.' Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two separate fueling systems that enable the vehicle to use either natural gas or a conventional fuel (gasoline or diesel). In general, dedicated natural gas vehicles demonstrate better performance and have lower emissions than bi-fuel vehicles because their engines are optimized to run on natural gas. In addition, the vehicle does not have to

270

SEED BANKS FOR MAGNETIC FLUX COMPRESSION GENERATORS  

SciTech Connect

In recent years the Lawrence Livermore National Laboratory (LLNL) has been conducting experiments that require pulsed high currents to be delivered into inductive loads. The loads fall into two categories (1) pulsed high field magnets and (2) the input stage of Magnetic Flux Compression Generators (MFCG). Three capacitor banks of increasing energy storage and controls sophistication have been designed and constructed to drive these loads. One bank was developed for the magnet driving application (20kV {approx} 30kJ maximum stored energy.) Two banks where constructed as MFCG seed banks (12kV {approx} 43kJ and 26kV {approx} 450kJ). This paper will describe the design of each bank including switching, controls, circuit protection and safety.

Fulkerson, E S

2008-05-14T23:59:59.000Z

271

Envera Variable Compression Ratio Engine  

SciTech Connect

Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new technologies are packaged together to provide the greatest gains at the least cost. Aggressive engine downsiz

Charles Mendler

2011-03-15T23:59:59.000Z

272

Alternative Fuels Data Center: Natural Gas Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Tax to Natural Gas Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Tax Operators of motor vehicles capable of using compressed or liquefied natural gas must pay an annual flat rate privilege tax if the vehicle has a gross vehicle weight rating (GVWR) of 10,000 pounds (lbs.) or less. Natural

273

Sponsorship includes: Agriculture in the  

E-Print Network (OSTI)

Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

Nebraska-Lincoln, University of

274

Natural gas monthly, July 1996  

SciTech Connect

This document presents information pertaining to the natural gas industry. Data are included on production, consumption, distribution, and pipeline activities.

NONE

1996-07-01T23:59:59.000Z

275

Non-Vapor Compression HVAC Technologies Report  

Energy.gov (U.S. Department of Energy (DOE))

While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. The Building Technologies Office is evaluating low-global warming potential (GWP) alternatives to vapor-compression technologies.

276

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

of Electric Motor-Driven Natural Gas Compression Equipment On December 21, 2011, Crockett Cogeneration in May, 1996. The proposed modifications will allow Crockett to install electric motor-driven natural gas

277

Sandia National Laboratories: percussive drilling with compressed...  

NLE Websites -- All DOE Office Websites (Extended Search)

with compressed air Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events,...

278

Stoichiometric Compression Ignition (SCI) Engine Concept | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with...

279

The surface energy and the compressibility  

SciTech Connect

This paper discusses the relationship between surface energy and compressibility as they relate to the nucleus. 5 refs., 4 figs. (LSP)

Myers, W.D.

1990-02-01T23:59:59.000Z

280

Optimization of Storage vs. Compression Capacity  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Amgad Elgowainy of Argonne National Laboratory was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy efficiency improvements in Chinese compressed airsystems  

SciTech Connect

Industrial compressed air systems use more than 9 percent ofall electricity used in China. Experience in China and elsewhere hasshown that these systems can be much more energy efficient when viewed asa whole system and rather than as isolated components.This paper presentsa summary and analysis of several compressed air system assessments.Through these assessments, typical compressed air management practices inChina are analyzed. Recommendations are made concerning immediate actionsthat China s enterprises can make to improve compressed air systemefficiency using best available technology and managementstrategies.

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2007-06-01T23:59:59.000Z

282

Compressed Air Energy Storage Act (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out regulations for the local authorities related to site selection, design, operation and monitoring for underground storage of compressed air.

283

The Viscosity of Compressed Gases  

Science Journals Connector (OSTI)

New data and a new theory for the viscosity of compressed gases are presented. Data for nitrogen, hydrogen and a mixture of these gases are given, in the calculation of which, the "end effects" are not neglected as has been done in the past. Previous viscosity data are of doubtful validity owing to neglect of this factor. The theory is based on an analogy between the kinetic pressure and viscosity of a gas and is derived using an equation of state of the Lorentz type. Allowance is made for the difference between the viscosity and compressibility covolumes. The theory is substantiated experimentally and further confirmed by the recalculation of other data on the variation of Reynolds' criterion with the pressure, which is here shown to be constant. The mixture data offer a direct opportunity of comparing the Lorentz and linear rules for the calculation of the covolume of a mixture from the covolumes of the components and such comparison indicates that the Lorentz rule is not to be preferred. The substantiation of the new theory is the first direct proof of the validity of the separate treatment of the kinetic and cohesive pressures in the equation of state.

James H. Boyd; Jr.

1930-05-15T23:59:59.000Z

284

Alternative Fuels Data Center: Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Natural Gas Fueling Stations Photo of a compressed natural gas fueling station. Hundreds of compressed natural gas (CNG) fueling stations are available in

285

Changing Prospects for Natural Gas in the United States  

Science Journals Connector (OSTI)

...re-quired for compressed natural gas (26), and these vehicles...the lower energy price of natural gas would be sufficient to attract...added equipment, such as high-pressure tanks, needed to store natural gas on board automobiles with...

W. M. BURNET; T S. D. BAN

1989-04-21T23:59:59.000Z

286

Divide, Compress and Conquer: Querying XML via Partitioned Path-Based Compressed Data Blocks  

Science Journals Connector (OSTI)

We propose a novel partition path-based (PPB) grouping strategy to store compressed XML data in a stream of blocks. In addition, we employ a minimal indexing scheme called block statistic signature (BSS) on the compressed data, which is a simple but ... Keywords: cost model, data compression, markup languages, query processing

Wilfred Ng; Ho-Lam Lau; Aoying Zhou

2008-06-01T23:59:59.000Z

287

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler |  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler Natural Gas Compressor for Residential Use ---- Inventor Robert Cutler This invention disclosure describes a system for gas compression to ultra-high pressures, which is required in many industrial and automotive processes. Gas compression, to pressures above about 100 psig, generally requires cooling to remove heat of compression and may require many stages of compression for efficient operation. Also most piston-type compressors require lubrication between the piston and cylinder, and lubricant may be entrained in the compressed gas, thereby requiring efficient oil removal means downstream of the compressor. This invention describes a system that addresses these requirements in a cost effective system suitable for residential and light industrial applications.

288

Apparatus for the liquefaction of natural gas and methods relating to same  

DOE Patents (OSTI)

An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID; McKellar, Michael G. (Idaho Falls, ID) [Idaho Falls, ID; Turner, Terry D. (Ammon, ID) [Ammon, ID; Carney, Francis H. (Idaho Falls, ID) [Idaho Falls, ID

2009-09-29T23:59:59.000Z

289

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

290

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012 77 Modeling and Compressing 3-D Facial Expressions  

E-Print Network (OSTI)

Modeling and Compressing 3-D Facial Expressions Using Geometry Videos Jiazhi Xia, Dao Thi Phuong Quynh present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video

Hoi, Steven Chu-Hong

291

? compression in the SO(5) scheme  

Science Journals Connector (OSTI)

It is shown that a ?-dependent compression of energy levels occurs in most SO(6)-like nuclei, where ? is the SO(5) quantum number. We suggest that this compression represents a generalization of the Coriolis antipairing effect to symmetries other than SU(3), and that it is effectively described by an SO(6)-plus-pairing model.

Xing-Wang Pan; Da Hsuan Feng; Jin-Quan Chen; Michael W. Guidry

1994-05-01T23:59:59.000Z

292

Entropy Adaptive On-Line Compression  

Science Journals Connector (OSTI)

Self-Organization is based on adaptivity. Adaptivity should start with the very basic fundamental communication tasks such as encoding the information to be transmitted or stored. Obviously, the less signal transmitted the less energy in transmission ... Keywords: On-line compression, adaptive compression

Shlomi Dolev, Sergey Frenkel, Marina Kopeetsky

2014-08-01T23:59:59.000Z

293

Digital Audio Compression By Davis Yen Pan  

E-Print Network (OSTI)

Digital Audio Compression By Davis Yen Pan Abstract Compared to most digital data types, with the exception of digital video, the data rates associ- ated with uncompressed digital audio are substan- tial. Digital audio compression enables more effi- cient storage and transmission of audio data. The many forms

Lazar, Aurel A.

294

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

295

Failure of anisotropic compressible shale  

SciTech Connect

The paper is dealing with a general, invariant, formulation of a failure condition for an anisotropic compressible rock. The invariant formulation is thought in conjunction with a general formulation of a viscoplastic constitutive equation for that rock, where this failure condition will play the role of {open_quotes}short-term{close_quotes} failure condition. The data available (due to H. Niandou and obtained at the laboratory LML Lille URA CNRS 1444 from France) were obtained in triaxial tests and provide the stress at failure for various orientations of the bedding planes with respect to the axial loading direction. We use the well known representation theorem according to which the failure function must depend not only on the invariants of the stress tensor, but also on the mixed invariants: tr M{sigma} and tr M{sigma}{sup 2}, where M = s{sub 1} {direct_product} s{sub 1} and s{sub 1} is the normal to the bedding plane. Using the data we first determine the form of the failure condition formulated in terms of stress invariants, for several orientations of the bedding planes with respect to the direction in which acts the main compressive stress, and which is defined by an angle 0. Then the coefficients of these failure conditions are made functions on this angle 0, which in turn is expressed as a function of the mixed invariants tr M{sigma}{prime} and II{sub {sigma}{prime}} (the second invariant of the stress deviator). All the coefficients involved in this generally formulated criterion are fully determined from the data.

Cazacu, O.; Cristescu, N.D. [Univ. of Flordia, Gainesville, FL (United States)

1995-12-31T23:59:59.000Z

296

Natural gas annual 1997  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

297

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

298

Quantum Data Compression of a Qubit Ensemble  

E-Print Network (OSTI)

Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could provide a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized.

Lee A. Rozema; Dylan H. Mahler; Alex Hayat; Peter S. Turner; Aephraim M. Steinberg

2014-10-15T23:59:59.000Z

299

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

300

An LZ Approach to ECG Compression R. Nigel Horspool1 and Warren J. Windels2  

E-Print Network (OSTI)

An LZ Approach to ECG Compression R. Nigel Horspool1 and Warren J. Windels2 1 Dept. of Computer of the repetitive nature of ECG waveforms. In our experiments, the resulting algorithm produces much better and assuming just one sensor that generates 8-bit data, we would accumulate ECG data at a rate of 7.5 KB per

Horspool, R. Nigel

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52: Pacific Gas & Electric, Compressed Air Energy Storage 52: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ended 12/31/13. DOE will consider late submissions to the extent practicable. Comments should be marked "PG&E Compressed Air Energy Storage Draft EA

302

Determine the Cost of Compressed Air for Your Plant | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determine the Cost of Compressed Air for Your Plant Determine the Cost of Compressed Air for Your Plant This tip sheet discusses a method for determining the cost of compressed air...

303

Integrating Online Compression to Accelerate Large-Scale Data Analytics Applications  

SciTech Connect

Abstract—With growing dataset sizes, and as computing cycles are increasing faster than storage and wide-area bandwidths, compression appears like a promising approach for improving the performance of large-scale data analytics applications. In this context, this paper makes the following contributions. First, we develop a new compression methodology, which exploits the similarities between spatial and/or temporal neighbors in a simulation dataset, and enables high compression ratios and low decompression costs. Second, we have developed a framework that can be used to incorporate a variety of compression and decompression algorithms. This framework also supports a simple API to allow integration with an existing application or data processing middleware. Once a compression algorithm is implemented, this framework can allow multi-threaded retrieval, multi-threaded data decompression, and use of informed prefetching and caching. By integrating this framework with a data-intensive middleware, we have applied our compression methodology and framework to three applications over two datasets, including a GCRM climate model dataset. We obtained an average compression ratio of 51.68%, and up to 53.27% improvement in execution time of data analysis applications.

Bicer, T.; Yin, Jian; Chiu, David; Agrawal, Gagan; Schuchardt, Karen L.

2013-05-19T23:59:59.000Z

304

Alternative Fuels Data Center: Natural Gas Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Tax Effective September 1, 2013, compressed natural gas and liquefied natural gas dispensed into a motor vehicle will be taxed at a rate of $0.15 per gasoline gallon equivalent (GGE) or diesel gallon equivalent (DGE),

305

Shock compression experiments on Lithium Deuteride single crystals.  

SciTech Connect

S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between ~200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to ~900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

Knudson, Marcus D.; Desjarlais, Michael P.; Lemke, Raymond W.

2014-10-01T23:59:59.000Z

306

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

307

Hydrocarbon fouling of SCR during Premixed Charge Compression...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion...

308

Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression,...

309

Cryo-Compressed Hydrogen Storage: Performance and Cost Review  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

310

Rapid Compression Machine ? A Key Experimental Device to Effectively...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rapid Compression Machine A Key Experimental Device to Effectively Collaborate with Basic Energy Sciences Rapid Compression Machine A Key Experimental Device to Effectively...

311

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications Technical report...

312

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive...

313

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for...

314

Characterization of Dual-Fuel Reactivity Controlled Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI)...

315

Analyses of Compressed Hydrogen On-Board Storage Systems  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

316

Compressed Sensing accelerated radial acquisitions for dynamic Magnetic Resonance Imaging.  

E-Print Network (OSTI)

??We present a flexible method dubbed Accelerated Radial Compressed Sensing (ARCS) which uses Compressed Sensing to reconstruct 2D and 3D radial data. Our tests on… (more)

Zwaan, I.N.

2013-01-01T23:59:59.000Z

317

Electrorheological fluid under elongation, compression, and shearing  

Science Journals Connector (OSTI)

Electrorheological (ER) fluid based on zeolite and silicone oil under elongation, compression, and shearing was investigated at room temperature. Dc electric fields were applied on the ER fluid when elongation and compression were carried out on a self-constructed test system. The shear yield stress, presenting the macroscopic interactions of particles in the ER fluid along the direction of shearing and perpendicular to the direction of the electric field, was also obtained by a HAAKE RV20 rheometer. The tensile yield stress, presenting the macroscopic interactions of particles in the ER fluid along the direction of the electric field, was achieved as the peak value in the elongating curve with an elongating yield strain of 0.15–0.20. A shear yield angle of about 15°–18.5° reasonably connected tensile yield stress with shear yield stress, agreeing with the shear yield angle tested well by other researchers. The compressing tests showed that the ER fluid has a high compressive modulus under a small compressive strain lower than 0.1. The compressive stress has an exponential relationship with the compressive strain when it is higher than 0.1, and it is much higher than shear yield stress.

Y. Tian; Y. Meng; H. Mao; S. Wen

2002-03-06T23:59:59.000Z

318

Natural Gas  

Science Journals Connector (OSTI)

... CHOOSING an awkward moment, Phillips Petroleum Exploration have announced a new find of natural ...naturalgas ...

1967-02-11T23:59:59.000Z

319

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

320

2014- LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications  

Energy.gov (U.S. Department of Energy (DOE))

Please note: To view the complete docket listing, please click the 'Docket Index' link pertaining to a particular docket. Docket Indexes and Service Lists that are not listed can be obtained by...

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

2015- LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications  

Energy.gov (U.S. Department of Energy (DOE))

Please note: To view the complete docket listing, please click the 'Docket Index' link pertaining to a particular docket. Docket Indexes and Service Lists that are not listed can be obtained by...

322

Development of natural gas as a vehicular fuel in Pakistan: Issues and prospects  

Science Journals Connector (OSTI)

Abstract In a step towards adopting environment friendly fuel and to save foreign exchange, Compressed Natural Gas (CNG) was introduced by the Government of Pakistan in the country in 1992. Due to available price differential between CNG and gasoline/diesel and investor friendly policy and regulatory framework, CNG sector has shown tremendous growth over the last ten year in the country. This growing demand of natural gas by CNG sector, results in gas shortages in the country. This paper describes the key steps in the development of CNG as transportation fuel in Pakistan. The present scenario of the CNG industry including the natural gas vehicles (NGVs) population growth and the expansion of CNG refilling stations are discussed. Various aspects of the CNG program in Pakistan, for example environmental benefits, economic benefits and problems associated with CNG industry of Pakistan are illustrated.

Muhammad Imran Khan; Tabassum Yasmin

2014-01-01T23:59:59.000Z

323

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

324

Compressive sensing for nuclear security.  

SciTech Connect

Special nuclear material (SNM) detection has applications in nuclear material control, treaty verification, and national security. The neutron and gamma-ray radiation signature of SNMs can be indirectly observed in scintillator materials, which fluoresce when exposed to this radiation. A photomultiplier tube (PMT) coupled to the scintillator material is often used to convert this weak fluorescence to an electrical output signal. The fluorescence produced by a neutron interaction event differs from that of a gamma-ray interaction event, leading to a slightly different pulse in the PMT output signal. The ability to distinguish between these pulse types, i.e., pulse shape discrimination (PSD), has enabled applications such as neutron spectroscopy, neutron scatter cameras, and dual-mode neutron/gamma-ray imagers. In this research, we explore the use of compressive sensing to guide the development of novel mixed-signal hardware for PMT output signal acquisition. Effectively, we explore smart digitizers that extract sufficient information for PSD while requiring a considerably lower sample rate than conventional digitizers. Given that we determine the feasibility of realizing these designs in custom low-power analog integrated circuits, this research enables the incorporation of SNM detection into wireless sensor networks.

Gestner, Brian Joseph

2013-12-01T23:59:59.000Z

325

Natural Gas Hydrate Dissociation  

Science Journals Connector (OSTI)

Materials for hydrate synthesis mainly include methane gas of purity 99.9% (produced by Nanjing Special Gases Factory Co., Ltd.), natural sea sand of grain sizes 0.063?0.09,...

Qingguo Meng; Changling Liu; Qiang Chen; Yuguang Ye

2013-01-01T23:59:59.000Z

326

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2024 Date: September 19, 2012 2024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date: September 24, 2012 Item: Hydrogen produced and dispensed in distributed facilities at high-volume refueling stations using current technology and DOE's Annual Energy Outlook (AEO) 2009 projected prices for industrial natural gas result in a hydrogen levelized cost of $4.49 per gallon-gasoline-equivalent (gge) (untaxed) including compression, storage and dispensing costs. The hydrogen production portion of this cost is $2.03/gge. In comparison, current analyses using low-cost natural gas with a price of $2.00 per MMBtu can decrease the hydrogen levelized cost to $3.68 per gge (untaxed) including

327

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

328

Forecourt Storage and Compression Options  

E-Print Network (OSTI)

capital costs and maximize utilization NATURAL GAS & HYDROGEN FUELING STATION SIZING SOFTWARE Developed and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology Institute #12;2 Overview > Project objectives > Gaseous delivery configurations > Analysis tool: CASCADE H2

329

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

752: Pacific Gas & Electric, Compressed Air Energy Storage 752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ends 12/31/13. DOE will consider late submissions to the extent practicable. A notice of availability will be published in The Record (Stockton) and the

330

PVT measurements for five natural gas mixtures  

E-Print Network (OSTI)

PVT MEASUREMENTS FOR FIVE NATURAL GAS MIXTURES A Thesis by PHILIP PARAYIL SIMON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1991..., The Netherlands), Ruhrgas (Germany), National Institute of Standards and Technology (Boulder, Colorado, USA), and Texas A&M University (USA). This work involved the measurement of the compressibility factors of the five natural gas mixtures at temperatures...

Simon, Philip Parayil

2012-06-07T23:59:59.000Z

331

Understanding the Basics of Compressed Air Systems  

E-Print Network (OSTI)

, contaminated filters, conversion to electrically operated hoists, and the use of centrifugal fans or compressed air with pressure regulators to purge control cabinets. Finally, a review of compressor technologies with typical cfm, pressure ranges, and price...

Herron, D. J.

332

New Regenerative Cycle for Vapor Compression Refrigeration  

Office of Scientific and Technical Information (OSTI)

Flashing Liquid Flow, Int. J. Multiphase Flow, Vol. 22, No.3, 1996, pp.473-483 7. Smith I.K., Stosic, N.R., The Expressor: An Efficiency Boost to Vapour Compression Systems...

333

Compressing Propositional Refutations Using Subsumption Hasan Amjad  

E-Print Network (OSTI)

Compressing Propositional Refutations Using Subsumption Hasan Amjad University of Cambridge Computer Laboratory 15 J J Thomson Avenue, Cambridge CB3 0FD, UK Hasan.Amjad@cl.cam.ac.uk Abstract We

Miller, Alice

334

Compressed Air Load Reduction Approaches and Innovations  

E-Print Network (OSTI)

are assessed. It is a common practice in facilities to simply add compressor capacity when faced with supply pressure or volume deficiencies, increasing the energy consumption associated with compressed air systems in industry. Additionally, in recent years...

D'Antonio, M.; Epstein, G.; Moray, S.; Schmidt, C.

2005-01-01T23:59:59.000Z

335

Error Modeling for Hierarchical Lossless Image Compression  

E-Print Network (OSTI)

We present a new method for error modeling applicable to the MLP algorithm for hierarchical lossless image compression. This method, based on a concept called the variability index, provides accurate models for pixel ...

Howard, Paul G.; Vitter, Jeffrey Scott

1992-01-01T23:59:59.000Z

336

Ramp Compression Experiments - a Sensitivity Study  

SciTech Connect

We present the first sensitivity study of the material isentropes extracted from ramp compression experiments. We perform hydrodynamic simulations of representative experimental geometries associated with ramp compression experiments and discuss the major factors determining the accuracy of the equation of state information extracted from such data. In conclusion, we analyzed both qualitatively and quantitatively the major experimental factors that determine the accuracy of equations of state extracted from ramp compression experiments. Since in actual experiments essentially all the effects discussed here will compound, factoring out individual signatures and magnitudes, as done in the present work, is especially important. This study should provide some guidance for the effective design and analysis of ramp compression experiments, as well as for further improvements of ramp generators performance.

Bastea, M; Reisman, D

2007-02-26T23:59:59.000Z

337

Training: Compressed Air Systems | Department of Energy  

Energy Savers (EERE)

of Compressed Air Systems - 1-day workshop Availability: Onsite instructor-led and web edition (four, two-hour, live webinars make up the web edition training) Find out how a...

338

Data Compression for Nearly-Periodic Data  

Science Journals Connector (OSTI)

Shape from shade and Hartmann sensing require plenty of pixels for measurement, but many fewer can be analyzed, saving space and time. We found a method to compress large-format camera...

Talmi, Amos; Ribak, Erez N

339

Compressed Air Systems Audits - Why? And How?  

E-Print Network (OSTI)

% of the compressed air costs, most with little or no capital investment. Almost always, in the event of a capital outlay, energy savings alone afford less than one-year payback. Many energy utility companies energetically support these efforts, and some.... Secondly, join us in the definition of compressed air as a system, the totality of which is comprised of the Supply Side and the Demand Side. The Supply Side is the compressors and their controls, receivers (primary storage tanks), aftercoolers, filters...

Kemp, H. L.

2004-01-01T23:59:59.000Z

340

Shock compression of nonideal plasmas at megabars  

Science Journals Connector (OSTI)

Physical properties of hot dense matter at hundreds gigapascal pressures are considered. The new experimental results on pressure ionization of hot matter generated by multiple shock compression of hydrogen and noble gases are presented. The low-frequency electrical conductivity of shock-compressed hydrogen, helium and xenon plasmas was measured. A sharp increase in the electrical conductivity of strongly nonideal plasma was recorded and theoretical models were invoked to describe this increase.

V E Fortov; V B Mintsev

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lossy compression of weak lensing data  

Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmic rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10{sup -4}. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.

Vanderveld, R Ali [Chicago U., EFI; Caltech /Caltech, JPL; Bernstein, Gary M [Pennsylvania U.; Stoughton, Chris [Fermilab; Rhodes, Jason [Caltech; Caltech, JPL; Massey, Richard [Royal Observ., Edinburgh; Dobke, Benjamin M [Caltech; Caltech, JPL

2011-06-01T23:59:59.000Z

342

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications  

Energy.gov (U.S. Department of Energy (DOE))

DOE technical assessment of cryo-compressed hydrogen storage for vehicular applications during 2006-2008.

343

Partially compressed-encrypted domain robust JPEG image watermarking  

Science Journals Connector (OSTI)

Digital media is often handled in a compressed and encrypted form in Digital Asset Management Systems. And watermarking of the compressed encrypted media items in the compressed-encrypted domain itself is required sometimes for copyright violation detection ... Keywords: Compressed-encrypted domain watermarking, JPEG watermarking

A. V. Subramanyam, Sabu Emmanuel

2014-08-01T23:59:59.000Z

344

Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae  

E-Print Network (OSTI)

(Abridged) In the implicit large eddy simulation (ILES) paradigm, the dissipative nature of high-resolution shock-capturing schemes is exploited to provide an implicit model of turbulence. Recent 3D simulations suggest that turbulence might play a crucial role in core-collapse supernova explosions, however the fidelity with which turbulence is simulated in these studies is unclear. Especially considering that the accuracy of ILES for the regime of interest in CCSN, weakly compressible and strongly anisotropic, has not been systematically assessed before. In this paper we assess the accuracy of ILES using numerical methods most commonly employed in computational astrophysics by means of a number of local simulations of driven, weakly compressible, anisotropic turbulence. We report a detailed analysis of the way in which the turbulent cascade is influenced by the numerics. Our results suggest that anisotropy and compressibility in CCSN turbulence have little effect on the turbulent kinetic energy spectrum and a...

Radice, David; Ott, Christian D

2015-01-01T23:59:59.000Z

345

Introduction of heat map to fidelity assessment of compressed CT images  

SciTech Connect

Purpose: This study aimed to introduce heat map, a graphical data presentation method widely used in gene expression experiments, to the presentation and interpretation of image fidelity assessment data of compressed computed tomography (CT) images. Methods: The authors used actual assessment data that consisted of five radiologists' responses to 720 computed tomography images compressed using both Joint Photographic Experts Group 2000 (JPEG2000) 2D and JPEG2000 3D compressions. They additionally created data of two artificial radiologists, which were generated by partly modifying the data from two human radiologists. Results: For each compression, the entire data set, including the variations among radiologists and among images, could be compacted into a small color-coded grid matrix of the heat map. A difference heat map depicted the advantage of 3D compression over 2D compression. Dendrograms showing hierarchical agglomerative clustering results were added to the heat maps to illustrate the similarities in the data patterns among radiologists and among images. The dendrograms were used to identify two artificial radiologists as outliers, whose data were created by partly modifying the responses of two human radiologists. Conclusions: The heat map can illustrate a quick visual extract of the overall data as well as the entirety of large complex data in a compact space while visualizing the variations among observers and among images. The heat map with the dendrograms can be used to identify outliers or to classify observers and images based on the degree of similarity in the response patterns.

Lee, Hyunna; Kim, Bohyoung; Seo, Jinwook; Park, Seongjin; Shin, Yeong-Gil [School of Computer Science and Engineering, Seoul National University, 599 Kwanak-ro, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Kil Joong [Department of Radiation Applied Life Science, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Lee, Kyoung Ho [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Institute of Radiation Medicine and Seoul National University Medical Research Center, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)

2011-08-15T23:59:59.000Z

346

NGL recovery being hiked by natural-gasoline recirculation  

SciTech Connect

Construction will be completed later this year at two compression plants operated by Lagoven, S.A., to install natural-gasoline recirculation to improve NGL recovery. The project is the result of a study of condensate-stream recirculation and absorber operations at the compression plants Tia Juana 2 (PCTJ-2) and Tia Juana 3 (PCTJ-3), offshore Lake Maracaibo in western Venezuela. The PCTJ-2 and PCTJ-3 gas compression plants have two systems: gas compression and NGL extraction. Previous analysis of the NGL extraction and fractionation processes of Lagoven determined that there are two practical and attractive alternatives for the recirculation of the condensate streams in PCTJ-2 and 3: recirculation of natural gasoline from the Ule LPG plant; recirculation of a conditioned condensate from the de-ethanizer tower of each plant. Both alternatives are discussed. Also described are fractionation capacity, and modifications for adding absorption and fractionation.

Rivas M, M.; Bracho, J.L. [Lagoven S.A., Maracaibo (Venezuela); Murray, J.E. [Murray (James E.), Corpus Christi, TX (United States)

1997-07-07T23:59:59.000Z

347

Exhaust gas recirculation in a homogeneous charge compression ignition engine  

DOE Patents (OSTI)

A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

2008-05-27T23:59:59.000Z

348

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

349

General Compression Looks at Energy Storage from a Different Angle |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company that's developing battery technology that will allow energy storage for multiple hours on the power grid. General Compression is another innovative company that's developing a different way to store electricity by using compressed air energy storage, or CAES. The technology uses cheap power to pump air into

350

General Compression Looks at Energy Storage from a Different Angle |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company that's developing battery technology that will allow energy storage for multiple hours on the power grid. General Compression is another innovative company that's developing a different way to store electricity by using compressed air energy storage, or CAES. The technology uses cheap power to pump air into

351

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

352

Groningen 2nd phase compression project  

Science Journals Connector (OSTI)

ABSTRACT A Double End Driven Compression train with Active Magnetic Bearings (AMBs), a novel concept on its own, has been chosen as the solution for the Groningen 2nd phase compression project. A development assurance program was followed by a team comprising of both Siemens and Shell specialists with the intent of ensuring that technical risks were identified and addressed as far as possible prior to field implementation. The paper will describe• The concept evaluation and selection • The creation of the development programme to assess technical risks • Technical challenges and learnings • Current status of the development and design maturity

E. Liow; H. Goorhuis

2014-01-01T23:59:59.000Z

353

Electrical conductivity of shock compressed xenon  

Science Journals Connector (OSTI)

The results on measurements of electrical conductivity of shock compressed gaseous and liquid xenon are discussed. Thermodynamical parameters of xenon are calculated in frames of plasma chemical model. To estimate electrical conductivity modified Ziman theory is used. A reasonable agreement between experimental and theoretical data on equation of state and transport properties is shown in a wide range of parameters from gas to liquid densities pressures 10–140 GPa and temperatures >5000 K. New experimental data on measurements of equation of state and conductivity of xenon under multiple shock compression are presented.

Victor B. Mintsev; Vladimir Ya. Ternovoi; Victor K. Gryaznov; Alexei A. Pyalling; Vladimir E. Fortov; Igor L. Iosilevskii

2000-01-01T23:59:59.000Z

354

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

355

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

356

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

357

Modeling of homogeneous charge compression ignition (HCCI) of methane  

SciTech Connect

The operation of piston engines on a compression ignition cycle using a lean, homogeneous charge has many potential attractive features. These include the potential for extremely low NO{sub x} and particulate emissions while maintaining high thermal efficiency and not requiring the expensive high pressure injection system of the typical modem diesel engine. Using the HCT chemical kinetics code to simulate autoignition of methane-air mixtures, we have explored the ignition timing, burn duration, NO{sub x} production, indicated efficiency and power output of an engine with a compression ratio of 15:1 at 1200 and 2400 rpm. HCT was modified to include the effects of heat transfer. This study used a single control volume reaction zone that varies as a function of crank angle. The ignition process is controlled by varying the intake equivalence ratio and varying the residual gas trapping (RGT). RGT is internal exhaust gas recirculation which recycles both heat and combustion product species. It is accomplished by varying the timing of the exhaust valve closure. Inlet manifold temperature was held constant at 330 Kelvins. Results show that there is a narrow range of operational conditions that show promise of achieving the control necessary to vary power output while keeping indicated efficiency above 50% and NO{sub x} levels below 100 ppm.

Smith, J.R.; Aceves, S.M.; Westbrook, C.; Pitz, W.

1997-05-01T23:59:59.000Z

358

A Decision-Based Analysis of Compressed Air Usage Patterns in Automotive Manufacturing  

E-Print Network (OSTI)

Analysis of Compressed Air Usage Patterns in Automotivefor future compressed air usage. The Cost-of-Ownership andfuture compressed air usage. Environmental Value systems (

Yuan, Chris; Zhang, Teresa; Rangarajan, Arvind; Dornfeld, David; Ziemba, Bill; Whitbeck, Rod

2006-01-01T23:59:59.000Z

359

E-Print Network 3.0 - adiabatic compressed air Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Compression Summary: Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic... Liquefaction Hydrogen Compression 12;3 Praxair at a...

360

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network (OSTI)

50 compressed air system energy audits completed by Shanghai50 compressed air system energy audits completed by Shanghaiof compressed air energy audits conducted by the Shanghai

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural gas monthly: December 1993  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

Not Available

1993-12-01T23:59:59.000Z

362

Detailed Analysis and Control Issues of Homogeneous Charge Compression Ignition (HCCI)  

SciTech Connect

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work.

Aceves, Salvador M.; Flowers, Daniel L.; Martinez-Frias, Joel; Espinosa-Loza, Francisco; Dibble, Robert

2002-08-25T23:59:59.000Z

363

VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX  

E-Print Network (OSTI)

323 CHAPTER 17 VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX \\B E Van D for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series

Oak Ridge National Laboratory

364

STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

the Crockett A CALIFORNIA LIMITED ) Cogeneration Project to Allow PARTNERSHIP ) Installation of Electric Motor to modify the Crockett Cogeneration Project by installing electric motor-driven natural gas compression

365

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

-AFC-1C) Staff Analysis of Proposed Modifications to Allow Installation of Electric Motor will allow Crockett to install electric motor-driven natural gas compression equipment weighing up to 65

366

Thickness and drainage of perfluoropolyethers under compression  

SciTech Connect

The Surface Forces Apparatus was used to study the compression and drainage of perfluoropolyethers (PFPE) between two flat parallel mica surfaces. In the case of Zdols and Demnum-SA, the PFPE can be squeezed out during slow compression to a final residual film one gyration diameter in thickness. This thickness remained constant up to the highest applied pressure of (is similar to)10 MPa. The residual thickness for Demnum-SA, with one active end group, was found to be approximately 40% larger than that for Zdol of the same molecular weight, with two active end groups. In contrast, Z03, with no active end groups, could be displaced completely from the contact. The dynamics of expulsion were studied by monitoring the variation of the gap width as a function of time after fast (a few milliseconds) step increase in the compressive load. It was found that Zdol behaves as the bulk liquid down to gap widths of 4 equivalent gyration diameters. A viscosity increase of more than 10 times was observed when the gap width was between 4 and 2 gyration diameters. Finally, slow compression to the maximum achievable pressure (approximately 10 MPa) led to a residual layer one gyration diameter in thickness trapped between the mica surfaces.

Xu, Lei; Ogletree, D Frank; Salmeron, Miquel; Tang, Huan; Gui, Jing

2001-01-01T23:59:59.000Z

367

Faster Compressed Dictionary Matching (extended abstract)  

E-Print Network (OSTI)

The past few years have witnessed several exciting results on compressed represen- tation of a string T that supports e±cient pattern matching, and the space complexity has been reduced to jTjHk(T)+o(jTj log ¾) bits [8, ...

Hon, Wing-Kai; Lam, Tak-Wah; Shah, Rahul; Tam, Siu-Lung; Vitter, Jeffrey Scott

2010-01-01T23:59:59.000Z

368

Compressed Index for Dictionary Matching (extended abstract)  

E-Print Network (OSTI)

The past few years have witnessed several exciting results on compressed represen- tation of a string T that supports e±cient pattern matching, and the space complexity has been reduced to jTjHk(T)+o(jTj log ¾) bits [8, ...

Hon, Wing-Kai; Lam, Tak-Wah; Shah, Rahul; Tam, Siu-Lung; Vitter, Jeffrey Scott

2008-01-01T23:59:59.000Z

369

Compressive Computation in Analog VLSI Motion Sensors  

E-Print Network (OSTI)

Compressive Computation in Analog VLSI Motion Sensors Rainer A. Deutschmann1 and Oliver G. Wenisch2 analog VLSI mo- tion sensors developed in the past. We show how their pixel-parallel architecture can is best suited to perform the algorithm even at high noise levels. 1 Analog VLSI Motion Sensors Inthe past

Deutschmann, Rainer

370

From sideward flow to nuclear compressibility  

SciTech Connect

We show that the differences between the Plastic Ball and DIOGENE experiments on sideward flow make it possible to asses independently, within the transport description of collisions, the effect of density dependence and momentum dependence of the nucleon optical potential. We estimate that the nuclear compressibility [ital K] lies between 180 and 235 MeV.

Pan, Q.; Danielewicz, P. (National Superconducting Cyclotron Laboratory and Department of Physics Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States))

1993-04-05T23:59:59.000Z

371

From sideward flow to nuclear compressibility  

SciTech Connect

The authors use the transport model (BUU) with different optical potentials, combining density and momentum dependence with strong or weak nuclear compressibility, to simulate heavy-ion collisions. Experiment by DIOGENE allows them to show that experimental sideward flow is close to their calculations using optical potential of soft momentum- and density-dependence (Potential I), as well as calculations using optical potential of stiff pure density-dependence (Potential II). On the other hand, the Plastic Ball experiment on sideward flow, mainly due to the instrumental rejection of low transverse momentum particles, allows the authors to tell the differences between Potential I and II, with calculations using Potential I being close to the experimental data. Combining the results above, they see that only potential I with soft nuclear compressibility can describe the experimental data. The uncertainty of NN cross section in the medium leads to the uncertainty in nuclear compressibility, they estimate that the nuclear compressibility K lies between 180 and 235 MeV.

Pan, Q.; Danielewicz, P.

1993-04-01T23:59:59.000Z

372

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

373

Sensitivity Enhancement System for Pulse Compression Weather Radar  

Science Journals Connector (OSTI)

The use of low-power solid state transmitters in weather radar to keep costs down requires pulse compression technique in order to maintain an adequate minimum detectable signal. However, wide-band pulse compression filters will partly reduce the ...

Cuong M. Nguyen; V. Chandrasekar

374

Centralized Collaborative Compressed Sensing of Wideband Spectrum for Cognitive Radios  

E-Print Network (OSTI)

1 Centralized Collaborative Compressed Sensing of Wideband Spectrum for Cognitive Radios Hessam, spectrum sensing, cognitive radio, distri- bution discontinuities, algebraic detection, wideband. I technique for cognitive radio systems which combines algebraic tools and compressive sampling techniques

Paris-Sud XI, Université de

375

Wave motions in unbounded poroelastic solids infused with compressible fluids  

E-Print Network (OSTI)

Wave motions in unbounded poroelastic solids infused with compressible fluids S. Quiligotti, G at proposing a two-scale constitutive theory of a poroelastic solid infused with an inviscid compressible fluid

376

CO? compression for capture-enabled power systems  

E-Print Network (OSTI)

The objective of this thesis is to evaluate a new carbon dioxide compression technology - shock compression - applied specifically to capture-enabled power plants. Global warming has increased public interest in carbon ...

Suri, Rajat

2009-01-01T23:59:59.000Z

377

COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed...

378

LSB Based Audio Steganography Based On Text Compression  

Science Journals Connector (OSTI)

Compression algorithm is what reduces the redundancy of data representation and decreases the data storage capacity. Data compression plays a vital role in reducing the communication cost making use of available bandwidth. The compressed data from the security aspect is transmitted through internet. It is, however very much vulnerable to a multitude of attacks. To propose a new dictionary based text compression technique for ASCII texts for the purpose of obtaining good performance on various document sizes. Dictionary based compression bits are hidden into the Lsb bit of audio signals and to calculate the signal to noise ratio (SNR). This audio Steganography is conducted for various compression algorithms with dictionary based compression. Audio Steganography based dictionary compression achieves better value of signal to noise ratio (SNR).

M. Baritha Begum; Y. Venkataramani

2012-01-01T23:59:59.000Z

379

Low-dimensional Models for Compression, Compressed Sensing, and Prediction of Large-Scale  

E-Print Network (OSTI)

Technological University, Singapore, 639798; nikola001@e.ntu.edu.sg, muhammad89@e.ntu.edu.sg, jdauwels@ntu) is commonly deployed to compress large traffic data sets [2], [4]­[6]. PCA provides an effective low

Jaillet, Patrick

380

A New Compressive Imaging Camera Architecture using Optical-Domain Compression  

E-Print Network (OSTI)

for processing, to a "computa- tional signal processing" (CSP) paradigm, where analog signals are converted nonlinear techniques. 1.1. Compressive sensing CSP builds upon a core tenet of signal processing

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Impact compression properties of concrete  

SciTech Connect

Controlled impact experiments have been performed on concrete to determine dynamic material properties. The properties assessed include the high-strain-rate yield strength (Hugoniot elastic limit), and details of the inelastic dynamic stress versus strain response of the concrete. The latter features entail the initial void-collapse modulus, the high-stress limiting void-collapse strain, and the stress amplitude dependence of the deformational wave which loads the concrete from the elastic limit to the maximum dynamics stress state. Dynamic stress-versus-strain data are reported over the stress range of the data, from the Hugoniot elastic limit to in excess of 2 GPa. 6 figs, 4 refs, 4 tabs.

Grady, D.E.

1993-02-01T23:59:59.000Z

382

Impact compression properties of concrete  

SciTech Connect

Controlled impact experiments have been performed on concrete to determine dynamic material properties. The properties assessed include the high-strain-rate yield strength (Hugoniot elastic limit), and details of the inelastic dynamic stress versus strain response of the concrete. The latter features entail the initial void-collapse modulus, the high-stress limiting void-collapse strain, and the stress amplitude dependence of the deformational wave which loads the concrete from the elastic limit to the maximum dynamics stress state. Dynamic stress-versus-strain data are reported over the stress range of the data, from the Hugoniot elastic limit to in excess of 2 GPa. 6 figs, 4 refs, 4 tabs.

Grady, D.E.

1993-01-01T23:59:59.000Z

383

STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

, liquefied natural gas, liquefied propane gas, E-85, and hydrogen. Alternative fueled vehicles: Battery-electric, hybrid-electric, other hybrid power storage and/or hybrid drive systems, liquefied propane gas, compressed natural gas, liquefied natural gas, E-85, or hydrogen powered vehicles. Application

384

Page 1 of 3 STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor  

E-Print Network (OSTI)

and Compressed Natural Gas (LCNG) fueling station. The station will support Border Valley Trading and Hay of a publicly accessible liquefied natural gas (LNG) facility at 450 South Willow Street in the City of Blythe will help local and regional goods movement and public agency fleets transition to natural gas vehicles

385

Determining the Right Air Quality for Your Compressed Air System  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet outlines the main factors for determining the right air quality for compressed air systems.

386

Summary of Compression Testing of U-10Mo  

SciTech Connect

The mechanical properties of depleted uranium plus 10 weight percent molybdenum alloy have been evaluated by high temperature compression testing.

Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Burkes, Douglas

2012-10-31T23:59:59.000Z

387

Multiple Compressions in the Middle Energy Plasma Focus Device  

Science Journals Connector (OSTI)

This paper reports some of the results that are aimed to investigate the neutron emission from the middle energy Mather?type plasma focus. These results indicated that with increase the pressure compression time is increase but there is not any direct relation between the compression time and neutron yield. Also it seems that multiple compression regimes is occurred in low pressure and single compression is appeared at higher pressure where is the favorable to neutron production.

H. R. Yousefi; Y. Ejiri; H. Ito; K. Masugata

2006-01-01T23:59:59.000Z

388

Alternative Fuels Data Center: Natural Gas Vehicle Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle Natural Gas Vehicle Promotion to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Promotion on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Promotion on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Promotion on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Promotion on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Promotion on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicle Promotion The New Jersey Senate urges automobile manufacturers to commercially develop and sell compressed natural gas vehicles in New Jersey and

389

Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Natural Gas and Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied

390

Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicles Natural Gas Vehicles Safety Regulations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicles Safety Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicles Safety Regulations Vehicles converted to operate on compressed natural gas (CNG), liquefied

391

NETL: IEP – CO2 Compression - Novel Concepts for the Compression of Large  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Project No.: FC26-05NT42650 The Southwest Research Institute (SwRI) will design an efficient and cost-effective compression system to reduce the overall cost of carbon dioxide (CO2) capture and storage for coal-based power plants. SwRI will develop two novel concepts that have the potential to reduce CO2 compression power requirements by 35 percent compared to conventional compressor designs. The first concept is a semi-isothermal compression process where the CO2 is continually cooled using an internal cooling jacket rather than using conventional interstage cooling. This concept can potentially reduce power requirements because less energy is required to boost the pressure of a cool gas. The second concept involves the use of refrigeration to liquefy the CO2 so that its pressure can be increased using a pump, rather than a compressor. The primary power requirements are the initial compression required to boost the CO2 to approximately 250 pounds per square inch absolute and the refrigeration power required to liquefy the gaseous CO2. Once the CO2 is liquefied, the pumping power to boost the pressure to pipeline supply pressure is minimal. Prototype testing of each concept will be conducted.

392

natural gasoline  

Science Journals Connector (OSTI)

natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-coloured and of high API gravity (above 6o°), that are produced with wet gas] ? Gasbenzin n, Gasolin n ...

2014-08-01T23:59:59.000Z

393

Generalizing the Boussinesq Approximation to Stratified Compressible Flow  

E-Print Network (OSTI)

Generalizing the Boussinesq Approximation to Stratified Compressible Flow Dale R. Durran a Akio The simplifications required to apply the Boussinesq approximation to compressible flow are compared with those compressible fluid with the Boussinesq continuity equation has led to the development of several different sets

394

Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge  

E-Print Network (OSTI)

This paper presents the results from two compressed air programs supported by the Northwest Energy Efficiency Alliance (Alliance) over the last five years. In 1997 the Alliance funded the Northwest regional version of the Compressed Air Challenge...

Anderson, K. J.; Annen, B.; Scott, S.

395

Modern Compressed Air Piping Selection and Design Can Have a Great Impact on Your Compressed Air Energy Dollars  

E-Print Network (OSTI)

This paper introduces new concepts in compressed air piping, sizing, and system design beyond the conventional pipe sizing charts and standard system layout guide lines. The author shows how compressed air velocity has a very significant impact...

Van Ormer, H.

2005-01-01T23:59:59.000Z

396

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

397

Reliquefaction of boil-off from liquefied natural gas  

SciTech Connect

This patent describes a process for liquifying boil-off gas resulting from the evaporation of liquified natural gas contained in a storage vessel. The boil-off gas is cooled and liquified in a closed-loop refrigeration system and then returned to the storage vessel wherein. The closed-loop refrigeration system comprises the steps: compressing nitrogen as a working fluid in a compressor system to form a compressed working fluid; splitting the compressed working fluid into a first and second stream; isenthalpically expanding the first stream to produce a cooled first stream, then warming against boil-off gas and compressed working fluid; and isentropically expanding the second stream to form a cooled expanded stream which is then warmed against boil-off gas to form at least partially condensed boil-off prior to warming against the working fluid and prior to return to the compressor system.

Cook, P.J.

1989-07-11T23:59:59.000Z

398

Chapter 8 - Natural Gas  

Science Journals Connector (OSTI)

Although natural gas is a nonrenewable resource, it is included for discussion because its sudden growth from fracking will impact the development and use of renewable fuels. Firms who are engaged in the development of processes that employ synthesis gas as an intermediate have concluded that the synthesis gas is more economically obtainable by steam reforming of natural gas than by gasification of waste cellulose. In some instances, firms have largely abandoned the effort to produce a renewable fuel as such, and in others firms are developing hybrid processes that employ natural gas in combination with a fermentation system. Moreover, natural gas itself is an attractive fuel for internal combustion engines since it can be the least expensive option on a cost per joule basis. It is also aided by its high octane number of 130.

Arthur M. Brownstein

2015-01-01T23:59:59.000Z

399

E-Print Network 3.0 - advanced reciprocating compression Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Machines... Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic... Liquefaction Hydrogen Compression 12;3 Praxair at a...

400

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas Exports from Iran  

Reports and Publications (EIA)

This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

2012-01-01T23:59:59.000Z

402

Spindletop salt-cavern points way for future natural-gas storage  

SciTech Connect

Spindletop underground natural-gas storage complex began operating in 1993, providing 1.7 bcf of working-gas capacity in its first cavern. The cavern and related facilities exemplify the importance and advantages of natural-gas storage in leached salt caverns. Development of a second cavern, along with continued leaching of the initial cavern, target 5 bcf of available working-gas capacity in both caverns by the end of this year. The facilities that currently make up the Spindletop complex include two salt dome gas-storage wells and a 24,000-hp compression and dehydration facility owned by Sabine Gas; two salt dome gas-storage wells and a 15,900-hp compression and dehydration facility owned by Centana; a 7,000-hp leaching plant; and three jointly owned brine-disposal wells. The paper discusses the development of the storage facility, design goals, leaching plant and wells, piping and compressors, dehydration and heaters, control systems, safety and monitoring, construction, first years operation, and customer base.

Shotts, S.A.; Neal, J.R.; Solis, R.J. (Southwestern Gas Pipeline Inc., The Woodlands, TX (United States)); Oldham, C. (Centana Intrastate Pipeline Co., Beaumont, TX (United States))

1994-09-12T23:59:59.000Z

403

Natural Sciences Research Outlook  

E-Print Network (OSTI)

, Big Lottery Fund) European Commission· Other overseas organisations including World HealthEpARTmENT oF phySICS 14 CENTRE FoR ENVIRoNmENTAL poLICy 15 RESEARCh INSTITUTES ANd CENTRES 16 ENERGy ANd ENVIRo to the benefit of humanity Faculty of Natural Sciences statistics: Financial data are for the year ending 31 July

404

Compressed Quantum Simulation of the Ising Model  

Science Journals Connector (OSTI)

Jozsa et al. [Proc. R. Soc. A 466, 809 2009)] have shown that a match gate circuit running on n qubits can be compressed to a universal quantum computation on log?(n)+3 qubits. Here, we show how this compression can be employed to simulate the Ising interaction of a 1D chain consisting of n qubits using a universal quantum computer running on log?(n) qubits. We demonstrate how the adiabatic evolution can be realized on this exponentially smaller system and how the magnetization, which displays a quantum phase transition, can be measured. This shows that the quantum phase transition of very large systems can be observed experimentally with current technology.

B. Kraus

2011-12-14T23:59:59.000Z

405

Natural gas monthly, July 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01T23:59:59.000Z

406

Compression of cooked freeze-dried carrots  

E-Print Network (OSTI)

. Reduction in volume of up to 18-fold can be obtained by com- pressing dehydrated vegetables (Rabman, 1969). During World War II, the United Kingdom produced dehydrated cabbage and carrots in compressed blocks (Gooding and Rolfe, 1967). Fairbrother (1968...-propanol at low concentration by freeze-drying carbohydrate solutions. J. of Food Sci. 37:617. Flosdorf, E. W. 1949. "Freeze-drying, " Reinhold Publishing Co. , New York. Gooding, E. B. B. and Rolfe, E. J. 1957. Some Recent Work on Dehy- dration...

Macphearson, Bruce Alan

2012-06-07T23:59:59.000Z

407

Efficient Parallel Text Compression on GPUs  

E-Print Network (OSTI)

is the denominator of the probability and cumulative distribution, N is the number of characters in the input sequence. 2: Output: output contains compressed data, a big number. 3: for k = 1 to N do 4: /* Compute new base and length according to equation (4...[idx + +] = b >> 24 18: b big number multiplication. 1: Input: data = numerators of p(sj), D = denominator of p(sj). 2: Output: power contains right shift offset of each symbol, data = respective...

Zhang, Xiaoxi

2012-02-14T23:59:59.000Z

408

An investigation of the use of odorants in liquefied natural gas used as a vehicle fuel  

SciTech Connect

Interest in liquefied natural gas (LNG) as an alternative vehicle fuel has increased significantly. Its greater storage density relative to compressed natural gas makes it an attractive option for both volume and weight constrained vehicle applications. The public transportation market, specifically transit bus properties, have been very aggressive in pursuing LNG as an alternative vehicle fuel. Naturally, when dealing with the general public and a new transportation fuel, the issue of safety must be addressed. With this in mind, the Gas Research Institute has initiated a number of safety related studies including an investigation of the use of odorants in LNG. This paper presents the preliminary results of an investigation performed by the Institute of Gas Technology to determine both the applicability and effectiveness of odorizing LNG. This includes an overview of the current state-of-the-art in LNG vehicle fueling and safety systems as well as a discussion of an LNG odorization program conducted by San Diego Gas & Electric in the mid 70`s. Finally, the paper discusses the results of the modeling effort to determine whether conventional odorants used in natural gas can be injected and remain soluble in LNG at temperatures and pressures encountered in LNG fueling and on-board storage systems.

Green, T.; Williams, T. [Gas Research Institute, Chicago, IL (United States)

1994-12-31T23:59:59.000Z

409

Natural System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural System Natural System Evaluation and Tool Development - FY11 Progress Report Prepared for U.S. Department of Energy Used Fuel Disposition Program Yifeng Wang (SNL) Michael Simpson (INL) Scott Painter (LANL) Hui-Hai Liu (LBNL) Annie B. Kersting (LLNL) July 15, 2011 FCRD-USED-2011-000223 UFD Natural System Evaluation - FY11 Year-End Report July 15, 2011 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

410

Efficient Joins with Compressed Bitmap Indexes  

SciTech Connect

We present a new class of adaptive algorithms that use compressed bitmap indexes to speed up evaluation of the range join query in relational databases. We determine the best strategy to process a join query based on a fast sub-linear time computation of the join selectivity (the ratio of the number of tuples in the result to the total number of possible tuples). In addition, we use compressed bitmaps to represent the join output compactly: the space requirement for storing the tuples representing the join of two relations is asymptotically bounded by min(h; n . cb), where h is the number of tuple pairs in the result relation, n is the number of tuples in the smaller of the two relations, and cb is the cardinality of the larger column being joined. We present a theoretical analysis of our algorithms, as well as experimental results on large-scale synthetic and real data sets. Our implementations are efficient, and consistently outperform well-known approaches for a range of join selectivity factors. For instance, our count-only algorithm is up to three orders of magnitude faster than the sort-merge approach, and our best bitmap index-based algorithm is 1.2x-80x faster than the sort-merge algorithm, for various query instances. We achieve these speedups by exploiting several inherent performance advantages of compressed bitmap indexes for join processing: an implicit partitioning of the attributes, space-efficiency, and tolerance of high-cardinality relations.

Computational Research Division; Madduri, Kamesh; Wu, Kesheng

2009-08-19T23:59:59.000Z

411

Alternative Fuels Data Center: Natural Gas and Propane Retailer License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retailer License to someone by E-mail Retailer License to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Retailer License Compressed natural gas, liquefied natural gas, or liquefied petroleum gas

412

Alternative Fuels Data Center: Natural Gas and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Tax Effective January 1, 2019, liquefied petroleum gas (propane), compressed natural gas, and liquefied natural gas will be subject to an excise tax at

413

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Decals  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle Natural Gas Vehicle (NGV) Decals to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Decals on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Decals on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Decals on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Decals on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Decals on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Decals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicle (NGV) Decals Any person operating a vehicle that is capable of using compressed or

414

Alternative Fuels Data Center: Natural Gas Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Credit Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Tax Credit on Google Bookmark Alternative Fuels Data Center: Natural Gas Tax Credit on Delicious Rank Alternative Fuels Data Center: Natural Gas Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Tax Credit Effective January 1, 2014, a carrier operating a commercial natural gas vehicle (NGV) in Indiana may claim a credit equal to 12% of the road taxes imposed on its consumption of compressed natural gas in the previous year.

415

Diesol: an alternative fuel for compression ignition engines  

SciTech Connect

Physical properties including specific gravity, kinematic viscosity, heat of combustion, flash point, cetane number and distillation curves are presented for several blends of No. 2 diesel fuel and soybean oil. The mixture is referred to as Diesol. The soybean oil received a minimal amount of refining by water-washing to remove most of the lecithin type gums. The Diesol fuels were tested in a Cooperative Fuel Research single cylinder diesel test engine to determine the short time engine performance using soybean oil as a diesel fuel extender. Brake specific fuel consumption, volumetric fuel consumption, exhaust smoke opacity and power were determined. Various blends of Diesol were also tested in a multicylinder diesel commercial power system. Results are presented to show the comparison between Diesol blends and diesel fuel. The fuel properties and engine performance test results indicate that soybean oil would be a viable extender of diesel fuel for compression-ignition engines.

Cochran, B.J.; Baldwin, J.D.C.; Daniel, L.R. Jr.

1981-01-01T23:59:59.000Z

416

Joining mechanism with stem tension and interlocked compression ring  

DOE Patents (OSTI)

A stem (34) extends from a second part (30) through a hole (28) in a first part (22). A groove (38) around the stem provides a non-threaded contact surface (42) for a ring element (44) around the stem. The ring element exerts an inward force against the non-threaded contact surface at an angle that creates axial tension (T) in the stem, pulling the second part against the first part. The ring element is formed of a material that shrinks relative to the stem by sintering. The ring element may include a split collet (44C) that fits partly into the groove, and a compression ring (44E) around the collet. The non-threaded contact surface and a mating distal surface (48) of the ring element may have conic geometries (64). After shrinkage, the ring element is locked onto the stem.

James, Allister W.; Morrison, Jay A.

2012-09-04T23:59:59.000Z

417

NATURE STUDY  

Science Journals Connector (OSTI)

...last two numbers of SCIENCE have appeared articles by Drs. Wheeler and Chapman on the abuses of nature writing as exemplified...imprint of Rand, IeNally and Co., 1903, and its author is Katherine E. Dopp, of the Extension Division of the Chicago University...

E. C. CASE

1904-04-01T23:59:59.000Z

418

Marketing Mother Nature’s Molecules  

Science Journals Connector (OSTI)

Marketing Mother Nature’s Molecules ... Yet molecules made by Mother Nature, or derivatives thereof, still account for nearly half of the drugs on the market. ...

LISA JARVIS

2012-02-19T23:59:59.000Z

419

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network (OSTI)

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

420

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

SciTech Connect

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

422

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

423

liquefied natural gas LNG | OpenEI  

Open Energy Info (EERE)

liquefied natural gas LNG liquefied natural gas LNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

424

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

425

Dynamic compression of materials: metallization of fluid hydrogen at high pressures  

Science Journals Connector (OSTI)

Dynamic high pressure is 1?GPa (10?kbar) or greater with a rise time and a duration ranging from 1?ps (10?12?s) to 1?µs (10?6?s). Today it is possible in a laboratory to achieve pressures dynamically up to ~500?GPa (5?Mbar) and greater, compressions as much as ~15-fold greater than initial density in the case of hydrogen and temperatures from ~0.1 up to several electronvolts (11?600?K). At these conditions materials are extremely condensed semiconductors or degenerate metals. Temperature can be tuned independently of pressure by a combination of shock and isentropic compression. As a result, new opportunities are now available in condensed matter physics at extreme conditions. The basic physics of the dynamic process, experimental methods of generating and diagnosing matter at these extreme conditions and a technique to recover metastable materials intact from ~100?GPa shock pressures are discussed.Results include (i) generation of pressure standards at static pressures up to ~200?GPa (2?Mbar) at 300?K, (ii) single-shock compression of small-molecular fluids, including resolution of the recent controversy over the correct shock-compression curve of liquid D2 at 100?GPa pressures, (iii) the first observations of metallization of fluid hydrogen, nitrogen and oxygen compressed quasi-isentropically at 100?GPa pressures, (iv) implications for the interiors of giant planets within our solar system, extrasolar giant planets and brown dwarfs discovered recently and the equation of state of deuterium–tritium in inertial confinement fusion (ICF) and (v) prospects of recovering novel materials from extreme conditions, such as metastable solid metallic hydrogen. Future research is suggested.

W J Nellis

2006-01-01T23:59:59.000Z

426

Reflectivity of Shock Compressed Xenon Plasma  

E-Print Network (OSTI)

Experimental results for the reflection coefficient of shock-compressed dense Xenon plasmas at pressures of 1.6 - 17 GPa and temperatures around 30 000 K using a laser beam with \\lambda = 1.06 10^-6 m are compared with calculations based on different theoretical approaches to the dynamical collision frequency. It is found that a reasonable description can be given assuming a spatial electron density profile corresponding to a finite width of the shock wave front of about $2 10^-6 m.

Reinholz, H; Wierling, A; Mintsev, V; Gryaznov, V

2002-01-01T23:59:59.000Z

427

Entangled-photon compressive ghost imaging  

SciTech Connect

We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.

Zerom, Petros [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Chan, Kam Wai Clifford [Rochester Optical Manufacturing Company, 1260 Lyell Avenue, Rochester, New York 14606 (United States); Howell, John C. [Department of Physics and Astronomy, University of Rochester, 500 Wilson Boulevard, Rochester, New York 14627 (United States); Boyd, Robert W. [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Physics and Astronomy, University of Rochester, 500 Wilson Boulevard, Rochester, New York 14627 (United States); Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 (Canada)

2011-12-15T23:59:59.000Z

428

Compressive direct measurement of the quantum wavefunction  

E-Print Network (OSTI)

The direct measurement of a complex wavefunction has been recently realized by using weak-values. In this paper, we introduce a method that exploits sparsity for compressive measurement of the transverse spatial wavefunction of photons. The procedure involves a weak measurement in random projection operators in the spatial domain followed by a post-selection in the momentum basis. Using this method, we experimentally measure a 192-dimensional state with a fidelity of $90%$ using only $25$ percent of the total required measurements. Furthermore, we demonstrate measurement of a 19200 dimensional state; a task that would require an unfeasibly large acquiring time with the conventional direct measurement technique.

Mohammad Mirhosseini; Omar S. Magaña-Loaiza; Seyed Mohammad Hashemi Rafsanjani; Robert W. Boyd

2014-04-10T23:59:59.000Z

429

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SustainX SustainX American Recovery and Reinvestment Act (ARRA) Isothermal Compressed Air Energy Storage Demonstrating a modular, market-ready energy storage system that uses compressed air as a storage medium SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. Energy can be stored in compressed air, with minimal energy losses, and released when the air is later allowed to expand. Many traditional compressed air energy storage (CAES) projects store energy in underground geological formations such as salt caverns. However, in these systems, the air warms when it is compressed and cools when it is expanded. CAES systems generally use gas combustion turbines to reheat the cooled air before expansion. This process creates inefficiencies and emissions.

430

Natural Gas Annual, 1998  

Gasoline and Diesel Fuel Update (EIA)

8 8 Historical The Natural Gas Annual, 1998 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1998. Summary data are presented for each Census Division and State for 1994 to 1998. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1998 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1998, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

431

Natural Gas Annual, 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Historical The Natural Gas Annual, 1997 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1997. Summary data are presented for each Census Division and State for 1993 to 1997. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1997 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1997, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

432

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16, 2009 16, 2009 Next Release: April 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 15, 2009) Since Wednesday, April 8, natural gas spot prices increased at most market locations in the Lower 48 States, with some exceptions including those in the Northeast, Midwest, and Midcontinent. Despite this weekÂ’s upticks at most locations, natural gas spot prices remain at relatively low levels and have continued to trade within a limited range for the past 4 weeks. The Henry Hub spot market prices gained about 10 cents or 2.9 percent per million Btu (MMBtu), ending trading yesterday at $3.60 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday (April 15) at $3.693

433

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2012 (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

434

When indexing equals compression: Experiments with compressing suffix arrays and applications  

Science Journals Connector (OSTI)

We report on a new experimental analysis of high-order entropy-compressed suffix arrays, which retains the theoretical performance of previous work and represents an improvement in practice. Our experiments indicate that the resulting text index offers ... Keywords: Burrows--Wheeler Transform, Entropy, suffix array, text indexing

Luca Foschini; Roberto Grossi; Ankur Gupta; Jeffrey Scott Vitter

2006-10-01T23:59:59.000Z

435

High load operation in a homogeneous charge compression ignition engine  

DOE Patents (OSTI)

A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Liechty, Michael P. (Chillicothe, IL); Hardy, William L. (Peoria, IL); Rodman, Anthony (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL)

2008-12-23T23:59:59.000Z

436

Improving Compressed Air System Performance: A Sourcebook for Industry  

Energy.gov (U.S. Department of Energy (DOE))

This sourcebook is designed to provide compressed air system users with a reference that outlines opportunities for system performance improvements. It is not intended to be a comprehensive technical text on improving compressed air systems, but rather a document that makes compressed air system users aware of the performance improvement potential, details some of the significant opportunities, and directs users to additional sources of assistance.

437

Natural Gas Delivered to Consumers in Rhode Island (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,425 8,875 9,886 7,566 7,317 6,419 6,971 7,536 7,493 7,652 6,918 9,231 2002 10,511 8,745 7,848 6,823 6,244 5,757 5,873 5,748 5,630 5,720 8,981 9,553 2003 9,510 10,141 9,429 5,721 4,332 4,902 5,830 5,423 4,891 4,709 6,468 6,670 2004 9,122 9,552 6,607 6,373 5,874 5,299 4,296 4,885 3,594 3,675 6,015 6,955 2005 8,403 8,917 7,847 7,729 6,062 6,293 5,990 6,010 4,836 5,169 5,246 7,434 2006 8,207 6,737 7,405 5,579 5,935 5,619 6,982 5,512 5,724 6,845 5,472 6,230 2007 7,988 9,766 8,374 7,190 6,533 4,869 7,009 7,571 6,437 6,185 5,880 9,217 2008 10,073 9,216 8,387 9,366 6,092 6,760 7,028 6,288 5,544 6,433 5,614 7,492

438

Natural Gas Delivered to Consumers in New York (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 135,000 121,033 117,080 87,191 75,087 78,246 82,949 95,148 84,785 85,317 85,604 117,809 2002 130,795 125,601 121,522 96,684 77,319 74,903 86,308 87,878 74,748 77,281 106,098 130,678 2003 145,176 150,464 132,321 96,357 69,848 57,468 66,369 71,177 61,893 63,566 74,370 103,175 2004 143,310 146,400 118,918 96,553 76,708 61,518 59,080 60,352 63,530 61,753 84,337 116,290 2005 131,102 130,863 130,581 94,151 72,115 68,850 75,042 73,408 58,655 53,370 68,534 109,966 2006 117,077 122,348 125,713 88,492 72,223 71,803 85,597 79,345 63,354 74,825 81,800 99,716 2007 123,033 141,204 137,001 102,645 76,067 71,823 74,597 83,048 66,970 67,841 92,753 133,841

439

Analysis of Solar Passive Techniques and Natural Ventilation Concepts in a Residential Building Including CFD Simulation  

E-Print Network (OSTI)

(global horizontal, direct normal and diffuse horizontal) and wind conditions (direction and speed). It is possible that climate data file does not fit exactly to the characteristics of Cerdanyola del Vall?s, which is further from the coast and has... 61.10 3.01 53.60 0.00 117.71 Mar 68.26 5.75 10.12 2.52 86.64 Apr 65.16 14.65 0.00 15.81 95.62 May 67.19 21.48 0.00 40.70 129.37 Jun 66.23 33.88 0.00 112.05 212.15 Jul 67.19 46.70 0.00 196.57 310.46 Aug 67.72 47.77 0.00 209.61 325.10 Sep 65...

Quince, N.; Ordonez, A.; Bruno, J. C.; Coronas, A.

2010-01-01T23:59:59.000Z

440

African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum  

E-Print Network (OSTI)

, BP 769, Franceville, Gabon; e Department of Ecology and Evolutionary Biology, University Africa (Cameroon and Gabon) from both wild-living and captive animals. The studies in wild apes used

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Intentionally Including - Engaging Minorities in Physics Careers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of Physics Resources. Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the

442

Scramjet including integrated inlet and combustor  

SciTech Connect

This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

Kutschenreuter, P.H. Jr.; Blanton, J.C.

1992-02-04T23:59:59.000Z

443

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

444

Assessing the benefits of DCT compressive sensing for computational electromagnetics  

E-Print Network (OSTI)

Computational electromagnetic problems are becoming exceedingly complex and traditional computation methods are simply no longer good enough for our technologically advancing world. Compressive sensing theory states that ...

D'Ambrosio, Kristie (Kristie L.)

2011-01-01T23:59:59.000Z

445

VIDEO PRESENTATION AND COMPRESSION Borko Furht and Raymond Westwater  

E-Print Network (OSTI)

9 VIDEO PRESENTATION AND COMPRESSION Borko Furht and Raymond Westwater Florida Atlantic University........................................................................................................................ 172 1.1 VIDEO REPRESENTATION AND FORMATS.................................................................................. 172 1.2 VIDEO INFORMATION UNITS

Furht, Borko

446

Advanced CFD Models for High Efficiency Compression Ignition Engines  

Energy.gov (U.S. Department of Energy (DOE))

Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion.

447

H2A Delivery: Forecourt Compression & Storage Optimization (Part...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Land Areas Forecourt Storage and Compression Options Forecourt and Gas Infrastructure Optimization Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen...

448

Experiment Hazard Class 5.4 - Compressed Gas Cylinders  

NLE Websites -- All DOE Office Websites (Extended Search)

or in storage. There is no provision for a standby situation. Consultation with PFS-FEC fire protection when planning experiments that involve compressed flammable gas and...

449

National Ignition Facility (NIF): Under Pressure: Ramp-Compression...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

450

Evaluation of the Compressed Air Challenge Training Program: Final Report  

Energy.gov (U.S. Department of Energy (DOE))

This is the final report on an evaluation of the Compressed Air Challenge (CAC) training program, which was designed to provide plant personnel and compressed air system vendors with knowledge and tools required to effect improvements to the energy efficiency and overall performance of plant compressed air systems. The evaluation is based on three main research tasks: analysis of the CAC registration database, interviews with 100 end-user personnel who attended the CAC training, and interviews with 100 compressed air system vendors and consulting engineers who attended the training sessions.

451

Guidelines for Selecting a Compressed Air System Service Provider  

Energy.gov (U.S. Department of Energy (DOE))

This publication is meant to help industrial compressed air users become informed consumers by discussing what to look for when selecting service providers.

452

Evaluation of the Compressed Air Challenge Training Program: Executive Summary  

Energy.gov (U.S. Department of Energy (DOE))

This is the executive summary of a report on an evaluation of the Compressed Air Challenge (CAC) training program, which was designed to provide plant personnel and compressed air system vendors with knowledge and tools required to effect improvements to the energy efficiency and overall performance of plant compressed air systems. The evaluation is based on three main research tasks: analysis of the CAC registration database, interviews with 100 end-user personnel who attended the CAC training, and interviews with 100 compressed air system vendors and consulting engineers who attended the training sessions.

453

A Compressible Advection Approach in Permeation of Elastomer Space Seals.  

E-Print Network (OSTI)

??The preservation of air in manned spacecraft is of grave importance. It is imperative that a comprehensive understanding in the fundamental mechanics of compressible permeation… (more)

Garafolo, Nicholas Gordon

2010-01-01T23:59:59.000Z

454

Saturable inductor and transformer structures for magnetic pulse compression  

DOE Patents (OSTI)

Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)

1990-01-01T23:59:59.000Z

455

New Methodologies for Analysis of Premixed Charge Compression...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Numerical Modeling of HCCI Combustion High Fidelity Modeling of Premixed Charge Compression Ignition Engines Modeling of HCCI and PCCI Combustion Processes...

456

Advanced CFD Models for High Efficiency Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. p-19raja.pdf More Documents &...

457

Multilayer compressive seal for sealing in high temperature devices  

DOE Patents (OSTI)

A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.

Chou, Yeong-Shyung (Richland, WA); Stevenson, Jeffry W. (Richland, WA)

2007-08-21T23:59:59.000Z

458

Ultra- high pulse intensity amplification and compression in plasma  

Science Journals Connector (OSTI)

This talk provides the summary of experimental research at Princeton on Raman Backscattering (RBS) amplification and compression in plasma [1]. The main subject of the talk is about...

Morozov, Anatoli; Li, Shuanglei; Turnbull, David; Suckewer, Szymon

459

Pdc- The Worldwide Leader in Hydrogen Refueling Station Compression  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Matther Weaver of Pdc Machines Inc. was given at the was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

460

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-Print Network (OSTI)

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transmission line including support means with barriers  

DOE Patents (OSTI)

A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

462

Compact wavefunctions from compressed imaginary time evolution  

E-Print Network (OSTI)

Simulation of quantum systems promises to deliver physical and chemical predictions for the frontiers of technology. Unfortunately, the exact representation of these systems is plagued by the exponential growth of dimension with the number of particles, or colloquially, the curse of dimensionality. The success of approximation methods has hinged on the relative simplicity of physical systems with respect to the exponentially complex worst case. Exploiting this relative simplicity has required detailed knowledge of the physical system under study. In this work, we introduce a general and efficient black box method for many-body quantum systems that utilizes technology from compressed sensing to find the most compact wavefunction possible without detailed knowledge of the system. It is a Multicomponent Adaptive Greedy Iterative Compression (MAGIC) scheme. No knowledge is assumed in the structure of the problem other than correct particle statistics. This method can be applied to many quantum systems such as spins, qubits, oscillators, or electronic systems. As an application, we use this technique to compute ground state electronic wavefunctions of hydrogen fluoride and recover 98% of the basis set correlation energy or equivalently 99.996% of the total energy with $50$ configurations out of a possible $10^7$. Building from this compactness, we introduce the idea of nuclear union configuration interaction for improving the description of reaction coordinates and use it to study the dissociation of hydrogen fluoride and the helium dimer.

Jarrod R. McClean; Alán Aspuru-Guzik

2014-09-25T23:59:59.000Z

463

University of Arizona Compressed Air Energy Storage  

SciTech Connect

Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

464

Compression station key to Texas pipeline project  

SciTech Connect

This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

NONE

1996-10-01T23:59:59.000Z

465

Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning  

SciTech Connect

GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

None

2010-09-13T23:59:59.000Z

466

Common Data Set 2011-2012 J Column heading for CIP categories to include now reads: CIP 2010 Categories to Include  

E-Print Network (OSTI)

Common Data Set 2011-2012 J Column heading for CIP categories to include now reads: CIP 2010 Categories to Include J CIP category 3 description now reads: Natural resources and conservation J CIP category 5 description now reads: Area, ethnic, and gender studies J CIP category 16 description now reads

467

Energy Consumption of Personal Computing Including Portable  

E-Print Network (OSTI)

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

468

EE Regional Technology Roadmap Includes comparison  

E-Print Network (OSTI)

EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Roadmap with a strong linkage to utility programs Scan for Technologies 1. How does it address the NW Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

469

Video Topics Include Freshman Inquiry Course  

E-Print Network (OSTI)

Video Topics Include Freshman Inquiry Course Open Advisement/ Group Advisement Dinning Campus: End of Spring 2012, Commencement May 18: Grades available on MAX after 4:30pm AdvisementYouTubeVideoSeries I N S I D E T H I S I S S U E : YouTube Video Series 1 Mark Your Calendar 1 Exploring Major Tips 2

Hardy, Christopher R.

470

Including Ocean Model Uncertainties in Climate Predictions  

E-Print Network (OSTI)

Including Ocean Model Uncertainties in Climate Predictions Chris Brierley, Alan Thorpe, Mat Collins's to perform the integrations Currently uses a `slab' ocean #12;An Ocean Model Required to accurately model transient behaviour Will have its own uncertainties Requires even more computing power Create new models

Jones, Peter JS

471

Buildings Included on EMS Reports"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Office of Legacy Management Buildings Included on EMS Reports" "Site","Property Name","Property ID","GSF","Incl. in Water Baseline (CY2007)","Water Baseline (sq. ft.)","Water CY2008 (sq. ft.)","Water CY2009 (sq. ft.)","Water Notes","Incl. in Energy Baseline (CY2003)","Energy Baseline (sq. ft.)","CY2008 Energy (sq. ft.)","CY2009 Energy (sq. ft.)","Energy Notes","Included as Existing Building","CY2008 Existing Building (sq. ft.)","Reason for Building Exclusion" "Column Totals",,"Totals",115139,,10579,10579,22512,,,3183365,26374,115374,,,99476 "Durango, CO, Disposal/Processing Site","STORAGE SHED","DUD-BLDG-STORSHED",100,"no",,,,,"no",,,,"OSF","no",,"Less than 5,000 GSF"

472

Completion strategy includes clay and precipitate control  

SciTech Connect

This article describes the conditions which are necessary for a successful oil well completion in the Mississippi and Cherokee zones of South Central Kansas. Topics considered include paraffin precipitation, clay swelling and migration, and iron precipitation. Clays in these zones are sensitive to water-base treating fluids and tend to swell and migrate to the well bore, thereby causing permeability damage. The presence of iron in the Mississippi and Cherokee formations has been indicated by cuttings, core samples, and connate water samples.

Sandy, T.; Gardner, G.R.

1985-05-06T23:59:59.000Z

473

Jet-calculus approach including coherence effects  

Science Journals Connector (OSTI)

We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ‘‘incoherent’’ jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics.

L. M. Jones; R. Migneron; K. S. S. Narayanan

1987-01-01T23:59:59.000Z

474

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

475

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

476

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

477

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

478

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

479

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

480

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

Note: This page contains sample records for the topic "include compressed natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

482

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

483

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

484

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

485

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

486

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

487

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

488

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

489

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

490

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

491

Natural System Evaluation and Tool Development: International...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

collaboration on the natural system evaluation and tool development included: (1) data interpretation of colloid-facilitated transport experiments at Grimsel Test Site, (2)...

492

Natural Gas Regulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Regulation Natural Gas Regulation Natural Gas Regulation Natural Gas Regulation The Natural Gas Act of 1938, as amended, requires anyone who wants to import or export natural gas, including liquefied natural gas (LNG) from or to a foreign country must first obtain an authorization from the Department of Energy. The Office of Oil and Gas Global Security and Supply, Division of Natural Gas Regulatory Activities is the one-stop-shopping place to obtain these authorizations in the Department. The import/export authorizations are necessary for anyone who wants to import or export natural gas, including LNG. There are basically two types of authorizations, blanket and long-term authorizations. The blanket authorization enables you to import or export on a short-term or spot market basis for a period of up to two years. The

493

Resonance tuning of piezoelectric vibration energy scavenging generators using compressive  

Science Journals Connector (OSTI)

Vibration energy scavenging, harvesting ambient vibrations in structures for conversion into usable electricity, provides a potential power source for emerging technologies including wireless sensor networks. Most vibration energy scavenging devices developed to date operate effectively at a single specific frequency dictated by the device's design. However, for this technology to be commercially viable, vibration energy scavengers that generate usable power across a range of driving frequencies must be developed. This paper details the design and testing of a tunable-resonance vibration energy scavenger which uses the novel approach of axially compressing a piezoelectric bimorph to lower its resonance frequency. It was determined that an axial preload can adjust the resonance frequency of a simply supported bimorph to 24% below its unloaded resonance frequency. The power output to a resistive load was found to be 65–90% of the nominal value at frequencies 19–24% below the unloaded resonance frequency. Prototypes were developed that produced 300–400 µW of power at driving frequencies between 200 and 250 Hz. Additionally, piezoelectric coupling coefficient values were increased using this method, with keff values rising as much as 25% from 0.37 to 0.46. Device damping increased 67% under preload, from 0.0265 to 0.0445, adversely affecting the power output at lower frequencies. A theoretical model modified to include the effects of preload on damping predicted power output to within 0–30% of values obtained experimentally. Optimal load resistance deviated significantly from theory, and merits further investigation.

Eli S Leland; Paul K Wright

2006-01-01T23:59:59.000Z

494

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

Rutqvist, J.

2013-01-01T23:59:59.000Z

495

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

Williams, Compressed air energy storage: Theory, resources,study for the compressed air energy storage technology byplant for compressed air energy storage power generation,

Rutqvist, J.

2013-01-01T23:59:59.000Z

496

Porous media compressed air energy storage (PM-CAES): Theory and simulation of the coupled wellbore-reservoir system  

E-Print Network (OSTI)

of selected compressed air energy storage studes, Pacificaspects of compressed-air energy storage in aquifers, J. ofresources and compressed air energy storage (CAES), Energy,

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

497

Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage  

E-Print Network (OSTI)

for Underground Compressed Air Energy Storage Hyung-Mok Kimperformance of compressed air energy storage (CAES) in linedcavern (LRC); Compressed air energy storage (CAES); TOUGH-

Kim, H.M.

2014-01-01T23:59:59.000Z

498

ENG 4793: Composite Materials and Processes 1 Compression Molding  

E-Print Network (OSTI)

1 ENG 4793: Composite Materials and Processes 1 Compression Molding ver 2 ENG 4793: Composite Materials and Processes 2 ENG 4793: Composite Materials and Processes 3 ENG 4793: Composite Materials and Processes 4 Schematic of a Compression Molding Press ENG 4793: Composite Materials and Processes 5 Matched

Colton, Jonathan S.

499

Circle criterion observer for a compression system Bjrnar Bhagen  

E-Print Network (OSTI)

.gravdahl@itk.ntnu.no Abstract-- Observers for a compression system using turbo compressors are derived for a model that captures speed. Results are validated by simulations. I. MOTIVATION Compression systems using turbo compressors, centrifugal or axial, are exposed to the phenomenons of surge and rotating stall. Surge is an axisymmtrical

Gravdahl, Jan Tommy

500

Improving Compressed Air System Efficiency- Know What You Really Need  

E-Print Network (OSTI)

demand-side management (DSM) programs as well as their own efforts, Wisconsin Power and Light customers have been able to improve compressed air system efficiency over the past few years. One customer reduced compressed air operating costs by one third...

Terrell, R. E.