National Library of Energy BETA

Sample records for incandescent led low-pressure

  1. Dual LED/incandescent security fixture

    DOE Patents [OSTI]

    Gauna, Kevin Wayne

    2005-06-21

    A dual LED and incandescent security lighting system uses a hybrid approach to LED illumination. It combines an ambient LED illuminator with a standard incandescent lamp on a motion control sensor. The LED illuminator will activate with the onset of darkness (daylight control) and typically remain on during the course of the night ("always on"). The LED illumination, typically amber, is sufficient to provide low to moderate level lighting coverage to the wall and ground area adjacent to and under the fixture. The incandescent lamp is integrated with a motion control circuit and sensor. When movement in the field of view is detected (after darkness), the incandescent lamp is switched on, providing an increased level of illumination to the area. Instead of an "always on" LED illuminator, the LEDs may also be switched off when the incandescent lamp is switched on.

  2. CALiPER Benchmark Report: Performance of Incandescent A Type and Decorative Lamps and LED Replacements

    SciTech Connect (OSTI)

    Lingard, R. D.; Myer, M. A.; Paget, M. L.

    2008-11-01

    This benchmark report addresses common omnidirectional incandescent lamps - A-type and small decorative, candelabra-type lamps - and their commercially available light-emitting diode (LED) replacements.

  3. CALiPER Benchmark Report: Performance of Halogen Incandescent MR16 Lamps and LED Replacement

    SciTech Connect (OSTI)

    Paget, M. L.; Lingard, R. D.; Myer, M. A.

    2008-11-01

    This benchmark report addresses the halogen MR16 lamp and its commercially available light-emitting diode (LED) replacements.

  4. Photonically Engineered Incandescent Emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  5. Photonically engineered incandescent emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  6. Incandescent Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting » Incandescent Lighting Incandescent Lighting Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although

  7. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  8. General Service LED Lamps

    SciTech Connect (OSTI)

    2012-04-01

    Solid-state lighting program technology fact sheet that compares general service incandescent lamps—i.e., light bulbs—to LED and CFL alternatives.

  9. General Service LED Lamps

    Broader source: Energy.gov [DOE]

    A U.S. DOE SSL technology fact sheet that compares general service LED light bulbs with incandescent and CFL bulbs.

  10. Have You Used LED Light Strings?

    Broader source: Energy.gov [DOE]

    This week, you read about LED holiday light strings, which can use 90% less energy than regular incandescent light strings.

  11. Incandescent Lighting | Department of Energy

    Office of Environmental Management (EM)

    courtesy of iStockphotoTokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings....

  12. Save Money with LED Holiday Light Strings

    Broader source: Energy.gov [DOE]

    LED (or light emitting diode) light strings can use 90% less energy than regular incandescent light strings. They also last about ten times longer, are cooler than incandescents (reducing fire hazards), and are more durable.

  13. LED Lighting | Department of Energy

    Office of Environmental Management (EM)

    of lighting in the United States. Residential LEDs -- especially ENERGY STAR rated products -- use at least 75% less energy, and last 25 times longer, than incandescent lighting. ...

  14. LED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  15. Laser-induced incandescence (LII)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    induced incandescence (LII) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  16. Incandescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps consist of a wire filament inside a glass bulb that is usually filled with inert gas, and they produce light when an electric current heats the filament to a high temperature. Incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options-because most of the energy released is in the form of heat rather than light-and a short average operating life

  17. Energy-Saving Incandescents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lightbulbs - high-resolution EPS (2.15 MB) More Documents & Publications Energy-Saving Incandescents CFL Lightbulbs CFL Lightbulbs

  18. Low pressure carbonylation of heterocycles

    DOE Patents [OSTI]

    Coates, Geoffrey W.; Kramer, John W.; Schmidt, Joseph A. R.

    2011-01-25

    Heterocycles, e.g., epoxides, are carbonylated at low pressure with high percentage conversion to cyclic, ring expanded products using the catalyst ##STR00001## where L is tetrahydrofuran (THF).

  19. Low pressure carbonylation of heterocycles

    DOE Patents [OSTI]

    Coates, Geoffrey W.; Kramer, John

    2009-08-04

    Heterocycles, e.g., epoxides, are carbonylated at low pressure with high percentage conversion to cyclic, ring expanded products using the catalyst ##STR00001## where L is tetrahydrofuran (THF).

  20. LED Update

    SciTech Connect (OSTI)

    Johnson, Mark L.; Gordon, Kelly L.

    2006-09-01

    This article, which will appear in RESIDENTIAL LIGHTING MAGAZINE, interviews PNNL's Kelly Gordon and presents the interview in question and answer format. The topic is a light emitting diode (LED) lighting also known as solid state lighting. Solid state lighting will be a new category in an energy efficient lighting fixture design competition called Lighting for Tomorrow sponsored by the US Department of Energy Emerging Technologies Office, the American Institute for Lighting, and the Consortium for Energy Efficiency. LED technology has been around since the ’60s, but it has been used mostly for indicator lights on electronics equipment. The big breakthrough was the development in the 1990s of blue LEDs which can be combined with the red and green LEDs that already existed to make white light. LEDs produce 25 to 40 lumens of light per watt of energy used, almost as much as a CFL (50 lumens per watt) and much more efficient than incandescent sources, which are around 15 lumens per watt. They are much longer lived and practical in harsh environments unsuitable for incandescent lighting. They are ready for niche applications now, like under-counter lighting and may be practical for additional applications as technological challenges are worked out and the technology is advancing in leaps and bounds.

  1. Study: Environmental Benefits of LEDs Greater Than CFLs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to date. The study - which evaluated not only the use but also the manufacturing, transport, and disposal of LED, CFL, and incandescent lamps throughout each product...

  2. How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...

    Office of Environmental Management (EM)

    Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents November 5, 2014 - 11:39pm Addthis By...

  3. LED Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics » LED Basics LED Basics Unlike incandescent lamps, LEDs are not inherently white light sources. Instead, LEDs emit nearly monochromatic light, making them highly efficient for colored light applications such as traffic lights and exit signs. However, to be used as a general light source, white light is needed. White light can be achieved with LEDs in three ways: Phosphor conversion, in which a phosphor is used on or near the LED to convert the colored light to white light RGB

  4. Energy-Saving Incandescents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lighbulbs - high-resolution JPG (3.85 MB) More Documents & Publications Energy-Saving Incandescents CFL Lightbulbs Which Bulb Is Right for You? (High-Resolution JPG Billboard)

  5. A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lights | Department of Energy A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights July 21, 2009 - 5:18pm Addthis John Lippert Pretty soon, lighting is going to get a lot more efficient. New standards for incandescent reflector bulbs, general purpose fluorescent bulbs, and regular incandescent bulbs are going into effect beginning in approximately three years. You may be curious about

  6. Study: Environmental Benefits of LEDs Greater Than CFLs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Study: Environmental Benefits of LEDs Greater Than CFLs Study: Environmental Benefits of LEDs Greater Than CFLs December 9, 2013 - 4:13pm Addthis A three-part Energy Department-funded study indicates LEDs are more environmentally friendly than compact fluorescent and incandescent lights. | Energy Department graphic A three-part Energy Department-funded study indicates LEDs are more environmentally friendly than compact fluorescent and incandescent lights. | Energy Department graphic

  7. LED North America - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding SSL » LED Basics LED Basics Unlike incandescent lamps, LEDs are not inherently white light sources. Instead, LEDs emit nearly monochromatic light, making them highly efficient for colored light applications such as traffic lights and exit signs. However, to be used as a general light source, white light is needed. White light can be achieved with LEDs in three ways: Phosphor conversion, in which a phosphor is used on or near the LED to convert the colored light to white light RGB

  8. Today LED Holiday Lights, Tomorrow the World?

    SciTech Connect (OSTI)

    Gordon, Kelly L.

    2004-12-20

    This article for The APEM Advantage, the quarterly newsletter of the Association of Professional Energy Managers (APEM) describes the recent increase in the popularity of light emitting diode (LED) lighting and compares LED light output with that of incandescent and compact fluorescent lighting.

  9. The low-pressure sodium lamp

    SciTech Connect (OSTI)

    Hooker, J.D.

    1997-12-31

    For many years before the introduction of the sodium vapor lamp, scientists had been aware of the remarkably high luminous efficacy of the sodium discharge. However, many technical problems had to be overcome before these lamps could be marketed. The first commercial low pressure sodium lamps were introduced in the early 1930s and to this day they remain the most efficient light sources available. The high efficacy is due partly to the fact that these lamps emit nearly monochromatic yellow light, which is very close to the peak sensitivity of the human eye. Sodium lamps have come a long way since their introduction, and efficacies are now approaching 200 lumens per watt. Despite increasing competition from other types of discharge lamp, low pressure sodium lamps of the SOX type find widespread use in road and security lighting, particularly in Great Britain and many other parts of Europe. This paper reviews the operation and development of the low pressure sodium lamp, and shows what makes it different from the many other types of discharge lamp available.

  10. #AskEnergySaver: LED Lights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Lights #AskEnergySaver: LED Lights April 24, 2014 - 6:00pm Addthis LED lights are six to seven times more energy efficient than conventional incandescent lights, cut energy use by more than 80 percent and can last more than 25 times longer. | Photo courtesy of Dennis Schroeder, NREL. LED lights are six to seven times more energy efficient than conventional incandescent lights, cut energy use by more than 80 percent and can last more than 25 times longer. | Photo courtesy of Dennis Schroeder,

  11. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity & Fuel » Lighting » How Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save $75 each year. By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save $75 each

  12. LED R&D Challenges | Department of Energy

    Energy Savers [EERE]

    Understanding SSL » LED Basics LED Basics Unlike incandescent lamps, LEDs are not inherently white light sources. Instead, LEDs emit nearly monochromatic light, making them highly efficient for colored light applications such as traffic lights and exit signs. However, to be used as a general light source, white light is needed. White light can be achieved with LEDs in three ways: Phosphor conversion, in which a phosphor is used on or near the LED to convert the colored light to white light RGB

  13. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL...

  14. Alternative Strategies for Low Pressure End Uses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Strategies for Low Pressure End Uses Alternative Strategies for Low Pressure End Uses This tip sheet outlines alternative strategies for low-pressure end uses as a pathway to reduced compressed air energy costs. COMPRESSED AIR TIP SHEET #11 Alternative Strategies for Low Pressure End Uses (August 2004) (246.6 KB) More Documents & Publications Eliminate Inappropriate Uses of Compressed Air Compressed Air System Control Strategies Engineer End Uses for Maximum Efficiency

  15. Synthesis of YBCO Superconductors Using Low-Pressure Processing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electricity Transmission Find More Like This Return to Search Synthesis of YBCO Superconductors Using Low-Pressure Processing Brookhaven National Laboratory...

  16. Use Vapor Recompression to Recover Low-Pressure Waste Steam

    Broader source: Energy.gov [DOE]

    This tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. EA-1911: Energy Conservation Standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to amend energy conservation standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps.

  18. Low pressure cooling seal system for a gas turbine engine

    SciTech Connect (OSTI)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  19. Metacapacitors for LED Lighting: Metacapacitors

    SciTech Connect (OSTI)

    2010-09-02

    ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

  20. Operating temperatures for a convectively cooled recessed incandescent light fixture

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.

    1980-12-01

    Test results are given for the operation of a recessed incandescent light fixture intended for residential use. The fixture is labeled for use in direct contact with attic thermal insulation. Temperature control of the powered fixture is provided by convective heat transfer from the ceiling side of the fixture. The fixture was operated at power levels up to two times the rated power of 75 watts and under thermal insulations up to R-40. In all operating configurations tested the fixture surface in contact with attic insulation was found to be less than 175/sup 0/C. The observed surface temperatures are judged to be safe for operation in contact with loose-fill or batt-type insulations. It was observed that the power leads inside one fixture configuration are exposed to temperatures as high as 168/sup 0/C. The electrical insulation could, therefore, have a limited life. The properties of the internal fixture wiring were not, however, studied in detail.

  1. Collection, transmission of low-pressure Sichuan gas detailed

    SciTech Connect (OSTI)

    Runcang, C.

    1983-09-28

    As a result of fairly long-term exploitation, the gas fields in the Sichuan Basin which were opened quite early now have reduced output and lower wellhead pressures. The wellhead pressure in some gas wells is now lower than the pressure of the collection and transmission pipelines. The technologies for collecting and transmitting low-pressure gas in gas fields are discussed.

  2. LED Pulser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  3. Method of gettering hydrogen under conditions of low pressure

    DOE Patents [OSTI]

    Mendelsohn, M.H.; Gruen, D.M.

    1983-08-09

    A ternary intermetallic compound having the formula Zr(V[sub 1[minus]x]Cr[sub x])[sub 2] where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200 C, at pressures down to 10[sup [minus]6] Torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices. 3 figs.

  4. Microlaminate composite structures by low pressure plasma spray deposition

    SciTech Connect (OSTI)

    Castro, R.G.; Stanek, P.W.

    1988-01-01

    The low pressure plasma spray (LPPS) process has been utilized in the development and fabrication of metal/metal, metal/carbide, and metal/oxide composite structures; including particulate dispersion and both continuous and discontinuous laminates. This report describes the LPPS process and the development of copper/tungsten microlaminate structures utilizing this processing method. Microstructures and mechanical properties of the Cu/W composites are compared to conventionally produced constituent material properties. 4 refs., 6 figs., 2 tabs.

  5. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    SciTech Connect (OSTI)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  6. Method of gettering hydrogen under conditions of low pressure

    DOE Patents [OSTI]

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1983-01-01

    A ternary intermetallic compound having the formula Zr(V.sub.1-x Cr.sub.x).sub.2 where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200.degree. C., at pressures down to 10.sup.-6 Torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  7. Shedding new light on LEDs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new light on LEDs By Louise Lerner * April 18, 2012 Tweet EmailPrint LEDs, or light-emitting diodes, are the secret behind your iPhone screen, flatscreen TVs, Christmas lights and crosswalk signals. They can last longer and save more energy than traditional incandescent bulbs. But there is one thing they aren't very good at: efficiently emitting light in the yellow-green spectrum. Argonne and Purdue researchers are peering deep into the atomic structure and composition of LED lights in order to

  8. DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past

  9. LED lamp

    DOE Patents [OSTI]

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  10. Low pressure stagnation flow reactor with a flow barrier

    DOE Patents [OSTI]

    Vosen, Steven R.

    2001-01-01

    A flow barrier disposed at the periphery of a workpiece for achieving uniform reaction across the surface of the workpiece, such as a semiconductor wafer, in a stagnation flow reactor operating under the conditions of a low pressure or low flow rate. The flow barrier is preferably in the shape of annulus and can include within the annular structure passages or flow channels for directing a secondary flow of gas substantially at the surface of a semiconductor workpiece. The flow barrier can be constructed of any material which is chemically inert to reactive gases flowing over the surface of the semiconductor workpiece.

  11. Photocatalyst activation in a pulsed low pressure discharge

    SciTech Connect (OSTI)

    Rousseau, A.; Guaitella, O.; Gatilova, L.; Thevenet, F.; Guillard, C.; Roepcke, J.; Stancu, G.D.

    2005-11-28

    The effect of combining plasma and photocatalyst for Volatile Organic Compounds (VOC) removal was investigated in a pulsed low-pressure dc discharge. The photocatalyst was TiO{sub 2} while the VOC was acetylene (1000 ppm) diluted in dry air. The temporal evolution of C{sub 2}H{sub 2} concentration was measured by Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the mid-infrared region during the plasma pulse (one second). The contribution of external ultraviolet radiation and plasma exposure were quantified, both with and without a photocatalyst. The synergetic effect was clearly demonstrated.

  12. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Low-pressure process steam requirements are usually met by throttling high- pressure steam, but a portion of the ...

  13. Very low pressure high power impulse triggered magnetron sputtering

    SciTech Connect (OSTI)

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  14. LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR®

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Replacement Lamps: Current Performance and the Latest on ENERGY STAR® LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® This May 19, 2009 webcast summarized CALiPER's recent benchmark testing of common omnidirectional incandescent lamps (e.g., A-lamps), and provided an update on ENERGY STAR criteria for LED integral replacement lamps - currently in its second draft. Robert Lingard of Pacific Northwest National Laboratory (PNNL) gave an

  15. Downhole steam generator using low pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  16. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect (OSTI)

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  17. Thermodynamic analysis of cascade microcryocoolers with low pressure ratios

    SciTech Connect (OSTI)

    Radebaugh, Ray

    2014-01-29

    The vapor-compression cycle for refrigeration near ambient temperature achieves high efficiency because the isenthalpic expansion of the condensed liquid is a rather efficient process. However, temperatures are limited to about 200 K with a single-stage system. Temperatures down to 77 K are possible with many stages. In the case of microcryocoolers using microcompressors, pressure ratios are usually limited to about 6 or less. As a result, even more stages are required to reach 77 K. If the microcompressors can be fabricated with low-cost wafer-level techniques, then the use of many stages with separate compressors may become a viable option for achieving temperatures of 77 K with high efficiency. We analyze the ideal thermodynamic efficiency of a cascade Joule-Thomson system for various temperatures down to 77 K and with low pressure ratios. About nine stages are required for 77 K, but fewer stages are also analyzed for operation at higher temperatures. For 77 K, an ideal second-law efficiency of 83 % of Carnot is possible with perfect recuperative heat exchangers and 65 % of Carnot is possible with no recuperative heat exchangers. The results are compared with calculated efficiencies in mixed-refrigerant cryocoolers over the range of 77 K to 200 K. Refrigeration at intermediate temperatures is also available. The use of single-component fluids in each of the stages is expected to eliminate the problem of pulsating flow and temperature oscillations experienced in microcryocoolers using mixed refrigerants.

  18. LED exit signs: Improved technology leads the way to energy savings

    SciTech Connect (OSTI)

    Sardinsky, R.; Hawthorne, S.

    1994-12-31

    Recent innovations in light-emitting diode (LED) exit signs may make LED signs the best choice among the energy efficient options available. In the past, LED signs have offered low power consumption, projected long lamp life, and low maintenance requirements. Now, the best of the LED signs also offer improved optical designs that reduce their already low power consumption while improving visibility and appearance, and even reduce their cost. LED exit signs are gaining market share, and E Source expects this technology to eventually dominate over incandescent, compact fluorescent, and electroluminescent signs. More research is needed, however, to confirm manufacturers` claims of 20-year operating lives for LED signs. Conservative estimates place the number of exit signs in US buildings at about 40 million. Although each sign represents a very small part of a building`s load, exit signs are ready targets for energy efficiency upgrades -- they operate continuously and most use inefficient incandescent sources. With an LED sign, annual energy and maintenance costs can be reduced by more than 90 percent compared to a typical incandescent sign. Low annual costs help to offset the LED sign`s relatively high first cost. More than 25 utilities offer DSM incentives for energy efficient exit signs, and efficient alternatives are becoming more readily available. Recent improvements in optical designs enable many LED signs to visually out perform other sources. In addition to these benefits, LED exit signs have lower life cycle cost than most other options. The biggest barrier to their success, however, is that their first cost has been considerably higher than competing technologies. LED sign prices are falling rapidly, though, because manufacturers are continually improving optical designs of the fixtures to use fewer LEDs and thus even less energy while providing better performance.

  19. How low can you go? Low pressure drop laboratory design

    SciTech Connect (OSTI)

    Weale, John; Rumsey, Peter; Sartor, Dale; Lock, Lee Eng

    2001-12-01

    Laboratory buildings are characterized by the production of potentially hazardous fumes within the occupied space. The primary objective of a laboratory ventilation system is to isolate and protect the occupants from the fumes, as well as provide minimum outside air at a comfortable temperature. Fume removal results in the need for a large volume of conditioned make-up air, typically a significantly greater volume than required for space temperature conditioning purposes. The high quantity of exhaust naturally results in a once through system, which is also often required by codes that prohibit any recirculation in a laboratory space. The high costs associated with high airflow systems are magnified by the 24 hours a day, 356 days a year ventilation operation often seen in laboratory situations. All too often, the common design approach taken to laboratory mechanical systems results in a traditional office ventilation system upsized to meet a laboratory's requirements. Recognizing the unique aspects of laboratory requirements and operation is essential to optimizing the mechanical system. Figure 1 shows a breakdown of a laboratory building's electricity use, based on a DOE 2 model of a baseline laboratory building design for Montana State University (Bozeman, MT). In laboratory buildings, the largest and easiest target for energy use reduction is usually the ventilation energy. At about 50 percent of the buildings total electricity usage, a 15 percent reduction in the power required by the ventilation system would save more energy than eliminating all lighting energy. As the largest component of a laboratory's energy consumption, the ventilation system is the first target to reduce the energy bill. Significantly improving the standard design efficiency of a ventilation system requires a lower air pressure drop system on both the supply and exhaust system. Implementing low-pressure drop design strategies from the early stages of the design process will result in

  20. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam...

    Broader source: Energy.gov (indexed) [DOE]

    Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators Use Vapor ...

  1. 100 LPW 800 Lm Warm White LED

    SciTech Connect (OSTI)

    Sun, Decai

    2010-10-31

    An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramica and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package

  2. Dimming LEDs with Phase-Cut Dimmers. The Specifier's Process for Maximizing Success

    SciTech Connect (OSTI)

    Miller, N. J.; Poplawski, M. E.

    2013-10-01

    DOE GATEWAY program report reviewing how phase-cut dimmers work, how LEDs differ from the incandescent lamps these dimmers were originally designed to control, and how those differences can lead to complications when attempting to dim LEDs. Providing both general guidance and step-by-step procedures for designing phase-controlled LED dimming on both new and existing projects—as well as real-world examples of how to use those procedures—the report aims to reduce the chance of experiencing compatibility-related problems and, if possible, ensure good dimming performance.

  3. DOE Publishes Final Rule for the Request for Exclusion of 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conservation Standards

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a final rule regarding the request for exclusion of 100 Watt R20 short incandescent reflector lamps from energy conservation standards.

  4. Use Vapor Recompression to Recover Low-Pressure Waste Steam (Revised0

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    This revised ITP tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  5. Use Vapor Recompression to Recover Low-Pressure Waste - Steam Tip Sheet #11

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Flash High-Pressure Condensate to Regenerate Low-Pressure - Steam Tip Sheet #12

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on regenerating low-pressure steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine | Department of Energy Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_baumgard.pdf (277.94 KB) More Documents & Publications Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in

  8. Demonstration of LED Retrofit Lamps at the Smithsonian American Art Museum, Washington, DC

    SciTech Connect (OSTI)

    Miller, Naomi J.; Rosenfeld, Scott M.

    2012-06-22

    This report documents observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy GATEWAY Solid-State Lighting (SSL) Technology Demonstration Program at the Smithsonain American Art Museum in Washington, DC. LED Lamp samples were tested in the museum workshop, temporarily installed in a gallery for feedback, and ultimately replaced all traditional incandescent lamps in one gallery of modernist art at the American Art Museum and partially replacing lamps in two galleries at the Musesum's Renwick Gallery. This report describes the selection and testing process, technology challenges, perceptions, economics, energy use, and mixed results of usign LED replacement lamps in art galleries housing national treasures.

  9. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect (OSTI)

    2011-06-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are

  10. LED Lighting: Applying Lessons Learned from the CFL Experience

    SciTech Connect (OSTI)

    McCullough, Jeffrey J.; Gilbride, Theresa L.; Gordon, Kelly L.; Ledbetter, Marc R.; Sandahl, Linda J.; Ton, My K.

    2008-08-20

    Light emitting diode (LED) technology has emerged as an exciting new lighting alternative with the potential for significant energy savings. There is concern, however, that white light LEDs for general illumination could take a long, bumpy course similar to another energy-efficient lighting technology – compact fluorescent lights (CFLs). Recognizing the significant potential energy-efficient lighting has to reduce U.S. energy consumption, Congress mandated in the Energy Policy Act of 2005 that the U.S. Department of Energy (DOE) develop Solid State Lighting (SSL) through a Next Generation Lighting Initiative. DOE’s first step was to analyze the market introduction of compact fluorescent lighting to determine what lessons could be learned to smooth the introduction of SSL in the United States (Sandahl et al. 2006). This paper summarizes applicable lessons learned from the market introduction of CFLs and describe how DOE and others are applying those lessons to speed the development and market introduction of energy-efficient LED lighting for general illumination applications. A description of the current state of LED technology and compares LEDs to incandescent, fluorescent, and halogen lights is also provided.

  11. LED Color Characteristics

    SciTech Connect (OSTI)

    2012-01-01

    Color quality is an important consideration when evaluating LED-based products for general illumination. This fact sheet reviews the basics regarding light and color and summarizes the most important color issues related to white-light LED systems.

  12. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  13. LED Color Characteristics

    Broader source: Energy.gov (indexed) [DOE]

    LED Color Characteristics Color quality is an important consideration when evaluating lighting products. This fact sheet reviews the fundamentals regarding light and color, summarizing the most important color issues related to white-light LED systems, including color consistency, stability, tuning, and rendering, as well as chromaticity. LED Emission Attributes Individual LED dies, often referred to as chips, emit light in a narrow range of wavelengths, giving the appearance of a monochromatic

  14. Energy Efficiency of LEDs

    Broader source: Energy.gov [DOE]

    This fact sheet discusses the current state of the LED market and discusses package efficacy, luminaire efficacy, and application efficacy.

  15. Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF...

    Open Energy Info (EERE)

    LED Lighting Solutions Formerly LED Lighting Fixtures LLF Jump to: navigation, search Name: Cree LED Lighting Solutions (Formerly LED Lighting Fixtures (LLF)) Place: Morrisville,...

  16. Dimming LEDs with Phase-Cut Dimmers: The Specifier's Process for Maximizing Success

    SciTech Connect (OSTI)

    Miller, Naomi J.; Poplawski, Michael E.

    2013-10-01

    This report reviews how phase-cut dimmers work, how LEDs differ from the incandescent lamps that the dimmers were historically designed to control, and how these differences can lead to complications when trying to dim LEDs. Compatibility between a specific LED source and a specific phase-cut dimmer is often unknown and difficult to assess, and ensuring compatibility adds complexity to the design, specification, bidding, and construction observation phases for new buildings and major remodel projects. To maximize project success, this report provides both general guidance and step-by-step procedures for designing phase-controlled LED dimming on both new and existing projects, as well as real-world examples of how to use those procedures.

  17. LED MR16 Lamps

    SciTech Connect (OSTI)

    2012-07-01

    Solid-state lighting program technology fact sheet that describes the performance of LED MR16 lamps and discusses electronic compatibility concerns.

  18. Establishing LED Equivalency

    SciTech Connect (OSTI)

    2011-10-01

    Solid-state lighting program technology fact sheet that provides guidance for comparing products based on LED or other light source technologies.

  19. LED Color Stability

    SciTech Connect (OSTI)

    2014-03-01

    DOE Solid-State Lighting program technology fact sheet that addresses key questions about color stability and color shift in LED lighting applications.

  20. LED Street Lighting

    Energy Savers [EERE]

    1, 2016 LED Street Lighting The American Medical Association's (AMA) recently adopted community guidance on street lighting adds another influential voice to issues that have been ...

  1. Recessed LED Downlights

    SciTech Connect (OSTI)

    2012-05-01

    Solid-state lighting program technology fact sheet that briefly discusses different LED product types and their performance relative to downlights utilizing traditional lamps.

  2. LED Color Characteristics

    Broader source: Energy.gov (indexed) [DOE]

    a combina- tion of colored LEDs typically red, green, and blue (RGB) are also available. ... triphosphor uorescent, utilize a combination of red-, blue-, and green-emitting phosphors. ...

  3. high-power LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  4. LED Frequently Asked Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Courtesy of Osram Opto Semiconductor. LED light sources used in a residential application. Terms SSL - solid-state lighting; umbrella term for semiconductors used to convert ...

  5. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOE Patents [OSTI]

    Levy, Donald J.; Berman, Samuel M.

    1988-01-01

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  6. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOE Patents [OSTI]

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  7. Downhole steam generator using low-pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  8. MELCOR calculations for a low-pressure short-term station blackout in a BWR-6

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    A postulated, low-pressure, short term station blackout severe accident has been analyzed using the MELCOR code for the Grand Gulf nuclear power plant. Different versions have been used with three different models of the plant. This paper presents results of the effects of different plant models and versions of MELCOR on the calculated results and to present the best-estimating timing of events for this transient.

  9. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  10. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  11. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical

  12. Energy Efficiency of LEDs

    SciTech Connect (OSTI)

    2013-03-01

    Solid-state lighting program technology fact sheet on energy efficiency of LEDs, characterizing the current state of the market and discussing package efficacy, luminaire efficacy, and application efficacy.

  13. LED Directional Lamps

    SciTech Connect (OSTI)

    2012-11-01

    Solid-state lighting program technology fact sheet that provides an overview of the current performance of LED PAR-, BR-, R-, and AR-shaped lamps, which were all investigated by CALiPER in 2012.

  14. Optical Safety of LEDs

    SciTech Connect (OSTI)

    none,

    2013-06-01

    Solid-state lighting program technology fact sheet that clarifies the issue of LED lighting safety for the human eye and takes a look at current standards for photobiological safety.

  15. LED Frequently Asked Questions

    SciTech Connect (OSTI)

    2011-05-01

    Solid-state lighting program technology fact sheet that provides an overview of what retailers, energy efficiency advocates, and consumers need to know to make informed LED buying decisions.

  16. Prospects for LED lighting.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Gee, James Martin; Simmons, Jerry Alvon

    2003-08-01

    Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.

  17. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance

    SciTech Connect (OSTI)

    Scholand, Michael; Dillon, Heather E.

    2012-05-01

    Part 2 of the project (this report) uses the conclusions from Part 1 as a point of departure to focus on two objectives: producing a more detailed and conservative assessment of the manufacturing process and providing a comparative LCA with other lighting products based on the improved manufacturing analysis and taking into consideration a wider range of environmental impacts. In this study, we first analyzed the manufacturing process for a white-light LED (based on a sapphire-substrate, blue-light, gallium-nitride LED pumping a yellow phosphor), to understand the impacts of the manufacturing process. We then conducted a comparative LCA, looking at the impacts associated with the Philips Master LEDbulb and comparing those to a CFL and an incandescent lamp. The comparison took into account the Philips Master LEDbulb as it is now in 2012 and then projected forward what it might be in 2017, accounting for some of the anticipated improvements in LED manufacturing, performance and driver electronics.

  18. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  19. Determination of the Electron Temperature in a Low Pressure Dusty Radiofrequency Methane Plasma

    SciTech Connect (OSTI)

    Massereau-Guilbaud, Veronique; Geraud-Grenier, Isabelle; Plain, Andre

    2011-11-29

    The particles are obtained by PECVD in radiofrequency (13.56 MHz) low pressure plasmas (90%CH4-10%Ar). During the particle growth, the particles trap electrons and modify the EEDF, and the electrical and optical characteristics of the plasma. The plasma is analyzed by Optical Emission Spectroscopy. The excitation temperature and the electron temperature are calculated from the H{sub {alpha}}, H{sub {beta}}, H{sub {gamma}} Balmer hydrogen line intensities and from Ar ones. The temporal evolutions of the temperatures during the particle formation are compared and discussed.

  20. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect (OSTI)

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Smith, R. Scott

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.

  1. Ductile phase toughening of molybdenum disilicide by low pressure plasma spraying

    SciTech Connect (OSTI)

    Castro, R.G.; Rollett, A.D.; Stanek, P.W. ); Smith, R.W. . Dept. of Materials Engineering)

    1992-01-01

    The low fracture toughness of MoSi{sub 2} at ambient temperature has prompted investigations into new processing methods in order to impart some degree of fracture toughness into this inherently brittle material. In the following investigation, low pressure plasma spraying was employed as a fabricating technique to produce spray-formed deposits of MoSi{sub 2} and ductile reinforced MoSi{sub 2} composites containing approximately 10 and 20 volume percent of a discontinuous tantalum lamelli reinforcement. Fracture toughness (K{sub 1C}) measurements of MoSi{sub 2} and the MoSi{sub 2}/Ta composites were done using a chevron notched 4-point bend fracture toughness test in both the as-sprayed condition and after hot isostatic pressing at 1200{degrees}C/206 MPa for 1 hour. Results from the ductile reinforced MoSi{sub 2}/Ta composites have shown fracture toughness increases on the order of 200% over the as-sprayed MoSi{sub 2}. In addition, a marked anisotropy in fracture toughness was observed in the spray-formed deposits due to the layered splat structure produced by the low pressure plasma spray process.

  2. Ductile phase toughening of molybdenum disilicide by low pressure plasma spraying

    SciTech Connect (OSTI)

    Castro, R.G.; Rollett, A.D.; Stanek, P.W.; Smith, R.W.

    1992-02-01

    The low fracture toughness of MoSi{sub 2} at ambient temperature has prompted investigations into new processing methods in order to impart some degree of fracture toughness into this inherently brittle material. In the following investigation, low pressure plasma spraying was employed as a fabricating technique to produce spray-formed deposits of MoSi{sub 2} and ductile reinforced MoSi{sub 2} composites containing approximately 10 and 20 volume percent of a discontinuous tantalum lamelli reinforcement. Fracture toughness (K{sub 1C}) measurements of MoSi{sub 2} and the MoSi{sub 2}/Ta composites were done using a chevron notched 4-point bend fracture toughness test in both the as-sprayed condition and after hot isostatic pressing at 1200{degrees}C/206 MPa for 1 hour. Results from the ductile reinforced MoSi{sub 2}/Ta composites have shown fracture toughness increases on the order of 200% over the as-sprayed MoSi{sub 2}. In addition, a marked anisotropy in fracture toughness was observed in the spray-formed deposits due to the layered splat structure produced by the low pressure plasma spray process.

  3. Weak interactions between water and clathrate-forming gases at low pressures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Smith, R. Scott

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence ofmore » the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less

  4. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect (OSTI)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  5. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOE Patents [OSTI]

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  6. LED MR16 Lamps

    Office of Energy Efficiency and Renewable Energy (EERE)

    The following CALiPER report provides detailed analysis of LED MR16 lamp performance, covering basic performance characteristics as well as subjective evaluation of beam, shadow, and color quality. Pending reports will offer analysis on performance attributes that are not captured by LM-79 testing. These reports are intended to educate the industry on market trends, potential issues, and important areas for improvement.

  7. Performance uprate of a geothermal steam turbine case study: Brady Power low pressure turbine

    SciTech Connect (OSTI)

    Miller, R.J. Jr.

    1997-12-31

    The output of a low pressure steam turbine operating in a geothermal power plant has been increased 10.9% by performing an efficiency uprate. The performance of the turbine was studied, resulting in a design for re-optimizing the steam path. New high-efficiency components were blended with existing turbine parts to achieve large output gains at minimum cost. Because the uprate was performed by a non-OEM, the analysis and manufacturing techniques were specifically tailored for the aftermarket. The work was completed on the spare turbine components, thereby allowing the plant to continue operation while the uprated parts were being manufactured. The predicted output gains were confirmed by field performance tests of the existing and uprated turbines.

  8. Thermodynamics of methane adsorption on copper HKUST-1 at low pressure

    SciTech Connect (OSTI)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-11

    Metalorganic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH? adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 C at low pressures (below 1 bar). In this pressure region, the CH?CH? intermolecular interactions are minimized and the energetics solely reflects the CH?MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 1.1 kJ/mol CH? independent of coverage. The calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH? adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH?HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.

  9. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOE Patents [OSTI]

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  10. Direct current-self-sustained non-ambipolar plasma at low pressure

    SciTech Connect (OSTI)

    Chen, Zhiying; Chen, Lee; Funk, Merritt

    2013-12-16

    For decades, non-ambipolar diffusion has been observed and studied in laboratory plasmas that contain a double layer. However, self-sustained non-ambipolar plasma has yet to be demonstrated. This article reports the method and results for achieving such a condition at low pressure, with a wide power range (as low as 6 W). The findings reveal that to achieve self-sustained non-ambipolar plasma, both the balance between electron and ion heating and the space-potential gradient are critical. The plasma reactor developed in this work has potential applications that include microelectronic surface processing and space propulsion, via space-charge-neutral plasma-beam thruster, when operated in the high power regime.

  11. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    SciTech Connect (OSTI)

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  12. Highly ionized physical vapor deposition plasma source working at very low pressure

    SciTech Connect (OSTI)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-04-02

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti{sup +} and Ti{sup ++} peaks are observed in the mass scan spectra). This corresponds well with high plasma density n{sub e} {approx} 10{sup 18} m{sup -3}, measured during the HiPIMS pulse.

  13. Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge

    SciTech Connect (OSTI)

    Benyoucef, Djilali; Yousfi, Mohammed

    2015-01-15

    The main objective of this paper is the modelling and simulation of a radio frequency (RF) discharge in oxygen at low pressure and at room temperature, including the effect of crossed electric and magnetic fields for generation and confinement of oxygen plasma. The particle model takes into account one axial dimension along the electric field axis and three velocity components during the Monte Carlo treatment of the collisions between charged particles and background gas. The simulation by this developed code allows us not only to determine the electrodynamics characteristics of the RF discharge, but also to obtain kinetics and energetic description of reactive oxygen plasma at low pressure. These information are very important for the control of the deep reactive-ion etching technology of the silicon to manufacture capacitors with high density and for the deposition thick insulating films or thick metal to manufacture micro-coils. The simulation conditions are as follows: RF peak voltage of 200 V, frequency of 13.56 MHz, crossed magnetic field varying from 0 to 50 Gauss, and oxygen pressure of 13.8 Pa. In the presence of magnetic field, the results show an increase of the plasma density, a decrease of the electron mean energy, and also a reduction of the ratio between electron density and positive ion density. Finally in order to validate, the results are successfully compared with measurements already carried out in the literature. The conditions of comparison are from 100 to 300 V of the peak voltage at 13.56 MHz under a pressure of 13.8 Pa and a gap distance of 2.5 cm.

  14. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect (OSTI)

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7?kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  15. LEDS | OpenEI Community

    Open Energy Info (EERE)

    LEDS Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 November, 2012 - 11:23 LEDS the focus of Monday's 10 a.m. Town Hall Meeting LEDS Town Hall meeting...

  16. Advanced Leds | Open Energy Information

    Open Energy Info (EERE)

    Place: Coventry, England, United Kingdom Zip: CV5 6SP Product: Advanced Leds develops LED technology for outdoor lighting, including street lighting applications. Coordinates:...

  17. LED Performance Under Tough Conditions

    Energy Savers [EERE]

    Three DOE Gateway applications show how LED luminaires respond to rigorous outdoor environments By JAmes BroDrick A lthough LED lighting has already made impressive inroads in ...

  18. LEd:JCD

    Office of Legacy Management (LM)

    LEd:JCD TO- 54 k-sour R3scsrck Fouadatlon 0f$..&+0is$tlstituta of TecGJlow Tecmolocy Csilter 10 Zest 35th Stmet ', c!xk3go lo, I3.Umie Atteqtion: MC. R. c. Barrall Gentlemen: Reference is wada to (a) your appUcetio0 of 3awe~ q,' 1959, rrqlacst~alirpn~tonori~200gsr;ls~hi~4~ched oranlm, (b) our a-q.4 of Z'ebmazy 6, lYS9, ke<wthg eddi- tiona1 'L+lmrQdiEp ia 'Support of your applJcatloD, (c) ycxu.r telqr3a of Eqtember 29, 1959, reque5tlng reneval of ~cense sm-49 -vc+biTt cksnga. Since'va kaem

  19. Transport of low pressure electronegative SF{sub 6} plasma through a localized magnetic filter

    SciTech Connect (OSTI)

    Levko, D.; Garrigues, L.; Hagelaar, G. J. M.

    2014-08-15

    The generation of an ion-ion plasma where only few electrons are present in the discharge could be appropriated in the context of ion plasma source applications. We present in this paper results obtained with a one-dimensional fluid model in the context of low pressure electronegative SF{sub 6} plasma. Without magnetic field, results show that the electron density is still large in the discharge. With a localized magnetic filter, where the magnetic field strength is such that the transport of the electrons is affected while the transport of ion species remains unmagnetized, we show that a region with a negativepositive ion plasma is found downstream the magnetic filter. The negative ions are produced in the filter due to the decrease of electron temperature. We also find conditions when the plasma sheath near the biased electrode collapses and the negative ion extraction from the plasma becomes possible. In addition, the influence of E??B electron transport on the one-dimensional model results is discussed.

  20. Thermodynamics of methane adsorption on copper HKUST-1 at low pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-11

    Metal–organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH₄ adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH₄–CH₄ intermolecular interactions are minimized and the energetics solely reflects the CH₄–MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH₄ independent of coverage. The calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH₄more » adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH₄–HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.« less

  1. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume I

    SciTech Connect (OSTI)

    Keuper, E.F.

    1996-03-01

    Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles. Experimental work included tests in a 200 ton 3 stage direct drive chiller with 3 impeller sets properly sized for each of three refrigerants, CFC-11, HCFC-123, and HFC-245ca. The commercial viability assessment focused on both retrofit and new product performance and cost.

  2. Thermodynamics of methane adsorption on copper HKUST-1 at low pressure

    SciTech Connect (OSTI)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-11

    Metal–organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH₄ adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH₄–CH₄ intermolecular interactions are minimized and the energetics solely reflects the CH₄–MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH₄ independent of coverage. The calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH₄ adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH₄–HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.

  3. Simulation of an Ar/NH{sub 3} low pressure magnetized direct current discharge

    SciTech Connect (OSTI)

    Li Zhi [School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [Physiccal Science and Technical College, Dalian University, Dalian 116622 (China)

    2013-01-15

    A two-dimensional fluid model has been used to investigate the properties of plasma in an Ar/NH{sub 3} low pressure magnetized direct current discharge. We compared the simulation results with the theoretical and experimental results of the other gas discharge in which the magnetic field is considered. Results that obtained using this method are in good agreement with literature. The simulation results show that the positive ammonia ion density follows the positive argon ion density. The Ar{sub 2}{sup +} density is slightly higher than the Ar{sup +} density at 100 mTorr. The largest ammonia ion is NH{sub 3}{sup +} ion, followed by NH{sub 2}{sup +}, NH{sub 4}{sup +}, and NH{sup +} ions. The contribution of NH{sup +} ions to the density of the positive ammonia ions is marginal. The influence of pressure on the plasma discharge has been studied by simulation, and the mechanisms have been discussed. The average plasma density increases as pressure increased. The plasma density appears to be more inhomogeneous than that at the lower pressure. The ratio of charge particles changed as pressure increased. The Ar{sup +} density is slightly higher than the Ar{sub 2}{sup +} density as the pressure increased. It makes NH{sub 4}{sup +} ratio increase as pressure increased. It shows that the electron temperature drops with rising pressure by numerical calculation.

  4. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    SciTech Connect (OSTI)

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wang, You-Nian

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequency further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.

  5. Simulation study of nanoparticle coating in a low pressure plasma reactor

    SciTech Connect (OSTI)

    Pourali, N.; Foroutan, G.

    2015-02-15

    A self-consistent combination of plasma fluid model, nanoparticle heating model, and surface deposition model is used to investigate the coating of nanosize particles by amorphous carbon layers in a low pressure plasma reactor. The numerical results show that, owing to the net heat release in the surface reactions, the particle temperature increases and its equilibrium value remains always 50?K above the background gas temperature. The deposition rate decreases with increasing of the particle temperature and the corresponding time scale is of the order of 10?ms. The deposition rate is also strongly affected by the change in plasma parameters. When the electron temperature is increased, the deposition rate first increases due to the enhanced ion and radical generation, shows a maximum and then declines as the particle temperature rises above the gas temperature. An enhancement in the background gas pressure and/or temperature leads to a reduction in the deposition rate, which can be explained in terms of the enhanced etching by atomic hydrogen and particle heating by the background gas.

  6. Studies on hydrogen plasma and dust charging in low-pressure filament discharge

    SciTech Connect (OSTI)

    Kakati, B. Kalita, D.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2014-08-15

    The effect of working gas pressure and dust charging on electron energy probability function has been studied for hydrogen plasma in a multi-dipole dusty plasma device. A cylindrical Langmuir probe is used to evaluate the plasma parameters and electron energy probability function (EEPF) for different working pressures. For lower energy range (below 10?eV), the EEPF follows a bi-Maxwellian shape at very low pressure (6 10{sup ?5}?mbar), while elevating the working pressure up to ?2 10{sup ?3} mbar, the shape of the EEPF transforms into a single Maxwellian. Some dip structures are observed at high energy range (??>?10?eV) in the EEPF of hydrogen plasma at all the working conditions. In presence of dust particles, it is observed that the shape of the EEPF changes due to the redistribution of the high and low-energy electron populations. Finally, the effect of working pressure on charge accumulation on dust particles is studied with the help of a Faraday cup and electrometer. From the observations, a strong influence of working pressure on plasma parameters, EEPF and dust charging is observed.

  7. Electrical breakdown at low pressure in the presence of a weak magnetic field

    SciTech Connect (OSTI)

    Alport, M.J.; Antoniades, J.A.; Boyd, D.A.; Greaves, R.G.; Ellis, R.F. )

    1990-05-01

    Electron trapping in crossed electric and magnetic fields is an important mechanism by which electrical discharges can develop in low pressure gases. The authors report observations of discharges produced by this mechanism around a spherical anode in two space simulation chambers, namely the Space Plasma Interaction Experiment (SPIE) at the University of Maryland, and the NASA-Lewis B-2 chamber. They have identified two types of discharges in these experiments. In the B-2 chamber, the breakdown takes the form of a runaway dischage with spherical topology, limited only by the ability of the power supply to provide the current. In the SPIE chamber this type of discharge also occurs, in addition to a low current toroidal discharge which is observed at higher magnetic fields. They present measurements of both types of discharge and show how the trapping effect of the magnetic field together with secondary electron emission by high energy ion bombardment of the chamber walls may initiate and sustains these discharges.

  8. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect (OSTI)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)] [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 510{sup ?4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (?pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  9. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps.

    SciTech Connect (OSTI)

    Royer, Michael P.; Poplawski, Michael E.; Brown, Charles C.

    2014-12-14

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light output compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one

  10. 2014-04-11 Issuance: Energy Conservation Standards for General Service Fluorescent Lamps and Incandescent Reflector Lamps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding energy conservation standards for general service fluorescent lamps and incandescent reflectors lamps, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on April 11, 2014.

  11. DOE Announces Webinars on Maintenance Practices for LED Streetlights, LED

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Color Stability, and More | Department of Energy Maintenance Practices for LED Streetlights, LED Color Stability, and More DOE Announces Webinars on Maintenance Practices for LED Streetlights, LED Color Stability, and More April 10, 2014 - 9:13am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is

  12. Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors

    SciTech Connect (OSTI)

    Setlur, A.; Radkov, E; Henderson, C; Her, J; Srivastava, A; Karkada, N; Kishore, M; Kumar, N; Aesram, D; et al.

    2010-01-01

    LED lamps using phosphor downconversion can be designed to replace incandescent or halogen sources with a 'warm-white' correlated color temperature (CCT) of 2700-3200 K and a color rendering index (CRI) greater than 90. However, these lamps have efficacies of {approx}70% of standard 'cool-white' LED packages (CCT = 4500-6000 K; CRI = 75-80). In this report, we describe structural and luminescence properties of fluoride and oxyfluoride phosphors, specifically a (Sr,Ca){sub 3}(Al,Si)O{sub 4}(F,O):Ce{sup 3+} yellow-green phosphor and a K{sub 2}TiF{sub 6}:Mn{sup 4+} red phosphor, that can reduce this gap and therefore meet the spectral and efficiency requirements for high-efficacy LED lighting. LED lamps with a warm-white color temperature (3088 K), high CRI (90), and an efficacy of {approx}82 lm/W are demonstrated using these phosphors. This efficacy is {approx}85% of comparable cool-white lamps using typical Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+}-based phosphors, significantly reducing the efficacy gap between warm-white and cool-white LED lamps that use phosphor downconversion.

  13. Simple Modular LED Cost Model

    Broader source: Energy.gov [DOE]

    The LED Cost Model, developed by the DOE Cost Modeling Working Group, provides a simplified method for analyzing the manufacturing costs of an LED package. The model focuses on the major cost...

  14. LED Performance Under Tough Conditions

    Broader source: Energy.gov [DOE]

    December 2015 LD+A magazine article entitled "LED Performance Under Tough Conditions" discussing three Dept of Energy GATEWAY applications that show how LED luminaires respond to rigorous outdoor environments.

  15. LED Lighting | Department of Energy

    Office of Environmental Management (EM)

    comparable or better light quality than other types of lighting. Check out the top 8 things you didn't know about LEDs to learn more. Energy Savings LED is a highly energy...

  16. Employee-Led Safety Committees

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee-Led Safety Committees Presented to: 25 th National VPPPA Conference August 26, 2009 San Antonio, Texas Presented by: Jack Griffith HNF-421781 CHPRC0907-38 2 Employee-Led ...

  17. Quality and Performance of LED Flashlights in Kenya: Common End User Preferences and Complaints

    SciTech Connect (OSTI)

    Tracy, Jenny; Jacobson, Arne; Mills, Evan

    2009-09-14

    Flashlights that use LED technology have quickly emerged as the dominant source of portable lighting in Kenya. While flashlights do not normally provide a substitute for kerosene and other highly inefficient fuels, they are an important early manifestation of LED lighting in the developing world that can serve as a platform - or deterrent - to the diffusion of the technology into the broader off-grid lighting market. The lead acid batteries embedded in flashlights also represent an important source of hazardous waste, and flashlight durability is thus an important determinant of the rate of waste disposal. Low-cost LED flashlights with prices from $1 to $4 are now widely available in shops and markets throughout Kenya. The increased penetration of LED technology in the flashlight market is significant, as over half of all Kenyan households report owning a flashlight (Kamfor, 2002). While this shift from conventional incandescent technology to modern LEDs may appear to be a promising development, end users that our research team interviewed expressed a number of complaints about the quality and performance of these new flashlights. This raises concerns about the interests of low-income flashlight users, and it may also indicate the onset of a broader market spoiling effect for off-grid lighting products based on LED technology (Mills and Jacobson, 2008; Lighting Africa, 2007). The quality of low-cost LED flashlights can contribute to market spoiling because these products appear to represent the first contact that most Kenyans have with LED technology. In this report, our team uses interviews with 46 end users of flashlights to collect information about their experiences, perceptions, and preferences. We focus especially on highlighting common complaints from respondents about the flashlights that they have used, as well as on noting the features that they indicated were important when evaluating the quality of a flashlight. In previous laboratory tests, researchers

  18. LED Roundtable Reports | Department of Energy

    Energy Savers [EERE]

    LED Roundtable Reports LED Roundtable Reports PDF icon 2015 LED Core Technology Roundtable Report.pdf PDF icon 2015 LED Product Development and Manufacturing Roundtable Report.pdf...

  19. LED Green Power Inc | Open Energy Information

    Open Energy Info (EERE)

    LED Green Power Inc Jump to: navigation, search Name: LED Green Power Inc Place: Santa Cruz, California Zip: 95060 Product: LED fixture and cartridge manufacturer. References: LED...

  20. LED Roundtable Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Roundtable Reports LED Roundtable Reports PDF icon 2015 LED Core Technology Roundtable Report.pdf PDF icon 2015 LED Product Development and Manufacturing Roundtable Report.pdf ...

  1. LED Record Efficacy and Brightness

    Broader source: Energy.gov [DOE]

    Designed for general lighting applications such as street, industrial, and parking garage lighting, the Cree XLamp® power LED sets new records for LED brightness and efficacy, up to 85 lm/W at 350 mA. The XLamp utilizes Cree's performance breakthrough EZBright™ LED chip; both products include technology that was developed in part with R&D funding support from DOE.

  2. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape

    SciTech Connect (OSTI)

    Cunha, T. H. R.; Ek-Weis, J.; Lacerda, R. G.; Ferlauto, A. S., E-mail: ferlauto@fisica.ufmg.br [Department of Physics, Federal University of Minas Gerais, Belo Horizonte 31270-901 (Brazil)

    2014-08-18

    The initial stages of graphene chemical vapor deposition at very low pressures (<10{sup ?5?}Torr) were investigated. The growth of large graphene domains (?up to 100??m) at very high rates (up to 3??m{sup 2} s{sup ?1}) has been achieved in a cold-wall reactor using a liquid carbon precursor. For high temperature growth (>900?C), graphene grain shape and symmetry were found to depend on the underlying symmetry of the Cu crystal, whereas for lower temperatures (<900?C), mostly rounded grains are observed. The temperature dependence of graphene nucleation density was determined, displaying two thermally activated regimes, with activation energy values of 6??1?eV for temperatures ranging from 900?C to 960?C and 9??1?eV for temperatures above 960?C. The comparison of such dependence with the temperature dependence of Cu surface self-diffusion suggests that graphene growth at high temperatures and low pressures is strongly influenced by copper surface rearrangement. We propose a model that incorporates Cu surface self-diffusion as an essential process to explain the orientation correlation between graphene and Cu crystals, and which can clarify the difference generally observed between graphene domain shapes in atmospheric-pressure and low-pressure chemical vapor deposition.

  3. Demonstration of LED Street Lighting

    SciTech Connect (OSTI)

    Kinzey, B. R.; Royer, M. P.; Hadjian, M.; Kauffman, R.

    2013-06-01

    GATEWAY program and Municipal Solid-State Street Lighting Consortium report on a demonstration of LED street lighting in Kansas City, MO.

  4. Upgrading Troffer Luminaires to LED

    SciTech Connect (OSTI)

    none,

    2014-01-31

    Solid-state lighting technology fact sheet providing guidance on the various factors to consider when deciding on an LED upgrade for a fluorescent troffer system.

  5. Using LEDs | Department of Energy

    Energy Savers [EERE]

    compact profile, superior optical control, energy efficiency, breakage resistance, reduced maintenance, and long life-LEDs are well suited to a variety of lighting applications. ...

  6. Reporting LED Luminaire Product Performance

    SciTech Connect (OSTI)

    2008-12-01

    This brochure on LED product performance is an outcome of a joint DOE-NGLIA effort to assure and improve the quality of SSL products.

  7. GATEWAY Demonstrations: LED Street Lighting

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Pang, Terrance Pang

    2008-12-01

    This report summarizes an assessment project conducted to study the performance of light emitting diode (LED) luminaires in a street lighting application in San Francisco, CA.

  8. ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"

    U.S. Energy Information Administration (EIA) Indexed Site

    B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square

  9. Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bambha, Ray P.; Michelsen, Hope A.

    2015-07-03

    We have used a Single-Particle Soot Photometer (SP2) to measure time-resolved laser-induced incandescence (LII) and laser scatter from combustion-generated mature soot with a fractal dimension of 1.88 extracted from a burner. We have also made measurements on restructured mature-soot particles with a fractal dimension of 2.3–2.4. We reproduced the LII and laser-scatter temporal profiles with an energy- and mass-balance model, which accounted for heating of particles passed through a CW-laser beam over laser–particle interaction times of ~10 μs. Furthermore, the results demonstrate a strong influence of aggregate size and morphology on LII and scattering signals. Conductive cooling competes with absorptivemore » heating on these time scales; the effects are reduced with increasing aggregate size and fractal dimension. These effects can lead to a significant delay in the onset of the LII signal and may explain an apparent low bias in the SP2 measurements for small particle sizes, particularly for fresh, mature soot. The results also reveal significant perturbations to the measured scattering signal from LII interference and suggest rapid expansion of the aggregates during sublimation.« less

  10. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals aremore » observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.« less

  11. LED Watch: How Safe Is the Light from LEDs?

    Energy Savers [EERE]

    It's important to note that there's about LED safety focus on what's known no difference between the type of vis- as "blue light," which is light in the violet ible radiant energy ...

  12. Microstructural characterization of LPCVD (low pressure chemical vapor deposition) tungsten interfaces

    SciTech Connect (OSTI)

    Paine, D.C.; Bravman, J.C.; Saraswat, K.C.

    1985-01-01

    Three important interfacial morphologies are observed in LPCVD tungsten on silicon: lateral encroachment, interface roughness, and wormhole structures. They have been shown to be, in part at least, a result of defect condition. Defects positively identified using XTEM include residual native oxide and dislocations from ion implantation. A third phase, possibly tungsten silicide, has been observed but not uniquely identified. Extensive lateral encroachment has been shown to be related to the presence of residual implant damage. Specifically, dislocation loops under oxide grown over arsenic-implanted silicon were implicated. Interface roughness appears to result from both residual native oxide patches on the silicon surface as well as to the formation of small protrusions of a third, probably silicide phase. The electron-microscopy techniques of microdiffraction and Moire analysis were used in an attempt to identify the third phase. The presence of a third phase has led to the proposal of a mechanism for formation of the wormhole structure. Additional work, currently underway, will establish the identity of both the interfacial phase and the wormhole particles.

  13. Maintenance Practices for LED Streetlights

    Office of Energy Efficiency and Renewable Energy (EERE)

    This April 14, 2014 webinar answered important questions about the maintenance and reliability of LED streetlights, and how to take these issues into account when planning and preparing for a...

  14. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting...

  15. Negative-ion yield in low-pressure radio frequency discharges in hydrogen: Particle modeling and vibrational kinetics

    SciTech Connect (OSTI)

    Diomede, P.; Longo, S.; Capitelli, M.

    2006-03-15

    A theoretical study of the complex interplay between the vibrational kinetics and the plasma dynamics in low-pressure hydrogen plasmas produced by radio frequency discharges is performed. The study is realized by means of a one-dimensional particle model with five species (e, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, and H{sup -}) while the vibrational/dissociation kinetics is based on a continuum model and the two are self-consistently coupled. In particular, we analyze the influence of pressure.

  16. LED Frequently Asked Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequently Asked Questions LED Frequently Asked Questions EERE Solid-State Lighting LED Factsheet PDF icon ledbasics.pdf More Documents & Publications LED Frequently Asked ...

  17. Demonstration Assessment of LED Roadway Lighting: Philadelphia...

    Office of Scientific and Technical Information (OSTI)

    LED Roadway Lighting: Philadelphia, PA Royer, Michael P.; Tuenge, Jason R.; Poplawski, Michael E. Roadway Lighting; Solid-state lighting; LED lighting; SSL; LED; GATEWAY Roadway...

  18. Recessed LED Downlights | Department of Energy

    Energy Savers [EERE]

    Recessed LED Downlights Recessed LED Downlights A Dept of Energy Solid-State Lighting Program technology fact sheet on recessed LED downlights. PDF icon recesseddownlight.pdf More ...

  19. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; Dubey, Manvendra K.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (dme), enabling application for microphysical studies. However, the removal of particles ≤100 nm dme is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  20. Combining Feedback Absorption Spectroscopy, Amplified Resonance and Low Pressure Sampling for the Measurement of Nitrogen-Containing Compounds in Automotive Emissions

    Broader source: Energy.gov [DOE]

    Discusses a novel combination of multi-component scanning direct absorption spectroscopy, resonant cavity and low-pressure sampling to systematically improve the performance of a specific gas analyzer.

  1. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect (OSTI)

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  2. LED lamp color control system and method

    SciTech Connect (OSTI)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  3. LED lamp power management system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  4. ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Lighting Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",4657,4172,2193,3778,607,430,572 "Building Floorspace" "(Square Feet)"

  5. The manufacture of replacement low pressure carrier casings and associated stationary guide vane blading through on site component sample measurement

    SciTech Connect (OSTI)

    Fraser, M.J.

    1996-12-31

    In today`s competitive utility market place, the manufacture of replacement components by alternate manufacturing has become an increasingly important available option for turbine operators seeking to achieve substantive cost and lead time reductions in spare part purchasing. Essential to this strategy--in the absence of a total redesign of the component(s) or their assemblies--is the provision or access to the selected alternate manufacture of the necessary sample parts. This paper details the manufacture by reverse engineering of 3 replacement low pressure carrier guide vane blade casings for a 60 MW steam turbine complete with their associated blading and ancillary parts where the necessary sample parts and assemblies could not be released from site due to outage constraints.

  6. Electron-drift detection using directional planar probes in a low-pressure coaxial surface-wave discharge

    SciTech Connect (OSTI)

    Letout, S.; Boisse-Laporte, C.; Alves, L. L.

    2006-12-11

    Directional planar probes are used to investigate the electron population in low-pressure (10-100 mTorr) coaxial surface-wave (2.45 GHz) discharges, considering the anisotropy possibly induced by a local plasma resonance. Probe characteristics exhibit a significant increase in the electronic current over a wide range of probe potentials, depending on radial position and direction of observation. Such behavior reveals the presence of highly anisotropic electrons. Experimental probe currents were simulated by considering multiple electron populations, with drifting Maxwellian velocity distributions. Results yield axial drift velocities corresponding to energies up to 30 eV for populations of only a few 10{sup -2} below the thermal background density.

  7. Low pressure CO₂ hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO₂ interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Xiaofang; Boscoboinik, J. Anibal; Kattel, Shyam; Senanayake, Sanjaya D.; Nie, Xiaowa; Graciani, Jesus; Rodriguez, Jose A.; Liu, Ping; Stacchiola, Dario J.; Chen, Jingguang G.

    2015-07-28

    Capture and recycling of CO₂ into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO₂ is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal–oxide interface of Au nanoparticles anchored and stabilized on a CeOx/TiO₂ substrate generates active centers formore » CO₂ adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. In conclusion, this study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO₂ hydrogenation.« less

  8. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect (OSTI)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  9. Growth of selective tungsten films on self-aligned CoSi/sub 2/ by low pressure chemical vapor deposition

    SciTech Connect (OSTI)

    van der Putte, P.; Sadana, D.K.; Broadbent, E.K.; Morgan, A.E.

    1986-12-22

    The selective deposition of tungsten films onto CoSi/sub 2/ and onto Co by low pressure chemical vapor deposition and their material properties have been investigated with Auger electron spectroscopy, transmission electron microscopy, and Rutherford backscattering. When using WF/sub 6/ and H/sub 2/, uniformly thick tungsten films can be deposited onto CoSi/sub 2/ without substrate alteration. In patterned structures, however, void formation was found at the perimeters of CoSi/sub 2/ contacts to silicon, indicating encroachment of WF/sub 6/ down the edge of the silicide-Si interface. In WF/sub 6/ and Ar, the film thickness was limited to 10 nm and some Si was locally consumed from the upper part of the CoSi/sub 2/ film. Transmission electron diffraction showed evidence of Co/sub 2/Si formation in these areas.

  10. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect (OSTI)

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  11. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner.more » Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.« less

  12. Low pressure hydrocyclone separator

    SciTech Connect (OSTI)

    Flanigan, D.A.; Stolhand, J.E.

    1989-07-04

    This patent describes a method of separating a dispersed phase liquid from a bulk phase liquid of a liquid-liquid mixture, the dispersed phase and bulk phase liquids having different densities. The method comprises the steps of: providing a supply of the liquid-liquid mixture at a first pressure; providing a pump means including means for minimizing degradation of the volumetric means size of droplets of the dispersed phase further including a pump size for maintaining the pump means at substantially near maximum flow rate capacity; pumping the liquid-liquid mixture with at least one pump means to a second pressure such that a differential between the first and second pressures is not substantially greater than a differential pressure at which the pump means begins to substantially degrade the volumetric mean size of droplets of the dispersed phase liquid passing therethrough, the pumping without substantial droplet degradation being achieved by operating the pump means at relatively near its maximum flow rate capacity to substantially reduce on a percentage basis the effect of fluid slippage within the pump means; directing the liquid-liquid mixture from the pump means to a hydrocyclone; and separating a substantial portion of the dispersed phase liquid from the liquid-liquid mixture in the hydrocyclone.

  13. LED MR16 Lamps | Department of Energy

    Energy Savers [EERE]

    LED MR16 Lamps LED MR16 Lamps A U.S. DOE Solid-State Lighting Program technology fact sheet on LED MR16 lamps. PDF icon ledmr16-lamps.pdf More Documents & Publications Report ...

  14. LedEngin Inc | Open Energy Information

    Open Energy Info (EERE)

    LedEngin Inc Jump to: navigation, search Name: LedEngin, Inc Place: Santa Clara, California Zip: 95054 Product: Developer of Light Emitting Diode (LED) technology for medical and...

  15. Philadelphia International Airport Apron Lighting: LED System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Philadelphia International Airport Apron Lighting: LED System Performance in a ...

  16. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Light distribution and glare LED luminaires use different optics than MH or HPS lamps ... illuminance are possible with LEDs and close-coupled optics, compared to HID luminaires. ...

  17. Federally Led Accident Investigation Reports | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federally Led Accident Investigation Reports Federally Led Accident Investigation Reports Includes Pre-March 2011 Type A Reports June 1, 1999 Type A Accident Investigation Board...

  18. Experimental and numerical investigations of electron density in low-pressure dual-frequency capacitively coupled oxygen discharges

    SciTech Connect (OSTI)

    Liu, Jia; Wen, De-Qi; Liu, Yong-Xin; Gao, Fei; Lu, Wen-Qi; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-11-15

    The electron density is measured in low-pressure dual-frequency (2/60 MHz) capacitively coupled oxygen discharges by utilizing a floating hairpin probe. The dependence of electron density at the discharge center on the high frequency (HF) power, low frequency (LF) power, and gas pressure are investigated in detail. A (1D) particle-in-cell/Monte Carlo method is developed to calculate the time-averaged electron density at the discharge center and the simulation results are compared with the experimental ones, and general agreements are achieved. With increasing HF power, the electron density linearly increases. The electron density exhibits different changes with the LF power at different HF powers. At low HF powers (e.g., 30 W in our experiment), the electron density increases with increasing LF power while the electron density decreases with increasing LF power at relatively high HF powers (e.g., 120 W in our experiment). With increasing gas pressure the electron density first increases rapidly to reach a maximum value and then decreases slowly due to the combined effect of the production process by the ionization and the loss processes including the surface and volume losses.

  19. Numerical study of effect of secondary electron emission on discharge characteristics in low pressure capacitive RF argon discharge

    SciTech Connect (OSTI)

    Liu, Qian; Liu, Yue, E-mail: liuyue@dlut.edu.cn; Samir, Tagra; Ma, Zhaoshuai [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-08-15

    Based on the drift and diffusion approximation theory, a 1D fluid model on capacitively coupled RF argon glow discharge at low pressure is established to study the effect of secondary electron emission (SEE) on the discharge characteristics. The model is numerically solved by using a finite difference method and the numerical results are obtained. The numerical results indicate that when the SEE coefficient is larger, the plasma density is higher and the time of reaching steady state is longer. It is also found that the cycle-averaged electric field, electric potential, and electron temperature change a little as the SEE coefficient is increased. Moreover, the discharge characteristics in some nonequilibrium discharge processes with different SEE coefficients have been compared. The analysis shows that when the SEE coefficient is varied from 0.01 to 0.3, the cycle-averaged electron net power absorption, electron heating rate, thermal convective term, electron energy dissipation, and ionization all have different degrees of growth. While the electron energy dissipation and ionization are quite special, there appear two peaks near each sheath region in the discharge with a relatively larger SEE coefficient. In this case, the discharge is certainly operated in a hybrid ?-?-mode.

  20. LED Color Characteristics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Color Characteristics LED Color Characteristics Reviews the fundamentals regarding light and color, summarizing the most important color issues related to white-light LED systems. (6 pages, April 2016) led-color-characteristics-factsheet.pdf (1.77 MB) More Documents & Publications Evaluating Color Rendition Using IES TM-30-15 LED Color Characteristics presentation slides: UNDERSTANDING AND APPLYING TM-30-15

  1. LED Essentials - Technology, Applications, Advantages, Disadvantages |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Information Resources » Webcasts » LED Essentials - Technology, Applications, Advantages, Disadvantages LED Essentials - Technology, Applications, Advantages, Disadvantages On October 11, 2007, Kevin Dowling, VP of Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages and disadvantages, current applications, future potential, and evolving path of LED technology from

  2. LED Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Technology Application R&D » LED Lighting Facts LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general illumination from manufacturers who commit to testing products and reporting performance results according to industry standards. For lighting buyers, designers, and energy efficiency programs, the program provides information essential to evaluating SSL products. Central to the

  3. LED Frequently Asked Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequently Asked Questions LED Frequently Asked Questions This document provides answers to LED frequently asked questions for plant-wide improvements, such as "Are LEDs ready for general lighting?" LED Frequently Asked Questions (May 2011) (344.41 KB) More Documents & Publications LED Frequently Asked Questions Lighting Designer Roundtable on Solid-State Lighting SSL R&D Multi-Year Program Plan

  4. LED Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Technology Application R&D » LED Lighting Facts LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general illumination from manufacturers who commit to testing products and reporting performance results according to industry standards. For lighting buyers, designers, and energy efficiency programs, the program provides information essential to evaluating SSL products. Central to the

  5. LED Lighting Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications » Market Studies » LED Lighting Forecast LED Lighting Forecast The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030. With declining costs and improving performance, LED products have been seeing increased adoption for general illumination applications. This is a positive development in terms of energy consumption, as LEDs use significantly

  6. Experimental investigation on the flow instability behavior of a multi-channel boiling natural circulation loop at low-pressures

    SciTech Connect (OSTI)

    Jain, Vikas; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-09-15

    Natural circulation as a mode of heat removal is being considered as a prominent passive feature in the innovative nuclear reactor designs, particularly in boiling-water-reactors, due to its simplicity and economy. However, boiling natural circulation system poses many challenges to designer due to occurrence of various kinds of instabilities such as excursive instability, density wave oscillations, flow pattern transition instability, geysering and metastable states in parallel channels. This problem assumes greater significance particularly at low-pressures i.e. during startup, where there is great difference in the properties of two phases. In light of this, a parallel channel loop has been designed and installed that has a geometrical resemblance to the pressure-tube-type boiling-water-reactor, to investigate into the behavior of boiling natural circulation. The loop comprises of four identical parallel channels connected between two common plenums i.e. steam drum and header. The recirculation path is provided by a single downcomer connected between steam drum and header. Experiments have been conducted over a wide range of power and pressures (1-10 bar). Two distinct unstable zones are observed with respect to power i.e. corresponding to low power (Type-I) and high power (Type-II) with a stable zone at intermediate powers. The nature of oscillations in terms of their amplitude and frequency and their evolution for Type-I and Type-II instabilities are studied with respect to the effect of heater power and pressure. This paper discusses the evolution of unstable and stable behavior along with the nature of flow oscillation in the channels and the effect of pressure on it. (author)

  7. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  8. LEDs for Street Lighting—Here Today

    SciTech Connect (OSTI)

    2013-11-29

    Fact sheet that provides a brief overview of the viability of LED street lighting in municipalities and highlights case studies of two cities—Los Angeles and Seattle—that have invested in LED street lighting.

  9. Decisions that led to Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decisions that led to Y-12 Last week we saw the political and organizational changes that led up to the Manhattan Project being created on August 13, 1942. The S-1 Executive ...

  10. Final decisions that led to Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decisions that led to Y-12 As we have seen earlier in this series, Ernest O. Lawrence and ... By late 1942, progress on the reactor technology being led by Enrico Fermi at the ...

  11. SemiLEDs | Open Energy Information

    Open Energy Info (EERE)

    SemiLEDs Place: Boise, Idaho Zip: 83702 Product: US-based LED chip maker with Asia manufacturing operations. Coordinates: 43.60698, -116.193409 Show Map Loading map......

  12. LED R&D | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE-funded LED R&D projects tackle the science and technology challenges that stand in the way of achieving SSL Program targets for LED efficacy, performance, and cost. All project ...

  13. LED Solutions for the Dark Hours

    Energy Savers [EERE]

    technologies 5 LEDs for Street and Roadway Lighting Portland, OR Philadelphia, PA New York, NY Kansas City, MO 6 Boston Las Vegas Seattle Number of LED Replacements to Date (4...

  14. Updating the LED Life Cycle Assessment

    Energy Savers [EERE]

    Part 2: LED Manufacturing and Performance 7 Goal of the New Study Review new literature on the life- cycle assessment of LED products. Determine if newer A-19 products...

  15. LED Lighting: Just the Facts, Please!

    Broader source: Energy.gov [DOE]

    Now there's another arsenal in the toolbox to help consumers find LED lights they can trust: the Lighting Facts™ label.

  16. LED Lighting in a Performing Arts Center

    SciTech Connect (OSTI)

    Wilkerson, A. M.; Abell, T. C.; T., E. Perrin

    2015-07-31

    GATEWAY demonstration report of LED wall washer retrofit lighting at the University of Maryland Clarice Smith Performing Arts Center.

  17. LED Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional light source. LEDs are compound semiconductor devices that produce light when an appropriate electrical current is applied. Applying electrical current causes electrons to flow from one material in the structure to another and this in turn causes a series of complex interactions at an atomic level that

  18. LED Watch: The Outlook for OLEDs

    Broader source: Energy.gov [DOE]

    December 2014 LED Watch: The Outlook for OLEDs James Brodrick, U.S. Department of Energy LD+A Magazine

  19. LED Market Adoption: Status and Trends

    Energy Savers [EERE]

    (lmW) 67 60 CCT (K) 3000 3500 L 70 (hours) 28,000 36,000 Price (unit) 23 30 18 LED Linear Fixtures 19 T12 26% T8 67% T5 7% LED Lamp <1% LED Luminaire <1% 2012 T12 17% T8 72%...

  20. LED Color Characteristics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE EERE Building Technologies Program Solid-State Lighting fact sheet led-color-characteristics-factsheet.pdf (804.38 KB) More Documents & Publications LED Color Characteristics Evaluating Color Rendition Using IES TM-30-15 Report 23: Photometric Testing of White Tunable LED Luminaires

  1. A Practical Primer to LED Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Practical Primer to LED Technology A Practical Primer to LED Technology PDF icon A Practical Primer to LED Technology More Documents & Publications LED LUMINAIRE LIFETIME: ...

  2. HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Z.; Day, D. A.; Stark, H.; Li, R.; Palm, B. B.; Brune, W. H.; Jimenez, J. L.

    2015-04-20

    Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O3 since OH is formed from O3 photolysis, while OFR185 does not since O2 can be photolyzed to produce O3 and OH can also be formed from H2O photolysis. In this study, we use a plug-flow kinetic model to investigate OFR properties under a very wide range of conditions applicable to both field and laboratory studies. We show that the radical chemistrymore » in OFRs can be characterized as a function of UV light intensity, H2O concentration, and total external OH reactivity (OHRext, e.g., from VOCs, NOx, and SO2). OH exposure is decreased by added external OH reactivity. OFR185 is especially sensitive to this effect at low UV intensity due to low primary OH production. OFR254 can be more resilient against OH suppression at high injected O3 (e.g., 70 ppm), as a larger primary OH source from O3, as well as enhanced recycling of HO2 to OH, make external perturbations to the radical chemistry less significant. However if the external OH reactivity in OFR254 is much larger than OH reactivity from injected O3, OH suppression can reach two orders of magnitude. For a typical input of 7 ppm O3 (OHRO3 = 10 s−1) ten-fold OH suppression is observed at OHRext ∼ 100 s−1, which is similar or lower than used in many laboratory studies. This finding may have important implications for the interpretation of past laboratory studies, as applying OHexp measurements acquired under different conditions could lead to over an order-of-magnitude error in the estimated OHexp. The uncertainties of key model outputs due to uncertainty in all rate constants and absorption cross-sections in the model are within ± 25% for OH exposure and within ± 60% for other parameters. These uncertainties are small relative to the dynamic range of outputs. Uncertainty

  3. System Reliability for LED-Based Products

    SciTech Connect (OSTI)

    Davis, J Lynn; Mills, Karmann; Lamvik, Michael; Yaga, Robert; Shepherd, Sarah D; Bittle, James; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy; Johnson, Cortina; Evans, Amy

    2014-04-07

    Results from accelerated life tests (ALT) on mass-produced commercially available 6” downlights are reported along with results from commercial LEDs. The luminaires capture many of the design features found in modern luminaires. In general, a systems perspective is required to understand the reliability of these devices since LED failure is rare. In contrast, components such as drivers, lenses, and reflector are more likely to impact luminaire reliability than LEDs.

  4. LED PAR38 Lamps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Technology Application R&D » CALiPER Testing » Application Reports » LED PAR38 Lamps LED PAR38 Lamps The following CALiPER reports provide a detailed investigation of LED PAR38 lamp performance, covering basic performance characteristics as well as subjective evaluation of beam, shadow, and color quality. Further analysis is provided on flicker, dimming, and power quality characteristics; stress testing; lumen and chromaticity maintenance; and chromaticity

  5. Category:LEDS Toolkit | Open Energy Information

    Open Energy Info (EERE)

    meant to support the creation and implementation of a Low Emission Development Strategy. Pages in category "LEDS Toolkit" The following 14 pages are in this category, out of...

  6. Using LEDs to Their Best Advantage

    SciTech Connect (OSTI)

    none,

    2012-01-01

    Solid-state lighting program technology fact sheet that explores the unique attributes of LEDs, which may make them the right choice for some applications.

  7. Demonstration Assessment of LED Parking Structure Lighting

    SciTech Connect (OSTI)

    Kinzey, B. R.; Myer, M. A.

    2013-03-01

    GATEWAY program report on a demonstration of LED parking structure lighting at the U.S. Dept. of Labor headquarters in Washington, DC.

  8. LED Lighting Facts Snapshot: Indoor Ambient Lighting

    SciTech Connect (OSTI)

    2013-04-01

    LED Lighting Facts Snapshot reports reveal how today's products really perform, drawing on analysis of verified performance data from the program's online product list.

  9. Municipal Consortium LED Street Lighting Workshop Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    Workshop Agenda DOE Municipal Solid-State Street Lighting Consortium James Brodrick, U.S. Department of Energy Boston's LED Street Lighting Initiative Joanne Massaro, Glenn Cooper, ...

  10. Commercial Lighting and LED Lighting Incentives | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Schools Institutional Savings Category Lighting Lighting ControlsSensors Other EE LED Lighting Maximum Rebate Up to 100% of cost; incentives that exceed 5,000 should be...

  11. LED Directional Lamps | Department of Energy

    Energy Savers [EERE]

    Directional Lamps LED Directional Lamps BTP EERE Solid-State Lighting Program PDF icon leddirectionallamps.pdf More Documents & Publications Energy Savings Estimates of Light ...

  12. LEDS Events Calendar | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History LEDS Events Calendar (Redirected from CLEAN Calendar) Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports...

  13. LEDS Events Calendar | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History LEDS Events Calendar Jump to: navigation, search Home | About | Inventory | Partnerships |...

  14. Municipal Consortium LED Street Lighting Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Los Angeles Bureau of Street Lighting San Jose's "Smart" LED Streetlights: Controlled Amy Olay, City of San Jose Adaptive Lighting Controls Panel David Bueno, ...

  15. Dimming LEDs: What You Need to Know

    Broader source: Energy.gov [DOE]

    This December 10, 2012 webcast presented information on the challenges and opportunities facing users trying to dim LED light sources today, reviewing the major types of deployed dimming...

  16. A Practical Primer to LED Technology

    Energy Savers [EERE]

    ssl.energy.gov 2011 LED Transformations, LLC 60 Acknowledgements Support for the development and presentation of this educational seminar was provided by the US Department of...

  17. Municipal Consortium LED Street Lighting Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Agenda ONCOR LED Streetlight Pilot & Technical Evaluation Update Michael Navarro, ONCOR Reading, Understanding, and Applying the LM-80 Standard Chad Stalker, Philips ...

  18. Successful Selection of LED Streetlight Luminaires: Optimizing...

    Broader source: Energy.gov (indexed) [DOE]

    This March 6, 2013 webcast reviewed the factors involved in successful selection of LED streetlight luminaires. Presenters Eric Haugaard of Cree Lighting and Chad Stalker of ...

  19. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  20. LED Replacements for Linear Fluorescent Lamps Webcast

    Broader source: Energy.gov [DOE]

    In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting...

  1. HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Z.; Day, D. A.; Stark, H.; Li, R.; Lee-Taylor, J.; Palm, B. B.; Brune, W. H.; Jimenez, J. L.

    2015-11-20

    Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O3 since OH is formed from O3 photolysis, while OFR185 does not since O2 can be photolyzed to produce O3, and OH can also be formed from H2O photolysis. In this study, we use a plug-flow kinetic model to investigate OFR properties under a very wide range of conditions applicable to both field and laboratory studies. We show that the radical chemistrymore » in OFRs can be characterized as a function of UV light intensity, H2O concentration, and total external OH reactivity (OHRext, e.g., from volatile organic compounds (VOCs), NOx, and SO2). OH exposure is decreased by added external OH reactivity. OFR185 is especially sensitive to this effect at low UV intensity due to low primary OH production. OFR254 can be more resilient against OH suppression at high injected O3 (e.g., 70 ppm), as a larger primary OH source from O3, as well as enhanced recycling of HO2 to OH, make external perturbations to the radical chemistry less significant. However if the external OH reactivity in OFR254 is much larger than OH reactivity from injected O3, OH suppression can reach 2 orders of magnitude. For a typical input of 7 ppm O3 (OHRO3 = 10 s−1), 10-fold OH suppression is observed at OHRext ~ 100 s−1, which is similar or lower than used in many laboratory studies. The range of modeled OH suppression for literature experiments is consistent with the measured values except for those with isoprene. The finding on OH suppression may have important implications for the interpretation of past laboratory studies, as applying OHexp measurements acquired under different conditions could lead to over a 1-order-of-magnitude error in the estimated OHexp. The uncertainties of key model outputs due to uncertainty in all rate constants and absorption cross

  2. Prediction of Lumen Output and Chromaticity Shift in LEDs Using Kalman Filter and Extended Kalman Filter Based Models

    SciTech Connect (OSTI)

    Lall, Pradeep; Wei, Junchao; Davis, J Lynn

    2014-06-24

    Abstract— Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have

  3. Financing Guidance for LED Street Lighting Programs

    Broader source: Energy.gov [DOE]

    Financing an LED street lighting replacement program can present a hurdle for many system owners, even if the planned transition offers very favorable economics. Replacing the existing system requires a significant budget, particularly as the scope of the program increases. Cities such as Los Angeles and Seattle have invested many millions of dollars into their (very successful) LED street lighting replacement programs.

  4. Solving the 'Green Gap' in LED Technology

    Broader source: Energy.gov [DOE]

    One long-standing high-priority research area for DOE is to increase the efficiency of deep green LEDs. Although most products today use phosphor conversion (PC) to produce white light from a blue LED, having a good green source could lead to color-mixed white sources that would avoid the losses associated with the PC approach.

  5. High Performance Green LEDs by Homoepitaxial

    SciTech Connect (OSTI)

    Wetzel, Christian; Schubert, E Fred

    2009-11-22

    This work's objective was the development of processes to double or triple the light output power from green and deep green (525 - 555 nm) AlGaInN light emitting diode (LED) dies within 3 years in reference to the Lumileds Luxeon II. The project paid particular effort to all aspects of the internal generation efficiency of light. LEDs in this spectral region show the highest potential for significant performance boosts and enable the realization of phosphor-free white LEDs comprised by red-green-blue LED modules. Such modules will perform at and outperform the efficacy target projections for white-light LED systems in the Department of Energy's accelerated roadmap of the SSL initiative.

  6. Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership

    SciTech Connect (OSTI)

    Tracy, Jennifer; Jacobson, Arne; Mills, Evan

    2010-02-16

    Flashlight usage is widespread across much of sub-Saharan Africa.1 In Kenya in particular, over half of all households report owning a flashlight (Kamfor, 2002). Aside from household use, flashlights are also widely used to perform income-earning jobs in Kenya. Lumina Research Note No.4, the first report in this series documenting flashlight use in Kenya, highlights flashlight use patterns of night watchmen and bicycle taxi drivers. Both of these are occupations that rely on the use of flashlights on a nightly basis (Tracy et al., 2009). Also highlighted by Research Note No.4, flashlight users in Kenya have reported being highly dissatisfied with the quality of the low-cost LED flashlights that are available, and they identify several reoccurring problems they have faced as flashlight end-users (Tracy et al., 2009). The fact that there exists a substantial dependency upon flashlights in Kenya and that users are disgruntled with the available products suggests reasons for concern about flashlight quality. This concern is present despite two recent technological transitions in the flashlight market. First, LED technology has quickly emerged as the dominant source of portable lighting in Kenya, outpacing incandescent flashlights (Johnstone et al., 2009). LED technology has the potential to provide efficiency and performance benefits relative to incandescent bulbs, and low-cost LEDs have achieved price levels that make them cost competitive with conventional lighting sources for a number of applications (Mills, 2005). Second, rechargeable sealed-lead acid (SLA) batteries are also becoming more prevalent alternatives to disposable dry cell batteries. Flashlights using rechargeable SLA batteries tend to have a lower total cost of ownership over a two-year period than a flashlight using dry cell batteries (Radecsky, 2009); however, as this current report highlights, this may vary depending on the intensity of use patterns. To avoid a potential market spoiling effect for

  7. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  8. Comparison of MELCOR and SCDAP/RELAP5 results for a low-pressure, short-term station blackout at Browns Ferry

    SciTech Connect (OSTI)

    Carbajo, J.J. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    This study compares results obtained with two U.S. Nuclear Regulatory Commission (NRC)-sponsored codes, MELCOR version 1.8.3 (1.8PQ) and SCDAP/RELAP5 Mod3.1 release C, for the same transient - a low-pressure, short-term station blackout accident at the Browns Ferry nuclear plant. This work is part of MELCOR assessment activities to compare core damage progression calculations of MELCOR against SCDAP/RELAP5 since the two codes model core damage progression very differently.

  9. LED Roadway Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadway Lighting LED Roadway Lighting PDF icon I-35 Bridge Report, Phase II PDF icon I-35 Bridge Report, Phase II Brief PDF icon I-35 Bridge Report, Phase I More Documents & ...

  10. LEDs Ready for Takeoff at Louisiana Airport

    Broader source: Energy.gov [DOE]

    About 250 lights along the busy taxiway at Hammond Northshore Regional Airport are being replaced with light-emitting diodes (LEDs) with funds from an Energy Efficiency and Conservation Block Grant (EECBG) from the U.S. Department of Energy.

  11. SunLed Technologies | Open Energy Information

    Open Energy Info (EERE)

    Product: Hyderabad-based end-to-end energy efficient lighting solution provider and ESCO focused on LEDs and solar power. Coordinates: 17.6726, 77.5971 Show Map Loading...

  12. Text-Alternative Version LED Lighting Forecast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  13. LED Outdoor Area Lighting Fact Sheet

    SciTech Connect (OSTI)

    2008-06-01

    This fact sheet reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas.

  14. LED Holiday Lights: Festive, Safe, and Efficient!

    Broader source: Energy.gov [DOE]

    Ed. Note cross posted from the Energy Savers Blog. LED light strings may cost a little more up front, but they'll save money in the long run and probably last longer too.

  15. DOE Hosts LED Industry Standards Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy hosted an LED Industry Standards Workshop on March 1, 2006 in Washington, D.C. The Workshop provided a forum to encourage greater cooperation and coordination among...

  16. LEDS Toolkit and Framework | Open Energy Information

    Open Energy Info (EERE)

    User Interface: Website, Desktop Application Website: en.openei.orgappsLEDS Cost: Free UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list...

  17. Text-Alternative Version: Evaluating LED Street Lighting Solutions...

    Energy Savers [EERE]

    Evaluating LED Street Lighting Solutions Text-Alternative Version: Evaluating LED Street Lighting Solutions Below is the text-alternative version of the Evaluating LED Street ...

  18. Report 23: Photometric Testing of White Tunable LED Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report 23: Photometric Testing of White Tunable LED Luminaires Report 23: Photometric Testing of White Tunable LED Luminaires PDF icon caliper23white-tunable-led-luminaires.pdf ...

  19. SPECIFYING LED COLOR-TUNABLE PRODUCTS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPECIFYING LED COLOR-TUNABLE PRODUCTS SPECIFYING LED COLOR-TUNABLE PRODUCTS Specifying LED color-tunable luminaires is dependent on being able to make accurate comparisons between ...

  20. UNDERSTANDING LED COLOR-TUNABLE PRODUCTS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UNDERSTANDING LED COLOR-TUNABLE PRODUCTS UNDERSTANDING LED COLOR-TUNABLE PRODUCTS LED luminaires with the ability to deliver varying light color have been on the architectural ...

  1. LED Product Development and Manufacturing R&D Roundtable Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Product Development and Manufacturing R&D Roundtable Summary LED Product Development and Manufacturing R&D Roundtable Summary PDF icon LED Product Dev and Mfg Roundtable ...

  2. Report 23: Photometric Testing of White Tunable LED Luminaires...

    Energy Savers [EERE]

    3: Photometric Testing of White Tunable LED Luminaires Report 23: Photometric Testing of White Tunable LED Luminaires PDF icon caliper23white-tunable-led-luminaires.pdf More ...

  3. Testimonials - Partnerships in LED Lighting - Philips Lumileds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting, LLC | Department of Energy LED Lighting - Philips Lumileds Lighting, LLC Testimonials - Partnerships in LED Lighting - Philips Lumileds Lighting, LLC Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Sunil Thomas, General Manager of San Jose Manufacturing Site, Philips Lumileds Lighting, LLC" and footage of a man sitting in a showcase

  4. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    SciTech Connect (OSTI)

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  5. Getting Ready for LEDs: LED Lighting Video Series Explains the Basics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Getting Ready for LEDs: LED Lighting Video Series Explains the Basics Getting Ready for LEDs: LED Lighting Video Series Explains the Basics November 26, 2012 - 3:09pm Addthis Part 1 of the ElectricTV.net video series. Part 2 of the ElectricTV.net video series. Roland Risser Roland Risser Deputy Assistant Secretary for Renewable Power (Acting) How can I participate? Learn more about the advantages and accessiblity of LED lighting from this series of videos. If you haven't

  6. LEDS GP Success Story: Fostering Coordinated LEDS Support in Kenya (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    The LEDS Global Partnership (LEDS GP) strives to advance climate-resilient, low-emission development through catalyzing collaboration, information exchange, and action on the ground. The Government of Kenya is a key LEDS GP member and offers an inspiring example of how LEDS GP is having an impact globally. The 2012 LEDS Collaboration in Action workshop in London provided an interactive space for members to share experiences on cross-ministerial LEDS leadership and to learn about concrete development impacts of LEDS around the world. Inspired by these stories, the Kenya's Ministry of State for Planning, National Development and Vision 2030 (MPND) began to collaborate closely with the Ministry of Environment and Mineral Resources to create strong links between climate change action and development in the country, culminating in the integration of Kenya's National Climate Change Action Plan and the country's Medium Term Development Plan.

  7. It's 2015: Should All Your Sockets be Filled with LEDs?

    Energy Savers [EERE]

    - mid-power LEDs on PCb used in 2x4 troffers 4 LED Modules and Light Engines GE Infusion Philips Fortimo Osram PrevaLED 5 LEDs: A New Light Source for Everything * Outdoor...

  8. Memorandum of Decision: Withdrawal of LED Lighting Waiver | Department...

    Office of Environmental Management (EM)

    LED Lighting Waiver Memorandum of Decision: Withdrawal of LED Lighting Waiver novemberdecisionwithdraw More Documents & Publications Nationwide Nonavailability Waiver: November...

  9. Pittsburgh LED Street Lighting Research Project Performance Criteria

    Broader source: Energy.gov [DOE]

    A Pittsburgh LED Street Lighting Research Project document on Technical and Aesthetic Performance for Business District LED Lighting.

  10. LED Color-Tunable Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Technology Application R&D » CALiPER Testing » Application Reports » LED Color-Tunable Products LED Color-Tunable Products UNDERSTANDING, LED Color-Tunable Products SPECIFYING, LED Color-Tunable Products CONTROLLING, LED Color-Tunable Products TESTING, LED Color-Tunable Products Color-tunable LED luminaires are a nascent and growing product category. Beyond the inherent energy efficiency of LEDs, these luminaires offer other potential benefits including