National Library of Energy BETA

Sample records for incentives plug-in electric

  1. Plug-in electric vehicle market penetration and incentives: a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Book Title Mitigation and Adaptation Strategies for Global Change Volume 20 Publisher Springer Keywords global vehicle sales, government incentive policies, plug-in electric...

  2. Fact #789: July 22, 2013 Comparison of State Incentives for Plug-In Electric Vehicle Purchases

    Broader source: Energy.gov [DOE]

    In addition to a Federal government tax credit up to $7,500, consumers who purchase plug-in electric vehicles (PEVs) may also receive state government incentives which are different for each state....

  3. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrid and Plug-In ...

  4. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  5. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries...

    Office of Environmental Management (EM)

    Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries ...

  6. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  7. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  8. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan PDF ...

  9. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  10. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  11. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  12. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communities Plug In To Electric Vehicle Readiness Communities Plug In To Electric Vehicle Readiness September 16, 2014 - 4:24pm Addthis The City of Auburn Hills, Michigan, participated in one of 16 Clean Cities plug-in electric vehicle (PEV) community-readiness projects across the country. | Photo courtesy of City of Auburn Hills. The City of Auburn Hills, Michigan, participated in one of 16 Clean Cities plug-in electric vehicle (PEV) community-readiness projects across the country. | Photo

  13. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy ...

  14. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect (OSTI)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  15. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE Hydrogen and ...

  16. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & ... Plug-in hybrid electric vehicles (PHEVs) use batteries to power an electric motor and use ...

  17. Plugged In: Understanding How and Where Plug-in Electric Vehicle Drivers Charge Up

    Broader source: Energy.gov [DOE]

    Being able to go on long trips running on electricity has always been the Holy Grail of plug-in electric vehicle (PEV) owners. In comparison to conventional vehicles, which can run for 300 miles or...

  18. Fact #788: July 15, 2013 State and Private Consumer Incentives for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Many states offer their own consumer incentives for plug-in vehicles, such as HOV lane exemptions and tax credits/rebates, as shown in the table below. In some states there are also private...

  19. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  20. Plugged In: Understanding How and Where Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To avoid "range anxiety" and increase their all-electric miles driven, PEV drivers aim to frequently recharge their vehicles. While finding places to plug in is one of the most ...

  1. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations ...

  2. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect (OSTI)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  3. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models ... EV Everywhere is a Clean Energy Grand Challenge to enable plug-in electric vehicles (PEVs) ...

  4. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles An Energy Evolution:Alternative Fueled Vehicle Comparisons

  5. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicle Basics Photo of a parked blue compact car with large decals on the doors stating that it is a plug-in hybrid achieving more than 120 miles per gallon. This Toyota Prius hybrid electric car was converted to a plug-in hybrid for research purposes. Credit: Keith Wipke Image of the cutaway top view of a passenger vehicle showing the drive train that contains an electric motor and a small internal combustion engine side by side in front. The motors are connected by

  6. Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Solar Electric Incentive Program, launched in May 2003, is available to customers of Pacific Power and PGE who install new photovoltaic (PV) systems on new or existing...

  7. Plug-in Electric Vehicles Charge Forward in Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... EV Everywhere Charges Up the Workplace Project Overview Positive Impact More plug-in hybrid and all-electric vehicles in Oregon. Oregon is planning for the large-scale deployment ...

  8. Sample Employee Newsletter Articles for Plug-In Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These sample articles on plug-in electric vehicles (PEVs) can be customized and used in your employee newsletters, blog or intranet. Use these articles as-is with a credit to the ...

  9. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  10. Workplace Charging Challenge Plug-In Electric Vehicle Support Networks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicle Support Networks Workplace Charging Challenge Plug-In Electric Vehicle Support Networks When promoting PEV deployment, it can be helpful to tap into existing networks. The DOE Clean Cities program, along with Workplace Charging Challenge ambassadors and partners, have a wealth of knowledge on PEVs and workplace charging that can help inform your employees. These groups can also provide assistance in operating an effective workplace charging

  11. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on

  12. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  13. EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

  14. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  15. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  16. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (PEVs) include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The first mass marketed PEVs were introduced in 2010 with the Nissan Leaf,...

  17. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find

  18. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  19. Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google

  20. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 919: April 4, 2016 Plug-in Electric Vehicle Charging Options and Times Vary Considerably - Dataset Excel file and dataset for Plug-in Electric Vehicle Charging Options and ...

  1. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  2. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Data Sources and Assumptions Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and

  3. Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bus in Michigan Fisher Coachworks Develops Plug-In Electric Bus in Michigan to someone by E-mail Share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Facebook Tweet about Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Twitter Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Google Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops

  4. Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles and Infrastructure Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Google

  5. Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools: Zoning, Codes, and Parking Ordinances Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric

  6. Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Charging at Home and Work Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work to someone by E-mail Share Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Facebook Tweet about Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Twitter Bookmark Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at

  7. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect (OSTI)

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  8. Study Released on the Potential of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy ...

  9. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank

  10. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Digg Find

  11. Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Georgia Sets the Pace for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Delicious

  12. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History

    Broader source: Energy.gov [DOE]

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the...

  13. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  14. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy in Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures Plug-in Hybrid Electric Vehicle Test Plan PDF icon DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) More Documents & Publications AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing

  15. NREL: Transportation Research - Electric and Plug-In Hybrid Electric Fleet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Testing Electric and Plug-In Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be plugged into an electric power

  16. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Data | Department of Energy Plug-in Electric Vehicle On-Road Demonstration Data Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle On-Road Demonstration Data Through the American Recovery and Reinvestment Act, the Vehicle Technologies Office (VTO) accelerated the electrification of the nation's vehicle fleet. VTO invested $400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10

  17. Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids?

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (PEVs) include both battery electric vehicles (BEVs) which run only on electricity, and plug-in hybrid electric vehicles (PHEVs) which run on electricity and/or gasoline....

  18. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  19. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt068_vss_miyasato_2011_o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial

  20. EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 - 1:14pm Addthis Chemist Kris Pupek and student researcher Thoe Michaelos prepare validation experiments for the synthesis of battery materials at Argonne National Laboratory in Lemont, Illinois. Battery research at Argonne, and other national laboratories like it, are helping plug-in electric

  1. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the first time a domestic automaker is building electric motors for an electric vehicle ... electric drive system in a plug-in electric vehicle bridges two different types of energy. ...

  2. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources: U.S. Department of Energy, Alternative Fuels Data Center, "Developing Infrastructure to Charge Plug-In Electric Vehicles," website accessed 3042016. Tesla Motors, ...

  3. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  4. EV Everywhere: America’s Plug-In Electric Vehicle Market Charges Forward

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

  5. EERE Success Story-Plug-in Electric Vehicles Charge Forward in Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-in Electric Vehicles Charge Forward in Oregon EERE Success Story-Plug-in Electric Vehicles Charge Forward in Oregon March 10, 2015 - 12:00am Addthis EERE Success Story—Plug-in Electric Vehicles Charge Forward in Oregon Plug-in electric vehicles (PEVs) are charging forward in Oregon, with the help of EERE's Vehicle Technologies Office. A Clean Cities community readiness award provided a major step forward, helping the state develop a comprehensive market

  6. Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Tax Tips: Get Money Back for Buying, Charging Plug-in Electric Vehicles Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug-in Electric Vehicles March 21, 2016 - 4:58pm Addthis All-electric and plug-in hybrid cars purchased in 2015 may be eligible for federal and state income tax credits. Photo by Dennis Schroeder/NREL All-electric and plug-in hybrid cars purchased in 2015 may be eligible for federal and state income tax credits. Photo by Dennis

  7. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  8. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  9. Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2006-05-01

    This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

  10. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  11. Wireless Electric Charging: The Future of Plug-In Electric Vehicles is

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Going Cordless | Department of Energy Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless Wireless Electric Charging: The Future of Plug-In Electric Vehicles is Going Cordless March 7, 2016 - 3:50pm Addthis Researchers from Oak Ridge National Laboratory test a wireless charger on the fully-electric Toyota Scion iQ at a demonstration site. | Photo courtesy of Oak Ridge National Laboratory Researchers from Oak Ridge National Laboratory test a wireless charger

  12. Hybrid and Plug-In Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  13. DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development

  14. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  15. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  16. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  17. Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide Greenhouse Gas Emissions | Department of Energy Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions

  18. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  19. Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumers Plug-In Electric Vehicle Handbook for Consumers 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Plug-in Electric Vehicle Basics . . . . . . . . . . . . . . . . . . . . . 4 Plug-in Electric Vehicle Benefits . . . . . . . . . . . . . . . . . . . 5 Buying the Right Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Driving and Maintaining Your Vehicle . . . . . . . . . . . . . . . 8 Charging Your Vehicle . . . . . . .

  20. Mohave Electric Cooperative- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Mohave Electric Cooperative provides incentives for its customers to install renewable energy systems on their homes and businesses. Mohave Electric Cooperative will provide rebates for...

  1. Sample Employee Newsletter Articles for Plug-In Electric Vehicle Engagement

    Broader source: Energy.gov [DOE]

    These sample articles on plug-in electric vehicles (PEVs) can be customized and used in your employee newsletters, blog or intranet. Use these articles as-is with a credit to the U.S. Department of...

  2. Battery Cathode Developed by Argonne Powers Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    Increasing the number of plug-in electric vehicles on Americas roads can help reduce our dependence on petroleum, improving our economic, environmental, and energy security. But without research...

  3. EERE Success Story—Battery Cathode Developed by Argonne Powers Plug-in Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Increasing the number of plug-in electric vehicles on America’s roads can help reduce our dependence on petroleum, improving our economic, environmental, and energy security.   But without research...

  4. AVTA: Plug-In Hybrid Electric School Buses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Hybrid Electric School Buses AVTA: Plug-In Hybrid Electric School Buses The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing several plug-in hybrid

  5. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  6. Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid

  7. Delaware Electric Cooperative- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel cells, and geothermal installed by DEC member-owners. Eligibility is limited to ...

  8. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun; DeVault, Robert C

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  9. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... when their source of electricity comes from nonpolluting resources like wind and sunlight. ... Because PEVs rely in whole or part on electric power, their fuel economy is measured ...

  10. Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have system benefits - News Releases | NREL Xcel/NREL study: With a smart grid, plug-in hybrid electric vehicles could have system benefits February 21, 2007 Xcel Energy today announced the results of a six-month study related to plug-in hybrid electric vehicles (PHEVs) and how an increase in their popularity may affect Colorado. The study found that PHEVs may result in a reduction of the overall expense of owning a vehicle and, with the help of smart-grid technologies, eliminate harmful

  11. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  12. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  13. Sample Employee Newsletter Articles: Plug-In Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and video to help them understand the benefits of driving electric. Top 10 Things ... speed into power that is stored in the car's battery. 2. Traveling electric costs less. ...

  14. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... attributes of three vehicle types: PHEVs, hybrid electric vehicles (HEVs), and ... multiple vehicle categories (passenger cars to light trucks) throughout the 48 ...

  15. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    evaluating the electrification of heavy-duty vehicles and the accompanying infrastructure with Smith Electric, Navistar, Cascade Sierra on truck stop electrification, and the South ...

  16. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect (OSTI)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  17. EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    EV Everywhere is a Clean Energy Grand Challenge to have the U.S. become the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

  18. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  19. Plug-In Electric Vehicle Handbook for Consumers

    SciTech Connect (OSTI)

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  20. Sample Employee Newsletter Articles: Plug-In Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combustion engine. The eGallon: How Much Cheaper Is It to Drive on Electricity? ... The energy use encompasses both annual fuel use - such as gasoline, diesel or biofuel - ...

  1. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect (OSTI)

    Markel, T.

    2010-04-01

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  2. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  3. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  4. Alternative Fuels Data Center: Electricity Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Electricity Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Electricity Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Electricity Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Electricity Laws and Incentives on Delicious Rank Alternative

  5. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  6. Socially optimal electric driving range of plug-in hybrid electric vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-01-01

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  7. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-01-01

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electricmore » driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  8. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive

  9. Maximizing the Benefits of Plug-in Electric Vehicles - Continuum Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Skip to main content In This Issue In This Issue Dan Says From Our Director Features More than a Dream-a Renewable Electricity Future A Living Laboratory for Energy Systems Integration Integrated Solutions for a Complex Energy World Stories NREL's Energy Systems Integration Supporting Facilities Hydrogen: A Promising Fuel and Energy Storage Solution High Performance Computing Meets Energy Efficiency Sustainability through Dynamic Energy Management Maximizing the Benefits of Plug-in

  10. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia; Tang, Lixin

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  11. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  12. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  13. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles

    Broader source: Energy.gov [DOE]

    This report traces the connections between DOE energy storage research and downstream energy storage systems used in hybrid electric, plug-in hybrid electric, and fully electric vehicles.

  14. DOE to Provide Nearly $20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    ANN ARBOR, MI - U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced DOE will invest nearly $20 million in plug-in...

  15. Field Testing Plug-in Hybrid Electric Vehicles with Charge Control Technology in the Xcel Energy Territory

    SciTech Connect (OSTI)

    Markel, T.; Bennion K.; Kramer, W.; Bryan, J.; Giedd, J.

    2009-08-01

    Results of a joint study by Xcel Energy and NREL to understand the fuel displacement potential, costs, and emissions impacts of market introduction of plug in hybrid electric vehicles.

  16. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  17. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  18. Alternative Fuels Data Center: Federal Laws and Incentives for Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Electricity to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Google Bookmark Alternative Fuels Data Center: Federal Laws

  19. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  20. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energys (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  1. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  2. Consumer Views on Plug-in Electric Vehicles … National Benchmark Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumer Views on Plug-in Electric Vehicles - National Benchmark Report Mark Singer National Renewable Energy Laboratory Technical Report NREL/TP-5400-65279 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  3. List of Solar Thermal Electric Incentives | Open Energy Information

    Open Energy Info (EERE)

    List of Solar Thermal Electric Incentives Jump to: navigation, search The following contains the list of 562 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-562)...

  4. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  5. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  6. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  7. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  8. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  9. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2006-11-01

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  10. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  11. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia; Tang, Lixin

    2014-01-01

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  12. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14

  13. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  14. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 5 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2016, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  15. 2014 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2014 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2015, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  16. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  17. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Consumers must be able to drive a car off the lot like any other, plug it in as easily as they plug in a big screen television, and they can't overwhelm the grid when they get ...

  18. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon vss023friesner2011o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Plug IN Hybrid Vehicle Bus The Business of Near Zero...

  19. AVTA: Battery Testing- Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV)

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes best practices for responding to emergency incidents involving plug-in electric vehicle batteries, based on the AVTA's testing of PEV batteries. This research was conducted by Idaho National Laboratory.

  20. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  1. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  2. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Energy Savers [EERE]

    EPA Regulation Compliance EPA Regulation Compliance OE offers technical assistance on implementing the new and pending EPA air rules affecting the electric utility industry. Examples of typical assistance include technical information on cost and performance of the various power plant pollution retrofit control technologies; technical information on generation, demand-side or transmission alternatives for any replacement power needed for retiring generating units; and assistance to regulators

  3. Development and Deployment of Generation 3 Plug-In Hybrid Electric School

    Broader source: Energy.gov (indexed) [DOE]

    Buses | Department of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss023_friesner_2011_o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Plug IN Hybrid Vehicle Bus The Business of Near Zero

  4. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible...

  5. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Hadley, Stanton W; McGill, Ralph N; Cleary, Timothy

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  6. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  7. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  8. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  9. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

  10. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.

  11. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  12. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect (OSTI)

    Schey, Steve; Francfort, Jim

    2015-07-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.

  13. Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... from "Electric Power Monthly" (DOEIEA-0226) for the ... Charging Algorithm - The circuitrymathematical controls ... Standard C101.1, 1986 American Nuclear Society (ANS) ...

  14. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

    Broader source: Energy.gov [DOE]

    The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in...

  15. A primer on incentive regulation for electric utilities

    SciTech Connect (OSTI)

    Hill, L.J.

    1995-10-01

    In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

  16. Grid-Integrated Fleet & Workplace Charging for Plug-in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.C. Martin Workplace Charging Challenge - Summit 2014 November 18, 2014 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved. SDG&E Goal - Grid ...

  17. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass...

  18. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  19. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Marine Corps Base Camp Lejeune. Task 3

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense-based studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at Marine Corps Base Camp Lejeune to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 vehicle utilization report provided results of the data analysis and observations related to the replacement of current vehicles with PEVs. Finally, this report provides an assessment of charging infrastructure required to support the suggested PEV replacements. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune Fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from Marine Corps Base Camp Lejeune personnel.

  20. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  1. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    SciTech Connect (OSTI)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  2. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  3. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.

  4. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  5. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

  6. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  7. Plug In Partners | Open Energy Information

    Open Energy Info (EERE)

    Zip: 78704 Sector: Vehicles Product: Focused on promotion of flexible-fuel Plug-in Hybrid Electric Vehicles (PHEV). Coordinates: 30.267605, -97.742984 Show Map Loading...

  8. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program

    Broader source: Energy.gov [DOE]

    In 2014, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities–existing powered or non-powered...

  9. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    SciTech Connect (OSTI)

    Francfort, Jim; Bennett, Brion; Carlson, Richard; Garretson, Thomas; Gourley, LauraLee; Karner, Donal; McGuire, Patti; Scoffield, Don; Kirkpatrick, Mindy; Shrik, Matthew; Salisbury, Shawn; Schey, Stephen; Smart, John; White, Sera; Wishard, Jeffery

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the vehicles and recharging decisions made. Data is reported for the use of more than 25,000 vehicles and charging units.

  10. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  11. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  12. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  13. EWEB- Solar Electric Program (Performance-Based Incentive)

    Broader source: Energy.gov [DOE]

    The rebate for residential customers who choose to net meter is $1.70 per watt-AC, with a maximum incentive of $6,000. The rebate for commercial customers who choose to net meter is $1.00 per wat...

  14. Plug-in Hybrid Initiative

    SciTech Connect (OSTI)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  15. Impact of Direct Financial Incentives in the Emerging Battery Electric Vehicle Market: A Preliminary Analysis

    Broader source: Energy.gov [DOE]

    This study addresses the question “What is the impact of state-level electric vehicle incentives on electric vehicle adoption?”. It focus on rebates, tax credits, and HOV-lane access for battery electric vehicles (BEVs) but also examines the influence of public BEV charging infrastructure on BEV adoption so far. The analysis uses state-level, temporal variation in BEV incentives to identify variation in BEV registrations through econometric methods. This presentation will review initial findings of the project and gather your feedback on future research needs.

  16. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  17. Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the US Power System: Distribution System Analysis

    SciTech Connect (OSTI)

    Gerkensmeyer, Clint; Kintner-Meyer, Michael CW; DeSteese, John G.

    2010-01-01

    This report documents work conducted by Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE) to address three basic questions concerning how typical existing electrical distribution systems would be impacted by the addition of PHEVs to residential loads.

  18. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Maintenance

  19. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing

  20. Alternative Fuels Data Center: Houston Energizes Deployment of Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Houston Energizes Deployment of Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Houston Energizes Deployment of Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Houston Energizes Deployment of Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Houston Energizes Deployment of Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Houston Energizes Deployment of

  1. Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Buses North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail Share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Facebook Tweet about Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Twitter Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Google Bookmark Alternative Fuels Data Center: North Carolina Airport

  2. Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicles UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center:

  3. Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive

    Broader source: Energy.gov [DOE]

    The Anaerobic Digester Gas-to-Electricity program is designed to support small-sized electricity generation where the energy generated is used primarily at the electric customer's location (third...

  4. Comprehensive Well to Wheel Analysis for Plug-in-Hybrid Electric Vehicles in the U.S.

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Pratt, Robert G.; Schneider, Kevin P.

    2008-09-19

    The U.S. electric power infrastructure is a strategic national asset that is underutilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver the necessary energy to fuel the majority of the U.S. light-duty vehicle (LDV) fleet. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the U.S. dependency on foreign oil. This paper estimates the regional percentages of the energy requirements for the U.S. LDV stock that could potentially be supported by the existing infrastructure, based on the 12 modified North American Electric Reliability Council regions, as of 2002. For the United States as a whole, about 70% of LDV fleet in the U.S. could be supported by the existing infrastructure with some degree of load management. This has an estimated gasoline displacement potential of 6.5 million barrels of oil equivalent per day, or approximately 52% of the nation's oil imports. The paper also discusses the impact on overall emissions of criteria gases and greenhouse gases as a result of shifting emissions from millions of individual vehicles to a few hundred power plants. Overall, PHEVs could reduce greenhouse gas emissions with regional variations dependent on the local generation mix. Total NOX emissions may or may not increase, dependent on the use of coal generation in the region. Any additional SO2 emissions associated with the expected increase in generation from coal power plants would need to be cleaned up to meet the existing SO2 emissions constraints. Particulate emissions would increase in 8 of the 12 regions. The emissions in urban areas are found to improve across all pollutants and regions as the emission sources shift from millions of tailpipes to a smaller number of large power plants in less-populated areas. This paper concludes with a discussion about possible grid impacts as a result of the PHEV load as well as the likely impacts on the plant and technology mix of future generation-capacity expansions.

  5. List of Geothermal Electric Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  6. Trico Electric Cooperative- SunWatts Incentive Program

    Broader source: Energy.gov [DOE]

    Through the SunWatts Program, Trico Electric Cooperative offers residential and business customers a rebate for installing solar water heaters. Rebates equal $0.40 per expected first year of...

  7. New Hampshire Electric Co-op- Solar Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op (NHEC) is offering rebates for residential and commercial, grid-tied solar photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to $0.25...

  8. ConEd (Electric)- Multifamily Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Con Edison offers New York Multifamily electric customers a rebate program for energy efficient cooling and lighting equipment in 5-75 unit buildings in the eligible service area. All equipment...

  9. Flathead Electric Cooperative- New and Manufactured Home Incentive Program

    Broader source: Energy.gov [DOE]

    Flathead Electric encourages its residential customers to occupy energy efficient homes. Owners and builders of new homes which meet the "Montana Homes" requirements listed on the program web site...

  10. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun

    2008-04-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

  11. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    SciTech Connect (OSTI)

    Sikes, Karen R; Hinds, Shaun; Hadley, Stanton W; McGill, Ralph N; Markel, Lawrence C; Ziegler, Richard E; Smith, David E; Smith, Richard L; Greene, David L; Brooks, Daniel L; Wiegman, Herman; Miller, Nicholas; Marano, Dr. Vincenzo

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  12. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AVTA: Plug-In Hybrid Electric School Buses Medium and Heavy Duty Vehicle and Engine Testing Medium- and Heavy-Duty Electric Drive Vehicle Simulation ...

  13. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  14. Microsoft Word - Plug-in Hybrids.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. ...

  15. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  16. Tax Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Incentives of 1992, allows owners of qualified over a 10-year period. Qualified wind wind turbines (indexed for inflation). - The federal Renewable Electricity Production Tax Credit (PTC), established by the Energy Policy Act renewable energy facilities to receive tax credits for each kilowatt-hour (kWh) of electricity generated by the facility power projects are eligible to receive 2.3 cents per kWh for the produc - tion of electricity from utility-scale dsireusa.org/incentives/incentive.

  17. Ameren Illinois (Electric & Gas)- Multi-Family Properties Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    The shell measure segment offers incentives for air sealing the shell of multifamily buildings. Incentives will be paid based on the total CFM reduction. Insulation incentives will be based on sq...

  18. Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Saves With

  19. Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Los Angeles Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Sets the Stage for

  20. Plug in America | Open Energy Information

    Open Energy Info (EERE)

    in America Jump to: navigation, search Name: Plug-in America Place: El Segundo, California Zip: 90245 Product: Plug In America advocates the use of plug-in cars, trucks and SUVs...

  1. Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)

    SciTech Connect (OSTI)

    Simpson, A.

    2006-08-24

    Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

  2. Missouri/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives for Missouri CSV (rows 1 - 69) Incentive Incentive Type Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program No Ameren Missouri (Electric) -...

  3. Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014

    Broader source: Energy.gov [DOE]

    The International Energy Agency released the 2015 report Hybrid and Electric Vehicles, The Electric Drive Delivers which shows the total number of plug-in electric vehicles (PEVs) in selected...

  4. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  5. Alliant Energy Interstate Power and Light (Gas and Electric)- Farm Equipment Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers prescriptive rebates for a variety of energy efficient products for agricultural customers. In addition to these incentives, IPL offers a Farm...

  6. Secretary Chu Announces up to $10 Million to Support Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Announces up to 10 Million to Support Plug-In Hybrid Electric School Buses ... electric vehicles in the United States, Energy Secretary Steven Chu today announced the ...

  7. Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles

    Broader source: Energy.gov [DOE]

    The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and 324 were sold in the first month. The Chevrolet Volt, a hybrid-electric plug-in, and the...

  8. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    miles on electricity alone PHEV40 plug-in hybrid electric vehicle which can travel up to ... the percent of carbon reduction in PHEVs (cars and light trucks) when cars are charged ...

  9. Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving Range

    Broader source: Energy.gov [DOE]

    For the 2013 model year (MY) there are four plug-in hybrid electric vehicles (PHEVs) available to consumers. PHEVs offer a limited amount of all-electric driving range that is drawn from a plug and...

  10. Workplace Charging Challenge Mid-Program Review: Employees Plug In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Mid-Program Review: Employees Plug In U.S. Department of Energy's EV Everywhere Workplace 2 Almost three years ago, we kicked off the Workplace Charging Challenge with the goal of having 500 U.S. employers commit to installing workplace plug-in electric vehicle (PEV) charging and joining the Challenge by 2018. I am pleased to share that with more than 250 participants in the Challenge, we are more than halfway there, and the adoption of workplace charging as a

  11. Alliant Energy Interstate Power and Light (Gas and Electric)- New Home Construction Incentives

    Broader source: Energy.gov [DOE]

    Interstate Power and Light's New Home Program gives incentives to builders and contractors who build energy efficient homes. A base rebate is available to those customers that make the minimum...

  12. Delaware/Incentives | Open Energy Information

    Open Energy Info (EERE)

    No DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) (Delaware) Utility Rebate Program Yes Delaware Electric Cooperative - Green Energy Program Incentives...

  13. Plug-in Electric Vehicle Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Partner's Smart Mobility rental choices. 4. Work with your organization's fleet manager to deploy PEVs in your fleet. Connect with your local Clean Cities coalition to ...

  14. Plug-in Electric Vehicle Outreach

    Broader source: Energy.gov (indexed) [DOE]

    have experience implementing workplace charging programs and can provide knowledge and lessons learned. The Workplace Charging Challenge Partner Map lists worksites across the...

  15. Golden Valley Electric Association - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    30 Timer Controlling Exterior Vehicle Plug-In Outlet: 20 Switch Controlling Exterior Vehicle Plug-In Outlet: 10 Summary Golden Valley Electric Association's (GVEA) Builder...

  16. Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric School Buses | Department of Energy up to $10 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis WASHINGTON, DC -- As part of the Department of Energy's commitment to advancing the next generation of electric vehicles in the United States, Energy Secretary Steven Chu today announced the selection of a new demonstration and testing project to develop a

  17. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    2013-12-31

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  18. List of Biodiesel Incentives | Open Energy Information

    Open Energy Info (EERE)

    Solid Waste Photovoltaics Small Hydroelectric Solar Thermal Electric Coal with CCS Natural Gas Wind Yes Alternatives Fuels Production Incentive (Mississippi)...

  19. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  20. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

  1. incentive2

    Energy Savers [EERE]

    INSPECTION REPORT The Fiscal Year 1996 Performance Based Incentive Program at the Savannah ... Findings and Recommendations ......4 Savannah River PBI ...

  2. Plug-In Demo Charges up Clean Cities Coalitions

    Broader source: Energy.gov [DOE]

    Clean Cities Coordinators across the country highlight the benefits of plug-in hybrids and help collect valuable usage data as part of a demonstration project for the upcoming plug-in hybrid model of the Toyota Prius.

  3. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  4. NREL, Industry Leaders Join Forces to Help Consumers Plug In - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, Industry Leaders Join Forces to Help Consumers Plug In Partnership with Google and providers will improve access to information about electric vehicle charging stations April 19, 2011 U.S. Department of Energy's National Renewable Energy Laboratory (NREL), Google Inc., and more than 80 leading organizations in electric vehicle (EV) deployment will collaborate to provide consumers and industry with accurate and up-to-date information on the locations of electric vehicle

  5. Help Your Employer Install Electric Vehicle Charging

    Broader source: Energy.gov [DOE]

    Educate your employer about the benefits of installing plug-in electric vehicle (PEV) workplace charging. Use the resources below and the Plug-in Electric Vehicle (PEV) Handbook for Workplace...

  6. Fact #893: October 5, 2015 Incentives for the Installation of...

    Broader source: Energy.gov (indexed) [DOE]

    Incentives for the Installation of Electric Vehicle Charging Stations fotw893web.xlsx More Documents & Publications Richmond Electric Vehicle Initiative Electric Vehicle...

  7. Lesson 2 - Electricity Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there....

  8. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity...

  9. Iowa/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Municipal Electric Utility - Renewable Energy Rebates (Iowa) Utility Rebate Program No Methane Gas Conversion Property Tax Exemption (Iowa) Property Tax Incentive Yes ... further...

  10. Property:Incentive/PVYears | Open Energy Information

    Open Energy Info (EERE)

    - Renewable Energy Certificate Incentive (Rhode Island) + 3 + Preston Municipal Electric Utility - Renewable Energy Rebates (Iowa) + 1 + Progress Energy Carolinas - SunSense...

  11. Maine/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Utility Rebate Program Yes Community Based Renewable Energy Production Incentive (Pilot...

  12. DEMEC Member Utilities- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  13. Impact of tax incentives on the commercialization of solar thermal electric technologies. Volume II. Federal revenue considerations

    SciTech Connect (OSTI)

    Bos, P.B.; Morris, G.P.

    1985-11-01

    The purpose of this study was to quantify the impact of the Solar Thermal Central Receiver (STCR) tax incentives and commercialization on the federal treasury revenues. The initial STCR market penetration was assumed to take place in California, because of favorable local conditions. The initial financing was assumed to be underwritten by intermediary partnerships under long-term avoided cost contracts with the local utility companies with subsequent sale of the plants to utilities at competitive prices. To estimate the impacts of these various tax incentives associated with the commercialization of the STCR technology, the tax revenues and costs for the STCR plants were compared with the tax revenues and costs for the displaced conventional power plants. This differential analysis takes into account the different operating expenses, as well as the different depreciation charges, financing costs, and tax credits associated with STCR and conventional plants. The study also evaluated the impact of both the previous (1983) and current (1984) proposed federal energy tax credits. The resulting total annual tax cash flows were subsequently cumulated to determine the aggregate tax revenues and costs throughout the 1985 to 2034 time period. The results of this analysis indicate that the initial federal tax revenues are negative. With increasing market penetration, the installed costs of the STCR plants decrease rapidly and the net present values of the tax revenue cash flows associated with plants constructed after 1995 are positive, and become significantly larger than those for the corresponding displaced conventional plants.

  14. Fact #788: July 15, 2013 State and Private Consumer Incentives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Accessed June 28, 2013. Northeast Group, LLC, United States Smart Grid: Utility Electric Vehicle Tariffs, July 2013. Tesla Motors, Inc. Electric Vehicle Incentives Around the World

  15. NREL: Transportation Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Test & Evaluation Hybrid Electric Vehicles Electric & Plug-In Hybrid Vehicles Hydraulic Hybrid Vehicles Alternative Fuel Vehicles Vehicle Operating Data Truck...

  16. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  17. Category:Financial Incentives Incentive Types | Open Energy Informatio...

    Open Energy Info (EERE)

    Performance-Based Incentive Personal Tax Incentives P cont. Property Tax Incentives R Rebate Programs S Sales Tax Incentives U Utility Rate Discounts Retrieved from "http:...

  18. Clean Cities Coalitions Charge Up Plug-In Electric Vehicles ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... It was often a challenge to ensure the diverse partners communicated well and worked ... was recognizing how important it was to share 'lessons learned' as we were learning them." ...

  19. Plug-In Electric Vehicle Integration with Renewables

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  20. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... be balanced with the inefficiency and battery-life ... a significant hurdle to adoption because it involves ... Advanced Meters Investment by utilities and governments in ...

  1. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Publications News Research Advanced Combustion Advanced Materials and Manufacturing Advanced Vehicle Technologies Buildings and Climate-Environment Education...

  2. Plug-In Electric Vehicle Fast Charge Station Operational Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... assumptions that residential charging remains the dominant method will guide this study. ... when running low on energy. 2.1 Driving Profiles To simulate fast charge usage based on ...

  3. Plug-In Electric Vehicle Handbook for Public Charging Station...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Gasoline- and diesel-powered ICE vehicles ended up ... the nation's first zero emission vehicle mandate, putting the ... about 10 to 40-plus miles for current light-duty models. ...

  4. Wireless Plug-in Electric Vehicle (PEV) Charging

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Wireless Plug-in Electric Vehicle (PEV) Charging

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Clean Cities Coalitions Charge Up Plug-In Electric Vehicles ...

    Broader source: Energy.gov (indexed) [DOE]

    coalitions nationwide are helping their communities get ready for PEVs by using local knowledge to ensure that both are easily deployed and available to consumers. To support...

  7. California Statewide Plug-In Electric Vehicle Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... fuel consumption in watt-hours per mile (Whmile), ... 4 charge points.) These usage rates are optimistic and ... There are no spatial metrics used to compare the number of ...

  8. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss092_malikopoulos_2012_p.pdf More Documents & Publications Autonomous Intelligent Hybrid Propulsion Systems The Meritor Dual Mode Hybrid Powertrain CRADA The Meritor Dual Mode Hybrid Powertrain CRADA

  9. Alternative Fuels Data Center: Plug-In Electric Vehicle Readiness...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    option that has the potential to benefit a community's economy, energy security, and environment. As local and regional leaders know, PEV readiness is a community-wide effort,...

  10. STEAB Renewable Energy Production Incentive (REPI) Action

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB Renewable Energy Production Incentive (REPI) Action The Renewable Energy Production Incentive (REPI) was introduced in 1992 in order to provide financial incentives that were comparable to tax credits that were available to the private sector for renewable energy generation investors and developers. The REPI program was reauthorized for an additional ten years in the Energy Policy Act of 2005. There is increasing demand being placed on private and public utilities to generate electricity

  11. Tax Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualified wind wind turbines (indexed for inflation). - The federal Renewable Electricity ... Commercial owners of small wind turbines (100 kW or less) placed in service ...

  12. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  13. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  14. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  15. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  16. STEP Request For Incentives

    Broader source: Energy.gov [DOE]

    STEP Request For Incentives, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  17. STEP Financial Incentives Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    STEP Financial Incentives Summary, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  18. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  19. PG&E- California Advanced Homes Incentives

    Broader source: Energy.gov [DOE]

    Pacific Gas & Electric (PG&E) offers an incentive for home builders to build homes which exceed 2008 Title 24 standards by 15%. The program is open to all single-family and multi-family new...

  20. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 INCENTIVE PAYMENTS Payee (Applicant) Hydro Facility Albany Engineering Corporation ... Village, Inc., Electric Department Barton Hydro Bell Mountain Hydro LLC Bell Mountain ...

  1. Central Lincoln People's Utility District- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

  2. PEPCO- Home Performance with ENERGY STAR Incentive Program

    Broader source: Energy.gov [DOE]

    The Potomac Electric Power Company (PEPCO) offers the Home Performance with Energy Star Program which provides incentives for residential customers who have audits performed by participating...

  3. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  4. Incentives and Financing for Energy Efficient Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Incentives and Financing for Energy Efficient Homes Incentives and Financing for Energy Efficient Homes Financial incentives and financing programs can help with the cost of making energy efficient home improvements and installing renewable energy systems, such as solar electricity. | Photo courtesy of Dennis Schroeder/NREL. Financial incentives and financing programs can help with the cost of making energy efficient home improvements and installing renewable energy systems, such as

  5. Self-learning control system for plug-in hybrid vehicles

    DOE Patents [OSTI]

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  6. All-SiC Inductively Coupled Charger with Integrated Plug-in and Boost Functionalities for PEV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Campbell, Steven L; Tolbert, Leon M

    2016-01-01

    So far, vehicular power electronics integration is limited to the integration of on-board battery chargers (OBC) into the traction drive system and sometimes to the accessory dc/dc converters in plug-in electric vehicles (PEV). These integration approaches do not provide isolation from the grid although it is an important feature that is required for user interface systems that have grid connections. This is therefore a major limitation that needs to be addressed along with the integrated functionality. Furthermore, there is no previous study that proposes the integration of wireless charger with the other on-board components. This study features a unique way of combining the wired and wireless charging functionalities with vehicle side boost converter integration and maintaining the isolation to provide the best solution to the plug-in electric vehicle users. The new topology is additionally compared with commercially available OBC systems from manufacturers.

  7. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    SciTech Connect (OSTI)

    Miyasato, Matt; Kosowski, Mark

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  8. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction ...

  9. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction - Dataset Excel file with dataset for Plug-in and Hybrid Cars Receive High Scores for ...

  10. Fact #918: March 28, 2016 Global Plug-in Light Vehicle Sales...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 918: March 28, 2016 Global Plug-in Light Vehicle Sales Increased by About 80% in 2015 - Dataset Excel file and dataset for Global Plug-in Light Vehicle Sales Increased by ...

  11. V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks June 24, 2013 -...

  12. Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    Over One-Million in Plug-in Vehicle Sales Worldwide File fotw892web.xlsx More Documents & Publications Fact 918: March 28, 2016 Global Plug-in Light Vehicle Sales Increased by ...

  13. Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in Vehicle Sales Climb as Battery Costs Decline File fotw914web.xlsx More Documents & Publications Fact 892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales ...

  14. Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs

    Broader source: Energy.gov (indexed) [DOE]

    Decline - Dataset | Department of Energy Plug-in Vehicle Sales Climb as Battery Costs Decline File fotw#914_web.xlsx More Documents & Publications Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide - Dataset Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction - Dataset Fact #918: March 28, 2016 Global Plug-in Light Vehicle Sales Increased by About 80% in 2015

  15. Business Incentive Program

    Broader source: Energy.gov [DOE]

    Below is a list of equipment categories for which incentives are available, with short descriptions of some eligible technologies. Interested parties should see the program web site for incentive...

  16. Sustaining Cost-Effective Incentives

    Broader source: Energy.gov [DOE]

    Presents how understanding the way in which customers' minds process incentives can help energy efficiency programs structure effective incentives.

  17. Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales

    Energy Savers [EERE]

    Worldwide - Dataset | Department of Energy 2: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide - Dataset Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide - Dataset Excel file and dataset for Over One-Million in Plug-in Vehicle Sales Worldwide File fotw#892_web.xlsx More Documents & Publications Fact #918: March 28, 2016 Global Plug-in Light Vehicle Sales Increased by About 80% in 2015 - Dataset Fact #856 January 19, 2015 Plug-in and

  18. Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Hawaii Plug-In Vehicles to Harness Renewable Energy in Hawaii to someone by E-mail Share Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Facebook Tweet about Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Twitter Bookmark Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Google Bookmark Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in

  19. Energy Incentive Programs, Missouri | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Missouri Energy Incentive Programs, Missouri Updated July 2015 Missouri utilities budgeted over $65 million in 2014 across their various programs to promote energy efficiency in the state. What public-purpose-funded energy efficiency programs are available in my state? Missouri has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Ameren Missouri offers a variety of electric and natural gas efficiency incentives through its

  20. 2014 Electrical Production: EPACT 2005 Section 242 Hydroelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2014 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2015, Congress ...

  1. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2016, Congress ...

  2. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program In 2014, Congress ...

  3. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect (OSTI)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  4. Search tool plug-in: imploements latent topic feedback

    Energy Science and Technology Software Center (OSTI)

    2011-09-23

    IRIS is a search tool plug-in that is used to implement latent topic feedback for enhancing text navigation. It accepts a list of returned documents from an information retrieval wywtem that is generated from keyword search queries. Data is pulled directly from a topic information database and processed by IRIS to determine the most prominent and relevant topics, along with topic-ngrams, associated with the list of returned documents. User selected topics are then used tomore » expand the query and presumabley refine the search results.« less

  5. Compact Fluorescent Plug-In Ballast-in-a-Socket

    SciTech Connect (OSTI)

    Rebecca Voelker

    2001-12-21

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

  6. Method for preventing plugging in the pyrolysis of agglomerative coals

    DOE Patents [OSTI]

    Green, Norman W.

    1979-01-23

    To prevent plugging in a pyrolysis operation where an agglomerative coal in a nondeleteriously reactive carrier gas is injected as a turbulent jet from an opening into an elongate pyrolysis reactor, the coal is comminuted to a size where the particles under operating conditions will detackify prior to contact with internal reactor surfaces while a secondary flow of fluid is introduced along the peripheral inner surface of the reactor to prevent backflow of the coal particles. The pyrolysis operation is depicted by two equations which enable preselection of conditions which insure prevention of reactor plugging.

  7. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  8. Hopper Scaling Incentive Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hopper Scaling Incentive Program Hopper Scaling Incentive Program August 30, 2011 by Francesca Verdier For projects that haven't yet scaled their codes to 683 or more nodes (which is the level at which a job is considered "big" on hopper) NERSC is offering scaling incentives, mostly focused on the use of OpenMP. For some codes, adding OpenMP directives will allow you to scale up and run bigger science problems. For users accepted in the Scaling Incentive Program: First, you'll need to

  9. Effective Incentive Structures

    Broader source: Energy.gov [DOE]

    Presents an in-depth look at effective incentive structures, how to clarify your program goals, and tips to plan for the long term.

  10. Solar PV Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Authority Solar PV Incentive Programs Presentation at NREL Webinar on ... 14 Research & Development: - New & Improved PV Panels - Reduced Costs of Balance of System ...

  11. EWEB- Solar Electric Program (Rebate)

    Broader source: Energy.gov [DOE]

    The Eugene Water & Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential, nonprofit, and government customers that generate electricity solar photovoltaic...

  12. Hybrid Electric Systems: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes the work EERE is doing in the areas of hybrid, plug-in hybrid, and all-electric vehicles.

  13. Chapter 3: Enabling Modernization of the Electric Power System...

    Energy Savers [EERE]

    variable wind generators, plug-in electric vehicles, photovoltaic systems, fuel cells, microturbines, demand response and load modifying resources, and energy storage systems. ...

  14. List of Hydrogen Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives Jump to: navigation, search The following contains the list of 61 Hydrogen Incentives. CSV (rows 1 - 61) Incentive Incentive Type Place Applicable Sector Eligible...

  15. Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Converters and Inverters | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape026_hefner_2011_p.pdf More Documents & Publications Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Electro-thermal-mechanical Simulation and Reliability for Plug-in

  16. Photovoltaic Incentive Design Handbook

    SciTech Connect (OSTI)

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

  17. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities

    Broader source: Energy.gov [DOE]

    Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system.

  18. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-02-13

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  19. Self-Learning Controller for Plug-in Hybrid Vehicles Learns Recharge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controller for Plug-in Hybrid Vehicles Learns Recharge Stations for Optimal Battery Charge Oak Ridge National Laboratory Contact ORNL About This Technology Technology...

  20. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.

    SciTech Connect (OSTI)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

  1. National Drive Electric Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener | Photo courtesy of Dennis Schroeder, National Renewable Energy ...

  2. El Paso Electric- SCORE Program for Counties, Municipalities, and Schools

    Broader source: Energy.gov [DOE]

    El Paso Electric offers a targeted incentive program for public institutions, local governments and higher education.

  3. Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012

    Broader source: Energy.gov [DOE]

    Using data for the first seven months of 2012, Norway has the highest plug-in car market share at 2.55%. The Netherlands has the second highest plug-in market share (0.59%) and despite its small...

  4. New Homes Incentive Program

    Broader source: Energy.gov [DOE]

    Most incentives are based on a home's Energy Performance Score (EPS), a measurement tool that assesses a home's energy consumption, estimated utility costs and carbon impact. The EPS allows...

  5. Biomass Energy Production Incentive

    Broader source: Energy.gov [DOE]

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  6. LADWP- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    The Los Angeles Department of Water and Power's (LADWP) Solar Incentive Program began in 2000, with a funding level of $150 million. The California Solar Initiative, created in 2007 upon the...

  7. Solar Thermal Incentive Program

    Broader source: Energy.gov [DOE]

    NOTE: The incentive amounts for the program was updated effective July 17, 2015. Applications are being received until December 15, 2015 or, until the funds are exhausted. 

  8. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Energy Savers [EERE]

    the U.S. Department of Energy and the electricity ... in annual sales of plug-in electric vehicles by 2023, 1 which may substantially increase electricity usage and peak ...

  9. Now Available: Evaluating Electric Vehicle Charging Impacts and...

    Broader source: Energy.gov (indexed) [DOE]

    The electric power industry expects a 400% growth in annual sales of plug-in electric vehicles by 2023, which may substantially increase electricity usage and peak demand in high ...

  10. Aligning Incentives With Program Goals

    Broader source: Energy.gov [DOE]

    Presents techniques used by Michigan Saves to increase participation and provide greater incentives.

  11. Federal Incentives for Water Power

    SciTech Connect (OSTI)

    2013-04-05

    This factsheet lists the major federal incentives for water power technologies available as of April 2013.

  12. Powerplant productivity improvements and regulatory incentives

    SciTech Connect (OSTI)

    Hardy, D; Brown, D

    1980-10-27

    The purpose of this study was to examine the benefits to be gained from increased powerplant productivity and to validate and demonstrate the use of incentives within the regulatory process to promote the improvement of powerplant productivity. The system-wide costs savings to be gained from given productivity improvement scenarios are estimated in both the short and long term. Numerous reports and studies exist which indicate that productivity improvements at the powerplant level are feasible and cost effective. The efforts of this study widen this focus and relate system-wide productivity improvements with system-wide cost savings. The initial thrust of the regulatory section of this study is to validate the existence of reasonable incentive procedures which would enable regulatory agencies to better motivate electric utilities to improve productivity on both the powerplant and system levels. The voluntary incentive format developed in this study was designed to facilitate the link between profit and efficiency which is typically not clear in most regulated market environments. It is concluded that at the present time, many electric utilities in this country could significantly increase the productivity of their base load units, and the adoption of an incentive program of the general type recommended in this study would add to rate of return regulation the needed financial incentives to enable utilities to make such improvements without losing long-run profit. In light of the upcoming oil import target levels and mandatory cutbacks of oil and gas as boiler fuels for electric utilities, the use of incentive programs to encourage more efficient utilization of coal and nuclear base load capacity will become far more inviting over the next two decades.

  13. Energy Incentive Programs, Maine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine Energy Incentive Programs, Maine Updated June 2015 What public purpose-funded energy efficiency programs are available in my state? Maine's restructuring law provides for energy efficiency programs through a statewide charge of up to 1.5 mills per kWh. These costs are included in the rates of the local electric distribution utilities. Nearly $25 million was spent in 2014 on electric and gas energy efficiency programs. These funds were augmented, starting in 2009, by Maine's portion of

  14. Energy Incentive Programs, Maryland | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Energy Incentive Programs, Maryland Updated October 2015 Maryland utilities budgeted over $290 million in 2014 across their various electric and gas programs (including those directed at residential and low-income customers) to promote customer energy efficiency. What public-purpose-funded energy efficiency programs are available in my state? Maryland's electricity restructuring law, signed in 1999, mandated the creation of a Universal Service Fund that provides bill assistance and

  15. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  16. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2010-01-01

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  17. Energy Department and Edison Electric Institute Sign Agreement to Advance Electric Vehicle Technologies

    Broader source: Energy.gov [DOE]

    Today Energy Secretary Ernest Moniz signed a Memorandum of Understanding between the Department and the Edison Electric Institute, strengthening collaborative action to accelerate plug-in electric vehicle and charging infrastructure deployment.

  18. Wireless Electric Charging: The Future of Plug-In Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    No need for cords or cards. Just as Wi-Fi has freed consumers of wires when accessing the Internet, wireless charging technology may soon be as widespread, thanks to research ...

  19. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives to their commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are...

  20. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  1. Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Worldwide | Department of Energy 92: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide SUBSCRIBE to the Fact of the Week As of mid-September 2015 there have been about 1,004,000 plug-in vehicles (PEV) sold worldwide according to HybridCars.com. The pace of PEV sales has quickened - global PEV sales reached half a million in July 2014, and just one year and two months later, reached the one

  2. Amber Plug-In for Protein Shop () | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Software: Amber Plug-In for Protein Shop Citation Details Software Request Title: Amber Plug-In for Protein Shop The Amber Plug-in for ProteinShop has two main components: an AmberEngine library to compute the protein energy models, and a module to solve the energy minimization problem using an optimization algorithm in the OPTI-+ library. Together, these components allow the visualization of the protein folding process in ProteinShop. AmberEngine is a object-oriented library to compute

  3. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  4. Indiana/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives for Indiana CSV (rows 1 - 86) Incentive Incentive Type Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program No Alternative Power &...

  5. STEP Financial Incentives Summary | Department of Energy

    Energy Savers [EERE]

    STEP Financial Incentives Summary STEP Financial Incentives Summary STEP Financial Incentives Summary, from the Tool Kit Framework: Small Town University Energy Program (STEP). PDF ...

  6. Category:Photovoltaic Incentives | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Incentives Jump to: navigation, search Category for Photovoltaic Incentives. Pages in category "Photovoltaic Incentives" The following 107 pages are in this category,...

  7. Ameren Illinois (Gas)- Business Efficiency Incentives

    Broader source: Energy.gov [DOE]

    The Specialty Equipment Application offers incentives on steamers, griddles, fryers, and other commercial kitchen equipment. The Steam Trap/Process Steam Incentive Program offers incentives on st...

  8. Kentucky/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives for Kentucky CSV (rows 1 - 71) Incentive Incentive Type Active Atmos Energy - Natural Gas and Weatherization Efficiency Program (Kentucky) Utility Rebate Program Yes...

  9. Category:Lists for Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives List of Doors Incentives List of DuctAir sealing Incentives List of Energy Mgmt. SystemsBuilding Controls Incentives List of Equipment Insulation Incentives...

  10. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future. ...

  11. Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle

    Broader source: Energy.gov [DOE]

    General Motors has been gathering feedback from customers who purchased the 2011 Chevrolet Volt, which is the only plug-in hybrid vehicle (PHEV) on the market today. Through May 2011, about 2,100...

  12. EV Everywhere: Innovative Battery Research Powering Up Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Energy Storage work Read Vehicle Technologies Office success stories Watch this Energy 101 video to learn how electric vehicles work The EV Everywhere Grand ...

  13. Self-Generation Incentive Program

    Broader source: Energy.gov [DOE]

    Systems less than 30 kW will receive their full incentive upfront. Systems with a capacity of 30 kilowatts (kW) or greater will receive half the incentive upfront, and the the other half will be...

  14. Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Converters and Inverters | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape026_hefner_2012_o.pdf More Documents & Publications Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Vehicle Technologies Office Merit Review 2014:

  15. U.S. Department of Energys EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In (Brochure), U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mid-Program Review: Employees Plug In U.S. Department of Energy's EV Everywhere Workplace 2 Almost three years ago, we kicked off the Workplace Charging Challenge with the goal of having 500 U.S. employers commit to installing workplace plug-in electric vehicle (PEV) charging and joining the Challenge by 2018. I am pleased to share that with more than 250 participants in the Challenge, we are more than halfway there, and the adoption of workplace charging as a sustainable business practice is

  16. CPS Energy- New Residential Construction Incentives

    Broader source: Energy.gov [DOE]

    CPS Energy offers incentives for new residential construction that is at least 15% more efficient than required by the [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=TX29R&re=1...

  17. Incentive Peregrine s Incubator | Open Energy Information

    Open Energy Info (EERE)

    Name: Incentive Peregrine's Incubator Place: Israel Sector: Services Product: General Financial & Legal Services ( Subsidiary Division ) References: Incentive Peregrine's...

  18. Designing Effective Incentives to Drive Residential Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incentives to Drive Residential Retrofit Program Participation Designing Effective Incentives to Drive Residential Retrofit Program Participation This webinar covered retrofit ...

  19. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For plug-in hybrid electric vehicles, the internal combustion engine will turn on more quickly, increasing fuel cost and emissions. All-Electric Range and Very Hot or Cold Weather ...

  20. EV Everywhere: Maximizing All-Electric Range | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduced all-electric range in a plug-in hybrid electric vehicle will result in the internal combustion engine turning on more quickly, increasing fuel cost and emissions. There are ...

  1. The History of the Electric Car | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Explore the evolution of the electric vehicle, covering everything from its early popularity to the middle ages to its revival today. A plug-in electric vehicle (or PEV) is any ...

  2. Energy Incentive Programs, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Energy Incentive Programs, Arizona Updated February 2015 What public-purpose-funded energy efficiency programs are available in my state? Arizona's restructuring law provides for a systems benefits charge (SBC) to fund energy efficiency programs. The SBC is collected through a non-bypassable surcharge on electricity bills. Although some of these funds have been devoted to renewable energy programs, in 2013 Arizona utilities budgeted over $160 million to promote energy efficiency and load

  3. Energy Incentive Programs, Connecticut | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Energy Incentive Programs, Connecticut Updated August 2015 What public-purpose-funded energy efficiency programs are available in my state? Connecticut's electricity restructuring law provides annual funding for energy efficiency through a non-bypassable surcharge. More than $200 million was available in 2014 across all program types (including low-income and residential). These public-purpose-funded energy efficiency programs are overseen by Energize Connecticut, a consortium among

  4. Energy Incentive Programs, Louisiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisiana Energy Incentive Programs, Louisiana Updated June 2015 Louisiana utilities collectively budgeted over $5 million for energy efficiency programs in 2014. What public-purpose-funded energy efficiency programs are available in my state? Louisiana has no public-purpose-funded energy efficiency programs; however, in 2013 the Louisiana Public Service Commission (LSPC) created a framework for voluntary energy efficiency programs. Investor-owned electric utilities began offering programs in

  5. Energy Incentive Programs, Michigan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michigan Energy Incentive Programs, Michigan Updated June 2015 Total energy efficiency funding budgeted across Michigan's utilities was almost $230 million in 2014. What public-purpose-funded energy efficiency programs are available in my state? In 2008 the Michigan legislature passed Act 295 requiring all Michigan gas and electric utilities to offer energy-saving programs to their customers and to set increasing energy saving goals via energy efficiency resource standards (EERS). Efficiency

  6. Energy Incentive Programs, Minnesota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minnesota Energy Incentive Programs, Minnesota Updated June 2015 Minnesota utilities collectively budgeted over $180 million for energy efficiency and load management programs in 2014. What public-purpose-funded energy efficiency programs are available in my state? Minnesota has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? State law requires regulated electric utilities to invest 1.5% (2% for Xcel) of their in-state revenues in

  7. Energy Incentive Programs, Ohio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio Energy Incentive Programs, Ohio Updated July 2015 Ohio's 2008 law establishing an energy efficiency resource standard (EERS) was overturned by the state legislature in 2014. However, many utilities continue to offer energy efficiency programs. Ohio utilities budgeted almost $190 million in 2014 across their various offerings to promote customer energy efficiency. What public-purpose-funded energy efficiency programs are available in my state? Ohio's 1999 electricity restructuring law

  8. Energy Incentive Programs, Pennsylvania | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pennsylvania Energy Incentive Programs, Pennsylvania Updated October 2015 What public-purpose-funded energy efficiency programs are available in my state? Pennsylvania's Act 129, signed into law in 2008, set ambitious savings and demand reduction goals for the state's large electric utilities for the period ending in May, 2013. The continuation of the act's directives was predicated on the state public utilities commission's evaluation of that first phase. The PUC found the programs to be, en

  9. Energy Incentive Programs, Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Energy Incentive Programs, Utah Updated February 2015 In 2009 Utah adopted a resolution that directs the Public Service Commission (PSC) to approve energy efficiency programs that will save at least 1% of electric utilities' annual retail sales, and 0.5% per year for gas utilities. Utah utilities budgeted over $65 million in 2013 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? Utah has no

  10. Orlando Plugs into Electric Vehicle Charging Stations

    Broader source: Energy.gov [DOE]

    Imagine spending the day at a theme park in Orlando. After hours of rides, games and fun, you head back to your rental car, which is plugged in at an electric vehicle (EV) charging station in the parking lot.

  11. Analysis of the results of Federal incentives used to stimulate energy production

    SciTech Connect (OSTI)

    Cone, B.W.; Emery, J.C.; Fassbender, A.G.

    1980-06-01

    The research program analyzed the Federal incentives used to stimulate nuclear, hydro, coal, gas, oil, and electricity production in order to supply what was learned to the selection of an incentives strategy to induce new energy production from renewable resources. Following the introductory chapter, Chapter 2 examines the problem of estimating effects from a theoretical perspective. Methods of quantifying and identifying the many interactive effects of government actions are discussed. Chapter 3 presents a generic analysis of the result of Federal incentives. Chapters 4 through 9 deal with incentives to energy forms - nuclear, hydro, coal, oil, gas, and electricity. Chapter 10 summarizes the estimated results of the incentives, which are presented in terms of their quantity and price impacts. The incentive costs per million Btu of induced energy production is also discussed. Chapter 11 discusses the parity issue, that is an equivalence between Federal incentives to renewable resources and to traditional energy resources. Any analysis of incentives for solar needs will profit from an analysis of the costs of solar incentives per million Btu compared with those for traditional energy forms. Chapter 12 concludes the analysis, discussing the history of traditional energy incentives as a guide to solar-energy incentives. 216 references, 38 figures, 91 tables.

  12. APS- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Through the Renewable Incentive Program, Arizona Public Service (APS) offers customers who install solar water heating systems the opportunity to sell the renewable energy credits (RECs) associat...

  13. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  14. Roseville Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Roseville Electric offers incentives for its commercial customers to increase the efficiency of existing facilities. Customers interested in pursuing rebates should contact Roseville Electric...

  15. Tampa Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

  16. El Paso Electric Company- Residential Solutions Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric Residential Solutions Program offers El Paso Electric customers and participating contractors cash and non-cash incentives for implementing energy efficiency improvements in...

  17. DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles July 7, 2008 - 2:15pm Addthis GOTLAND, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Director General of the Swedish Energy Agency, Tomas Kåberger today signed a memorandum of understanding (MOU) to collaboratively work on

  18. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  19. List of Passive Solar Space Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    Solar Space Heat Incentives Jump to: navigation, search The following contains the list of 282 Passive Solar Space Heat Incentives. CSV (rows 1 - 282) Incentive Incentive Type...

  20. List of Solar Pool Heating Incentives | Open Energy Information

    Open Energy Info (EERE)

    List of Solar Pool Heating Incentives Jump to: navigation, search The following contains the list of 117 Solar Pool Heating Incentives. CSV (rows 1 - 117) Incentive Incentive Type...

  1. Plug in to energy-conservation media materials

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    This compendium of available energy conservation information is based on survey responses from Florida electric and gas utility companies. For each entry is given the title, source, employee contact, audience, availability, whether or not a sample may be obtained, and whether or not the publication can be reprinted. For radio and television spots there is given the length of the spot and whether or not a script may be obtained. Areas covered include: air conditioning, alternate energy sources, appliances and appliances labeling, catalogs, caulking and weatherstripping, checklists and tips, construction, electricity, energy crisis and shortages, energy saving homes, exhibits and displays, fans and ventilation, fireplaces and wood burning stoves, general information, heating, heat pumps, insulation, lighting, load management, local utility information, mobile homes, natural gas, newsletters, pools, residential conservation service and energy audits, safety, solar, solar water heating, speakers bureau, tax credits and rebates, thermostats, utility bills and meters, waste heat recovery, water heating and conservation, and windows and doors. Participating utility companies and their mailing addresses, as well as other energy resources, are listed. (LEW)

  2. NREL Helps Communities Assess Their Readiness for Electric Vehicles - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Helps Communities Assess Their Readiness for Electric Vehicles The PEV Scorecard gives local leaders tips for improvement February 14, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has launched a new tool to help local and regional leaders assess the readiness of their communities for the arrival of plug-in electric vehicles (PEVs). The Plug-In Electric Vehicle Community Readiness Scorecard (PEV Scorecard), developed by NREL for DOE's

  3. Energy Efficiency Financing Incentives Resources

    Broader source: Energy.gov [DOE]

    State and/or local financial incentives and programs help building owners execute energy efficiency projects by lowering cost burdens through public benefits funds, grants, loans, or property-assessed clean energy financing; personal, corporate, property, and sales tax incentives; or assistance with permitting fee reduction or elimination.

  4. Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Industrial InstallersContractors Savings Category Clothes Washers Dehumidifiers Equipment Insulation Lighting Heat recovery Steam-system upgrades Energy Mgmt. Systems...

  5. Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...

    Broader source: Energy.gov (indexed) [DOE]

    refrigeration, lighting, motors, variable frequency drives, appliances, personal computers, retro-commissioning, and other energy efficient measures. Below is a list of...

  6. National Grid (Electric) - Residential Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Dehumidifiers Water Heaters Lighting Heat Pumps Air conditioners...

  7. Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Program Type Rebate Program Rebate Amount Lighting: Varies Lighting Controls: 20-50sensor Compressed Air: 120-200HP Variable Speed Drives (Retrofit): 1050-4400 Motors...

  8. Renewable Energy Cost Recovery Incentive Payment

    Broader source: Energy.gov [DOE]

    Note: Some utilities have reached their cap for incentive allocations under the Renewable Energy Cost Recovery Incentive Payment program. Some of these utilities have reduced per-customer incentive...

  9. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The biggest plug-in sellers in 2014 were the Nissan Leaf, Chevrolet Volt, Tesla Model S, ... 1,145 Toyota RAV4 EV 0 0 192 1,005 1,184 Tesla Model S 0 0 2,400 19,400 16,750 Honda Fit ...

  10. Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Plug-in Vehicles) U.S. EV Battery Costs (Dollars per Kilowatt-hour for a Lithium-ion Battery) 2009 0 1,000 2010 0 753 2011 17,500 580 2012 50,000 444 2013 170,000 324 ...

  11. Energy Incentive Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Financing » Energy Incentive Programs Energy Incentive Programs Most states offer energy incentive programs to help offset energy costs. The Federal Energy Management Program's (FEMP) Energy Incentive Program helps federal agencies take advantage of these incentives by providing information about the funding-program opportunities available in each state. FEMP is authorized by statute to develop guidelines for the implementation of utility incentive programs authorized under 42 U.S.C. §

  12. Category:Production Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentive Program (South Carolina) Progress Energy Carolinas - SunSense Commercial Solar Water Heating Incentive Program (North Carolina) Progress Energy Carolinas - SunSense...

  13. North Carolina/Incentives | Open Energy Information

    Open Energy Info (EERE)

    for North Carolina CSV (rows 1 - 24) Incentive Incentive Type Active Ashe County - Wind Energy System Ordinance (North Carolina) SolarWind Permitting Standards Yes Building...

  14. Hawaii/Incentives | Open Energy Information

    Open Energy Info (EERE)

    for Green Buildings (Hawaii) Green Building Incentive Yes Reduced Highway Taxes for Alternative Fuels (Hawaii) Sales Tax Incentive No Residential Energy Efficiency Rebate...

  15. Designing Auction-Based PV Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production and operations are used to forecast future year incentive debt; ... reporting and forecasting alignment - Forecast of future year incentive payments ...

  16. Arlington County - Green Building Incentive Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Virginia Program Type Green Building Incentive Summary The Green Building Density Incentive program allows the County Board of Arlington to consider a modification of...

  17. Securing Financial Incentives for Energy Efficiency Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Securing Financial Incentives for Energy Efficiency Projects: How to Create Corporate Support Securing Financial Incentives for Energy Efficiency Projects: How to Create Corporate ...

  18. Arizona/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentive Incentive Type Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Yes APS - GEOSmart Financing Program (Arizona) Utility Loan Program...

  19. Texas/Incentives | Open Energy Information

    Open Energy Info (EERE)

    137) Incentive Incentive Type Active AEP Texas North Company - CitySmart Program (Texas) Utility Rebate Program Yes AEP (Central and North) - Residential Energy Efficiency...

  20. Ohio/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Program No Advanced Energy Job Stimulus Program (Ohio) Industry RecruitmentSupport No Air-Quality Improvement Tax Incentives (Ohio) Other Incentive Yes American Municipal Power...

  1. Small Buildings Small Portfolio Commercial Upstream Incentive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Portfolio Commercial Upstream Incentive Project: Regional Roll-Out - 2014 BTO Peer Review Small Buildings Small Portfolio Commercial Upstream Incentive Project: Regional ...

  2. Designing Incentives Toolkit Better Buildings Residential Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When aligned with program goals, incentives can be a very useful tool in achieving home energy upgrades. Definition Incentives provide motivation to potential customers to take a ...

  3. Delmarva Power- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Effective September 21, 2015 the Green Energy Program incentives have been updated. Please visit the weblink to access the summary of current incentives

  4. Database of State Incentives for Renewables & Efficiency

    Broader source: Energy.gov [DOE]

    The Database of State Incentives for Renewables & Efficiency (DSIRE) is the most comprehensive source of information on incentives and policies that support renewables and energy efficiency in...

  5. Transportation Financial Incentives and Programs Resources |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find transportation financial incentives and programs resources below. DOE Resources Alternative Fuels Data Center: Federal and State Laws and Incentives Clean Cities: Related ...

  6. Electric Vehicle Handbook: Electrical Contractors (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV

  7. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    SciTech Connect (OSTI)

    Griego, G.

    2010-06-01

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save owners up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.

  8. Linn County Rural Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    County Rural Electric Cooperative Association Website http:www.linncountyrec.comenergy-efficiencyincentivescurrent-incent... State Iowa Program Type Rebate Program Rebate...

  9. Salem Electric- Residential, Commercial, and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric provides incentives for members to increase the energy efficiency of eligible homes and facilities. Available rebates include:

  10. SCE&G (Electric)- Residential EnergyWise Program

    Broader source: Energy.gov [DOE]

    South Carolina Electric and Gas (SCE&G) provides energy efficiency incentives to home owners in its service territory.

  11. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM CALENDAR YEAR 2013 INCENTIVE PAYMENTS Payee (Applicant) Hydro Facility Albany Engineering Corporation (AEC) Mechanicville Hydroelectric Project Albany Engineering Corporation (AEC) Stuyvesant Falls Hydroelectric Project Barton (VT) Village, Inc., Electric Department Barton Hydro Bell Mountain Hydro LLC Bell Mountain Hydro Facility Bowersock Mills & Power Company Expanded Kansas River Hydropower Project-North Powerhouse

  12. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014

    Broader source: Energy.gov [DOE]

    Hybrid electric vehicles (HEVs) are conventional hybrid vehicles that use a gasoline engine with a hybrid electric drive for superior efficiency; they do not plug-in. This type of hybrid vehicle...

  13. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  14. Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ii This page intentionally left blank. iii CONTENTS ACKNOWLEDGMENTS ........................................................................................................ xi NOTATION .............................................................................................................................. xiii EXECUTIVE SUMMARY ...................................................................................................... 1 ES.1 CD Operation of Gasoline PHEVs and BEVs

  15. SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E Prius PHEV Ford Focus Honda Fit EV Tesla Model S* RAV4 EV Ford C-Max Energi Honda ... 13,050 600 4,856 200 1,584 27 112,724 *Tesla Model S numbers are estimated. Source: ...

  19. Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    coalition, Coordinator, San Diego, California As an urban planner by trade, ... "We've been able to make a lot of progress in California," Wood said. "So far, we've been ...

  20. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when...

  1. Web Card - Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect (OSTI)

    2012-07-01

    A 2" x 3-1/4" web card which has a quick response code for accessing the PEV Handbook for Fleet Managers via a smart phone. The cards are intended to be handed out instead of the handbook.

  2. Web Card - Clean Cities Plug-In Electric Vehicle Handbook for Consumers

    SciTech Connect (OSTI)

    2012-07-01

    A 2"x3-1/4" web card printed on 2 sides which has a quick response code for accessing the PEV Handbook for Consumers via a smart phone. They are intended to be handed out instead of the handbook.

  3. Charging Your Plug-in Electric Vehicle at Home | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... which compares the power and energy used to charge a PEV with a Level 2 charger (in red) compared to the total power and energy consumed by other household appliances (in gray). ...

  4. Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options and

    Energy Savers [EERE]

    1929-2015 | Department of Energy 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 SUBSCRIBE to the Fact of the Week When adjusted for inflation, the average annual price of gasoline has fluctuated greatly, and has recently experienced sharp increases and decreases. The effect of the U.S. embargo of oil from Iran can be seen in the early 1980's with the price of gasoline peaking in

  5. EERE Success Story-Plug-in Electric Vehicles Charge Forward in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valley (Medford) Clean Cities Coalitions to bring ... installation, a marketing campaign to raise awareness, a workplace charging strategy, a PEV tourism campaign, and ...

  6. Grid-Integrated Fleet & Workplace Charging for Plug-in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost & Maximize Accessibility 8' x 18' EV Only EV Only EV Only Spacing allows each charger to be used several times each day, without moving cars - just move the cord. 18' cord...

  7. NREL: Energy Storage - Battery Second Use for Plug-In Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This chart illustrates the life cycle of batteries, beginning with original manufacture, ... Finally, the batteries can be recycled, at which point the recaptured materials could go ...

  8. Do You Drive a Hybrid Electric Vehicle? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles How Would You Use a Neighborhood Electric Vehicle? Will You Be Trading in Your Clunker for Cash--and a More Efficient Vehicle? Honey, Did You Plug in the ...

  9. Incentives for Energy Independence

    Broader source: Energy.gov [DOE]

    A renewable energy facility is defined as one that generates at least 50 kW of electricity from solar power or at least 1 MW from wind power, biomass resources, landfill gas, hydropower or simila...

  10. Energy Incentive Programs, Maryland

    Broader source: Energy.gov [DOE]

    Maryland utilities budgeted $150 million in 2012 across their various electric and gas programs (including those directed at residential and low-income customers) to promote customer energy efficiency.

  11. Utility Scale Solar Incentive Program

    Broader source: Energy.gov [DOE]

    HB 4037 of 2016 created the Solar Incentive Program for utility-scale solar development. The bill directs Oregon's Business Development Department (the Department) to establish and administer a...

  12. Local Option- Green Building Incentives

    Broader source: Energy.gov [DOE]

    SB 1597 of 2008 also granted authority to a few select jurisdictions to provide density bonuses, make adjustments to otherwise applicable development requirements, or provide other incentives to a...

  13. California Solar Initiative- PV Incentives

    Broader source: Energy.gov [DOE]

    In January 2006, the California Public Utilities Commission (CPUC) adopted a program -- the California Solar Initiative (CSI) -- to provide more than $2.3 billion in incentives for photovoltaic (...

  14. SCE- California Advanced Homes Incentives

    Broader source: Energy.gov [DOE]

    Southern California Edison offers an incentive for home builders to build homes which exceed 2008 Title 24 standards by 15%. The program is open to all single-family and multi-family new...

  15. DOE Handbook on Recruitment and Retention Incentives

    Broader source: Energy.gov [DOE]

    This desk reference contains sample recruitment, relocation, retention, and student loan incentive plans and service agreements.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Utility Plug-In Electric Vehicle (PEV) Incentive Program Authorization Beginning January 1, 2017, and continuing for five years, the Utah Public Service Commission (PSC) may ...

  17. Energy Incentive Programs, New Jersey | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jersey Energy Incentive Programs, New Jersey Updated September 2015 What public-purpose-funded energy efficiency programs are available in my state? New Jersey's 1999 electricity restructuring law paved the way for funding of energy efficiency by implementing a non-bypassable surcharge on retail sales of both electricity and natural gas. Nearly $470 million was budgeted in 2014 across all program types (including low-income and residential). A single, consistent set of programs is administered

  18. Energy Incentive Programs, New Mexico | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mexico Energy Incentive Programs, New Mexico Updated February 2015 What public-purpose-funded energy efficiency programs are available in my state? Since 2005 the "Efficient Use of Energy" Act has required New Mexico's utilities to fund energy efficiency programs through a fixed tariff rider. The rider is currently 3% of sales revenue for both electricity and natural gas. Additionally, through a series of amendments, electric utilities are required to cost-effectively achieve at least

  19. Energy Incentive Programs, New York | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    York Energy Incentive Programs, New York Updated September 2015 Between its public-purpose-funded programs and programs offered directly by utilities, New York budgeted nearly $900 million in 2014 to promote gas and electric efficiency in the state. What public-purpose-funded energy efficiency programs are available in my state? In 1998, as part of its electricity restructuring, the New York State Public Service Commission (PSC) designated the New York State Energy Research and Development

  20. Salt River Electric- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  1. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect (OSTI)

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  2. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  3. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost

    Broader source: Energy.gov [DOE]

    The recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future....

  4. Electric Vehicle-Smart Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV

  5. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures

    Broader source: Energy.gov [DOE]

    As with conventional vehicles, the efficiency and all-electric driving range of plug-in electric vehicles (also known as electric cars or EVs) varies substantially based on driving conditions and habits. Using the economy mode, avoiding hard braking, using accessories wisely, and observing the speed limit will help EV drivers maximize their all-electric range.

  6. Category:Alternative Fuels Incentive Programs | Open Energy Informatio...

    Open Energy Info (EERE)

    Alternative Fuels Incentive Programs Jump to: navigation, search This category uses the form Alternative Fuels Incentive Program. Download all Alternative Fuels Incentive Programs...

  7. Gateway:Incentives and Policies | Open Energy Information

    Open Energy Info (EERE)

    Gateway:Incentives) Jump to: navigation, search Incentives and Policies for Renewable Energy and Energy Efficiency Renewables & Energy Efficiency Incentives and Policies by State...

  8. Overview of Utility Incentives Presentation to the Kansas Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Incentives Presentation to the Kansas Corporation Commission Energy Efficiency Incentives Workshop Overview of Utility Incentives Presentation to the Kansas Corporation ...

  9. Better Buildings: Financing and Incentives: Spotlight on Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine: Transition to a Sustainable Level of Incentives Better Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives Better...

  10. List of Solar Thermal Process Heat Incentives | Open Energy Informatio...

    Open Energy Info (EERE)

    List of Solar Thermal Process Heat Incentives Jump to: navigation, search The following contains the list of 211 Solar Thermal Process Heat Incentives. CSV (rows 1 - 211) Incentive...

  11. Designing Effective Incentives to Drive Residential Retrofit Program Participation

    Broader source: Energy.gov [DOE]

    This webinar covered retrofit program incentive contests, decision points to consider when designing an incentive program, and examples of incentive structures.

  12. Federal Incentives for Wind Power Deployment | Department of...

    Energy Savers [EERE]

    Incentives for Wind Power Deployment Federal Incentives for Wind Power Deployment Document that lists some of the major federal incentives for wind power deployment. PDF icon ...

  13. Workplace Charging Challenge Partner: Portland General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Joined the Challenge: October 2013 Headquarters: Portland, OR Charging Locations: Portland, OR; Gresham, OR; Beaverton, OR; Salem, OR; Tualatin, OR; Wilsonville, OR; Woodburn, OR; Oregon City, OR; Clackamas, OR Domestic Employees: 2,596 Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric

  14. Getting Started with VIBE as a DICE Plug-in Module

    SciTech Connect (OSTI)

    Rearden, Bradley T; Lefebvre, Robert A

    2010-08-01

    The use of the SCALE (Standardized Computer Analysis for Licensing Evaluation) tool VIBE (Validation, Interpretation and Bias Estimation) as a plug-in module to DICE (Database for the International Criticality Safety Benchmark Evaluation Project) to access and interpret sensitivity data is described. In this initial release of VIBE within DICE, VIBE can identify sensitivity data and group collapse the data into a table, where the values can be sorted and filtered to identify experiments that are the most similar to a targeted application system in terms of sensitivity data. VIBE can then retrieve information about the selected experiments from the DICE database to provide the physical characteristics of the benchmarks.

  15. Fact #918: March 28, 2016 Global Plug-in Light Vehicle Sales Increased by

    Broader source: Energy.gov (indexed) [DOE]

    1929-2015 - Dataset | Department of Energy Average Historical Annual Gasoline Pump Price, 1929-2015 File fotw#915_web.xlsx More Documents & Publications Fact #888: August 31, 2015 Historical Gas Prices - Dataset Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Response to several FOIA requests - Renewable Energy. About 80% in 2015 - Dataset | Department of Energy

    Global Plug-in Light Vehicle Sales Increased by About 80% in 2015 File

  16. Noble REMC- Buisness Energy Efficiency Rebate Incentives

    Broader source: Energy.gov [DOE]

    Noble REMC, with the Wabash Vally Power Association offers business rebate incentives through its POWER MOVES program.  Incentives are available on a first-come, first-served basis. View the...

  17. Puerto Rico- Economic Development Incentives for Renewables

    Broader source: Energy.gov [DOE]

    The 2008 Economic Incentives for the Development of Puerto Rico Act (EIA) provides a wide array of tax credits and incentives that enable local and foreign companies dedicated to certain business...

  18. Federal Incentives for Wind Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    This fact sheet describes the federal incentives available as of April 2013 that encourage increased development and deployment of wind energy technologies, including research grants, tax incentives, and loan programs.

  19. Colorado Springs Utilities- Builder Incentive Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR qualified homes within the CSU service area. The incentives range up...

  20. Solar Volumetric Incentive and Payments Program

    Broader source: Energy.gov [DOE]

    In June 2009, Oregon established a pilot solar volumetric incentive rate and payment program.* Under this incentive program, systems of up to 500 kilowatts (kW) are paid for the kilowatt-hours (k...

  1. Murfreesboro Electric Department- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Murfreesboro Electric Department, in collaboration with the Tennessee Valley Authority, offers incentives to home builders and homeowners for the construction of energy efficient homes through the...

  2. Pedernales Electric Cooperative- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    For existing and new commercial construction, Pedernales Electric Cooperative provides incentives for kW saved through efficient lighting. Rebates vary based upon whether construction is new or...

  3. Lakeland Electric- Commercial Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers several incentives for commercial customers to save energy in eligible facilities. Rebates are available for vending machine controllers, facility system upgrades and...

  4. El Paso Electric Company- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) Commercial Efficiency Program pays incentives to commercial and industrial customers who install energy efficiency measures in facilities located within EPE's New Mexico...

  5. Roseville Electric- Residential New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Roseville Electric provides financial incentives to encourage local builders to construct energy efficient homes which incorporate  photovoltaics (PV). Participating builders can choose from three...

  6. Distributed Generation Financial Incentives and Programs Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean energy financing, personal and corporate tax incentives (credits, ... Schools Renewable Energy Project Finance: Financing Renewable Energy at Government ...

  7. Federal Incentives for Water Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    This fact sheet describes the federal incentives available as of April 2013 for the development of water power technologies.

  8. Burbank Water & Power- Green Building Incentive Program

    Broader source: Energy.gov [DOE]

    Incentives are on a first come first serve basis. More information can be found on the web site listed above.

  9. Silicon Valley Power- Solar Electric Buy Down Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program...

  10. New Hampshire Electric Co-Op- Business Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op offers incentives to commercial and municipal members for both new construction and retrofit projects. Incentives vary by demand and size of the customer:

  11. List of Solar Space Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    Heat Incentives Jump to: navigation, search The following contains the list of 512 Solar Space Heat Incentives. CSV (rows 1-500) CSV (rows 501-512) Incentive Incentive Type...

  12. List of Water Heaters Incentives | Open Energy Information

    Open Energy Info (EERE)

    Heaters Incentives Jump to: navigation, search The following contains the list of 975 Water Heaters Incentives. CSV (rows 1-500) CSV (rows 501-975) Incentive Incentive Type Place...

  13. Better Buildings: Financing and Incentives: Spotlight on Maine: Transition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to a Sustainable Level of Incentives | Department of Energy Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives Better Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives Better Buildings: Financing and Incentives: Spotlight on Maine: Transition to a Sustainable Level of Incentives PDF icon Spotlight on Maine: Transition to a Sustainable Level of Incentives More Documents &

  14. Energy Incentive Programs, North Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota Energy Incentive Programs, North Dakota Updated April 2015 North Dakota utilities budgeted about $1 million in 2013 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? North Dakota has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Otter Tail Power Company offers rebates for efficient air-source heat pumps, electric water heaters,

  15. Energy Incentive Programs, South Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Dakota Energy Incentive Programs, South Dakota Updated April 2015 South Dakota utilities budgeted over $3 million in 2013 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? South Dakota has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Black Hills Power (BHP) offers prescriptive and custom rebates for energy-efficient electric

  16. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY

  17. Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and novel semiconductors.

  18. Celebrating Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles Celebrating Electric Vehicles September 29, 2015 - 4:01pm Addthis The United States has the largest electric vehicle fleet in the world, which includes cars like the Chevrolet Volt. | Photo courtesy of General Motors The United States has the largest electric vehicle fleet in the world, which includes cars like the Chevrolet Volt. | Photo courtesy of General Motors Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS More than 1 million plug-in

  19. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  20. Vehicle Technologies Office: AVTA- Evaluating Military Bases and Fleet Readiness for Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. Through the AVTA, Idaho National Laboratory also does fleet and other analysis to evaluate readiness for plug-in electric vehicles and other advanced technology vehicles. The following reports describe analysis studies Idaho National Laboratory conducted for the military to evaluate readiness for plug-in electric vehicles.

  1. Fact #913: February 22, 2016 The Most Common Warranty for Plug-In Vehicle Batteries is 8 Years/100,000 Miles- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for The Most Common Warranty for Plug-In Vehicle Batteries is 8 Years/100,000 Miles

  2. Fact #909: January 25, 2016 Workplace Charging Accounts for About a Third of All Plug-in Vehicle Charging Sessions in the INL EV Project Study- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Workplace Charging Accounts for About a Third of All Plug-in Vehicle Charging Sessions in the INL EV Project Study

  3. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  4. EV Everywhere: Electric Vehicle Benefits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits EV Everywhere: Electric Vehicle Benefits EV Everywhere: Electric Vehicle Benefits Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions and even save you money. Fueling with electricity offers some advantages not available in conventional internal combustion engine vehicles. Because electric motors react quickly, EVs are very responsive and have very good torque. EVs are often more digitally connected than

  5. Buildings Energy Data Book: 7.2 Federal Tax Incentives

    Buildings Energy Data Book [EERE]

    6 HVAC Tax Incentives of the Energy Policy Act of 2005 Equipment Type Qualifying Efficiency Credit Central air conditioner 15 SEER and 12.5 EER 300 Central air-source heat pump 15 SEER, 9 HSPF, and 13 EER 300 Ground-source heat pump Closed loop 14.1 EER and 3.3 COP 300 Open loop 16.2 EER and 3.6 COP 300 Direct expansion (DX) 15.0 EER and 3.5 COP 300 Gas, oil, or propane furnace or boiler 95% AFUE 150 Furnace Blower Electricity use <2% of total furnace 50 site energy consumption 300 Electric

  6. Lesson 2 - Electricity Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities

  7. Better Buildings: Financing and Incentives: Spotlight on Michigan:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experiment to Find the Right Mix of Incentives | Department of Energy Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of Incentives Better Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of Incentives Better Buildings: Financing and Incentives: Spotlight on Michigan: Experiment to Find the Right Mix of Incentives. PDF icon Spotlight on Michigan More Documents & Publications Spotlight on Michigan:

  8. Contractor-Funded Incentives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor-Funded Incentives Contractor-Funded Incentives Better Buildings Residential Network Workforce / Business Partners Peer Exchange Call Series: Contractor-Funded Incentives, Call Slides and Discussion Summary, November 21, 2013. PDF icon Call Slides and Discussion Summary More Documents & Publications Energy Advising Services in the Post-ARRA World Strategies for Building Contractor Interest in Program Participation It's Academic: BetterBuildings for Michigan Partners With University

  9. Benefits and Challenges of Achieving a Mainstream Market for Electric Vehicles

    SciTech Connect (OSTI)

    Ungar, Edward; Mueller, Howard; Smith, Brett

    2010-08-01

    The Plug-in Hybrid electric Vehicle (PHEV) Market Introduction Study Final Report identified a range of policies, incentives and regulations designed to enhance the probability of success in commercializing PHEVs as they enter the automotive marketplace starting in 2010. The objective of the comprehensive PHEV Value Proposition study, which encompasses the PHEV Market Introduction Study, is to better understand the value proposition that PHEVs (as well as other plug-in electric vehicle platforms - PEVs) provide to the auto companies themselves, to the consumer and to the public at large as represented by the government and its public policies. In this report we use the more inclusive term PEVs, to include PHEVs, BEVs (battery electric vehicles that operate only on battery) and EREVs (extended range electric vehicles that combine battery electric vehicles with an internal combustion engine that charges the battery as needed). The objective of Taratec's contribution to Phase 2 of the PHEV Value Proposition Study is to develop a clear understanding of the benefits of PEVs to three stakeholders - auto original equipment manufacturers (OEMs), utilities, and the government - and of the technical and commercial challenges and risks to be overcome in order to achieve commercial success for these vehicles. The goal is to understand the technical and commercial challenges in moving from the 'early adopters' at the point of market introduction of these vehicles to a 'sustainable' mainstream market in which PEVs and other PEVs represent a normal, commercially available and attractive vehicle to the mainstream consumer. For the purpose of this study, that sustainable market is assumed to be in place in the 2030 timeframe. The principal focus of the study is to better understand the technical and commercial challenges in the transition from early adopters to a sustainable mainstream consumer market. Effectively, that translates to understanding the challenges to be overcome during the transition period - basically the middle years as the second and third generation of these vehicles are developed and come to market. The concern is to understand those things that in the near term would delay that transition. The study looked at identifying and then quantifying these technical and commercial risks and benefits from three perspectives: (1) The auto industry original equipment manufacturers (OEMs) themselves; (2) The utilities who will provide the electric 'fuel' that will fully or partially power the vehicles; and (3) The government, representing public policy interest in PEV success. By clarifying and quantifying these benefits and the technical and commercial risks that could delay the transition to a sustainable mainstream market, the study provides the basis for developing recommendations for government policies and support for PHEV and PEV development.

  10. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120,000 Units in 2014

    Broader source: Energy.gov [DOE]

    The number of plug-in vehicles sold in the United States in 2014 grew to nearly 120,000, up from 97,000 the year before. Nissan and Chevrolet had the best sellers in 2011 with the Leaf and the Volt...

  11. Energy Project Incentive Funds: Updates and Trends

    Broader source: Energy.gov [DOE]

    Presentation covers the energy project incentive fund updates and trends and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  12. Catawba County- Green Construction Permitting Incentive Program

    Broader source: Energy.gov [DOE]

    Catawba County is providing incentives to encourage the construction of sustainably built homes and commercial buildings. Rebates on permit fees and plan reviews are available for certain...

  13. Pennsylvania/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Production Tax Credit (Personal) (Pennsylvania) Personal Tax Credit No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program No...

  14. Category:Incentive Programs | Open Energy Information

    Open Energy Info (EERE)

    Subcategories This category has the following 4 subcategories, out of 4 total. A Alternative Fuels Incentive Programs 4 pages E EZFeed Policies 1708 pages F...

  15. City of Bloomington- Sustainable Development Incentives

    Broader source: Energy.gov [DOE]

    Incentives are based on a three-tiered system, with bonuses according to the number of sustainable practices included in the projects:

  16. Energy Incentive Programs, Texas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... reporting, and engineering support to identify measures and incentives to reduce costs. ... (e.g., ESCOs) for lighting, HVAC, chillers, Energy Star roofs, and food service measures. ...

  17. Property:FinancialIncentive | Open Energy Information

    Open Energy Info (EERE)

    of financial incentives This is a property of type String. The allowed values for this property are: Capital Subsidies, Grants, & Rebates Credit Enhancements Fee Waivers...

  18. Industrial and Process Efficiency Performance Incentives

    Broader source: Energy.gov [DOE]

    The New York State Energy Research and Development Authority (NYSERDA) offers the Industrial and Process Efficiency (IPE) Program to provide performance-based incentives to manufacturers and data...

  19. City of Scottsdale- Green Building Incentives

    Broader source: Energy.gov [DOE]

    Incentives include expedited plan review, green building inspections, lectures, workshops, a homeowner’s manual, recognition on the city web site, and free promotional green building materials,...

  20. Small-Scale Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Vermont's Small Scale Renewable Energy Incentive Program (SSREIP), initiated in June 2003, currently provides funding for new solar water heating and advanced wood pellet heating installations. T...

  1. Michigan/Incentives | Open Energy Information

    Open Energy Info (EERE)

    No BetterBuildings for Michigan State Rebate Program Yes Biomass Gasification and Methane Digester Property Tax Exemption (Michigan) Property Tax Incentive Yes Biomass...

  2. Indianapolis Power & Light- Business Energy Incentives Program

    Broader source: Energy.gov [DOE]

    The Indiana Power and Light Business (IPL) Energy Incentives Program assists commercial and industrial customers with reducing energy consumption through three common types of equipment: lighting,...

  3. Washington/Incentives | Open Energy Information

    Open Energy Info (EERE)

    - Residential Energy Efficiency Rebate Programs (Washington) Utility Rebate Program Yes Biodiesel and Alcohol Fuel Blend Sales Tax Exemption (Washington) Sales Tax Incentive No...

  4. Illinois/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Loan Program Yes Energy Impact Illinois Rebates State Rebate Program Yes Ethanol and Biodiesel Sales Tax Exemption (Illinois) Sales Tax Incentive No Fuel Cost Differential...

  5. Wyoming/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentive Type Active Black Hills Power - Commercial Energy Efficiency Programs (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program...

  6. Louisiana/Incentives | Open Energy Information

    Open Energy Info (EERE)

    (Louisiana) Sales Tax Incentive No DEMCO - Touchstone Energy Home Program (Louisiana) Utility Rebate Program Yes Energy Fund (Louisiana) State Bond Program No Entergy New...

  7. Georgia/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Local Loan Program Yes Atlanta Gas Light - Energy Efficiency Incentive Program (Georgia) Utility Rebate Program No Biomass Sales and Use Tax Exemption (Georgia) Sales Tax...

  8. Commercial Lighting and LED Lighting Incentives | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Schools Institutional Savings Category Lighting Lighting ControlsSensors Other EE LED Lighting Maximum Rebate Up to 100% of cost; incentives that exceed 5,000 should be...

  9. Incentives and Policies | OpenEI Community

    Open Energy Info (EERE)

    by Rmckeel(297) Contributor 22 October, 2012 - 07:23 Semantic Mediawiki Semantic Forms update developer Incentives and Policies Semantic Mediawiki upgrade Utility Rates We have...

  10. Research Local Incentive Programs | Open Energy Information

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Research Local Incentive Programs Costs associated with small community wind...

  11. Oklahoma/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Yes Property Tax Exemption for Wind Generators (Oklahoma) Property Tax Incentive Yes Red River Valley REA - Heat Pump Loan Program (Oklahoma) Utility Loan Program Yes...

  12. Riverside Public Utilities - Residential PV Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Riverside Public Utilities Website http:www.riversideca.govutilitiesresi-pv-incentive.asp State California Program Type Rebate Program Rebate Amount 0.50 per watt...

  13. Avista Utilities (Gas)- Prescriptive Commercial Incentive Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including...

  14. Sales Tax Incentives | Open Energy Information

    Open Energy Info (EERE)

    Govt Systems Integrator Transportation Tribal Government Utility Coal with CCS Natural Gas BiomassBiogas Yes Alcohol Fuels Exemption (Hawaii) Sales Tax Incentive Hawaii...

  15. Sales Tax Incentive | Open Energy Information

    Open Energy Info (EERE)

    Govt Systems Integrator Transportation Tribal Government Utility Coal with CCS Natural Gas BiomassBiogas Yes Alcohol Fuels Exemption (Hawaii) Sales Tax Incentive Hawaii...

  16. Corporate Tax Incentive | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleCorporateTaxIncentive&oldid542699" Feedback Contact needs updating Image needs updating...

  17. Riverside Public Utilities- Energy Efficiency Construction Incentive

    Broader source: Energy.gov [DOE]

    Riverside Public Utilities' (RPU) Commercial New Construction Incentives are designed to encourage owners/developers to invest in energy efficient designs in new construction, building expansion...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Rate Incentive - Georgia Power Georgia Power offers a Plug-in Electric Vehicle (PEV) time-of-use electricity rate for residential customers who own an electric or plug-in hybrid electric vehicle. The PEV rate is optional and does not require a separate meter. For more information, see the Georgia Power Electric Vehicles website.

  19. Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China

    Broader source: Energy.gov [DOE]

    In 2011, plug-in car sales in the U.S. were 0.28% of the U.S. car market, and grew to 0.44% of the U.S. car market in the first eight months of 2012. Western Europe has also increased their plug-in...

  20. Lincoln Electric System- Renewable Energy Rebate

    Broader source: Energy.gov [DOE]

    Customer-generators may also qualify for an incentive payment based on the amount of electricity generated by the renewable energy system that goes to the electricity grid. For more information o...