National Library of Energy BETA

Sample records for include capacity utilization

  1. U.S. Refining Capacity Utilization

    Reports and Publications (EIA)

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  2. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  3. METHOD OF FABRICATING ELECTRODES INCLUDING HIGH-CAPACITY, BINDER...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search METHOD OF FABRICATING ELECTRODES INCLUDING HIGH-CAPACITY, BINDER-FREE ANODES ...

  4. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  5. U.S. Refinery Utilization and Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Gross Input to Atmospheric Crude Oil Distillation Units 17,178 16,963 16,394 15,690 16,673 16,848 1985-2015 Operable Capacity (Calendar Day) 18,058 18,059 18,125 18,125 18,172 18,186 1985-2015 Operating 17,923 17,939 18,015 17,932 17,846 18,044 1985-2015 Idle 135 121 110 194 326 142 1985-2015 Operable Utilization Rate (%) 95.1 93.9 90.5 86.6 91.8 92.6 1985-2015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,177 15,289 15,373 15,724 16,156 16,433 1985-2015 Operable Capacity (Calendar Day) 17,575 17,736 17,328 17,818 17,873 18,026 1985-2015 Operating 16,911 16,991 16,656 17,282 17,626 17,792 1985-2015 Idle 663 745 672 536 247 234 1985-2015 Operable Utilization Rate (%) 86.4 86.2 88.7 88.3 90.4 91.2 1985-2015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  8. DOE Considers Natural Gas Utility Service Options: Proposal Includes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30-mile Natural Gas Pipeline from Pasco to Hanford | Department of Energy Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering

  9. Minnesota Tribal Coalition Tribal Utility Capacity Building Project

    Office of Environmental Management (EM)

    The Grand Portage, Leech Lake and White Earth reservations seek to build a common foundation for strategic energy resource and utility planning capacity by banding together. The effort will focus primarily on the following four inter-related areas: *EDUCATION: Raising community awareness about energy issues through the distribution of basic educational materials and focused outreach activities aimed at facility managers. *ASSESSMENT: The identification and assessment of the basic on-reservation

  10. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  11. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

  12. Table 5.9 Refinery Capacity and Utilization, 1949-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Refinery Capacity and Utilization, 1949-2011 Year Operable Refineries 1 Operable Refineries Capacity Gross Input to Distillation Units 3 Utilization 4 On January 1 Annual Average 2 Number Thousand Barrels per Calendar Day Thousand Barrels Percent 1949 336 6,231 NA 2,027,928 89.2 1950 320 6,223 NA 2,182,828 92.5 1951 325 6,702 NA 2,467,445 97.5 1952 327 7,161 NA 2,536,142 93.8 1953 315 7,620 NA 2,651,068 93.1 1954 308 7,984 NA 2,651,992 88.8 1955 296 8,386 NA 2,854,137 92.2 1956 317 8,583 NA

  13. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    SciTech Connect (OSTI)

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

  14. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  15. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  16. NREL/Ventyx Utility Rates: What is included? | OpenEI Community

    Open Energy Info (EERE)

    costs? Thanks Submitted by Vbugnion on 27 February, 2013 - 16:25 1 answer Points: 1 Hi Vbugnion, Just to clarify, you're not asking about the OpenEI utility rates, but rather...

  17. Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201

    SciTech Connect (OSTI)

    Bhattacharya, C.

    2008-09-15

    Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inlet flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.

  18. Relay telescope including baffle, and high power laser amplifier utilizing the same

    DOE Patents [OSTI]

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  19. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  20. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  1. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  2. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    SciTech Connect (OSTI)

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  3. T10K Change Max Capacity

    Energy Science and Technology Software Center (OSTI)

    2013-08-16

    This command line utility will enable/disable the Oracle StorageTek T10000 tape drive's maximum capacity feature.

  4. Labview utilities

    Energy Science and Technology Software Center (OSTI)

    2011-09-30

    The software package provides several utilities written in LabView. These utilities don't form independent programs, but rather can be used as a library or controls in other labview programs. The utilities include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.

  5. GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance

    SciTech Connect (OSTI)

    Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence (Tianren); Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

    2014-09-01

    A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

  6. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  7. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  8. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  9. Refinery Capacity Report

    Reports and Publications (EIA)

    2015-01-01

    Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. The Refinery Capacity Report does not contain working and shell storage capacity data. This data is now being collected twice a year as of March 31 and September 30 on the Form EIA-810, "Monthly Refinery Report", and is now released as a separate report Working and Net Available Shell Storage Capacity.

  10. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  11. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  12. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

  13. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  14. Utility Partnership Program Utility Partners

    Broader source: Energy.gov [DOE]

    Utility Partnership Program utility partners are eager to work closely with federal agencies to help achieve energy management goals.

  15. Utility FGD survey, January--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1991-09-01

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  16. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  17. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  18. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  19. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  20. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  1. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  2. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity

  3. Teuchos Utility Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    Teuchos is designed to provide portable, object-oriented tools for Trillnos developers and users. This includes templated wrappers to BLAS/LAPACK, a serial dense matrix class, a parameter list, XML parsing utilities, reference counted pointer (smart pointer) utilities, and more. These tools are designed to run on both serial and parallel computers.

  4. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  5. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

  6. Utilization Graphs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated...

  7. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  8. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  9. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  10. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2015 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 1,964,300 Valero Refining Co Texas LP

  11. Tribal Legal Code: Umpqua Indian Utility Cooperative

    Broader source: Energy.gov [DOE]

    Provides an example tribal utility legal code. Also includes an example tribal energy development vision statement.

  12. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2013 - 2015 (Barrels per Calendar Day) Reformers Capacity Inputs 2013 2,596,369 5,681,643 1,887,024 2,302,764 4,810,611 1,669,540 2,600,518 3,405,017 74,900 543,800 41,500 47,537 387,148 33,255 PADD I 162,249 240,550 450,093 1,196,952 303,000 414,732 1,028,003 263,238 PADD II 648,603 818,718 1,459,176 2,928,673 981,114

  13. Yurok Tribe - Tribal Utility Project and Human Capacity-Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Total audits: 41 Total occupants: 107 Elders: 22 Children: 32 Disabled: 6 Renewable ... * Appliances & computers * Staff energy habits Klamath Weitchpec 102606 Education and ...

  14. Yurok Tribe - Tribal Utility Project and Human Capacity Building

    Energy Savers [EERE]

    Yurok Tribe's Energy Program: First Steps DOE Tribal Energy Program Review Meeting Award #'s DE-FG36-03GO13117 & DE-FG36-05GO15166 November 8, 2007 Presented By: Austin Nova, Yurok Tribe & Jim Zoellick, Schatz Energy Research Center Background/Locati on Located in northwest corner of California Yurok Reservation Straddles the lower stem of the Klamath River, 2 miles wide and 44 miles long) PG&E/ PP&L Service Territory Boundary Humboldt/ Del Norte County Line & WAP service

  15. WINDExchange: Potential Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. Enlarge image This map shows the wind potential at a 110-m height for the United States. Download a printable map. Click on a state to view the wind map for that state. * Grid Granularity = 400 sq km* 35% Gross Capacity

  16. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  17. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  18. Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Informatio...

    Open Energy Info (EERE)

    Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy...

  19. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  20. FY12 Quarter 3 Computing Utilization Report LANL

    SciTech Connect (OSTI)

    Wampler, Cheryl L. [Los Alamos National Laboratory; McClellan, Laura Ann [Los Alamos National Laboratory

    2012-07-25

    DSW continues to dominate the capacity workload, with a focus in Q3 on common model baselining runs in preparation for the Annual Assessment Review (AAR) of the weapon systems. There remains unmet demand for higher fidelity simulations, and for increased throughput of simulations. Common model baselining activities would benefit from doubling the resolution of the models and running twice as many simulations. Capacity systems were also utilized during the quarter to prepare for upcoming Level 2 milestones. Other notable DSW activities include validation of new physics models and safety studies. The safety team used the capacity resources extensively for projects involving 3D computer simulations for the Furrow series of experiments at DARHT (a Level 2 milestone), fragment impact, surety theme, PANTEX assessments, and the 120-day study. With the more than tripling of classified capacity computing resources with the addition of the Luna system and the safety team's imminent access to the Cielo system, demand has been met for current needs. The safety team has performed successful scaling studies on Luna up to 16K PE size-jobs with linear scaling, running the large 3D simulations required for the analysis of Furrow. They will be investigating scaling studies on the Cielo system with the Lustre file system in Q4. Overall average capacity utilization was impacted by negative effects of the LANL Voluntary Separation Program (VSP) at the beginning of Q3, in which programmatic staffing was reduced by 6%, with further losses due to management backfills and attrition, resulting in about 10% fewer users. All classified systems were impacted in April by a planned 2 day red network outage. ASC capacity workload continues to focus on code development, regression testing, and verification and validation (V&V) studies. Significant capacity cycles were used in preparation for a JOWOG in May and several upcoming L2 milestones due in Q4. A network transition has been underway on the unclassified networks to increase access of all ASC users to the unclassified systems through the Yellow Turquoise Integration (YeTI) project. This will help to alleviate the longstanding shortage of resources for ASC unclassified code development and regression testing, and also make a broader palette of machines available to unclassified ASC users, including PSAAP Alliance users. The Moonlight system will be the first capacity resource to be made available through the YETI project, and will make available a significant increase in cycles, as well as GPGPU accelerator technology. The Turing and Lobo machines will be decommissioned in the next quarter. ASC projects running on Cielo as part of the CCC-3 include turbulence, hydrodynamics, burn, asteroids, polycrystals, capability and runtime performance improvements, and materials including carbon and silicone.

  1. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  2. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  3. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1997-01-01

    Since 1987, many electric utilities throughout North America have been actively promoting demand-side management (DSM), the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them are the subjects of this paper.

  4. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1995-12-31

    Since 1987, many electric utilities throughout North America have been actively promoting DSM--demand-side management, the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them--these are the subjects of this paper.

  5. Cpp Utility - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2014-09-08

    A collection of general Umbra modules that are reused by other Umbra libraries. These capabilities include line segments, file utilities, color utilities, string utilities (for std::string), list utilities (for std ::vector ), bounding box intersections, range limiters, simple filters, cubic roots solvers and a few other utilities.

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 87,665 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 65,000 4,000 12,000 7,500 26 280 Pennsylvania

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1986 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2015 JAN 1, 1986 16,346 6,892 1,880 5,214 463 1,125 3,744 8,791 NA JAN 1, 1987 16,460 6,935

  8. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1986 to January 1, 2015 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1986 941 276 804 258 246 356 2,357 NA JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN

  9. Working and Net Available Shell Storage Capacity

    Reports and Publications (EIA)

    2015-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  10. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  11. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200

  12. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,268,500 1,236,500 32,000 1,332,000 1,297,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  13. Utility Savings & Refund, LLC | Open Energy Information

    Open Energy Info (EERE)

    large capacity - in the megawatts, and rapid response. Potential applications include renewable integration - solar and wind, peak shaving - load shifting, uninterruptible...

  14. Utility Rebates and Incentive Programs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Fact sheet overview of the Federal Utility Partnership Working Group (FUPWG), including group objectives, activities, and services.

  15. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  16. Federal Utility Partnership Working Group - Utility Interconnection...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group (FUPWG) meeting-discusses solarphotovoltaic (PV) projects to connect with utility in California and their issues. fupwgfall12jewell.pd...

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2014 Lindsay Goldberg LLC/Axeon Speciality Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Savannah, GA 28,000 Lindsay Goldberg LLC/Axeon Specialty Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Paulsboro, NJ 70,000 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form

  18. Positioning the electric utility to build information infrastructure

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

  19. MTV Utility Library

    Energy Science and Technology Software Center (OSTI)

    2008-02-29

    The MSV Java Utility Library contains software developed over many years for many sponsors. (This work is not a derivative of CB-EMIS), but rather support to the CB-EMIS software). Projects that have used and contributed to code in this library: CB-EMIS (PROTECT), BWIC, Fort Future, Teva, Integrated Oceans, ENKIMDU, RCW, JEMS, JWACS, EPA watershed, and many others. This library will continue to be used in other non-CB-EMIS related projects. The components include: Spatial components: Multi-coordinatemore » system spatial objects. 2D spatial indexing system, and polygon griding system. Data translation: Allows import and export of file based data to and from object oriented systems. Multi-platform data streams: Allows platform specific data streams to operate on any support platform. Other items include printing, custom GUI components, support for NIMA Raster Product Format, program logging utilities and others.« less

  20. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  1. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    SciTech Connect (OSTI)

    Denholm, Paul; Diakov, Victor; Margolis, Robert

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  2. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

  3. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  4. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In 2015, H.B. 2941 expanded this requirement to include a rate option with a specific renewable energy resource, such as solar photovoltaics, if the Public Utilities Commission finds there is...

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Year: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 prior issues Go Data series include fuel, electricity, and ... 2015 Source --- Energy Information Administration (EIA), ...

  6. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  7. Federal Utility Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

  8. Utility Energy Service Contracts for Federal Agencies

    Broader source: Energy.gov [DOE]

    Utility Energy Service Contracts (UESCs) allow federal agencies to take advantage of energy management services offered by their serving utilities including energy- and water-efficiency improvements, renewable energy, and demand-reduction.

  9. Utility Infrastructure Improvements Using GSA Areawide Contract

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the General Services Administration's (GSA's) authority for utility services, including area-wide services and the Green Button initiative.

  10. Utilities Offering Federal Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    The Energy Policy Act of 1992, codified as 42 USC Section 8256 (c) Utility Incentive Programs, authorizes and encourages agencies to participate in programs to increase energy efficiency and for water conservation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities.

  11. Property:USGSMeanCapacity | Open Energy Information

    Open Energy Info (EERE)

    USGSMeanCapacity Jump to: navigation, search Property Name USGSMeanCapacity Property Type String Description Mean capacity potential at location based on the USGS 2008 Geothermal...

  12. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  13. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  14. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Potential Impacts to Utilities Electrolytic Hydrogen Production Workshop February 28, 2014 Frank Novachek Director, Corporate Planning 2 Electrolytic Hydrogen Production Potential Impacts - Electric System * Reliability * Capacity * Regulation * Generation Resources * On/Off Peak * Dispatchability Renewables Integration System Operations Electric Load Hydrogen Production * Ramp Control * Reserves * Plant Cycling 3 Unique Opportunities - Electric  Increased

  15. U.S. Weekly Inputs & Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Operable Capacity (Calendar Day) 18,172 18,172 18,172 18,172 18,172 18,172 1990-2016 Percent Operable Utilization 88.3 87.3 88.3 89.1 89.0 88.4 1990-2016 Refiner and Blender Net ...

  16. Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic

  17. Tribal Utility Policy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Policy Issues New Mexico July 27, 2015 Margaret ... *US Energy Information Administration New ... nation in utility-scale electricity generation from solar ...

  18. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  19. EIS-0171: Pacificorp Capacity Sale

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) EIS assesses the proposed action of providing surplus power from its facilites to PacifiCorp in response to its request for a continued supply of firm capacity. BPA has surplus electrical capacity (peakload energy) that BPA projects will not be required to meet its existing obligations.

  20. WINDExchange: Utility-Scale Wind

    Wind Powering America (EERE)

    Utility-Scale Wind Photo of two people standing on top of the nacelle of a utility-scale wind turbine. Wind is an important source of affordable, renewable energy, currently supplying nearly 5% of our nation's electricity demand. By generating electricity from wind turbines, the United States can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

  1. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  2. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  3. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  4. Avista Utilities (Gas)- Prescriptive Commercial Incentive Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including...

  5. Springfield Utility Board- Energy Savings Plan Program

    Broader source: Energy.gov [DOE]

    The Springfield Utility Board provides industrial customers with a comprehensive report to identify cost effective efficiency improvements. Eligible measures include high efficiency motors,...

  6. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    SciTech Connect (OSTI)

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  7. The Utility Management Conference

    Broader source: Energy.gov [DOE]

    The Utility Management Conference™ 2016 in San Diego is the place to be for leading utility and consulting staff. The technical program has been expanded to 36 sessions running in four concurrent rooms in order to provide utility leaders with the latest tools, techniques, best practices, and emerging solutions you need for effective utility management. This event will empower attendees, leading the water sector “On the Road to the Utilities of the Future.”

  8. Navajo Tribal Utility Authority Moves Forward with First Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant January 14, ...

  9. A Case Study of Danville Utilities: Utilizing Industrial Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing ...

  10. Water Constraints in an Electric Sector Capacity Expansion Model

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart; Newmark, Robin; Martinez, Andrew; Sullivan, Patrick; Tidwell, Vince

    2015-07-17

    This analysis provides a description of the first U.S. national electricity capacity expansion model to incorporate water resource availability and costs as a constraint for the future development of the electricity sector. The Regional Energy Deployment System (ReEDS) model was modified to incorporate water resource availability constraints and costs in each of its 134 Balancing Area (BA) regions along with differences in costs and efficiencies of cooling systems. Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013b). Scenarios analyzed include a business-as-usual 3 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. scenario without water constraints as well as four scenarios that include water constraints and allow for different cooling systems and types of water resources to be utilized. This analysis provides insight into where water resource constraints could affect the choice, configuration, or location of new electricity technologies.

  11. The distributed utility: A new electric utility planning and pricing paradigm

    SciTech Connect (OSTI)

    Feinstein, C.D.; Orans, R.; Chapel, S.W.

    1997-12-31

    The distributed utility concept provides an alternate approach to guide electric utility expansion. The fundamental idea within the distributed utility concept is that particular local load increases can be satisfied at least cost by avoiding or delaying the more traditional investments in central generation capacity, bulk transmission expansion, and local transmission and distribution upgrades. Instead of these investments, the distributed utility concept suggests that investments in local generation, local storage, and local demand-side management technologies can be designed to satisfy increasing local demand at lower total cost. Critical to installation of distributed assets is knowledge of a utility system`s area- and time-specific costs. This review introduces the distributed utility concept, describes an application of ATS costs to investment planning, discusses the various motivations for further study of the concept, and reviews relevant literature. Future research directions are discussed.

  12. COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3

  13. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOE Patents [OSTI]

    Sisk, Francis J. (Washington Township, Fayette County, PA)

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor motor for at least a predetermined time in response to a condition of the control means operative to initiate a change in the operating direction of the compressor when it restarts.

  14. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  15. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  16. Utility Battery Storage Systems Program report for FY93

    SciTech Connect (OSTI)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  17. Utility Geothermal Development Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Geothermal Development Strategies Utility Geothermal Development Strategies The following presentations are from a Webinar conducted on December 9, 2009, that was hosted by the Geothermal Resources Council (GRC) and sponsored by the U.S. Department of Energy Geothermal Technologies Office. The Webinar focused on ways utilities can include or expand cost-effective applications of geothermal technologies in their renewable energy and energy efficiency portfolios, including financing

  18. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  19. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  20. Utility Partnerships Program Overview

    SciTech Connect (OSTI)

    2014-10-03

    Document describes the Utility Partnerships Program within the U.S. Department of Energy's Federal Energy Management Program.

  1. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  2. Spray dryer capacity stretched 50%

    SciTech Connect (OSTI)

    Paraskevas, J.

    1983-01-01

    This article describes plant equipment modifications which has resulted in a 50% increase in spray drying capacity. The installation of a new atomizer and screening system in NL Chemicals' Newberry Springs plant which produces natural clays for use as rheological additives in industrial coatings, cosmetics and other products, resulted in a 50% increase in spray drying capacity. Energy consumption per pound of product was reduced by 7%, and product quality improved. This was achieved in less than three months at an investment of less than 10% of what an additional spray dryer would have cost.

  3. MHK technology developments include current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology developments include current energy conversion (CEC) devices, for example, hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering, design, and analysis of wind power technologies, and its vast research complex, including high- performance computing (HPC), advanced materials and coatings, nondestructive

  4. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  5. Yurok Tribe - Tribal Utility Feasibility Study

    Energy Savers [EERE]

    9/05 Yurok Tribe Tribal Utility Feasibility Study & Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance Presented By: Dustin Jolley, Tribal Engineer 10/19/05 Location 10/19/05 Background * Traditional livelihood on the Yurok Reservation is based upon subsistence harvest of salmon on the Klamath River. * Historically 70% of residents on the Yurok Reservation have not had convenient access to power or phone. * The Yurok Reservation straddles two counties and is

  6. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  7. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide...

  8. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  9. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  11. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  12. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Working and Net Available Shell Storage Capacity With Data for September 2015 | Release ... Containing storage capacity data for crude oil, petroleum products, and selected biofuels. ...

  13. Property:Capacity | Open Energy Information

    Open Energy Info (EERE)

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  14. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Paradise","Coal","Tennessee Valley Authority",2201 2,"Trimble County","Coal","Louisville Gas & Electric Co",2185 3,"Ghent","Coal","Kentucky Utilities Co",1932 4,"E W Brown","Natural gas","Kentucky Utilities Co",1496 5,"Mill Creek

  15. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  16. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  17. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  18. When Utility Bills Attack!

    Broader source: Energy.gov [DOE]

    As proactive as I am with my monthly budgeting, I tend to be reactive when it comes to my monthly utility bills.

  19. Resources for Utility Regulators

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to utility regulators, organized by topic.

  20. Utilities | Open Energy Information

    Open Energy Info (EERE)

    historic, in human and machine readable formats. See also the NREL System Advisor Model (SAM) and NREL's BEOpt. Utility Outage Information dataset - Information and resources...

  1. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  2. USET Tribal Utility Summit

    Broader source: Energy.gov [DOE]

    The United South and Eastern Tribes (USET) is hosting its annual Tribal Utility Summit at the Harrah's Cherokee Casino and hosted by Eastern Band of Cherokee Indians.

  3. Utility Sounding Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Conduit Utility Sounding Board Residential Segmentation Six Going On Seven The USB was created to inform BPA on the implementation of energy efficiency programs...

  4. Utility Partnerships Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... UESCs help utilities improve key customer load profles, meet effciency and renewable energy portfolio standards, and provide exemplary customer service. Federal sites beneft from ...

  5. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers significant electric industry trends and industry priorities with federal customers.

  6. winter_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  7. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  8. Dalton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Dalton Utilities Jump to: navigation, search Name: Dalton Utilities Place: Georgia Phone Number: 706-278-1313 Website: www.dutil.comresidentialinde Twitter: @DaltonUtilities...

  9. Utility+Utility Access Map | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  10. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or other industries are interested in lignin as a potential fuel or feedstock but need more information on properties.

  11. Utility FGD Survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  12. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of alternative incentive approaches on utility shareholders and customers if energy efficiency is implemented under various utility operating, cost, and supply conditions.We used and adapted a spreadsheet-based financial model (the Benefits Calculator) which was developed originally as a tool to support the National Action Plan for Energy Efficiency (NAPEE). The major steps in our analysis are displayed graphically in Figure ES- 1. Two main inputs are required: (1) characterization of the utility which includes its initial financial and physical market position, a forecast of the utility?s future sales, peak demand, and resource strategy to meet projected growth; and (2) characterization of the Demand-Side Resource (DSR) portfolio ? projected electricity and demand savings, costs and economic lifetime of a portfolio of energy efficiency (and/or demand response) programs that the utility is planning or considering implementing during the analysis period. The Benefits Calculator also estimates total resource costs and benefits of the DSR portfolio using a forecast of avoided capacity and energy costs. The Benefits Calculator then uses inputs provided in the Utility Characterization to produce a ?business-as usual? base case as well as alternative scenarios that include energy efficiency resources, including the corresponding utility financial budgets required in each case. If a decoupling and/or a shareholder incentive mechanism are instituted, the Benefits Calculator model readjusts the utility?s revenue requirement and retail rates accordingly. Finally, for each scenario, the Benefits Calculator produces several metrics that provides insights on how energy efficiency resources, decoupling and/or a shareholder incentive mechanism impacts utility shareholders (e.g. overall earnings, return on equity), ratepayers (e.g., average customer bills and rates) and society (e.g. net resource benefits).

  13. Utility flue gas mercury control via sorbent injection

    SciTech Connect (OSTI)

    Chang, R.; Carey, T.; Hargrove, B.

    1996-12-31

    The potential for power plant mercury control under Title III of the 1990 Clean Air Act Amendments generated significant interest in assessing whether cost effective technologies are available for removing the mercury present in fossil-fired power plant flue gas. One promising approach is the direct injection of mercury sorbents such as activated carbon into flue gas. This approach has been shown to be effective for mercury control from municipal waste incinerators. However, tests conducted to date on utility fossil-fired boilers show that it is much more difficult to remove the trace species of mercury present in flue gas. EPRI is conducting research in sorbent mercury control including bench-scale evaluation of mercury sorbent activity and capacity with simulated flue gas, pilot testing under actual flue gas conditions, evaluation of sorbent regeneration and recycle options, and the development of novel sorbents. A theoretical model that predicts maximum mercury removals achievable with sorbent injection under different operating conditions is also being developed. This paper presents initial bench-scale and model results. The results to date show that very fine and large amounts of sorbents are needed for mercury control unless long residence times are available for sorbent-mercury contact. Also, sorbent activity and capacity are highly dependent on flue gas composition, temperature, mercury species, and sorbent properties. 10 refs., 4 figs., 2 tabs.

  14. PAM stack test utility

    Energy Science and Technology Software Center (OSTI)

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  15. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOE Patents [OSTI]

    Manthiram, Arumugam (Austin, TX); Wu, Yan (Austin, TX)

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  16. Hualapai Tribal Utility Project

    Office of Environmental Management (EM)

    Hualapai Tribal Utility Project Tribal Utility Project DOE First Steps Program DOE First Steps Program Jack Ehrhardt Jack Ehrhardt - - Hualapai Planning Director Hualapai Planning Director WHO WE ARE WHO WE ARE ~1 MILLION ACRES IN ~1 MILLION ACRES IN NW ARIZONA NW ARIZONA 108 MILES OF THE 108 MILES OF THE GRAND CANYON GRAND CANYON 2500 Members 2500 Members Peach Springs Peach Springs Community Community ~240 electric customers ~240 electric customers ECONOMIC SITUATION ECONOMIC SITUATION Very

  17. Utility Access Questionnaire | Utility Access Questionnaire

    Open Energy Info (EERE)

    collection of information is estimated to average 20 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and...

  18. Iran outlines oil productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  19. Utility Partnership Program Strategic Partnership Meetings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Strategic Partnership Meetings Utility Partnership Program Strategic Partnership Meetings The Federal Energy Management Program (FEMP) hosts strategic partnership meetings for federal agencies and their serving utilities as part of the Utility Partnerships Program. At these meetings, FEMP experts train attendees about partnership requirements and the utility energy service contract process, including how to: Successfully complete a utility partnership Determine the appropriate funding

  20. Utilization of CFB fly ash for construction applications

    SciTech Connect (OSTI)

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  1. California: Conducting Polymer Binder Boosts Storage Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award August 19, 2013 - 10:17am ...

  2. DOE Transmission Capacity Report | Department of Energy

    Office of Environmental Management (EM)

    Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise

  3. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  4. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  5. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility

    Office of Scientific and Technical Information (OSTI)

    Planning and Operations (Technical Report) | SciTech Connect Technical Report: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations Citation Details In-Document Search Title: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar

  6. Wireless Battery Management System for Safe High-Capacity Energy Storage

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy Storage × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  7. Integration of distributed resources in electric utility systems: Current interconnection practice and unified approach. Final report

    SciTech Connect (OSTI)

    Barker, P.; Leskan, T.; Zaininger, H.; Smith, D.

    1998-11-01

    Deregulation of the electric utility industry, new state and federal programs, and technology developments are making distributed resources (DR) an increasingly utilized option to provide capacity for growing or heavily loaded electric power systems. Optimal DR placement near loads provides benefits not attainable from bulk generation system additions. These include reduced loading of the T and D system, reduced losses, voltage support, and T and D equipment upgrade deferments. The purpose of this document is to review existing interconnection practices and present interconnection guidelines are relevant to the protection, control, and data acquisition requirements for the interconnection of distributed resources to the utility system. This is to include protection performance requirements, data collection and reporting requirements, on-line communication requirements, and ongoing periodic documentation requirements. This document also provides guidelines for the practical placement and sizing of resources as pertinent to determining the interconnection equipment and system control requirements. The material contained herein has been organized into 4 sections dealing with application issues, existing practices, a unified interconnection approach, and future work. Section 2 of the report discusses the application issues associated with distributed resources and deals with various engineering issues such as overcurrent protection, voltage regulation, and islanding. Section 3 summarizes the existing utility interconnection practices and guidelines as determined from the documents provided by participating utilities. Section 4 presents a unified interconnection approach that is intended to serve as a guide for interconnection of distributed resources to the utility system. And finally, Section 5 outlines possible future areas of study to expand upon the topics discussed in this report.

  8. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  9. Tri-Laboratory Linux Capacity Cluster 2007 SOW

    SciTech Connect (OSTI)

    Seager, M

    2007-03-22

    The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

  10. Flora Utilities | Open Energy Information

    Open Energy Info (EERE)

    Flora Utilities Jump to: navigation, search Name: Flora Utilities Place: Indiana Phone Number: 574-967-4971 Website: www.townofflora.orgflora-util Outage Hotline: 574-967-4971...

  11. Wholesale service obligation of electric utilities

    SciTech Connect (OSTI)

    Norton, F.L. IV; Spivak, M.R.

    1985-01-01

    The basic concepts of public utility status and utility regulation intertwine the obligation to provide service to the public as reasonably demanded with rate regulation and shielding from competitive interference. While a common law service obligation was not part of the Federal Power Act, the Federal Energy Regulatory Commission has taken the position that service, once commenced, may not be terminated without its approval. This view of Commission authority may not be supported by the legislative history of the Federal Power Act or by judicial precedent. The requirement to serve apart from recognition of a right to serve may result in increased rates in the near term and insufficient capacity, or both, in the long run. A review by the Commission and the courts is examining ways to introduce competition and shift risks from ratepayers to shareholders.

  12. WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps

    Wind Powering America (EERE)

    Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the

  13. For Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance » For Utilities For Utilities Utilities helped industrial customers prepare for SEP certification in SEP demonstrations. Utilities helped industrial customers prepare for SEP certification in SEP demonstrations. Utilities and energy efficiency program administrators are testing SEP as a practical, energy-saving program offering. Utilities and energy efficiency program administrators are testing SEP as a practical, energy-saving program offering. Superior Energy

  14. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Reader, Part II. Sun story. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Reader, Part II. Sun story. [Includes glossary] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  15. Solar Energy Education. Renewable energy: a background text. [Includes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    glossary] (Technical Report) | SciTech Connect energy: a background text. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Renewable energy: a background text. [Includes glossary] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  16. Microfluidic devices and methods including porous polymer monoliths

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science

  17. UESC Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    Webinar covers utility energy service contracts (UESC), which allow utilities to provide their Federal agencies with comprehensive energy and water efficiency improvements and demand-reduction services.

  18. Industrial Energy Efficiency Utility Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    State, regional, and utility partners can learn how to help manufacturing customers save energy by reading the following presentations. Webinars feature experts from utilities, government, and...

  19. Cannelton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Cannelton Utilities Jump to: navigation, search Name: Cannelton Utilities Place: Indiana Phone Number: (812) 547-7919 Outage Hotline: (812) 547-7919 References: EIA Form EIA-861...

  20. Hustisford Utilities | Open Energy Information

    Open Energy Info (EERE)

    Hustisford Utilities Jump to: navigation, search Name: Hustisford Utilities Place: Wisconsin Phone Number: (920) 349-3650 Website: www.hustisford.comindex.asp?S Outage Hotline:...

  1. Maryville Utilities | Open Energy Information

    Open Energy Info (EERE)

    Maryville Utilities Jump to: navigation, search Name: Maryville Utilities Place: Tennessee Phone Number: 865.273.3900 or 865-273-3300 Website: www.maryvillegov.comutility-p...

  2. Slinger Utilities | Open Energy Information

    Open Energy Info (EERE)

    Slinger Utilities Jump to: navigation, search Name: Slinger Utilities Place: Wisconsin Phone Number: (262)644-5265 Website: www.vi.slinger.wi.govindex.as Outage Hotline: (262)...

  3. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  4. Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2012-03-01

    This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

  5. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  6. A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Provide Energy Efficiency Resources for Key Accounts | Department of Energy Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts This case study provides information on how Danville Utilities used Industrial Assessment Centers to provide energy efficiency resources to key accounts. PDF

  7. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. White Earth Reservation - Minnesota Tribal Coalition Tribal Utility Capacity Building Project

    Energy Savers [EERE]

    Minnesota Tribal Coalition White Earth Leech Lake Grand Portage Community Center- 840,000 kWh/yr Casino/Hotel- 2,200,000 kWh/yr Households- 1,440,000 kWh/yr Tribal Council Offices- 640,000 kWh/yr Total Consumption: 5,120,000 kWh/yr Annual Cost: $358,400.00 Total Electricity Consumption: *Approximately 1MW of Wind to power community center and hotel/casino *20% Hydrogen backup (electrolysis, hydrogen storage, and fuel cell) located at community center *All electricity production to be consumed by

  9. Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

  10. Widget:UtilityRatesByCompany | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This widget aids the user in finding utility rates for a given company. Parameters none - This is just a wiki js file include script....

  11. City of Tallahassee Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City of Tallahassee Utilities (CTU) offers residential customers rebates for the purchase of ENERGY STAR appliances and heating and cooling equipment. Qualifying appliances include refrigerators,...

  12. Lodi Electric Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program.

  13. September 25 Webinar to Highlight Potential Tribal and Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Speakers include: Randy Manion, WAPA Nathan Dexter, DOE Office of Indian Energy Anirudh Paduru, National Renewable Energy Laboratory (NREL): Tribal Utility Partnership ...

  14. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  15. State and Utility Partnerships FY 2009 Annual Report

    SciTech Connect (OSTI)

    none,

    2010-06-25

    The FY 2009 Annual Report includes information on ITP's parnerships with states and utilities and offers information on goals and achievements and opportunities to partner with DOE.

  16. WINDExchange: U.S. Installed Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  17. Capacity planning in a transitional economy: What issues? Which models?

    SciTech Connect (OSTI)

    Mubayi, V.; Leigh, R.W.; Bright, R.N.

    1996-03-01

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example) within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.

  18. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  19. STEP Utility Bill Analysis Report

    Broader source: Energy.gov [DOE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  20. Property:Cooling Capacity | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation Study615 kW Waukesha Packaged System + 90 + Distributed Generation...

  1. Increasing the Capacity of Existing Power Lines

    SciTech Connect (OSTI)

    2013-04-01

    The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects.

  2. EEI/DOE Transmission Capacity Report

    Broader source: Energy.gov (indexed) [DOE]

    ... The data show a continuation of past trends. Specifically, transmission capacity is being ... 1978 through 2012. These results show trends over time at the national and regional ...

  3. ,"Washington Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release...

  4. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  5. Voluntary Initiative: Partnering to Enhance Program Capacity

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program Capacity, Call Slides and Summary, May 8, 2014.

  6. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  7. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update (EIA)

    ... changed to active. References Methodology Related Links Storage Basics Field Level Annual Capacity Data Map of Storage Facilities Natural Gas Data Tables Short-Term Energy Outlook

  8. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  9. Climate Change Capacity Development (C3D+) | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development (C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) AgencyCompany...

  10. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    Open Energy Info (EERE)

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs (Redirected from Building Capacity for Innovative Policy NAMAs) Jump to: navigation, search Name Building Capacity...

  11. UNDP-Low Emission Capacity Building Programme | Open Energy Informatio...

    Open Energy Info (EERE)

    Capacity Building Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme AgencyCompany...

  12. NBP RFI: Communications Requirements - Reply Comments of Utilities Telecom

    Office of Environmental Management (EM)

    Council | Department of Energy Requirements - Reply Comments of Utilities Telecom Council NBP RFI: Communications Requirements - Reply Comments of Utilities Telecom Council The Utilities Telecom Council hereby files its reply comments in response to the Department of Energy (DOE) request for information on the communications needs of electric utilities and other such critical infrastructure industries (CII). The comments on the record- including those by APPA, EEI and NRECA, as well as API -

  13. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  14. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: Demand-side management This refers to efforts to reduce energy use through energy efficiency and conservation measures. Off-grid, facility and household scale renewable energy systems These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. Medium to large scale renewable energy development for sale to the grid In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

  15. Utilities and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Mike Waters - Duke Energy November 18th, 2014 Duke Energy  Electricity provider for over 7.2 million retail customers  6 states: NC, SC, FL, OH, IN, KY  104,000 sq. miles of service territory  ~50,000 MW of regulated generation  Fortune 250 company  Vertically integrated utility  Headquarters: Charlotte, NC 2 Duke Energy Support Activities Goals  Provide safe, reliable, affordable and increasingly clean electricity to power the movement of people and goods 

  16. Tribal Utility Formation

    Energy Savers [EERE]

    I L L E P O W E R A D M I N I S T R A T I O N Tribal Utility Formation in the Bonneville Power Administration Service Territory Ken Johnston Acting Tribal Affairs Manager BPA TRIBAL AFFAIRS DEPARTMENT JULY 2015 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 The Basics  BPA markets power from 31 Federal dams, the Columbia Generating Station Nuclear Plant, and several small non- Federal power plants  About 80% of the power BPA sells is hydroelectric  BPA accounts for about

  17. Tribal Utility Policy Issues

    Energy Savers [EERE]

    Utility Policy Issues New Mexico July 27, 2015 Margaret Schaff Kanim Associates, LLC (An Indian Owned Consulting Firm) 303-443-0182 mschaff@att.net *US Energy Information Administration New Mexico Energy Stats  Sixth in crude oil production in the nation in 2013.  5% of U.S. marketed natural gas production in 2012  Largest coal-fired electric power plants in NM both on Navajo Nation  2,100-megawatt Four Corners (Navajo Mine) (APS)  1,643-megawatt San Juan (San Juan Mines) (Public

  18. Coming utility squeeze play

    SciTech Connect (OSTI)

    Stoiaken, L.N.

    1988-02-01

    Like a sleeping giant, utilities are waking up and preparing to participate in the increasingly competitive power production industry. Some are establishing subsidiaries to participate in join venture deals with independents. Others are competing by offering lucrative discount or deferral rates to important industrial and commercial customers considering cogeneration. And now, a third approach is beginning to shape up- the disaggregation of generation assets into a separate generation company, or genco. This article briefly discusses these three and also devotes brief sections to functional segmentation and The regulatory arena.

  19. A global scale mechanistic model of the photosynthetic capacity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ali, A. A.; Xu, C.; Rogers, A.; Fisher, R. A.; Wullschleger, S. D.; McDowell, N. G.; Massoud, E. C.; Vrugt, J. A.; Muss, J. D.; Fisher, J. B.; et al

    2015-08-10

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc, max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25 C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture,moreelectron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed Vc, max25 and 65 % of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc, max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.less

  20. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  1. Utilization Technology Institute | Open Energy Information

    Open Energy Info (EERE)

    Utilization Technology Institute Jump to: navigation, search Name: Utilization Technology Institute Place: Des Plaines, IL References: Utilization Technology Institute1...

  2. Utility Energy Service Contracts Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    This webinar targets Federal staff, as well as utility representatives, and provides an understanding of the legal parameters, contracting requirements, financing options, and other aspects of utility energy service contracts (UESC).

  3. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  4. utility rate | OpenEI Community

    Open Energy Info (EERE)

    utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next...

  5. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility

    Office of Scientific and Technical Information (OSTI)

    Planning and Operations (Technical Report) | SciTech Connect The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations Citation Details In-Document Search Title: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  6. Utility Partnership Webinar Series: State Mandates for Utility Energy Efficiency

    Broader source: Energy.gov [DOE]

    This webinar highlights state mandates from throughout the country, and how they’ve influenced utility industrial energy efficiency programs.

  7. The NASA CSTI High Capacity Power Project

    SciTech Connect (OSTI)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  8. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2002, each electric utility must inform its customers on a quarterly basis of the voluntary option to purchase green power. The details of each utility's program must be...

  9. Utility Connection | Open Energy Information

    Open Energy Info (EERE)

    your utility company, then provide us a little information about yourself. Only one person from each utility can answer these questions and the results from your input will be...

  10. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  11. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect (OSTI)

    Ellis, Abraham; Mousseau, Tom

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  12. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  13. Proceedings of the distributed utility valuation project institutional issues workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    These proceedings summarize the discussions during a one-day working session on institutional issues related to the distributed utility (DU) concept. The purpose of the session was to provide an initial assessment of the {open_quotes}institutional{close_quotes} issues, including legal, regulatory, industry structure, utility organization, competition, and related matters that may affect the development and the relationships among distributed utility stakeholders. The assessment was to identify institutional barriers to utilities realizing benefits of the distributed concept (should these benefits be confirmed), as well as to identify opportunities for utilities and other stakeholders for moving ahead to more easily capture these benefits.

  14. Planned Geothermal Capacity | Open Energy Information

    Open Energy Info (EERE)

    Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and...

  15. Capacity Building Project with Howard University

    Broader source: Energy.gov [DOE]

    The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of...

  16. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  17. Patent: Microelectromechanical pump utilizing porous silicon...

    Office of Scientific and Technical Information (OSTI)

    pump utilizing porous silicon Citation Details Title: Microelectromechanical pump utilizing porous silicon

  18. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  19. Alaska Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Total Storage Capacity 83,592 83,592 2013-2014 Depleted Fields 83,592 83,592 2013-2014 Total Working Gas Capacity 67,915 67,915 2013-2014 Depleted Fields 67,915 67,915 2013-2014 Total Number of Existing Fields 5 5 2013-2014 Depleted Fields 5 5 2013

  20. Topic A Note: Includes STEPS Subtopic

    Energy Savers [EERE]

    Topic A Note: Includes STEPS Subtopic 33 Total Projects Developing and Enhancing Workforce Training Programs

  1. Dedicated heterogeneous node scheduling including backfill scheduling

    DOE Patents [OSTI]

    Wood, Robert R. (Livermore, CA); Eckert, Philip D. (Livermore, CA); Hommes, Gregg (Pleasanton, CA)

    2006-07-25

    A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.

  2. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  3. CO2 Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 Utilization CO2 Utilization Carbon dioxide (CO2) use and reuse efforts focus on the conversion of CO2 to useable products and fuels that will reduce CO2 emissions in areas where geologic storage may not be an optimal solution. These include: Enhanced Oil/Gas Recovery - Injecting CO2 into depleting oil or gas bearing fields to maximize the amount of CO2 that could be stored as well as maximize hydrocarbon production. View the latest projects selected in FY 2014. CO2 as Feedstock - Use CO2 as

  4. Utility-Scale Solar 2014. An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Seel, Joachim

    2015-09-01

    Other than the nine Solar Energy Generation Systems (“SEGS”) parabolic trough projects built in the 1980s, virtually no large-scale or “utility-scale” solar projects – defined here to include any groundmounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar thermal power (“CSP”) project larger than 5 MWAC – existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in both 2013 and 2014 and that is expected to continue for at least the next few years. Over this same short period, CSP also experienced a bit of a renaissance in the United States, with a number of large new parabolic trough and power tower systems – some including thermal storage – achieving commercial operation. With this critical mass of new utility-scale projects now online and in some cases having operated for a number of years (generating not only electricity, but also empirical data that can be mined), the rapidly growing utility-scale sector is ripe for analysis. This report, the third edition in an ongoing annual series, meets this need through in-depth, annually updated, data-driven analysis of not just installed project costs or prices – i.e., the traditional realm of solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects in the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are presented where appropriate.

  5. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  6. Utilities Department Resource Management Division

    Open Energy Info (EERE)

    Service address: Facility Description: Contract Capacity: kW (CEC-AC), based on based on solar array rating (Panel rated output at PV USA test conditions x inverter efficiency)...

  7. Process for modifying the metal ion sorption capacity of a medium

    DOE Patents [OSTI]

    Lundquist, Susan H. (White Bear Township, MN)

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  8. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  9. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  10. Expansion fractionation capacity of the LPG-ULE plant

    SciTech Connect (OSTI)

    Morin, L.M.C.

    1999-07-01

    The Western Division of PDVSA has among other facilities a NGL Fractionation Complex located onshore in Ul'e. The complex consists of three plants, the first and second older plants, LPG-1 and LPG-2, which fractionate the NGL to produce propane, a butane mix and natural gasoline. The third plant, LPG-3, fractionates the butane mix from the LPG-1 and 2 plants to produce iso and normal butane. Several optimization projects already in progress will increase the NGL production to 12,200 b/d. For this reason it was decided to conduct a study of the existing fractionation facilities and utilities systems to determine their capacities. This evaluation revealed that some of the fractionation towers would have some limitations in the processing of the expected additional production. The study recommended an option to increase the capacity of the fractionation towers by lowering their operating pressure, in order to take advantage of relative volatility increase between the key components, which allows easier separation, as well as reducing the heat duty required. The completed study also determined that this option is more economically convenient than the replacement of the existing fractionation towers.

  11. Public Utilities Specialist (Energy Efficiency)

    Broader source: Energy.gov [DOE]

    This position will serve as a Public Utilities Specialist in the Programs group (PEJC) of the Program Implementation organization. The Program Implementation organization is responsible for the...

  12. Pueblo of Laguna Utility Authority

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRIBAL UTILITY KAWAIKA HANU INTERNET LET US GET YOU CONNECTED Kawaika Hanu is your local internet service provider offering high speed internet with competitive rates. ...

  13. Waupun Utilities | Open Energy Information

    Open Energy Info (EERE)

    .waupunutilities.com Facebook: https:www.facebook.compagesUtilities111651042230525?refbrrs Outage Hotline: 920-324-7920 References: EIA Form EIA-861 Final Data File for...

  14. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  15. Sheffield Utilities | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 389-2000 Website: sheffieldutilities.orgelectri Facebook: https:www.facebook.compagesSheffield-Utilities475026559217897 Outage Hotline:...

  16. Decatur Utilities | Open Energy Information

    Open Energy Info (EERE)

    Number: (256) 552-1400 Website: www.decaturutilities.com Twitter: @decaturutility Facebook: https:www.facebook.comDecaturUtilitiesAlabama Outage Hotline: (256) 552-1400...

  17. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  18. Energy Efficiency in Western Utility Resource Plans Implications for

    Office of Environmental Management (EM)

    Regional Assessments and Initiatives | Department of Energy in Western Utility Resource Plans Implications for Regional Assessments and Initiatives Energy Efficiency in Western Utility Resource Plans Implications for Regional Assessments and Initiatives Project scope: Comparative analysis of recent resource plans filed by 14 utilities in the Western U.S. and Canada. Analyze treatment of conventional & emerging resource options-including energy efficiency (EE)-Assess risk analysis &

  19. Rural Utilities Service Electric Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Service Electric Program Rural Utilities Service Electric Program The Rural Utilities Service Electric Program's loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements and replacement required to furnish and improve electric service in rural areas, as well as demand side management, energy conservation programs, and on-grid and off-grid renewable energy systems. Loans are made to corporations,

  20. HPSS Disk Cache Upgrade Caters to Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov HPSS 09 vert NERSC users today are benefiting from a business decision made three years ago by the center's Storage Systems Group (SSG) as they were looking to upgrade the High-Performance Storage System (HPSS) disk cache: rather than focus primarily on

  1. INVESTING IN NEW BASE LOAD GENERATING CAPACITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INVESTING IN NEW BASE LOAD GENERATING CAPACITY Paul L. Joskow April 8, 2008 The views expressed here are my own. They do not reflect the views of the Alfred P. Sloan Foundation, MIT or any other organization with which I am affiliated. THE 25-YEAR VIEW * Significant investment in base-load generating capacity is required over the next 25 years to balance supply and demand efficiently - ~ 200 to 250 Gw (Gross) - Depends on retirements of older steam and peaking units - Depends on demand growth *

  2. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    Open Energy Info (EERE)

    Ukraine-Capacity Building for Low Carbon Growth (Redirected from UNDP-Capacity Building for Low Carbon Growth in Ukraine) Jump to: navigation, search Name UNDP-Capacity Building...

  3. Ozone Risk Assessment Utilities

    Energy Science and Technology Software Center (OSTI)

    1999-08-10

    ORAMUS is a user-friendly, menu-driven software system that calculates and displays user-selected risk estimates for health effects attributable to short-term exposure to tropospheric ozone. Inputs to the risk assessment are estimates of exposure to ozone and exposure-response relationships to produce overall risk estimates in the form of probability distributions. Three fundamental models are included: headcount risk, benchmark risk, and hospital admissions. Exposure-response relationships are based on results of controlled human exposure studies. Exposure estimates aremore » based on the EPA''s probabilistic national ambient air quality standards (NAAQS) exposure model, pNEM/Osub3, which simulates air quality associated with attainment of alternative NAAQS. Using ORAMUS, risk results for 27 air quality scenarios, air quality in 9 urban areas, 33 health endpoints, and 4 chronic health endpoints can be calculated.« less

  4. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  5. Sandia Energy - Utility Operations and Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Operations and Programs Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Utility Operations and Programs Utility...

  6. Business Owners: Prepare for Utility Disruptions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other ...

  7. Green Utility Srl | Open Energy Information

    Open Energy Info (EERE)

    Utility Srl Jump to: navigation, search Name: Green Utility Srl Place: Rome, Italy Zip: 153 Product: Italian PV project developer established by Solon, GESENU and Green Utility...

  8. Fairmont Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Fairmont Public Utilities Comm Jump to: navigation, search Name: Fairmont Public Utilities Comm Place: Minnesota Phone Number: 507-235-6918 Website: fairmont.orgpublic-utilities...

  9. TEST UTILITY COMPANY | Open Energy Information

    Open Energy Info (EERE)

    TEST UTILITY COMPANY Jump to: navigation, search Name: Test Utility Company Place: West Virginia References: Energy Information Administration.1 EIA Form 861 Data Utility Id...

  10. Pascoag Utility District | Open Energy Information

    Open Energy Info (EERE)

    search Name: Pascoag Utility District Place: Rhode Island Website: www.pud-ri.org Twitter: @PascoagUtility Facebook: https:www.facebook.comPascoagUtilityDistrict Outage...

  11. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting:...

  12. Competing Federal Utility Energy Service Contracts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opening utility energy service contracts to competing franchised utility companies ensures ... in its model agreement requires utility companies to competitively select technical ...

  13. Xylose utilization in recombinant Zymomonas

    DOE Patents [OSTI]

    Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2013-01-07

    Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.

  14. Xylose utilization in recombinant zymomonas

    DOE Patents [OSTI]

    Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

    2014-03-25

    Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

  15. Utilization of Estonian oil shale at power plants

    SciTech Connect (OSTI)

    Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

    1996-12-31

    Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

  16. Extruded plastic scintillator including inorganic powders

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  17. Electrochemical system including lamella settler crystallizer

    DOE Patents [OSTI]

    Maimoni, Arturo (Orinda, CA)

    1988-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as will as in other elecrochemical systems requiring separation for phases of different densities.

  18. HT Combinatorial Screening of Novel Materials for High Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for...

  19. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon esp13thackeray.pdf More Documents & Publications Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials Design ...

  1. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Design and Evaluation of High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and ...

  2. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  3. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Tunisia-Capacity Development for GHG inventories and MRV Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  4. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental...

  5. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental Protection...

  6. Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer 2011 DOE ...

  7. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  8. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process...

  9. New Mexico Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. UNDP/EC-China-Climate Change Capacity Building Program | Open...

    Open Energy Info (EERE)

    UNDPEC-China-Climate Change Capacity Building Program Redirect page Jump to: navigation, search REDIRECT EU-UNDP Low Emission Capacity Building Programme (LECBP) Retrieved from...

  11. EC/UNDP Climate Change Capacity Building Program | Open Energy...

    Open Energy Info (EERE)

    ECUNDP Climate Change Capacity Building Program Jump to: navigation, search Name UNDPEC Climate Change Capacity Building Program AgencyCompany Organization The European Union...

  12. Costa Rica-EU-UNDP Climate Change Capacity Building Program ...

    Open Energy Info (EERE)

    EU-UNDP Climate Change Capacity Building Program Jump to: navigation, search Name Costa Rica-EU-UNDP Climate Change Capacity Building Program AgencyCompany Organization The...

  13. FAO-Capacity Development on Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change AgencyCompany Organization: Food and...

  14. India-Vulnerability Assessment and Enhancing Adaptive Capacities...

    Open Energy Info (EERE)

    Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to...

  15. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    Open Energy Info (EERE)

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs Jump to: navigation, search Name Building Capacity for Innovative Policy NAMAs AgencyCompany Organization...

  16. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  17. West Virginia Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) West Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  18. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  19. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  2. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  3. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  6. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  7. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  11. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  12. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  13. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  14. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  15. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  16. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  17. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. ,"Table 4.B Winter Net Internal Demand, Capacity Resources,...

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region," ,"2001-2010 Actual, 2011-2015 Projected" ...

  19. Doubling Geothermal Generation Capacity by 2020: A Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Sources: Energy Information Association (2015) Nameplate Capacity: Form 860 Generator Data, State Electricity Profiles (July 2015). Summer Capacity: Annual Energy Review (2015). ...

  20. Capacity Adequacy and Revenue Sufficiency in Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Title Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Publication...

  1. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  2. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy ...

  3. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2015 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  4. Alaska Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Total Working Gas Capacity 67,915 67,915 67,915 67,915 67,915 67,915 2013-2015 Total Number of Existing Fields 5 5 5 5 5 5

  5. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  6. Maryland Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    64,000 64,000 64,000 64,000 64,000 64,000 2002-2015 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2015 Total Number of Existing Fields 1 1 1 1 1 1

  7. Michigan Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    1,079,462 1,070,462 1,070,462 1,071,630 1,071,630 1,071,630 2002-2015 Total Working Gas Capacity 682,569 682,569 682,569 685,726 685,726 685,726 2012-2015 Total Number of Existing Fields 44 44 44 44 44 44

  8. Minnesota Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    7,000 7,000 7,000 7,000 7,000 7,000 2002-2015 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2

  9. Mississippi Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    31,301 331,301 331,301 331,812 331,812 331,812 2002-2015 Total Working Gas Capacity 200,903 200,903 200,903 201,388 201,388 201,388 2012-2015 Total Number of Existing Fields 12 12 12 12 12 12

  10. Missouri Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    13,845 13,845 13,845 13,845 13,845 13,845 2002-2015 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6

  11. Montana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    76,301 376,301 376,301 376,301 376,301 376,301 2002-2015 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2015 Total Number of Existing Fields 5 5 5 5 5 5

  12. New York Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    245,779 245,779 245,779 245,779 245,779 245,779 2002-2015 Total Working Gas Capacity 126,871 126,871 126,871 126,871 126,871 126,871 2012-2015 Total Number of Existing Fields 26 26 26 26 26 26

  13. Ohio Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    575,794 575,794 575,794 575,794 575,794 575,794 2002-2015 Total Working Gas Capacity 230,828 230,828 230,828 230,828 230,828 230,828 2012-2015 Total Number of Existing Fields 24 24 24 24 24 24

  14. Oklahoma Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    376,435 376,435 374,735 375,135 375,135 375,143 2002-2015 Total Working Gas Capacity 190,955 190,955 189,255 189,455 189,455 191,455 2012-2015 Total Number of Existing Fields 13 13 13 13 13 13

  15. Oregon Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    29,565 29,565 29,565 29,565 29,565 29,565 2002-2015 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2015 Total Number of Existing Fields 7 7 7 7 7 7

  16. Pennsylvania Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    771,422 771,422 771,422 771,422 771,422 771,422 2002-2015 Total Working Gas Capacity 429,796 429,796 429,796 429,796 429,796 429,796 2012-2015 Total Number of Existing Fields 49 49 49 49 49 49

  17. Texas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    832,644 832,644 832,644 832,644 832,644 834,965 2002-2015 Total Working Gas Capacity 528,445 528,335 528,335 528,335 528,335 528,335 2012-2015 Total Number of Existing Fields 36 36 36 36 36 36

  18. Utah Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    124,518 124,518 124,509 124,509 124,509 124,509 2002-2015 Total Working Gas Capacity 54,942 54,942 54,942 54,942 54,942 54,942 2012-2015 Total Number of Existing Fields 3 3 3 3 3 3

  19. Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    9,500 9,500 9,500 9,500 9,500 9,500 2002-2015 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  20. California Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    603,012 603,012 603,012 601,808 601,808 601,808 2002-2015 Total Working Gas Capacity 376,996 376,996 376,996 375,496 375,496 375,496 2012-2015 Total Number of Existing Fields 14 14 14 14 14 14

  1. Colorado Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    130,186 130,186 130,186 130,186 130,186 130,186 2002-2015 Total Working Gas Capacity 63,774 63,774 63,774 63,774 63,774 63,774 2012-2015 Total Number of Existing Fields 10 10 10 10 10 10

  2. Illinois Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,004,598 1,004,598 1,003,899 1,004,100 1,004,100 1,004,100 2002-2015 Total Working Gas Capacity 304,312 304,312 303,613 303,613 303,613 303,613 2012-2015 Total Number of Existing Fields 28 28 28 28 28 28

  3. Indiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    10,749 110,749 110,749 110,749 111,581 111,581 2002-2015 Total Working Gas Capacity 32,760 32,760 32,760 32,760 33,592 33,592 2012-2015 Total Number of Existing Fields 21 21 21 21 21 21

  4. Iowa Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    288,210 288,210 288,210 288,210 288,210 288,210 2002-2015 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2015 Total Number of Existing Fields 4 4 4 4 4 4

  5. Kansas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    82,984 282,984 282,984 282,984 282,984 282,984 2002-2015 Total Working Gas Capacity 122,980 122,980 122,980 122,980 122,980 122,980 2012-2015 Total Number of Existing Fields 17 17 17 17 17 17

  6. Kentucky Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    21,723 221,723 221,723 221,722 221,722 221,722 2002-2015 Total Working Gas Capacity 107,600 107,600 107,572 107,571 107,571 107,571 2012-2015 Total Number of Existing Fields 23 23 23 23 23 23

  7. Louisiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    742,627 742,627 749,867 749,867 749,867 749,867 2002-2015 Total Working Gas Capacity 452,359 452,359 457,530 457,530 457,530 457,530 2012-2015 Total Number of Existing Fields 19 19 19 19 19 19

  8. West Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    528,637 528,637 528,637 528,637 528,637 528,637 2002-2015 Total Working Gas Capacity 259,324 259,324 259,324 259,321 259,321 259,315 2012-2015 Total Number of Existing Fields 30 30 30 30 30 30

  9. Wyoming Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    157,985 157,985 157,985 157,985 157,985 157,985 2002-2015 Total Working Gas Capacity 73,705 73,705 73,705 73,705 73,705 73,705 2012-2015 Total Number of Existing Fields 9 9 9 9 9 9

  10. Office of Small and Disadvantaged Business Utilization

    Energy Savers [EERE]

    Small and Disadvantaged Business Utilization Office of Economic Impact and Diversity 1000 Independence Avenue, SW Washington, DC 20585 http://smallbusiness.energy.gov 202.586.7377 The Department purchases a wide variety of goods and services, including, but not limited to: What Does DOE Purchase? 202.586.7377 http://smallbusiness.energy.gov * Facility Management * Construction * R&D * Management/Scientific Consultation and Analysis * Administrative Services * IT and Data Processing *

  11. Comparison of Capacity Value Methods for Photovoltaics in the Western United States

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2012-07-01

    This report compares different capacity value estimation techniques applied to solar photovoltaics (PV). It compares more robust data and computationally intense reliability-based capacity valuation techniques to simpler approximation techniques at 14 different locations in the western United States. The capacity values at these locations are computed while holding the underlying power system characteristics fixed. This allows the effect of differences in solar availability patterns on the capacity value of PV to be directly ascertained, without differences in the power system confounding the results. Finally, it examines the effects of different PV configurations, including varying the orientation of a fixed-axis system and installing single- and double-axis tracking systems, on the capacity value. The capacity value estimations are done over an eight-year running from 1998 to 2005, and both long-term average capacity values and interannual capacity value differences (due to interannual differences in solar resource availability) are estimated. Overall, under the assumptions used in the analysis, we find that some approximation techniques can yield similar results to reliability-based methods such as effective load carrying capability.

  12. OpenEI Community - Utility+Utility Access Map

    Open Energy Info (EERE)

    the Special Ask page, in the query box enter the following:

    &91;&91;Category:Utility...

  13. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  14. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  15. Communications circuit including a linear quadratic estimator

    DOE Patents [OSTI]

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  16. Intentionally Including - Engaging Minorities in Physics Careers |

    Office of Environmental Management (EM)

    Department of Energy Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of

  17. Utility Grant Program | Open Energy Information

    Open Energy Info (EERE)

    Government Comprehensive MeasuresWhole Building Yes Riverside Public Utilities - Energy Efficiency Technology Grant Program (California) Utility Grant Program California...

  18. Competing Federal Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    Opening utility energy service contracts to competing franchised utility companies ensures federal agencies get the best value for their projects.

  19. Evaluation Ratings Definitions (Excluding Utilization of Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Excluding Utilization of Small Business) Rating Definition Note Exceptional ... Definitions (Utilization of Small Business) Rating Definition Note Exceptional ...

  20. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February ...

  1. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility Partnership Working Group Seminar:...

  2. FEMP Announces New Utilities Offering UESCs

    Broader source: Energy.gov [DOE]

    FEMP is pleased to announce four new utilities now offering Utility Energy Service Contracts (UESCs) to their Federal customers.

  3. Residential Energy Efficiency Rebates (Offered by 11 Utilities)

    Broader source: Energy.gov [DOE]

    Rebates are offered for a variety of efficient technologies and measures including: appliances, HVAC, lighting, and custom projects.  Rebates vary from one participating utility to another.  For ...

  4. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  5. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    turbines as greater than 1 megawatt. This technology class includes land-based and offshore wind projects. 1 Learn more about utility-scale wind at the links below....

  6. Utility Partnerships Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Program Overview Utility Partnerships Program Overview Document describes the Utility Partnerships Program within the U.S. Department of Energy's Federal Energy Management Program. PDF icon utility_program_2014.pdf More Documents & Publications Federal Utility Partnership Working Group Seminar: Chairman's Corner Funding Federal Energy and Water Projects Federal Utility Partnership Working Group Meeting Chairman's Corner

  7. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28

    Biomass utilization is one solution to our nations addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nations reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  8. Manufacturers and Utilities to Accelerate Industry Uptake of Superior

    Broader source: Energy.gov (indexed) [DOE]

    Energy Performance | Department of Energy At a White House meeting of the Better Buildings Initiative on December 3rd, six manufacturers and three utilities officially joined the Department of Energy's Better Buildings Industrial Superior Energy Performance (SEP) Accelerator Program. Manufacturers joining the Accelerator include the 3M Company, Cummins Inc., General Dynamics OTS, Nissan, Schneider Electric, and Volvo Group North America. Utilities joining the program include the Bonneville

  9. Scramjet including integrated inlet and combustor

    SciTech Connect (OSTI)

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  10. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) also offers incentive for solar hot water heating systems. Commercial solar hot water heating systems receive a $0.03 per kWh equivalent. Residential...

  11. Utility Scale Solar Incentive Program

    Broader source: Energy.gov [DOE]

    HB 4037 of 2016 created the Solar Incentive Program for utility-scale solar development. The bill directs Oregon's Business Development Department (the Department) to establish and administer a...

  12. utility | OpenEI Community

    Open Energy Info (EERE)

    service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here I encourage you to check out...

  13. BBEE Public Utility Conference Call

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that some sort of joint design and development effort that could take advantage of economies of scale and more favorable pricing could be good. He said that small utilities...

  14. Austin Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    In order to obtain eligibility, customers must agree to a net-metering and interconnection contract with Austin Utilities. An energy audit must be performed prior to system installation and...

  15. Pueblo of Laguna Utility Authority

    Energy Savers [EERE]

    PUEBLO OF LAGUNA UTILITY AUTHORITY TRIBAL UTILITY FORMATION: REGULATION, FINANCE AND BUSINESS STRUCTURE FACTS ON LAGUNA PUEBLO * LAGUNA IS LOCATED ABOUT 45 MILES WEST OF ALBUQUERQUE ON INTERSTATE 40 * RESERVATION CONSISTS OF APPROX. 500,000 ACRES OF LAND SITUATED IN CIBOLA, VALENCIA AND BERNALILLO COUNTIES * SIX (6) VILLAGES, LAGUNA, MESITA, PAGUATE, SEAMA, ENCINAL, PARAJE ARE ALL WITHIN THE LAGUNA RESERVATION * 4,000+ TRIBAL MEMBERS LIVE ON THE RESERVATION * CASINOS, TRAVEL CENTERS, SUPERMARKET

  16. Developing High Capacity, Long Life Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Anodes Developing High Capacity, Long Life Anodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es020_amine_2011_p.pdf More Documents & Publications Developing A New High Capacity Anode With Long Cycle Life Developing High Capacity, Long Life Anodes Development of High Capacity Anode for Li-ion Batteries

  17. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  18. Nuclear Energy Readiness Indicator Index (NERI): A benchmarking tool for assessing nuclear capacity in developing countries

    SciTech Connect (OSTI)

    Saum-Manning,L.

    2008-07-13

    Declining natural resources, rising oil prices, looming climate change and the introduction of nuclear energy partnerships, such as GNEP, have reinvigorated global interest in nuclear energy. The convergence of such issues has prompted countries to move ahead quickly to deal with the challenges that lie ahead. However, developing countries, in particular, often lack the domestic infrastructure and public support needed to implement a nuclear energy program in a safe, secure, and nonproliferation-conscious environment. How might countries become ready for nuclear energy? What is needed is a framework for assessing a country's readiness for nuclear energy. This paper suggests that a Nuclear Energy Readiness Indicator (NERI) Index might serve as a meaningful basis for assessing a country's status in terms of progress toward nuclear energy utilization under appropriate conditions. The NERI Index is a benchmarking tool that measures a country's level of 'readiness' for nonproliferation-conscious nuclear energy development. NERI first identifies 8 key indicators that have been recognized by the International Atomic Energy Agency as key nonproliferation and security milestones to achieve prior to establishing a nuclear energy program. It then measures a country's progress in each of these areas on a 1-5 point scale. In doing so NERI illuminates gaps or underdeveloped areas in a country's nuclear infrastructure with a view to enable stakeholders to prioritize the allocation of resources toward programs and policies supporting international nonproliferation goals through responsible nuclear energy development. On a preliminary basis, the indicators selected include: (1) demonstrated need; (2) expressed political support; (3) participation in nonproliferation and nuclear security treaties, international terrorism conventions, and export and border control arrangements; (4) national nuclear-related legal and regulatory mechanisms; (5) nuclear infrastructure; (6) the utilization of IAEA technical assistance; (7) participation in regional arrangements; and (8) public support for nuclear power. In this paper, the Index aggregates the indicators and evaluates and compares the level of readiness in seven countries that have recently expressed various degrees of interest in establishing a nuclear energy program. The NERI Index could be a valuable tool to be utilized by: (1) country officials who are considering nuclear power; (2) the international community, desiring reassurance of a country's capacity for the peaceful, safe, and secure use of nuclear energy; (3) foreign governments/NGO's, seeking to prioritize and direct resources toward developing countries; and (4) private stakeholders interested in nuclear infrastructure investment opportunities.

  19. Natural Gas Underground Storage Capacity (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  20. Increasing water holding capacity for irrigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing water holding capacity for irrigation Researchers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine the sources of sediment and recommend solutions for irrigation sediment buildup management. April 3, 2012 Santa Cruz Irrigation District (SCID) Kenny Salazar, owner of Kenny Salazar Orchards, stands beside the Santa Cruz Reservoir Dam, which holds back the waters of the Santa Cruz Irrigation District. Salazar, a board

  1. Minnesota Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    7,000 7,000 7,000 7,000 7,000 7,000 1988-2014 Aquifers 7,000 7,000 7,000 7,000 7,000 7,000 1999-2014 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2,000 2008-2014...

  2. Missouri Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    10,889 11,502 13,845 13,845 13,845 13,845 1988-2014 Aquifers 10,889 11,502 13,845 13,845 13,845 13,845 1999-2014 Total Working Gas Capacity 3,040 3,656 6,000 6,000 6,000 6,000...

  3. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Environmental Management (EM)

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  4. Renewable Energy Price-Stability Benefits in Utility Green Power Programs.

    Office of Scientific and Technical Information (OSTI)

    36 pp (Technical Report) | SciTech Connect Price-Stability Benefits in Utility Green Power Programs. 36 pp Citation Details In-Document Search Title: Renewable Energy Price-Stability Benefits in Utility Green Power Programs. 36 pp This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states

  5. Adaptation policies to increase terrestrial ecosystem resilience: potential utility of a multicriteria approach

    SciTech Connect (OSTI)

    de Bremond, Ariane; Engle, Nathan L.

    2014-03-01

    Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in the realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.

  6. Subterranean barriers including at least one weld

    DOE Patents [OSTI]

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  7. Photoactive devices including porphyrinoids with coordinating additives

    DOE Patents [OSTI]

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  8. Municipal solid waste as a utility fuel in the United States

    SciTech Connect (OSTI)

    McGowin, C.R.

    1985-01-01

    The paper considers alternate utility roles in refuse to energy projects and alternate technologies including co-firing of refuse and coal in utility boilers and refuse burning in dedicated boilers. Energy recovery efficiency and economics of technologies are compared.

  9. Utility External Disconnect Switch: Practical, Legal, and Technical Reasons to Eliminate the Requirement

    Broader source: Energy.gov [DOE]

    This report documents the safe operation of PV systems without a utility external disconnect switch in several large jurisdictions. It includes recommendations for regulators contemplating utility external disconnect switch requirements.

  10. Utility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  11. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  12. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  13. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  14. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  15. Electric-utility DSM programs: Terminology and reporting formats

    SciTech Connect (OSTI)

    Hirst, E. ); Sabo, C. )

    1991-10-01

    The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

  16. Pulse transmission transmitter including a higher order time derivate filter

    DOE Patents [OSTI]

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-23

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  17. PADD 3 Weekly Inputs & Utilization

    Gasoline and Diesel Fuel Update (EIA)

    8,010 8,256 8,111 8,266 8,214 8,498 1992-2016 Gross Inputs 7,992 8,287 8,142 8,332 8,356 8,547 1990-2016 Operable Capacity (Calendar Day) 9,437 9,437 9,437 9,437 9,437 9,437 2010-2016 Percent Operable Utilization 84.7 87.8 86.3 88.3 88.6 90.6 2010-2016 Refiner and Blender Net Inputs Motor Gasoline Blending Components -1,974 -2,183 -2,099 -2,078 -1,837 -2,068 2004-2016 RBOB -73 -333 -278 -178 -192 -218 2010-2016 CBOB -1,786 -1,821 -1,763 -1,824 -1,574 -1,711 2004-2016 GTAB 0 0 0 0 0 0 2004-2016

  18. Tennessee Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,200 0 0 1999-2014 Total Working Gas Capacity 860 0 0 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 860 0 0 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1998-2014 Depleted Fields 1 1 1 1 1 1

  19. Increasing the Capacity of Existing Power Lines

    Energy Savers [EERE]

    ENERGY AND ENVIRONMENT Continued next page In the continental United States, some 500 power companies operate a complex network of more than 160,000 miles of high-voltage trans- mission lines known as "the grid." The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects. The difference in time and cost between using existing transmission lines or the construction of new ones can make or break plans

  20. Excess Capacity from LADWP Control Area

    Office of Environmental Management (EM)

    Excess Capacity from LADWP Control Area (LADWP, Glendale, Burbank) Summer 2001 1 in 2 1 in 5 1in 10 Total Load (CEC Draft Demand Forecast 10/16/2000 6,169 6,471 6,533 LADWP DSM Program (10) Sales LADWP to CDWR 77 LADWP to TID 51 6,287 6,589 6,651 (In-State and Out-of-State) Thermal LADWP (LADWP 2000 Integrated Resource Plan) 5.170 Burbank 313 Glendale 297 Self Generation - in LADWP Control Area 338 6.118 Allowance for outages (6%) (367) Total 5,751 LADWP Hydro 1,948 Firm Contracts and

  1. Multi-processor including data flow accelerator module

    DOE Patents [OSTI]

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  2. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  3. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  4. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  5. Drapery assembly including insulated drapery liner

    DOE Patents [OSTI]

    Cukierski, Gwendolyn (Ithaca, NY)

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  6. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  7. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  8. Minnkota Power Cooperative (17 Utilities) - PowerSavers Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Cooperative Roseau Municipal Utilities Fosston Municipal Utilities City of Stephen Municipal Utilities Halstad Municipal Utilities Thief River Falls Municipal Utilities...

  9. System for utilizing oil shale fines

    DOE Patents [OSTI]

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  10. Ocala Utility Services- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ocala Utility Services Electric and Telecommunications is a community owned utility that serves around 50,000 customers in Ocala and Marion County area. Ocala Utility Services offers rebates on A/C...

  11. Utility Energy Services Contracts: Enabling Documents

    SciTech Connect (OSTI)

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  12. Effective Strategies for Participating in Utility Planning

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Working with Utilities Peer Exchange Call: Effective Strategies for Participating in Utility Planning, Call Slides and Discussion Summary, August 2, 2012. This Peer Exchange Call discussed effective strategies for participating in utility planning.

  13. New London Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Jump to: navigation, search Name: New London Municipal Utilities Place: Iowa References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

  14. Utility Energy Service Contracts - Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts

  15. LLNL E-Mail Utilities

    Energy Science and Technology Software Center (OSTI)

    2005-10-31

    The LLNL E-mail Utilities software library is a Java API that simplifies the creation and delivery of email in Java business applications. It consists of a database-driven template engine, various strategies for composing, queuing, dispatching email and a Java Swing GUI for creating and editing email templates.

  16. Departmental Energy and Utilities Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-04-15

    To establish requirements and responsibilities for managing Department of Energy (DOE) energy and utility supplies and services. Cancels paragraphs 6d(2), 6h, 7b(1), 7b(2), and 7e(16) of DOE O 430.1A) Cancels: DOE O 430.2, DOE O 430.1A (in part)

  17. Zymomonas with improved xylose utilization

    DOE Patents [OSTI]

    Viitanen, Paul V.; Tao, Luan; Zhang, Yuying; Caimi, Perry G.; McCutchen, Carol M.; McCole, Laura; Zhang, Min; Chou, Yat-Chen; Franden, Mary Ann

    2011-08-16

    Strains of Zymomonas were engineered by introducing a chimeric xylose isomerase gene that contains a mutant promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene. The promoter directs increased expression of xylose isomerase, and when the strain is in addition engineered for expression of xylulokinase, transaldolase and transketolase, improved utilization of xylose is obtained.

  18. Engine lubrication circuit including two pumps

    DOE Patents [OSTI]

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  19. The net utility revenue impact of small power producing facilities operating under spot pricing policies

    SciTech Connect (OSTI)

    MacGregor, P.R.

    1989-01-01

    The National Energy Act, in general, and Section 210 of the Public Utilities Regulatory Policies Act (PURPA) of 1978 in particular, have dramatically stimulated increasing levels of independent non-utility power generation. As these levels of independent non-utility power generation increase, the electric utility is subjected to new and significant operational and financial impacts. One important concern is the net revenue impact on the utility which is the focus of the research discussed in this thesis and which is inextricably intertwined with the operational functions of the utility system. In general, non-utility generation, and specifically, cogeneration, impact utility revenues by affecting the structure and magnitude of the system load, the scheduling of utility generation, and the reliability of the composite system. These effects are examined by developing a comprehensive model non-utility independent power producing facilities, referenced as Small Power Producing Facilities, a cash-flow-based corporate model of the electric utility, a thermal plant based generation scheduling algorithm, and a system reliability evaluation. All of these components are integrated into an iterative closed loop solution algorithm to both assess and enhance the net revenue. In this solution algorithm, the spot pricing policy of the utility is the principal control mechanism in the process and the system reliability is the primary procedural constraint. A key issue in reducing the negative financial impact of non-utility generation is the possibility of shutting down utility generation units given sufficient magnitudes of non-utility generation in the system. A case study simulating the financial and system operations of the Georgia Power Company with representative cogeneration capacity and individual plant characteristics is analyzed in order to demonstrate the solution process.

  20. A utility`s perspective of the market for IGCC

    SciTech Connect (OSTI)

    Black, C.R.

    1993-06-01

    The market for Integrated Gasification Combined Cycle (IGCC) power plants is discussed and some of the experiments with an Integrated Gasification Combined Cycle Power Plant Project, Polk Unit {number_sign}1 are described. It was found that not only is the technology different from what most US utilities are accustomed to, but also that the non-technical issues or business issues, such as contracting, project management and contract administration also have different requirements. The non-technical or business issues that are vital to the successful commercialization of this technology are described. These business issues must be successfully addressed by both the utilities and the technology suppliers in order for integrated gasification combined cycle power plants to achieve commercial success.

  1. Utility Data Accessibility Map | Open Energy Information

    Open Energy Info (EERE)

    utility company to see your electricity data access options. Select the Benchmarking or Demand ResponseEnergy Efficiency map to find out whether your utility provides sufficient...

  2. Industrial Utility Webinar: Public Power Open Session

    SciTech Connect (OSTI)

    2010-02-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  3. 2012 Green Utility Leaders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top Green Power Providers See All Leaders x Renewable Energy Sales Total Customer Participants Customer Participation...

  4. Clark Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    utility. The company started the Green Lights program to support the development of renewable energy resources in the Northwest. References: Clark Public Utilities1 This...

  5. Osage Municipal Utilities Wind | Open Energy Information

    Open Energy Info (EERE)

    Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage...

  6. UGI Utilities, Inc | Open Energy Information

    Open Energy Info (EERE)

    UGI Utilities, Inc Jump to: navigation, search Name: UGI Utilities, Inc Place: Pennsylvania Phone Number: (800) 276-2722 Website: www.ugi.comportalpageportal Twitter: https:...

  7. Clinton Combined Utility Sys | Open Energy Information

    Open Energy Info (EERE)

    Clinton Combined Utility Sys Jump to: navigation, search Name: Clinton Combined Utility Sys Place: South Carolina Phone Number: 864-833-7524 Website: www.cityofclintonsc.com...

  8. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to...

  9. Greenville Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Greenville Utilities Comm Jump to: navigation, search Name: Greenville Utilities Comm Place: North Carolina Phone Number: 1-855-767-2482 Website: www.guc.com Twitter: @gucinfo...

  10. Truman Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Truman Public Utilities Comm Jump to: navigation, search Name: Truman Public Utilities Comm Place: Minnesota Phone Number: 507-776-7951 Website: trumanmn.usutilities Outage...

  11. Hibbing Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Hibbing Public Utilities Comm Jump to: navigation, search Name: Hibbing Public Utilities Comm Place: Minnesota Website: www.hpuc.com Outage Hotline: 218-262-7720 References: EIA...

  12. Trinity Public Utilities Dist | Open Energy Information

    Open Energy Info (EERE)

    Public Utilities Dist Jump to: navigation, search Name: Trinity Public Utilities Dist Place: California Website: trinitypud.com Outage Hotline: (530) 623-5536 References: EIA Form...

  13. Keewatin Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Keewatin Public Utilities Jump to: navigation, search Name: Keewatin Public Utilities Place: Minnesota Phone Number: 218-778-6544 Website: www.keewatin.govoffice.comind Outage...

  14. Willmar Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Willmar Municipal Utilities Jump to: navigation, search Name: Willmar Municipal Utilities Place: Minnesota Phone Number: 320.235.4422 Website:...

  15. Delano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Delano Municipal Utilities Jump to: navigation, search Name: Delano Municipal Utilities Place: Minnesota Website: www.dmumn.com Outage Hotline: (763)972-0557 References: EIA Form...

  16. Greenwood Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Greenwood Utilities Comm Jump to: navigation, search Name: Greenwood Utilities Comm Place: Mississippi Phone Number: (622) 453-7234 Website: www.greenwoodutilities.com Facebook:...

  17. Brainerd Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Brainerd Public Utilities Jump to: navigation, search Name: Brainerd Public Utilities Abbreviation: BPU Address: 8027 Highland Scenic Rd Place: Brainerd, MN Zip: 56401 Phone...

  18. Shakopee Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Shakopee Public Utilities Comm Jump to: navigation, search Name: Shakopee Public Utilities Comm Place: Minnesota Website: spucweb.com Outage Hotline: 952-445-1988 References: EIA...

  19. Corbin City Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Corbin City Utilities Comm Jump to: navigation, search Name: Corbin City Utilities Comm Place: Kentucky Phone Number: 606-528-4026 Website: corbinutilities.com Outage Hotline:...

  20. Clarksdale Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Clarksdale Public Utilities Jump to: navigation, search Name: Clarksdale Public Utilities Place: Mississippi Phone Number: (662) 627-8499 Website: www.clarksdale.com Facebook:...

  1. Aitkin Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Aitkin Public Utilities Comm Jump to: navigation, search Name: Aitkin Public Utilities Comm Place: Minnesota Phone Number: 763-576-2750 Website: www.anokaelectric.govoffice3.c...

  2. Indianola Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Indianola Municipal Utilities Jump to: navigation, search Name: Indianola Municipal Utilities Place: Iowa Phone Number: 515.961.9444 Website: www.i-m-u.com Outage Hotline:...

  3. Preston Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Preston Public Utilities Comm Jump to: navigation, search Name: Preston Public Utilities Comm Place: Minnesota Phone Number: (507) 765-2491 Website: www.prestonmn.orgpuc1.htm...

  4. Central Lincoln People's Utility District - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    electric Program Info Sector Name Utility Administrator Central Lincoln People(tm)s Utility District Website http:clpud.orgrebate-information State Oregon Program Type...

  5. Truckee Donner Public Utility District - Energy Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    rebates 10,000 Program Info Sector Name Utility Administrator Truckee Donner Public Utility District Website http:www.tdpud.org State California Program Type Rebate...

  6. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect (OSTI)

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  7. Federal Energy Efficiency through Utility Partnerships

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Two-page fact sheet on FEMP's Federal Utility Program that works with federal agencies and their utilities to reduce energy use.

  8. A Case Study of Danville Utilities:

    SciTech Connect (OSTI)

    2010-03-09

    This case study provides information on how Danville Utilities utilized ITP Industrial Assessment Centers to provide energy efficiency resources to key accounts.

  9. City Utilities of Springfield | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 17833 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  10. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    EIA Form 861 Data Utility Id 10171 Utility Location Yes Ownership I NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  11. Wonewoc Electric & Water Util | Open Energy Information

    Open Energy Info (EERE)

    Wonewoc Electric & Water Util Jump to: navigation, search Name: Wonewoc Electric & Water Util Place: Wisconsin Phone Number: (608) 464-3114 Website: www.wonewocwisc.compublicwor...

  12. Community Renewable Energy Deployment: Sacramento Municipal Utility...

    Open Energy Info (EERE)

    Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects AgencyCompany...

  13. Watertown Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: South Dakota Phone Number: (605)882-6233 Website: watertownmu.com Twitter: @watertownmu Facebook: https:www.facebook.compagesWatertown-Municipal-Utiliti...

  14. EPOD Renewable Utilities Inc | Open Energy Information

    Open Energy Info (EERE)

    EPOD Renewable Utilities Inc Jump to: navigation, search Name: EPOD Renewable Utilities Inc Place: Frankfurt, Germany Sector: Renewable Energy Product: Focused on operating...

  15. West Point Utility System | Open Energy Information

    Open Energy Info (EERE)

    Utility System Jump to: navigation, search Name: West Point Utility System Place: Iowa Phone Number: (319) 837-6313 Website: www.westpointiowa.comwp-utili Facebook: https:...

  16. Mora Municipal Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Mora Municipal Utilities Website http:www.SaveEnergyInMora.com State Minnesota Program...

  17. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Electric Util Jump to: navigation, search Name: Tipton Municipal Electric Util Address: P.O. Box 288 Place: Tipton, Indiana Zip: 46072 Service Territory: Indiana Phone Number:...

  18. Effective Strategies for Participating in Utility Planning |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effective Strategies for Participating in Utility Planning Better Buildings Neighborhood Program Working with Utilities Peer Exchange Call: Effective Strategies for Participating ...

  19. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Chairman's Corner Federal Utility Partnership Working Group Meeting Chairman's Corner Presentation-given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG)...

  20. Federal Utility Partnership Working Group Meeting: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting: Chairman's Corner Federal Utility Partnership Working Group Meeting: Chairman's Corner Presentation-given at the April 2012 Federal Utility Partnership Working Group...

  1. Shawano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: Wisconsin Phone Number: 715-526-3131 Website: www.shawano.tv Facebook: https:www.facebook.compagesShawano-Municipal-Utilities156410777732483 Outage...

  2. Industrial Utility Webinar: Financial Mechanisms and Incentives

    SciTech Connect (OSTI)

    2010-03-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  3. Wells Public Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Wells Public Utilities Website http:www.SaveEnergyInWells.com State Minnesota Program Type...

  4. Industrial Utility Webinar: Combined Heat and Power

    SciTech Connect (OSTI)

    2010-06-09

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  5. Utility Partnerships Webinar Series: Electric Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships Webinar Series: Electric Utility Energy Efficiency Programs October 5, 2010 Industrial Technologies Program eere.energy.gov Speakers and Topics: * Consortium for Energy Efficiency (CEE), Industrial Program Manager, Kellem Emanuele, will discuss national trends in electric energy efficiency programs for industrial customers. * Xcel Energy, Trade Relations Manager in Colorado, Bob Macauley, and Trade Relations Manager in Minnesota, Brian Hammarsten, will provide insight from a large

  6. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  7. Is there life in other markets? BPA explores preschedule capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity 7152014 12:00 AM Tweet Page Content BPA launched a new process this spring to acquire preschedule (day-ahead) capacity from third-party suppliers. The goal was...

  8. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    Open Energy Info (EERE)

    Ukraine-Capacity Building for Low Carbon Growth Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine AgencyCompany Organization United Nations...

  9. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  10. The Recovery Act: Cutting Costs and Upping Capacity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Recovery Act: Cutting Costs and Upping Capacity The Recovery Act: Cutting Costs and Upping Capacity August 25, 2010 - 5:56pm Addthis John Schueler John Schueler Former New ...

  11. Integrated Baseline System (IBS) Version 2.0: Utilities Guide

    SciTech Connect (OSTI)

    Burford, M.J.; Downing, T.R.; Williams, J.R.; Bower, J.C.

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Utilities Guide explains how you can use the IBS utility programs to manage and manipulate various kinds of IBS data. These programs include utilities for creating, editing, and displaying maps and other data that are referenced to geographic location. The intended audience for this document are chiefly data managers but also system managers and some emergency management planners and analysts.

  12. Finding Utility Companies Under a Given Utility ID | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  13. Array of titanium dioxide nanostructures for solar energy utilization

    DOE Patents [OSTI]

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  14. Congeneration and utilities: Status and prospects: Final report

    SciTech Connect (OSTI)

    Limaye, D.R.; Jacobs, L.; McDonald, C.

    1988-11-01

    The cogeneration industry has grown and changed considerably since the passage of the Public Utility Regulatory Policies Act (PURPA) in 1978. It has moved from infancy to a major industry that must be addressed in electric utility resource planning. This report examines the utility perspective on cogeneration. The report begins with a brief outline of the history of the US cogeneration industry, including an in-depth look at recent developments. An assessment of the industry as it currently stands is then presented. This assessment includes a look at who is cogenerating now and who is likely to be cogenerating in the future. It also includes an analysis of the key market sensitivities and how they affect the individuals who must make the decisions to cogenerate. These discussions provide a framework for the central issue addressed in the next section: the effect of cogeneration on the electric utilities. After the alternative responses to cogeneration are outlined, the report details the impacts of cogeneration on utility planning and policy. Special utility concerns relative to cogeneration are raised including potential ratemaking approaches, the issue of cogeneration reliability and approaches to planning for it, and the costs and benefits of cogeneration to non-participant ratepayers. Next the planning and economic benefits which can accrue from utility ownership of and participation in cogeneration projects are discussed in the context of cogeneration as an electric utility opportunity. The final sections of the report define and classify various types of cogeneration technologies and outline the current status of EPRI's cogeneration research. 21 figs., 22 tabs.

  15. Utility: Proposed Penalty (2016-CE-42007) | Department of Energy

    Energy Savers [EERE]

    Proposed Penalty (2016-CE-42007) Utility: Proposed Penalty (2016-CE-42007) November 30, 2015 DOE alleged in a Notice of Proposed Civil Penalty that Utility Refrigerator failed to certify certain commercial refrigerator equipment as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty

  16. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect (OSTI)

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  17. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. PDF icon mbpg2015.pdf More Documents & Publications Review of Orifice Plate Steam Traps Improving Steam System Performance: A Sourcebook for Industry, Second Edition

  18. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Environmental Management (EM)

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. PDF icon Download the Metering Best Practices Guide. More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition A

  19. Wind Gains ground, hitting 33 GW of installed capacity

    SciTech Connect (OSTI)

    2010-06-15

    The U.S. currently has 33 GW of installed wind capacity. Wind continues to gain ground, accounting for 42 percent of new capacity additions in the US in 2008.Globally, there are now 146 GW of wind capacity with an impressive and sustained growth trajectory that promises to dominate new generation capacities in many developing countries. The U.S., however, lags many European countries, with wind providing roughly 2 percent of electricity generation.

  20. High Capacity Composite Carbon Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity Composite Carbon Anodes High Capacity Composite Carbon Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es114_pol_2012_o.pdf More Documents & Publications High Capacity Composite Carbon Anodes Fabricated by Autogenic Reactions Spherical Carbon Anodes Fabricated by Autogenic Reactions Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes

  1. Los Alamos Neutron Science Center gets capacity boost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity and our availability for stockpile stewardship activities," said Kurt Schoenberg, deputy associate director for Experimental Physical Sciences. "The increased...

  2. Electricity Capacity Expansion Modeling, Analysis, and Visualization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and includes more sectors than ReEDS. For example, it includes modeling of the natural gas and coal supply markets, and a model of electricity load. The ReEDS model...

  3. *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic

    Office of Environmental Management (EM)

    Analysis | Department of Energy *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis PDF icon NREL Doubling Geothermal Capacity.pdf More Documents & Publications Geothermal Exploration Policy Mechanisms Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios track 1: systems analysis | geothermal 2015 peer review

  4. Design and Evaluation of Novel High Capacity Cathode Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es049_thackeray_2012_p.pdf More Documents & Publications Design and Evaluation of High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials

  5. Pennsylvania Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    776,964 776,822 776,845 774,309 774,309 774,309 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 776,964 776,822 776,845 774,309 774,309 774,309 1999-2014 Total Working Gas Capacity 431,137 431,086 433,110 434,179 433,214 433,214 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 942 938 938 2012-2014 Depleted Fields 431,137 431,086 433,110 433,236 432,276 432,276 2008-2014 Total Number of Existing Fields 51 51 51 51 51 51 1989-2014 Aquifers 1 1 1 2012-2014 Depleted Fields

  6. Texas Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    766,768 783,579 812,394 831,190 842,072 834,124 1988-2014 Salt Caverns 182,725 196,140 224,955 246,310 253,220 254,136 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 584,042 587,439 587,439 584,881 588,852 579,988 1999-2014 Total Working Gas Capacity 504,524 509,961 532,336 533,336 541,161 528,485 2008-2014 Salt Caverns 123,664 130,621 152,102 164,439 168,143 167,546 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 380,859 379,340 380,234 368,897 373,018 360,938 2008-2014 Total Number of

  7. Kentucky Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20,368 221,751 221,751 221,751 221,723 221,723 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 9,567 9,567 9,567 9,567 9,567 6,567 1999-2014 Depleted Fields 210,801 212,184 212,184 212,184 212,156 215,156 1999-2014 Total Working Gas Capacity 103,484 107,600 107,600 107,600 107,600 107,600 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 6,629 6,629 6,629 6,629 6,629 4,619 2008-2014 Depleted Fields 96,855 100,971 100,971 100,971 100,971 102,981 2008-2014 Total Number of Existing Fields 23 23 23 23 23

  8. Louisiana Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    51,968 670,880 690,295 699,646 733,939 745,029 1988-2014 Salt Caverns 123,341 142,253 161,668 297,020 213,039 224,129 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 528,626 528,626 528,626 402,626 520,900 520,900 1999-2014 Total Working Gas Capacity 369,031 384,864 397,627 412,482 446,713 454,140 2008-2014 Salt Caverns 84,487 100,320 111,849 200,702 154,333 161,260 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 284,544 284,544 285,779 211,780 292,380 292,880 2008-2014 Total Number of

  9. Maryland Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,000 64,000 64,000 64,000 64,000 64,000 1988-2014 Salt Caverns 0 0 1999-2014 Depleted Fields 64,000 64,000 64,000 64,000 64,000 64,000 1999-2014 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2008-2014 Salt Caverns 0 0 2012-2014 Depleted Fields 18,300 18,300 18,300 18,300 18,300 18,300 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1989-2014 Depleted Fields 1 1 1 1 1 1

  10. Mississippi Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    210,128 235,638 240,241 289,416 303,522 331,469 1988-2014 Salt Caverns 62,301 82,411 90,452 139,627 153,733 181,810 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 147,827 153,227 149,789 149,789 149,789 149,659 1999-2014 Total Working Gas Capacity 108,978 127,248 131,091 168,602 180,654 201,250 2008-2014 Salt Caverns 43,758 56,928 62,932 100,443 109,495 130,333 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 65,220 70,320 68,159 68,159 71,159 70,917 2008-2014 Total Number of Existing Fields

  11. Montana Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    76,301 376,301 376,301 376,301 376,301 376,301 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 376,301 376,301 376,301 376,301 376,301 376,301 1999-2014 Total Working Gas Capacity 197,508 197,501 197,501 197,501 197,501 197,501 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 197,508 197,501 197,501 197,501 197,501 197,501 2008-2014 Total Number of Existing Fields 5 5 5 5 5 5 1989-2014 Depleted Fields 5 5 5 5 5 5

  12. Utah Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    129,480 129,480 124,465 124,465 124,465 124,465 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 11,980 11,980 4,265 4,265 4,265 4,265 1999-2014 Depleted Fields 117,500 117,500 120,200 120,200 120,200 120,200 1999-2014 Total Working Gas Capacity 52,198 52,189 54,889 54,898 54,898 54,898 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 948 939 939 948 948 948 2008-2014 Depleted Fields 51,250 51,250 53,950 53,950 53,950 53,950 2008-2014 Total Number of Existing Fields 3 3 3 3 3 3 1989-2014 Aquifers 2 2

  13. Wyoming Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    111,120 111,120 106,764 124,937 157,985 157,985 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 10,000 10,000 6,733 6,705 6,705 6,705 1999-2014 Depleted Fields 101,120 101,120 100,030 118,232 151,280 151,280 1999-2014 Total Working Gas Capacity 42,140 42,134 41,284 48,705 73,705 73,705 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 836 830 830 836 836 836 2008-2014 Depleted Fields 41,304 41,304 40,454 47,869 72,869 72,869 2008-2014 Total Number of Existing Fields 8 8 8 9 9 9 1989-2014 Aquifers 1 1

  14. Nebraska Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,850 34,850 34,850 34,850 34,850 34,850 1988-2014 Salt Caverns 0 0 1999-2014 Depleted Fields 34,850 34,850 34,850 34,850 34,850 34,850 1999-2014 Total Working Gas Capacity 13,619 14,819 14,819 14,819 14,819 14,819 2008-2014 Salt Caverns 0 0 2012-2014 Depleted Fields 13,619 14,819 14,819 14,819 14,819 14,819 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1989-2014 Depleted Fields 1 1 1 1 1 1

  15. New Mexico Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    80,000 84,300 84,300 89,100 89,100 89,100 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 80,000 84,300 84,300 89,100 89,100 89,100 1999-2014 Total Working Gas Capacity 55,300 59,000 59,000 63,300 59,738 59,738 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 55,300 59,000 59,000 63,300 59,738 59,738 2008-2014 Total Number of Existing Fields 2 2 2 2 2 2 1989-2014 Aquifers 0 0 1999-2014 Depleted Fields 2 2 2 2 2 2

  16. New York Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    245,579 245,579 245,579 245,579 245,779 245,779 1988-2014 Salt Caverns 2,340 2,340 2,340 0 2,340 2,340 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 243,239 243,239 243,239 245,579 243,439 243,439 1999-2014 Total Working Gas Capacity 128,976 128,976 128,976 129,026 129,551 129,551 2008-2014 Salt Caverns 1,450 1,450 1,450 0 1,450 1,450 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 127,526 127,526 127,526 129,026 128,101 128,101 2008-2014 Total Number of Existing Fields 26 26 26 26 26 26

  17. Ohio Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    580,380 580,380 580,380 577,944 577,944 577,944 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 580,380 580,380 580,380 577,944 577,944 577,944 1999-2014 Total Working Gas Capacity 225,154 228,350 230,350 230,350 230,828 230,828 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 225,154 228,350 230,350 230,350 230,828 230,828 2008-2014 Total Number of Existing Fields 24 24 24 24 24 24 1989-2014 Depleted Fields 24 24 24 24 24 24

  18. Oklahoma Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    371,338 371,338 372,838 370,838 370,535 375,935 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 170 170 170 1999-2014 Depleted Fields 371,338 371,338 372,838 370,668 370,365 375,765 1999-2014 Total Working Gas Capacity 176,868 179,858 183,358 180,858 181,055 188,455 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 31 31 31 2012-2014 Depleted Fields 176,868 179,858 183,358 180,828 181,025 188,425 2008-2014 Total Number of Existing Fields 13 13 13 13 13 13 1989-2014 Aquifers 1 1 1 2012-2014 Depleted

  19. Oregon Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    29,565 29,565 29,565 28,750 29,565 29,565 1989-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 29,565 29,565 29,565 28,750 29,565 29,565 1999-2014 Total Working Gas Capacity 15,935 15,935 15,935 15,510 15,935 15,935 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 15,935 15,935 15,935 15,510 15,935 15,935 2008-2014 Total Number of Existing Fields 7 7 7 7 7 7 1989-2014 Depleted Fields 7 7 7 7 7 7

  20. California Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    513,005 542,511 570,511 592,411 599,711 599,711 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 12,000 12,000 1999-2014 Depleted Fields 513,005 542,511 570,511 592,411 587,711 587,711 1999-2014 Total Working Gas Capacity 296,096 311,096 335,396 349,296 374,296 374,296 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 10,000 10,000 2009-2014 Depleted Fields 296,096 311,096 335,396 349,296 364,296 364,296 2008-2014 Total Number of Existing Fields 13 13 13 14 14 14 1989-2014 Salt Caverns 0 0