Powered by Deep Web Technologies
Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Inbicon Biomass Refinery Cellulosic Ethanol Technology Platforms  

U.S. Energy Information Administration (EIA)

for biogas production Inbicon Biomass Refinery Energy integrated solutions Wheat Straw 50 t/h (at 86 % dm) C5 molasses Power The Lignin and biogas are used in power

2

Inbicon | Open Energy Information  

Open Energy Info (EERE)

Inbicon Inbicon Jump to: navigation, search Logo: Inbicon Name Inbicon Address Kraftværksvej 53 7000 Fredericia Denmark Place Denmark Website http://www.inbicon.com/pages/i Coordinates 55.515985°, 9.623265° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.515985,"lon":9.623265,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Slide 1  

Gasoline and Diesel Fuel Update (EIA)

Inbicon Biomass Refinery Inbicon Biomass Refinery Cellulosic Ethanol Technology Platforms Growth and Sustainability through Biomass Refining, CHP Technology Review - July 2012 Inbicon Biomass Refinery(tm) Building a path to The New Ethanol (tm) $100MM+ investment in technology and a demonstration refinery * Ongoing optimization, reduction in capital and operating costs = reduced risk * Quality assurance for commercial development world-wide * Proven integration with Coal Power Generation 100 tons/day production facility in Kalundborg, Denmark 2 Cellulosic Ethanol available for Danish drivers, now Inbicon Biomass Refinery Meeting Outline DONG Energy - Inbicon Profile Feedstock Supply Technology and Scale Up Sugar Platform Engineering and Project Execution Project Development Pathway DONG Energy - Inbicon

4

Opportunities for Biorenewables in Petroleum Refineries  

SciTech Connect

A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2007-02-01T23:59:59.000Z

5

Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, Annual Refinery Report, is the primary source of data in the Refinery ...

6

Retrofitting analysis of integrated bio-refineries  

E-Print Network (OSTI)

A bio-refinery is a processing facility that produces liquid transportation fuels and/or value-added chemicals and other products. Because of the dwindling resources and escalating prices of fossil fuels, there are emerging situations in which the economic performance of fossil-based facilities can be enhanced by retrofitting and incorporation of bio-mass feedstocks. These systems can be regarded as bio-refineries or integrated fossilbio- refineries. This work presents a retrofitting analysis to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost-effective strategies for enhancing production and for incorporating biomass into the process. Energy and mass integration approaches were used to induce synergism and to reduce cost by exchanging heat, material utilities, and by sharing equipment. Cost-benefit analysis was used to guide the decision-making process and to compare various production routes. Ethanol production from two routes was used as a case study to illustrate the applicability of the proposed approach and the results were bio-refinery has become more attractive then fossil-refinery.

Cormier, Benjamin R.

2005-12-01T23:59:59.000Z

7

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

8

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

9

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

10

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

11

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

12

Table 9. Refinery Receipts of Crude Oil by Method of ...  

U.S. Energy Information Administration (EIA)

Refinery Receipts of Crude Oil by Method of ... "Annual Refinery Report." 49 Energy Information Administration, Refinery Capacity 2011. Title: Refinery ...

13

Oklahoma, Kansas, Missouri Refinery District API Gravity ...  

U.S. Energy Information Administration (EIA)

Oklahoma, Kansas, Missouri Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

14

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

15

Status of Texas refineries, 1982  

Science Conference Proceedings (OSTI)

This report is a survey of current operations of the Texas refineries during the 1979-82 market slump using publicly available data from the US Department of Energy and the Texas Railroad Commission. The report looks at the small inland refineries, the large inland refineries, the small coastal refineries, the large coastal refineries in Texas, and the Louisiana coastal refineries. The report suggests that about 200 mb/d of inland capacity and 1.3 million b/d of coastal capacity has been permanently idled.

Langston, V.C.

1983-03-01T23:59:59.000Z

16

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

17

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

18

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

19

Optimization of refinery hydrogen network  

Science Conference Proceedings (OSTI)

Tighter environmental regulations and more heavy-end upgrading in the petroleum industry lead to increased demand for hydrogen in oil refineries. In this paper, the method proposed to optimize the refinery hydrogen network is based upon mathematical ... Keywords: hydrogen management, optimization, refinery, superstructure

Yunqiang Jiao; Hongye Su

2010-09-01T23:59:59.000Z

20

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

22

Texas Gulf Coast Refinery District API Gravity (Weighted ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

23

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

24

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

25

EIA-820 ANNUAL REFINERY REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-820, Annual Refinery Report Page 1 U.S. DEPARTMENT OF ENERGY ... production outside the refinery gate. Note: capacity should include base stocks and process oils

26

Indiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

27

Number of Idle Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

28

California Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

29

Refinery, petrochemical plant injuries decline  

Science Conference Proceedings (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

30

Puerto Rico Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

31

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

32

Mississippi Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

33

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

34

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

35

Mississippi Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

36

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

37

Minnesota Refinery Marketable Petroleum Coke Production ...  

U.S. Energy Information Administration (EIA)

Minnesota Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

38

Biological treatment of refinery wastes  

SciTech Connect

A detailed study of the treatment situation at a Thai refinery that used an API separator with no equalization tank, followed by an activated-sludge system, showed that only 42% of the total COD and 57% of the soluble COD was degradable. In a study of the possibility of additional treatments, an aerated lagoon showed promising results. The wastewater composition of the three main Thai refineries was surveyed.

Mahmud, Z.; Thanh, N.C.

1978-01-01T23:59:59.000Z

39

New Jersey Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

40

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Respondents are operators of all operating and idle petroleum refineries ... Sources & Uses Petroleum Coal Natural Gas Renewable Nuclear Electricity Consumption

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Louisiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

42

Michigan Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

43

Delaware Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

44

Washington Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

45

Ohio Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

46

Mississippi Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

47

Utah Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

48

Number of Operating Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

49

Montana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

50

Alaska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

51

Oklahoma Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Oklahoma Downstream Charge Capacity of Operable Petroleum Refineries ...

52

Florida Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

53

Mississippi Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Mississippi Downstream Charge Capacity of Operable Petroleum Refineries ...

54

Nebraska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

55

North Carolina Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

North Carolina Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

56

Refinery suppliers face tough times  

SciTech Connect

Despite a handful of bright spots in hydroprocessing and petrochemical sectors, economic woes plague much of the refinery and petrochemical catalysts business, as suppliers are feeling the impact of mature markets and refiners` ongoing cost cutting. Industry experts say the doldrums could spur further restructuring in the catalyst business, with suppliers scrambling for market share and jockeying for position in growing sectors. Expect further consolidation over the next several years, says Pierre Bonnifay, president of IFP Enterprises (New York). {open_quotes}There are still too many players for the mature [refinery catalyst] markets.{close_quotes} Others agree. {open_quotes}Only about seven [or] eight major suppliers will survive,{close_quotes} says Robert Allsmiller, v.p./refinery and petrochemical catalysts at United Catalysts Inc. (UCI; Louisville, KY). {open_quotes}Who they [will be] is still up in the air.{close_quotes}

Rotman, D.; Walsh, K.

1997-03-12T23:59:59.000Z

57

Motiva Refinery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refinery Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some oil-producing regions has tightened supply. The transition from winter gasoline to summer blends, and the phase out of the additive MTBE in favor of ethanol, have increased the pressure on the market. Most significantly, we have very little spare refining capacity in this

58

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

59

Sustainable Biomass Supply Systems  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

60

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Refinery and Blender Net Inputs  

Annual Energy Outlook 2012 (EIA)

Refinery and Blender Net Inputs Crude OIl ... 14.54 15.14 15.26 15.08 14.51 15.30 15.70 14.93 14.47 15.30 15.54 14.97 15.01...

62

Encon Motivation in European Refineries  

E-Print Network (OSTI)

One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization of various techniques and approaches, dependent on the local environment and effectiveness of the Encon program. In this paper, we begin with the importance for stimulating personnel, note the essential ingredients required to motivate our people, and briefly review several techniques used for Encon motivation. Two examples of Encon motivation programs are presented before introducing the characteristics of a successful Encon motivation program. The paper concludes with a review of the needs and suggestions for maintaining a continuing program. Energy utilization efficiency in Esso Europe's refineries improved about 16% in the mid 70's, due primarily to Encon motivation. Experience has since demonstrated that additional improvements can be achieved through operational and maintenance practices.

Gambera, S.; Lockett, W., Jr.

1982-01-01T23:59:59.000Z

63

Table 12. Refinery Sales During 2010  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2010

64

Areas of Corrosion in the Refinery  

Science Conference Proceedings (OSTI)

...J.D. Poindexter, Corrosion Inhibitors for Crude Oil Refineries, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 887??890...

65

Opportunities for Biorenewables in Petroleum Refineries  

Science Conference Proceedings (OSTI)

a summary of our collaborative 2005 project Opportunities for Biorenewables in Petroleum Refineries at the Rio Oil and Gas Conference this September.

Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2006-10-11T23:59:59.000Z

66

Refinery Investments and Future Market Incentives  

U.S. Energy Information Administration (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming golden age investment ...

67

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

68

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

MTC. Marano, J.J. , 2003. Refinery Technology Profiles:Deep Desulfurization of Oil Refinery Streams: A Review. FuelSavings for Flying J Refinery. Oil & Gas Journal, December 2

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

69

A Louisiana Refinery Success Story  

E-Print Network (OSTI)

"Refining 155,000 barrels of crude oil daily, a Louisiana plant markets oil products to gas stations in at least 26 states, including Washington, D.C. The plant uses 8,538 steam traps with 1,200-, 600-, 250-, 75-, 40- and 15-psi nominal pressures. Standardized with inverted bucket steam traps, the Louisiana refinerys maintenance and energy coordinator was content with the results. The Spirax Sarco Inc (SSI) team demonstrated SSIs Energy Service Group (ESG) capabilities and successes to the refinery manager, operations manager and production manager. From 2004 through 2006, the team presented a series of ESG seminars at the refinery site. The numerous models demonstrated quantitative savings with 3- to 12-mo paybacks. For a complete SSI turnkey program, for example, the SSI team presented an ROI with less than six months payback. The ESG survey found that only 3,952 (46.3%) of the steam traps were operating correctly. The remaining steam traps experienced a variety of failures, including: 613 (7.2%) that failed open; 2,763 (32.4%) were cold; 1,012 (11.9%) that failed closed; 6 (0.0%) exhibited rapid cycling; and 192 (2.2%) were disconnected. The team also found performance and temperature issues with the HP sulfur reactors in the SRU units, largely due to the application of inverted bucket steam traps. Plus, as a result of excessive steam leaks, the sulfur reactors were creating a safety hazard. When these results were presented, management agreed that the sulfur reactors needed process improvement. The SSI team recommended replacing the inverted bucket steam traps with 1-1/2-in. strainers and 1-1/2-in. flanged float & thermostatic steam traps. They also suggested that the existing trap discharge piping should be removed and re-piped with globe-style bypass valves and gate-style isolation valves to reduce flow velocity. Once the SSI team began negotiations, it only took one survey for the Louisiana refinery to realize all the energy savings opportunities. In fact, the ESG survey uncovered more than $1.3 million in steam losses through failed steam traps and another $1 million in steam leak opportunities and production, process, safety and environmental improvements. Impressed with the survey results, the refinery approved the estimated $110,000 turnkey project, which offered a 5.3-month payback. Further negotiations netted the team annual steam trap surveys for the next three years, as well as an approved 2008 energy budget of $600,000. Additionally, the Louisiana refinery has indicated that upon successful completion of the ESG program, SSIs annual energy budget will increase to $1,000,000."

Kacsur, D.

2009-05-01T23:59:59.000Z

70

Table 2. Production Capacity of Operable Petroleum Refineries by ...  

U.S. Energy Information Administration (EIA)

Includes hydrogen production capacity of hydrogen plants on refinery grounds. MMcfd = Million cubic feet per day. a ... (EIA), Form EIA-820, "Annual Refinery Report."

71

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

fuels in the graph. Source: Petroleum Supply Annual, Energypetroleum products, refineries are still a substantial sourceadded produced by petroleum refineries. Source: U.S. Census,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

72

Petroleum refineries vary by level of complexity - Today in Energy ...  

U.S. Energy Information Administration (EIA)

A refinery is an industrial complex that manufactures petroleum products, such as gasoline, from crude oil and other feedstocks. Many different types of refineries ...

73

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

74

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Aspropyrgos Refinery Combined Cycle Cogeneration System.refineries operate combined cycles with higher efficiencies.in an Integrated Gasifier Combined Cycle (IGCC). In this

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

75

EIA-800 WEEKLY REFINERY AND FRACTIONATOR REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-800, Weekly Refinery and Fractionator Report Page 3 Crude Oil (Code 050) Report all refinery input of domestic and foreign crude oil (including ...

76

PAD District 4 Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

77

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

78

Regional Refinery Utilization Shows Gulf Coast Pressure  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: But there is some room for hope. Refineries generally begin maintenance in February or March, and finish in April. The East Coast was experiencing some lengthy refinery maintenance outages, as shown by the drop in utilization that remained low in most of March and April. In the meantime, the East Coast was drawing on extra supplies from the Gulf Coast and imports. The Midwest refineries seem to have been ramping up in April as they finished what maintenance was needed. But the Midwest no longer has the Blue Island refinery, so it also is pulling more product from the Gulf Coast. The high Gulf Coast prices this spring reflect extra "pull" on product from both the Midwest and the East Coast, and probably from California as well. Inputs into Gulf Coast refineries over the last 4 weeks

79

Take an integrated approach to refinery automation  

Science Conference Proceedings (OSTI)

An integrated approach to designing refinery automation systems is essential to guaranteeing systems compatibility and maximizing benefits. Several aspects of implementing integrated refinery automation should be considered early in the project. Many refineries have major parts of their business automated, starting from corporate planning at the higher level, down to DCS and field instrumentation. A typical refinery automation system architecture of the mid-eighties is shown. Automation systems help refineries improve their business through: Rationalization of man power; Increased throughputs; Reduced give-away; Reduced energy consumption; Better response to market demands and changes; Effective use of offsite areas through scheduling and automatic line-up systems; Reduced losses; and Decision support systems.

Wadi, I. (Abu Dhabi National Oil Co. (United Arab Emirates))

1993-09-01T23:59:59.000Z

80

Refinery burner simulation design architecture summary.  

SciTech Connect

This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Documentation: The automated ORAD (Oil Refinery and Distribution Model) to RYMs (Refinery Yield Model) linked system  

SciTech Connect

The Refinery Evaluation Modeling System (REMS) is an analytic tool used by the Energy Information Administration (EIA) to provide insight into the domestic operations of United States refineries. REMS can be used to determine the potential impacts of changes in demands for petroleum products, crude and feedstock qualities, refinery processing capacities, foreign and domestic crude availabilities, transportation modes and costs, and government regulations. REMS is a set of linear programming models that solve for a partial equilibrium in the US refinery market by equating supply and demand while maximizing profits for US refiners. REMS consists of two models: the Refinery Yield Model (RYM), and the Oil Refinery and Distribution Model (ORAD). RYMs consists of nine separate regional models that represent the contiguous US refinery system. These nine regions are aggregates of the 13 Bureau of Mines (BOM) refinery districts. ORAD integrates the results from the individual RYMs into a transportation network which represents the US refinery market. ORAD uses the extreme point refinery representation from RYMs to solve for the optimal product prices in ORAD.

Sanders, R.P.; Kydes, A.S.

1987-01-01T23:59:59.000Z

82

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and ...  

U.S. Energy Information Administration (EIA)

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

83

Wisconsin Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Wisconsin Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

84

Midwest (PADD 2) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Refinery and Blender Net Production of Finished Motor Gasoline (Thousand Barrels per Day)

85

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

86

Colorado Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

87

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

88

Colorado Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

89

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

90

Rocky Mountains (PADD 4) Gross Inputs to Refineries (Thousand ...  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units ; PAD District 4 Refinery Utilization and Capacity ...

91

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

92

South Dakota Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

93

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

94

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

95

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

96

Former Soviet refineries face modernization, restructuring  

Science Conference Proceedings (OSTI)

A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

Not Available

1993-11-29T23:59:59.000Z

97

A Texas Refinery Success Story  

E-Print Network (OSTI)

"Common knowledge rules that maintenance is the key to long-lasting machinery performance. Yet steam traps are often left to their own devices, to fail or succeed alone. And without steam trap programs, plants are certain to experience a high failure rate. An oil refinery in Texas was continuously experiencing a high failure rate on its 4,790-steam trap system. Finally, the steam losses were judged to be too high, and plant management called on Spirax Sarco Inc. (SSI) to reduce costs. The SSI team noticed symptoms of subpar efficiency within the steam system. Steam traps were improperly installed, water hammer problems were evident and the condensate recovery system was damaged."

Kacsur, D.

2009-05-01T23:59:59.000Z

98

Motiva Enterprises Refinery Expansion Groundbreaking | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it. When this expansion is complete this facility which is now one of the preeminent refineries on the Gulf Coast will become the largest in the United States and one of the...

99

Refinery siting workbook: appendices A and B  

Science Conference Proceedings (OSTI)

The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

Not Available

1980-07-01T23:59:59.000Z

100

Refinery analytical techniques optimize unit performance  

Science Conference Proceedings (OSTI)

Refinery process engineers need to consider benefits of laboratory analytical techniques when evaluating unit performance. Refinery heavy-oil laboratory analytical techniques use both old and new technologies. Knowing how to use available laboratory analytical techniques within their limitations are critical to obtain correct refinery optimization decisions. Better refinery stream distillation and contaminant data ultimately improves the accuracy of various refinery decision-making tools. These laboratory analytical techniques are covered: high-temperature simulated distillation (HTSD); true boiling point (TBP) distillation--ASTM D2892; vacuum distillation--ASTM D5236; continuous-flash vaporizers; wiped-film evaporators; inductively coupled plasma atomic-emission spectroscopy (ICP-AES); Conradson--ASTM D189/Microcarbon residue--ASTM D4530; and asphaltene IP-143, ASTM D3279, ASTM D4124. Analysis of atmospheric crude, vacuum crude and delayed coker units highlight these laboratory techniques to identify potential yield and product quality benefits. Physical distillation or wiped-film evaporation in conjunction with HTSD, ICP-AES, microcarbon residue and asphaltened data will better characterize a feedstock as well as determine the source of contaminants. Economics are refinery specific, therefore, these examples focus on applying laboratory techniques as opposed to discussing specifics of unit improvement. These are discussed qualitatively.

Golden, S.W. [Process Consulting Services Inc., Grapevine, TX (United States); Craft, S. [Chempro, Inc., LaPorte, TX (United States); Villalanti, D.C. [Triton Analytics Corp., Houston, TX (United States)

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Complexity index indicates refinery capability, value  

Science Conference Proceedings (OSTI)

Refinery size usually is measured in terms of distillation capacity. Relative size, however, can be measured using refinery complexity--a concept developed by W.L. Nelson in the 1960s. Nelson developed the complexity index to quantify the relative cost of components that make up a refinery. It is a pure cost index that provides a relative measure of the construction costs of a particular refinery based on its crude and upgrading capacity. The Nelson index compares the costs of various upgrading units--such as a fluid catalytic cracking (FCC) unit or a catalytic reformer--to the cost of a crude distillation unit. Computation of the index is an attempt to quantify the relative cost of a refinery based on the added cost of various upgrading units and the relative upgrading capacity. A review of complexity calculations, and an explanation of how indices have changed, provide a simple means of determining the complexity of single refineries or refining regions. The impact of complexity on product slate is also examined in this paper.

Johnston, D. [Daniel Johnston and Co. Inc., Dallas, TX (United States)

1996-03-18T23:59:59.000Z

102

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-820 ANNUAL REFINERY ...  

U.S. Energy Information Administration (EIA)

the comparable capacity numbers reported on the Form EIA-810, "Monthly Refinery Report," filed for January 2014. ... ANNUAL REFINERY REPORT.

103

U.S. Exports of Natural Gas Liquids and Liquid Refinery Gases ...  

U.S. Energy Information Administration (EIA)

Natural Gas Plant Liquids and Liquefied Refinery Gases Exports; Natural Gas Plant Liquids and Liquefied Refinery Gases Supply and Disposition;

104

Kyrgyzstan starts up its first refinery  

Science Conference Proceedings (OSTI)

The Central Asian republic of Kyrgyzstan started up its first oil refinery in October 1996. The 10,000 b/d plant is designed to produce gasoline, diesel, and mazut (heavy fuel oil) from local Kyrgyz crude. Before construction of the Jalalabad refinery, all finished petroleum products were imported from neighboring countries. Kyrgyzstan`s demand for finished products is about 40,000 b/d. The new refinery was designed and constructed by Petrofac of Tyler, Texas, on behalf of Kyrgoil Corp., Calgary. Kyrgoil is a partner with the Kyrgyz state oil company, Kyrgyzsneft, in a venture called Kyrzgyz Petroleum Co. (KPC). KPC has undertaken restoration and continued development of the oil fields in Kyrgyzstan`s Fergana basin, in addition to the refinery project. The company also has marketing rights for finished products within Kyrgyzstan. The refinery comprises: a hydroskimming (atmospheric distillation) section, diesel steam stripping, gasoline blending, and utilities and off-sites, including steam generation, power generation, tank farm, truck and rail tank-car loading and unloading facilities, crude inlet pipeline, high-voltage power line, substation, air compression, laboratory, and maintenance facilities.

McLeod, G. [Petrofac LLC, Tyler, TX (United States)

1997-05-05T23:59:59.000Z

105

Refinery IGCC plants are exceeding 90% capacity factor after 3 years  

SciTech Connect

Steep learning curves for commercial IGCC plants in Italy show annual capacity factors of 55-60% in the first year of service and improvement to over 90% after the third year. The article reviews the success of three IGCC projects in Italy - those of ISAB Energy, Sarlux Saras and Api Energy. EniPower is commissioning a 250 MW IGCC plant that will burn syngas produced by gasification of residues at an adjacent Eni Sannazzaro refinery in north central Italy. The article lists 14 commercially operating IGCC plants worldwide that together provide close to 3900 MW of generating capacity. These use a variety of feedstock-coals, petroleum coke and refinery residues and biomass. Experience with commercial scale plants in Europe demonstrates that IGCC plants can operate at capacity factors comparable to if not better than conventional coal plants. 2 figs., 1 photo.

Jaeger, H.

2006-01-15T23:59:59.000Z

106

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Liquefied Refinery Gases 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 Finished Motor Gasoline 44.4 44.1 44.4 43.9 43.9 44.9 1993-2013 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2013 Kerosene-Type Jet Fuel 10.0 9.1 9.3 9.4 9.8 9.6 1993-2013 Kerosene 0.0 0.1 0.1 0.1 0.0 0.0 1993-2013 Distillate Fuel Oil 28.4 29.4 28.7 29.2 29.3 29.7 1993-2013 Residual Fuel Oil 3.3 2.9 2.8 2.8 2.5 2.6 1993-2013 Naphtha for Petrochemical Feedstock Use 1.4 1.5 1.5 1.6 1.5 1.5 1993-2013 Other Oils for Petrochemical Feedstock Use 0.6 0.6 0.7 0.7 0.6 0.7 1993-2013 Special Naphthas 0.3 0.3 0.3 0.2 0.3 0.2 1993-2013 Lubricants 0.9 1.1 1.1 1.1 1.1 1.1 1993-2013 Waxes

107

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Liquefied Refinery Gases 4.1 4.1 4.1 4.3 4.0 4.1 1993-2012 Finished Motor Gasoline 45.5 44.2 46.1 45.7 44.9 45.0 1993-2012 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012 Kerosene-Type Jet Fuel 9.1 9.7 9.3 9.3 9.4 9.5 1993-2012 Kerosene 0.2 0.1 0.1 0.1 0.1 0.1 1993-2012 Distillate Fuel Oil 26.1 27.8 26.9 27.5 28.9 29.1 1993-2012 Residual Fuel Oil 4.2 4.0 4.0 3.8 3.4 3.2 1993-2012 Naphtha for Petrochemical Feedstock Use 1.3 1.0 1.3 1.4 1.3 1.3 1993-2012 Other Oils for Petrochemical Feedstock Use 1.3 1.2 0.8 0.8 0.7 0.6 1993-2012 Special Naphthas 0.3 0.3 0.2 0.2 0.2 0.3 1993-2012 Lubricants 1.1 1.1 1.0 1.1 1.1 1.0 1993-2012 Waxes 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012

108

Improved oil refinery operations and cheaper crude oil to help...  

Annual Energy Outlook 2012 (EIA)

Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude...

109

Texas City Refinery Update: The Price of Safety Complacency  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas City Refinery Update: The Price of Safety Complacency DOEEH-0699 2006-01 January 2006 ES&H Safety Bulletin 2005-09 (July 2005) discussed the Texas City Refinery accident in...

110

Indiana, Illinois, Kentucky Refinery District Gross Inputs to ...  

U.S. Energy Information Administration (EIA)

Indiana, Illinois, Kentucky Refinery District Gross Inputs to Refineries (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 1,739 ...

111

NREL: Biomass Research - What Is a Biorefinery?  

NLE Websites -- All DOE Office Websites (Extended Search)

What Is a Biorefinery? What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery concept is analogous to today's petroleum refineries, which produce multiple fuels and products from petroleum. Industrial biorefineries have been identified as the most promising route to the creation of a new domestic biobased industry. By producing multiple products, a biorefinery can take advantage of the differences in biomass components and intermediates and maximize the value derived from the biomass feedstock. A biorefinery might, for example, produce one or several low-volume, but high-value, chemical products and a low-value, but high-volume liquid transportation fuel, while generating

112

Refineries are also indirectly exposed to forced processing rate ...  

U.S. Energy Information Administration (EIA)

Refineries receive crude oil from two sources: waterborne deliveries by ship and domestic production from California crude oil producing fields.

113

Potential Impacts of Reductions in Refinery Activity on Northeast ...  

U.S. Energy Information Administration (EIA)

receipt of crude oil at idled refineries require considerable modification before they can be used to receive products. Moreover, ...

114

Market Assessment of Refinery Outages Planned for October 2009 ...  

U.S. Energy Information Administration (EIA)

January fuel demand with availability of the refinery process units for distillate and gasoline production net of outages.

115

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

116

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

117

Guam Refinery Thermal Cracking/Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

118

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

119

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Refinery Technology Profiles: Gasification and SupportingGasification.to be carried out. 18.5 Gasification Gasification provides

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

120

Virgin Islands Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Midwest (PADD 2) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

122

Puerto Rico Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

123

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

124

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

125

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

126

Refining District Oklahoma-Kansas-Missouri Refinery and ...  

U.S. Energy Information Administration (EIA)

Refining District Oklahoma-Kansas-Missouri Refinery and Blender Net Input of Fuel Ethanol (Thousand Barrels per Day)

127

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

128

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

129

New Jersey Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

New Jersey Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

130

Arkansas Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

Arkansas Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

131

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

132

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

133

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

134

West Coast (PADD 5) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

135

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

136

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

137

Gulf Coast (PADD 3) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

138

U.S. Refinery Operating Atmospheric Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operating Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

139

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

140

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Stream Day)

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

142

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network (OSTI)

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery fuel gas system. The system consists of liquid knock-out, compression, and liquid seal facilities. Now that the debugging-stage challenges have been dealt with, Shell Canada is more than satisfied with the system performance. A well-thought-out installation can today be safe, trouble-free, and attractive from an economic and environmental viewpoint. This paper highlights general guidelines for the sizing, design and operation of a refinery flare gas recovery facility.

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

143

How refinery fuel indexes have varied  

Science Conference Proceedings (OSTI)

Refinery fuels costs have endured a steady incline since 1993, except for a period in 1993. As shown in the accompanying table, these increases in cost have occurred for residual fuel oil costs in three of the five PADD districts. The cost for natural gas for refinery usage also dropped steadily during the 3-year study. These conclusions are based on costs of an average refinery fuel consisting of 1 bbl each of PADD Districts 1--5 and an average US cost of 4.4 MMscf natural gas (a 1 bbl equivalent on a BTU content basis). Raw residual fuel oil and natural gas prices come from publications put out by the US Department of Labor.

Farrar, G.

1997-01-06T23:59:59.000Z

144

Structural, energy and environmental aspects in Iranian oil refineries  

Science Conference Proceedings (OSTI)

Petroleum refineries extract and upgrade the valuable components of crude oil to produce a variety of marketable petroleum products. However Iranian refineries are old and their efficiency and structure do not satisfy demand of the country in which their ... Keywords: Iran, demand, energy, refinery

Sourena Sattari; Akram Avami

2008-02-01T23:59:59.000Z

145

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

146

Exxon reduces production at U. S. refineries  

SciTech Connect

This paper reports that Exxon Co. U.S.A. has trimmed output of its U.S. refineries by a combined 15% because of depressed margins on products markets. The company made the announcement last week as it began increasing crude runs at its 396,000 b/cd refinery at Baytown, Tex., on the Houston Ship Channel. Exxon trimmed Baytown crude runs late last month to manage feedstock inventories after a barge was rammed and sunk in the ship channel, briefly halting traffic. Most feedstock is delivered to the Baytown plant by water.

Not Available

1993-01-11T23:59:59.000Z

147

Monitoring and Management of Refinery Energy Consumption  

E-Print Network (OSTI)

Since 1972, the U.S. refining industry has made much progress in reducing energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and manage the daily use of energy. Setting up an energy auditing system will tell management how well each unit in the refinery is being operated and can be used as a valuable tool in reducing energy costs. An example of an energy monitorirg and management system is discussed and illustrated with examples.

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

1986-06-01T23:59:59.000Z

148

Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-biomass Catalytic Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics Background The U.S. Department of Energy (DOE) supports research and development efforts targeted to improve efficiency and reduce the negative environmental effects of the use of fossil fuels. One way to achieve these goals is to combine coal with biomass to create synthesis gas (syngas) for use in turbines and refineries to produce energy, fuels,

149

Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)  

Science Conference Proceedings (OSTI)

Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

French, R. J.

2013-09-01T23:59:59.000Z

150

Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)  

DOE Green Energy (OSTI)

Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

French, R. J.

2013-09-01T23:59:59.000Z

151

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA)

Liquefied Refinery Gases: 11,903: 12,936: 13,591: 20,226: 24,599: 26,928: 2005-2013: ... Asphalt and Road Oil: 10,230: 9,328: 8,595: 9,973: 9,494: 9,914: 2005-2013 ...

152

Refinery Investments and Future Market Incentives  

Reports and Publications (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming "golden age" investment environment to a world with excess capacity, flat to declining demand, and weak margins. What is happening to refining investments in this turbulent and uncertain situation?

Information Center

2009-03-25T23:59:59.000Z

153

Refinery siting workbook: appendices C to O  

Science Conference Proceedings (OSTI)

Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

Not Available

1980-07-01T23:59:59.000Z

154

Firing Excess Refinery Butane in Peaking Gas Turbines  

E-Print Network (OSTI)

New environmentally-driven regulations for motor gasoline volatility will significantly alter refinery light ends supply/demand balancing. This, in turn, will impact refinery economics. This paper presumes that one outcome will be excess refinery normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper identifies the fundamental driving forces which are changing refinery butane economics, examines how these forces influence refinery production, and evaluates the potential for using normal butanes as peaking utility gas turbine fuel, especially on the US East Coast.

Pavone, A.; Schreiber, H.; Zwillenberg, M.

1989-09-01T23:59:59.000Z

155

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

156

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomassorganic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastesthat can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

157

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

158

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

159

Opportunities for Biorenewables in Oil Refineries  

Science Conference Proceedings (OSTI)

Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

Marker, T.L.

2005-12-19T23:59:59.000Z

160

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2012 a b REACTIVATED PAD District I 185,000 366,700 Monroe Energy LLC Trainer, PA 185,000 366,700 09/12 c SHUTDOWN PAD District I 80,000 47,000 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District III 16,800 19,500 Western Refining Southwest Inc Bloomfield, NM 16,800 19,500 12/09 11/12 PAD District VI 500,000 1,086,000 Hovensa LLC Kingshill, VI 500,000 1,086,000 02/12 02/12 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery Report." c Formerly owned by ConocoPhillips Company.

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

162

Economic impact analysis for the petroleum refineries NESHAP. Final report  

Science Conference Proceedings (OSTI)

An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

NONE

1995-08-01T23:59:59.000Z

163

Directory of Operable Petroleum Refineries on Tables 38 and 39  

U.S. Energy Information Administration (EIA)

Directory of Operable Petroleum Refineries on Tables 38 and 39 Refiner State(s)aRefiner State(s)a.....Age Refining Inc ...

164

Environmentally advanced refinery nears start-up in Germany  

SciTech Connect

Mitteldeutsche Erdoel-Raffinerie GmbH (Mider), is building a 170,000 b/d, grassroots refinery in Leuna, Germany. The refinery is scheduled to start up in third quarter of this year. At the heart of the new refinery is a new technology called progressive distillation. Other major units include: vacuum distillation, catalytic reforming, alkylation, visbreaking, fluid catalytic cracking (FCC), and hydrodesulfurization (HDS). In addition, an existing partial oxidation (POX)/methanol production unit will be integrated with the new refinery. The paper describes the plant and its major processes.

Rhodes, A.K.

1997-03-17T23:59:59.000Z

165

U.S. refineries and blenders produced record amounts of ...  

U.S. Energy Information Administration (EIA)

Because of its chemical composition, crude oil run through a refinery typically yields roughly twice as much motor gasoline as distillate fuels.

166

U.S. Refinery Thermal Cracking, Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

167

Summary of Market Assessment of Planned Refinery Outages  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Summary of Market Assessment of Planned Refinery ... As required under Section 804 of the Energy Independence and Security Act of 2007 ...

168

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

are also listed. The Energy Guide draws upon the experiencesmanagement programs. This Energy Guide describes researchpetroleum refineries. This Energy Guide introduces energy

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

169

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk ...  

U.S. Energy Information Administration (EIA)

Gulf Coast (PADD 3) Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 935: ...

170

EIA Energy Kids - Carson Refinery - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Hydrogen. Recent Statistics ... and then distributed to gas stations all over Los Angeles and Southern ... you are probably filling up with gas from the Carson refinery.

171

U.S. Refinery Operable Capacity is Updated  

U.S. Energy Information Administration (EIA)

Released: March 28, 2012 Notice: Reported refinery operable capacity data shown in the Weekly Petroleum Status Report (WPSR) for the week-ended March 23, 2012, has ...

172

U.S. Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) U.S. Downstream Charge Capacity of Operable Petroleum Refineries ...

173

Market Assessment of Refinery Outages Planned for March 2010 ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0641(2010)/1 Market Assessment of Refinery Outages Planned for March 2010 through June 2010 March 2010 Energy Information Administration

174

When was the last refinery built in the United States? - FAQ ...  

U.S. Energy Information Administration (EIA)

When was the last refinery built in the United States? There were a total of 143 operable petroleum refineries in the United States as of January 1, 2013.

175

Poland petroleum refinery sludge lagoon demonstration project  

SciTech Connect

The US Department of Energy and the Institute for Ecology of Industrial Area have been working together to develop mutually beneficial, cost-effective environmental remediation technologies such as the demonstration of bioremediation techniques for the clean up of acidic petroleum sludge impacted soils at an oil refinery in southern Poland. After an expedited site characterization, treatability study, and a risk assessment study, a remediation strategy was devised. The waste material was composed primarily of high molecular weight paraffinic and polynuclear aromatic hydrocarbons. A biopile design which employed a combination of passive and active aeration in conjunction with nutrient and surfactant application as used to increase the biodegradation of the contaminants of concern.

Altman, D.J.

2000-05-05T23:59:59.000Z

176

Upgrade Your Refinery for Energy Conservation  

E-Print Network (OSTI)

Upgrading existing refineries for efficient energy utilization imposes strict restraints upon design engineers. Present and future production requirements must be defined. Reliable operating data must be obtained from historical records and test runs to accurately define actual performance of each piece of equipment. A complete simulation model of the facility is developed and tested. Future operations are evaluated using the model to define heat and material balance requirements for all projected operations. Energy conservation projects are evaluated with the model to define energy savings over the life of each project. A discounted cash flow analysis is formulated and an optimum set of projects yielding maximum rates of return are selected for implementation.

Johnnie, D. H., Jr.; Klooster, H. J.

1983-01-01T23:59:59.000Z

177

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Russell Biomass Jump to: navigation, search Name Russell Biomass Place Massachusetts Sector Biomass Product Russell Biomass, LLC is developing a 50MW biomass to energy project at...

178

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Jump to: navigation, search Name Star Biomass Place India Sector Biomass Product Plans to set up biomass projects in Rajasthan. References Star Biomass1 LinkedIn...

179

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

180

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Summary of Market Assessment of Upcoming Planned Refinery Outages  

Gasoline and Diesel Fuel Update (EIA)

Summary of Market Assessment of Upcoming Planned Refinery Outages Summary of Market Assessment of Upcoming Planned Refinery Outages Summary of Market Assessment of Upcoming Planned Refinery Outages Market Assessment of Upcoming Planned Refinery Outages, December 2008 - March 2009 reviews planned U.S. refinery outages from December 2008 though March 2009 in order to identify any regions where outages might create enough supply pressure to impact prices significantly. As required under Section 804 of the Energy Independence and Security Act of 2007 (Pub. L. 110-140), this report reviews the supply implications of planned refinery outages for December 2008 through March 2009, which covers the winter period when demand for distillate fuels (diesel and heating oil) is high. As a result, emphasis in this report is on distillate rather than gasoline. Refinery outages are the result of planned maintenance and unplanned outages. Maintenance is usually scheduled during the times when demand is lowest - in the first quarter and again in the fall. Unplanned outages, which occur for many reasons including mechanical failures, fires, and flooding, can occur at any time.

182

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

183

Flare-gas recovery success at Canadian refineries  

SciTech Connect

It appears that some North American refining companies still cling to an old philosophy that flare gas recovery systems are unsafe, unreliable, uneconomic, or unnecessary. Shell Canada's recent experience with two modern systems has proven otherwise. Two of Shell Canada's refineries, at Sarnia, Ont., and Montreal East, Que., have now logged about 6 years' total operating experience with modern flare gas recovery units. The compression facilities in each utilize a two-stage reciprocating machine, one liquid seal drum per flare stack, and an automated load control strategy. The purpose was to recover the normal continuous flow of refinery flare gas for treatment and use in the refinery fuel gas system.

Allen, G.D.; Chan, H.H.; Wey, R.E.

1983-06-01T23:59:59.000Z

184

Master development plan for the Cartagena Refinery. Export trade information  

Science Conference Proceedings (OSTI)

This study, conducted by the M.W. Kellogg Company, was funded by the U.S. Trade and Development Agency on behalf of ECOPETROL, Colombia`s national oil company. The objective of the study was to investigate technical, economic, and environmental issues that challenge the Cartagena Refinery. The study also recommends the most attractive options for the refinery to improve profitability. The document is divided into the following sections: (1) Executive Summary; (2) Market Survey; (3) Refinery Configuration; (4) Economic Evaluation; (5) Other Technical/Strategic Considerations; (6) Appendix.

NONE

1996-09-01T23:59:59.000Z

185

Application of Pinch Technology in Refinery Retrofits  

E-Print Network (OSTI)

This paper reviews the application of pinch technology in the identification of the most attractive retrofit prospects in typical refineries. In the first part of the paper, methodology is described to identify attractive inter-unit heat integration opportunities as well as attractive process-utility system integration (co-generation). An example of an atmospheric pipestill-alkylation unit integration evaluation is given using both composite stream and Grand composite stream methods. In the second part of the paper, the application of pinch technology in a typical intra-unit heat integration problem is given. It is explained how inefficiencies in an APS crude preheat train are identified, and a typical small retrofit project is described.

Thomas, W. R.; Siegell, J. H.; Sideropoulos, T.; Robertson, J. L.; Papoulias, S. A.

1987-09-01T23:59:59.000Z

186

Secretary Bodman Tours Refinery and Calls for More Domestic Refining  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tours Refinery and Calls for More Domestic Tours Refinery and Calls for More Domestic Refining Capacity Secretary Bodman Tours Refinery and Calls for More Domestic Refining Capacity May 18, 2006 - 10:43am Addthis Highlights President Bush's Four-Point Plan to Combat High Energy Prices PORT ARTHUR, TX - Secretary of Energy Samuel W. Bodman today renewed the call for expanded oil refining capacity in the United States and discussed additional steps the Department of Energy (DOE) is taking to prepare for the upcoming hurricane season. Secretary Bodman made the statements after touring the Motiva Refinery in Port Arthur, Texas. "We need a more robust energy sector; and one way to do that is to strengthen and expand our domestic oil refining capacity. We're hopeful that Motiva will continue to work to expand their capacity to 600,000

187

U.S. Percent Utilization of Refinery Operable Capacity (Percent)  

U.S. Energy Information Administration (EIA)

Annual : Download Data (XLS File) U.S. Percent Utilization of Refinery Operable Capacity (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 74.0 ...

188

Motiva Enterprises Refinery Expansion Groundbreaking | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprises Refinery Expansion Groundbreaking Enterprises Refinery Expansion Groundbreaking Motiva Enterprises Refinery Expansion Groundbreaking December 10, 2007 - 4:44pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Bill. It's good to see Congressman Poe, Rob Routs, Mr. Al-Khayyal and Mayor Prince here. Thank you all for inviting me to be part of this occasion. In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the Texas Oil Boom helped to build America. People moved across the country in search of prosperity. To achieve it, they needed to develop new technologies and build new infrastructure like the original parts of the Port Arthur refinery, which opened here in 1903. As America's need for energy expanded as our demand for oil and gas

189

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

190

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"7242013 11:46:42 PM" "Back to Contents","Data 1: U.S. Refinery Crude Oil Input Qualities" "Sourcekey","MCRS1US2","MCRAPUS2" "Date","U.S. Sulfur...

191

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by Tank Cars (Rail) (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

192

World Energy Projection System Plus Model Documentation: Refinery Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Adrian Geagla

2011-10-04T23:59:59.000Z

193

Coal Use in Petroleum Refineries -- Opportunities and Issues  

Science Conference Proceedings (OSTI)

This report is a brief review of the technologies and key issues involved in considering the use of coal as a replacement, supplemental, or additional fuel in petroleum refineries.

2002-10-21T23:59:59.000Z

194

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

195

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 10,747: 11,072: 11,444: ...

196

Cellulosic ethanol | Open Energy Information  

Open Energy Info (EERE)

Cellulosic ethanol Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural residues, other lignocellulosic raw materials or energy crops. These lignocellulosic raw materials are more widely available than the standard material used for ethanol. They are also considered to be more sustainable, however they need to be broken down (hydrolysed) into simple sugars prior to distillation, a much more complex process than the first generation bioethanol. It first must go through pretreatment,hydrolysis then a conversion. Research since the 1970s and large investments are being made in the US and Europe to speed up development of this route to bioethanol. Biomass refineries like Inbicon in Denmark are producing

197

Flexible hydrogen plant utilizing multiple refinery hydrocarbon streams  

Science Conference Proceedings (OSTI)

Numerous processes are available to produce hydrogen, however, steam reforming is still the dominant and currently preferred process because it can economically process a variety of refinery feedstocks into hydrogen. This paper discusses the Air Products 88 MMSCFD hydrogen plant built by KTI, adjacent to Shell`s Martinez refinery, which utilizes up to eight separate refinery hydrocarbon streams as feed and fuel for the production of hydrogen in the steam reforming unit. The integration of refinery hydrocarbon purge streams, normally sent to fuel, allows greater flexibility in refinery operations and increases the overall refinery fuel efficiencies. The hydrogen plant also incorporates a number of process control design features to enhance reliability, such as two out of three voting systems, in-line sparing, and reduced bed PSA operation. The final section of the paper describes the environmental features of the plant required for operation in the Bay Area Air Quality Management District (BAAQMD). Air Products and KTI designed BACT features into the hydrogen plant to minimize emissions from the facility.

Kramer, K.A.; Patel, N.M. [Air Products and Chemicals Inc., Allentown, PA (United States); Sekhri, S. [Kinetics Technology International Corp., San Dimas, CA (United States); Brown, M.G. [Shell Oil Products Co., Martinez, CA (United States)

1996-12-01T23:59:59.000Z

198

Engineering firm has designed refinery of the future  

SciTech Connect

Four years ago, JGC Corp. organized a project team called ``Refinery Engineering for the Future in the Twenty-First Century,`` or REF-21. The purpose of the team was to forecast the environment facing the refining industry in Japan, long-range energy supply and demand, population and economic growth, traffic system trends, and technology and science progress through the middle of the twenty-first century. The REF-21 team also was charged with developing a conceptual design for the future refinery. The team proposed four types of configurations for the so-called new-generation refineries. These schemes included some new technologies that it deemed commercializable by 2000. JGC evaluated these new-generation refinery schemes in terms of overall yields, energy efficiencies, emissions, and economics, as compared with existing refineries. JGC also has developed an amenity design program (ADP), and is applying it to a refinery in Japan to produce a new-concept operation center. Through amenity design, JGC intends to improve the operating environment for employees in order to enhance overall productivity.

Inomata, Makoto; Sato, Kyohei; Yamada, Yu; Sasaki, Hajime [JGC Corp., Yokohama (Japan)

1997-04-28T23:59:59.000Z

199

Schiller Biomass Con Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Schiller Biomass Con Biomass Facility Jump to: navigation, search Name Schiller Biomass Con Biomass...

200

Ware Biomass Cogen Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Ware Biomass Cogen Biomass Facility Jump to: navigation, search Name Ware Biomass Cogen Biomass...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

202

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 5,383,494 5,119,100 4,676,865 4,568,301 4,484,600 4,395,128 2005-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 2005-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 2005-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 2005-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 2005-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 2005-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 2005-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 2005-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 2005-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 2005-2012

203

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

of Last of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2013 PAD District I 542,450 GNC Energy Corp Greensboro, NC 3,000 0 a Primary Energy Corp Richmond, VA 6,100 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc Westville, NJ 145,000 263,000 11/09 02/10 Western Refining Yorktown Inc Yorktown, VA 66,300 182,600 09/10 12/11 Sunoco Inc Marcus Hook, PA 178,000 278,000 12/11 12/11 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District II 460,315 Coastal Refining & Mktg El Dorado, KS 0 20,000 b Intercoastal Energy Svcs

204

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

205

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

206

Woody Biomass Supply Issues  

Science Conference Proceedings (OSTI)

Woody biomass is the feedstock for the majority of biomass power producers. Woody biomass consists of bark and wood and is generally obtained as a byproduct or waste product. Approximately 40% of timber biomass is left behind in the form of slash, consisting of tree tops, branches, and stems after a timber harvest. Collecting and processing this residue provides the feedstock for many utility biomass projects. Additional sources of woody biomass include urban forestry, right-of-way clearance, and trees k...

2011-03-31T23:59:59.000Z

207

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

208

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

210

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

211

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

212

Environmental Regulation and Productivity: Evidence from Oil Refineries  

E-Print Network (OSTI)

Abstract: We examine the effect of air quality regulation on the productivity of some of the most heavily regulated manufacturing plants in the United States, the oil refineries of the Los Angeles (South Coast) Air Basin. We use direct measures of local air pollution regulation in this region to estimate their effects on abatement investment. Refineries not subject to these local environmental regulations are used as a comparison group. We study the period of increased regulation between 1979 and 1992. On average, each regulation cost $3M per plant on compliance dates and a further $5M per plant on dates of increased stringency. We also construct measures of total factor productivity using plant level data which allow us to observe physical quantities of inputs and outputs for the entire population of refineries. Despite the high costs associated with the local regulations, productivity in the Los Angeles Air Basin refineries rose sharply during the 1987-92 period, a period of decreased refinery productivity in other regions. We conclude that measures of the cost of environmental regulation may be significantly overstated. The gross costs may be far greater than the net cost, as abatement may be productive.

Eli Berman; Linda T. M. Bui

1998-01-01T23:59:59.000Z

213

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

214

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

215

2013 Short Course Analytical Techniques: Quality Control, Process Control, and Refinery Optimization  

Science Conference Proceedings (OSTI)

Analytical Techniques: Quality Control, Process Control, and Refinery Optimization held at the 104th AOCS Annual Meeting and Expo. 2013 Short Course Analytical Techniques: Quality Control, Process Control, and Refinery Optimization Analytical Techn

216

Lyondell, Citgo join for heavy oil upgrade project at Houston refinery  

Science Conference Proceedings (OSTI)

Lyondell-Citgo Refining Co. Ltd. is beginning an $800-million upgrade and expansion of its Houston refinery. The project will enable the refinery. The project will enable the refinery to produce clean fuels while processing about 80% heavy, high-sulfur Venezuelan crude oil. The paper describes the Houston refinery, the expansion project, the technologies to be used, operational changes, environmental impacts, and construction.

Rhodes, A.K.

1994-03-21T23:59:59.000Z

217

Monitoring near refineries or airborne chemicals on the SARA Title 3 section 313 list  

Science Conference Proceedings (OSTI)

In this volume, detailed procedures recommended for the measurement of selected petroleum refinery emissions in ambient air are presented.

Not Available

1988-01-01T23:59:59.000Z

218

Monitoring near refineries for airborne chemicals on the SARA Title 3 Section 313 list  

SciTech Connect

This study provides an ambient air concentration perspective to the engineering estimates of petroleum refinery emissions required under SARA Title III Section 313. It presents and discusses ambient air concentrations of 25 selected target chemicals measured at and near the perimeter (fenceline) of three refineries. Measurements were made over three consecutive 24-hour sampling periods at each refinery. The extent to which the concentrations of the target chemicals were due to fugitive emissions from the refineries is estimated.

Not Available

1989-01-01T23:59:59.000Z

219

Monitoring near refineries or airborne chemicals on the SARA Title 3 Section 313 list  

Science Conference Proceedings (OSTI)

This volume identifies publications and databases that address ambient air concentrations measured near petroleum refineries for the selected target chemicals.

Not Available

1988-01-01T23:59:59.000Z

220

Distillate yields at U.S. refineries are rising - Today in ...  

U.S. Energy Information Administration (EIA)

Refinery processing gain results from some refining processes, such as fluid catalytic cracking and hydrocracking, where volumes can increase when ...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE - Office of Legacy Management -- International Rare Metals Refinery Inc  

Office of Legacy Management (LM)

Rare Metals Refinery Rare Metals Refinery Inc - NY 38 FUSRAP Considered Sites Site: International Rare Metals Refinery, Inc. (NY.38 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Canadian Radium and Uranium Corporation NY.38-1 Location: 69 Kisko Avenue , Mt. Kisko , New York NY.38-1 NY.38-3 Evaluation Year: 1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. NY.38-5 Site Disposition: Eliminated - No Authority - Site was a commercial operation not under the jurisdiction of DOE predecessor agencies NY.38-2 NY.38-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium, Plutonium NY.38-5 Radiological Survey(s): Yes NY.38-1 NY.38-5 Site Status: Eliminated from consideration under FUSRAP

222

Mazheikiai refinery modernization study. Executive summary. Export trade information  

Science Conference Proceedings (OSTI)

The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. The volume contains the Executive Summary.

Not Available

1994-01-01T23:59:59.000Z

223

Alternative multimedia regulatory programs for next-generation refineries  

Science Conference Proceedings (OSTI)

The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

2000-06-22T23:59:59.000Z

224

Fuzzy possibilistic modeling and sensitivity analysis for optimal fuel gas scheduling in refinery  

Science Conference Proceedings (OSTI)

In refinery, fuel gas which is continuously generated during the production process is one of the most important energy sources. Optimal scheduling of fuel gas system helps the refinery to achieve energy cost reduction and cleaner production. However, ... Keywords: Fuel gas, Fuzzy possibilistic programming, Marginal value analysis, Refinery, Scheduling, Sensitivity analysis

J. D. Zhang; G. Rong

2010-04-01T23:59:59.000Z

225

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

226

Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Information  

Open Energy Info (EERE)

Saudi Aramco Mobile Refinery Company (SAMREF) Saudi Aramco Mobile Refinery Company (SAMREF) Jump to: navigation, search Logo: Saudi Aramco Mobile Refinery Company (SAMREF) Name Saudi Aramco Mobile Refinery Company (SAMREF) Address P.O. Box 30078 Place Yanbu, Saudi Arabia Sector Oil and Gas Product Crude Oil Refining Phone number (966) (4) 396-4443 Website http://www.samref.com.sa/ Coordinates 24.0866932°, 38.0585527° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.0866932,"lon":38.0585527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Obstacles and Opportunity: Turbine Motorization in Refineries Today  

E-Print Network (OSTI)

Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned in the refineries. This paper discusses the key aspects that should be considered in evaluating the feasibility of motorization projects. Based on the literature review and a refinery survey conducted by the authors, the key factors include the critical level of the related equipment, the potential energy savings and capital cost, the steam and power balance in the related area, and the reliability in the refinery's power supply. Based on the authors' experience, the utilities' energy efficiency incentive programs in California also influence the decision-making process for turbine motorization projects. Therefore, this paper includes a description of the utilities' guidelines for fuel substitution projects. In particular, the utilities' three-prong requirements on net source-BTU energy savings, cost effectiveness, and avoidance of adverse impacts to the environment are discussed. Two real life case studies are presented to demonstrate how the above criteria should be applied for determining if a motorization opportunity is economically viable. A discussion on suggested features is also included for prescreening turbine motorization project candidates for better energy and environment economics such as venting of exhaust steam from a back pressure turbine and oversized design of the existing turbine and pump.

Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

2012-01-01T23:59:59.000Z

228

U.S. LPG's Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. LPG's Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 8,966: 8,021: 9,466: 11,962 ...

229

Refinery Outages: Description and Potential Impact on Petroleum Product Prices  

Reports and Publications (EIA)

This report responds to a July 13, 2006 request from Chairman Jeff Bingaman of the Senate Committee on Energy and Natural Resources requested that EIA conduct a study of the impact that refinery shutdowns have had on the price of oil and gasoline.

Joanne Shore

2007-03-27T23:59:59.000Z

230

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 4.3: 4.3: 4.3: ...

231

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 4.4: 4.6: 4.5: 4.3: 4.1: 4.2: 4.4: 4.3: ...

232

Woodland Biomass Power Ltd Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Woodland Biomass Power Ltd Biomass Facility Jump to: navigation, search Name Woodland Biomass Power...

233

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

234

Market survey on products from the Tema Oil Refinery carried out as part of the feasibility study on the Tema Oil Refinery expansion project. Export trade information  

SciTech Connect

The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydroskimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A feasibility study is investigating the modernization and expansion of the refinery to meet projected market demands until the year 2005. The report presents the results of a market survey done on products from TOR.

Not Available

1991-10-01T23:59:59.000Z

235

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

Science Conference Proceedings (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

236

Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 13, 2: August 13, 2007 Refinery Output by World Region to someone by E-mail Share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Facebook Tweet about Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Twitter Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Google Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Delicious Rank Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Digg Find More places to share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on AddThis.com... Fact #482: August 13, 2007

237

NREL: Biomass Research - Standard Biomass Analytical Procedures  

NLE Websites -- All DOE Office Websites (Extended Search)

in the pertinent LAPs. Workbooks are available for: Wood (hardwood or softwood) Corn stover (corn stover feedstock) Biomass hydrolyzate (liquid fraction produced from...

238

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

239

Catalytic gasification of wet biomass in supercritical water  

Science Conference Proceedings (OSTI)

Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong [Univ. of Hawaii, Honolulu, HI (United States)] [and others

1995-12-31T23:59:59.000Z

240

Biomass for Electricity Generation  

Reports and Publications (EIA)

This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

Zia Haq

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on...

242

Small Modular Biomass Systems  

DOE Green Energy (OSTI)

Fact sheet that provides an introduction to small modular biomass systems. These systems can help supply electricity to rural areas, businesses, and people without power. They use locally available biomass fuels such as wood, crop waste, and animal manures.

Not Available

2002-12-01T23:59:59.000Z

243

TORREFACTION OF BIOMASS.  

E-Print Network (OSTI)

??Torrefaction is a thermo-chemical pre-treatment of biomass within a narrow temperature range from 200C to 300C, where mostly the hemicellulose components of a biomass depolymerise. (more)

Dhungana, Alok

2011-01-01T23:59:59.000Z

244

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Biomass Cofiring Update 2002  

Science Conference Proceedings (OSTI)

Biomass is a renewable energy source. When cofired with coal in a plant that would normally fire 100% coal as the fuel, biomass becomes a renewable source of electricityfor that fraction of electricity that is generated from the biomass fraction of the heat in the fuel mix to the power plant. For electric power generation organizations that have coal-fired generation, cofiring biomass with coal will often be the lowest-cost form of renewable power.

2003-07-11T23:59:59.000Z

246

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Recanati, Catherine

247

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

248

NREL: Biomass Research - Alexandre Chapeaux  

NLE Websites -- All DOE Office Websites (Extended Search)

biofuels with industrial partners. Alex's research areas of interest are: Integrated biomass processing High solids biomass conversion Fermentation development Separation...

249

New process effectively recovers oil from refinery waste streams  

Science Conference Proceedings (OSTI)

A new process uses chemically assisted, thermal flashing to break difficult emulsions and recover oil for reprocessing. The process is best suited for refinery waste management and slop oil systems, where it can process streams with high oil content to recover high-quality oil. Recent testing of a full-scale, commercial prototype unit on slop oil emulsions at a major Gulf Coast refinery resulted in: 97.9% recovery of oil with 99.3--99.6% purity; 99.5% recovery of water with 99+% purity; and a centrifuge cake containing 49-60% solids, 23--30 oil, and 17--22% water. The paper discusses background of the process, then gives a process description as well as results of field studies and cost.

Rhodes, A.

1994-08-15T23:59:59.000Z

250

Alternative future environmental regulatory approaches for petroleum refineries.  

Science Conference Proceedings (OSTI)

Recently, many industrial, regulatory, and community leaders have expressed concern that the current environmental regulatory structure disregards multimedia environmental impacts, provides few incentives to develop and use new technologies, and fails to consider site-specific conditions. For the US petroleum refining industry, faced with the need to produce higher-quality fuels from poorer-quality feedstocks, such criticisms are expected to increase. This article offers two alternative environmental regulatory approaches for existing petroleum refineries to use in the future. These alternative approaches are multimedia in scope, provide for new technology development and use, and allow flexibility in the means for meeting environmental goals. They have been reviewed and critiqued by various stakeholders, including industry representatives, regulators, and local and national community and environmental organizations. The integration of stakeholder comments and findings of ongoing national and international regulatory reinvention efforts in the development of these approaches positions them for potential use by other industries in addition to petroleum refineries.

Elcock, D.; Gasper, J.; Moses, D. O.; Emerson, D.; Arguerro, R.; Environmental Assessment; DOE; Analytical Services, Inc.

2000-01-01T23:59:59.000Z

251

Pemex to acquire interest in Shell Texas refinery  

Science Conference Proceedings (OSTI)

This paper reports that Petroleos Mexicanos and Shell Oil Co. have signed a memorandum of understanding to form a joint refining venture involving Shell's 225,000 b/d Deer Park, Tex., refinery. Under the agreement, Mexico's state owned oil company is to purchase a 50% interest in the refinery, and Shell is to sell Pemex unleaded gasoline on a long term basis. Under the venture, Shell and Pemex plan to add undisclosed conversion and upgrading units tailored to process heavy Mexican crude. The revamp will allow Pemex to place more than 100,000 b/d of Mayan heavy crude on the U.S. market. Mayan accounts for 70% of Mexico's crude oil exports. In turn, Shell will sell Pemex as much as 45,000 b/d of unleaded gasoline to help meet Mexico's rapidly growing demand.

Not Available

1992-08-31T23:59:59.000Z

252

Biofacts: Fueling a stronger economy. Renewable fuel solutions for petroleum refineries  

DOE Green Energy (OSTI)

The DOE Biofuels Program is investigating processes to condition synthesis gas (syngas) produced from the gasification of biomass, coke, waste oils, and other inexpensive feedstocks and low-cost by-products. Syngas technologies offer refiners economical, flexible solutions to the challenges presented by today`s market forces and regulatory environment, such as: increasingly stringent environmental regulations that dictate the composition of petroleum products; increasingly sour crudes; increased coke production and hydrogen use resulting from heavier crude; increased disposal cost for coke and residuals oils; and decreasing hydrogen supply resulting from decreased catalytic reforming severity--a necessity to comply with requirements for reduced aromatic content. Most importantly, refiners can use the DOE syngas processes to upgrade refinery residuals and coke, which minimizes environmental problems and maximizes profitability. DOE`s solution also offers refiners the flexibility to economically supplement petroleum feedstocks with a wide variety of locally available renewable feedstocks that can be fed into the gasifier--feedstocks such as energy crops, municipal solid wastes, many industrial wastes, and agricultural by-products.

NONE

1995-07-01T23:59:59.000Z

253

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

254

Martinez Refinery Completes Plant-Wide Energy Assessment  

SciTech Connect

This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

Not Available

2002-11-01T23:59:59.000Z

255

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

256

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

257

Citrus Waste Biomass Program  

DOE Green Energy (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

258

New desorption process treats refinery K and F wastes in demo trial  

SciTech Connect

A new desorption process for treating refinery wastes has been proven in pilot demonstrations at Amoco Oil Co.'s Texas City, Tex., refinery. The process -- Waste-Tech Services Inc.'s desorption and recovery unit (DRU) -- treats petroleum-contaminated refinery wastes and recovers oil and water suitable for recycling to the refinery. The DRU meets Resource Conservation and Recovery Act (RCRA) recycle exemptions and produces solids that satisfy US Environmental Protection Agency (EPA) land disposal restrictions (LDRs). This paper discusses RCRA wastes, the process, the demonstration unit, operating conditions, and analyses of semivolatiles, volatiles, leachable metals, and recovered oil and water.

Rasmussen, G.P. (Waste-Tech Services Inc., Golden, CO (United States))

1994-01-10T23:59:59.000Z

259

Economic forces push down selling prices of U.S. refineries  

Science Conference Proceedings (OSTI)

Recent data on US refinery sales reveal that selling prices have continued to decline in the 1990s. Reasons for this decrease include increased plant investments to meet regulatory requirements, excess refining capacity, increased imports of refined products, and reduced margins. While these expenditures enable a refinery to continue operating, they do not make the refinery more profitable or valuable. Other factors contributing to reduced selling prices of US refineries are: declining local crude production; unstable crude costs; increased energy conservation; growing competition from alternative fuels.

NONE

1996-03-25T23:59:59.000Z

260

The Revival of Onahama Smelter & Refinery from the Disaster by the ...  

Science Conference Proceedings (OSTI)

Presentation Title, The Revival of Onahama Smelter & Refinery from the ... Study of Modified Semi-Coke on the Advanced Treatment of Coking Wastewater's Oil.

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Updated estimation of energy efficiencies of U.S. petroleum refineries.  

SciTech Connect

Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

2010-12-08T23:59:59.000Z

262

Petroleum complex of Russia. Reconstruction of petroleum refineries: Means for accomplishing the task  

SciTech Connect

This report describes the refining industry in Russia with respect to production and economic factors. The modernization and reconstruction of the refineries is also discussed.

Rykunova, T.

1994-11-01T23:59:59.000Z

263

Aspects of Holly Corporation's Acquisition of Sunoco Inc.'s Tulsa, Oklahoma Refinery  

Reports and Publications (EIA)

The Energy Information Administration has produced a review of aspects of the Holly's acquisition of Sunoco's 85,000-barrels-per-day Tulsa refinery

Neal Davis

2009-04-22T23:59:59.000Z

264

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

265

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

266

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

267

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

268

Techno Economic Analysis of Hydrogen Production by gasification of biomass  

SciTech Connect

Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

Francis Lau

2002-12-01T23:59:59.000Z

269

Techno Economic Analysis of Hydrogen Production by gasification of biomass  

DOE Green Energy (OSTI)

Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

Francis Lau

2002-12-01T23:59:59.000Z

270

Biomass Cofiring Handbook  

Science Conference Proceedings (OSTI)

This handbook has been prepared as a 147how tomanual for those interested in biomass cofiring in cyclone- or pulverized-coal-fired boilers. It contains information regarding all aspects of biomass cofiring, including biomass materials and procurement, handling, storage, pulverizing, feeding, gaseous emissions, ash handling, and general economics. It relies on actual utility experience over the past many years from plants mainly in the United States, but some experience also in Europe and Australia. Many ...

2009-11-05T23:59:59.000Z

271

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

272

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

273

Biomass Cofiring Guidelines  

Science Conference Proceedings (OSTI)

Biomass, primarily wood waste such as sawdust, has been cofired in over twenty utility coal-fired boilers in the United States at cofiring levels where the biomass provides from 1% to 10% of the heat input to the boiler. These guidelines present insights and conclusions from five years of EPRI assessment and testing of biomass cofiring and will enable utility engineers and power plant managers to evaluate their own options and plan their own tests.

1997-10-09T23:59:59.000Z

274

Advanced Biomass Gasification Projects  

DOE Green Energy (OSTI)

DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

Not Available

1997-08-01T23:59:59.000Z

275

Biomass Gasification Technology Commercialization  

Science Conference Proceedings (OSTI)

Reliable cost and performance data on biomass gasification technology is scarce because of limited experience with utility-scale gasification projects and the reluctance of vendors to share proprietary information. The lack of this information is a major obstacle to the implementation of biomass gasification-based power projects in the U.S. market. To address this problem, this report presents four case studies for bioenergy projects involving biomass gasification technologies: A utility-scale indirect c...

2010-12-10T23:59:59.000Z

276

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

277

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

278

Co-firing biomass  

SciTech Connect

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

279

Biomass Processing Photolibrary  

DOE Data Explorer (OSTI)

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

280

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Clean air amendments put big burden on refinery planners  

SciTech Connect

The Clean Air Act Amendments of 1990 will not only require the production of reformulated gasoline but also have significant impact on other refinery-related construction. This must be considered when developing sound planning strategy. The three titles of the Clean Air Act Amendments that will have the greatest effect on refining are: Title I: Nonattainment; Title III: Air toxics; Title V: Permitting. To understand the ramifications of these amendments, it is necessary to review the interactions of new requirements with the permitting and construction schedule shown.

Scherr, R.C.; Smalley, G.A. Jr.; Norman, M.E. (ENSR Consulting and Engineering, Houston, TX (US))

1991-06-10T23:59:59.000Z

282

Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy  

DOE Green Energy (OSTI)

The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

Not Available

1981-03-01T23:59:59.000Z

283

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY) .......................................................................... 91 Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass) ......................................................................................................................... 111 Appendix 12: Biomass to Energy Project Team, Committee Members, and Project Advisors

284

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

285

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

286

High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

None

2009-12-01T23:59:59.000Z

287

Implementing an Energy Management Strategy for a Houston Refinery  

E-Print Network (OSTI)

Intense competition and environmental regulation of industries utilizing combustion equipment have motivated many owners and operators to seek ways to reduce costs, improve performance, and minimize emissions. Energy management programs are being implemented throughout industry to improve equipment operating efficiencies, profitability, extend equipment life, prevent forced shutdowns, generate substantial fuel savings, track valuable information, and enhance compliance margins. A well designed and maintained energy management program translates to PROFIT added directly to the BOTTOM LINE. Woodward-Clyde Consultants (WCC) recently implemented and energy management program at the Lyondell-Citgo Refinery in Houston, Texas. The basis of the program is the 80/20 rule where 80% of the total potential savings are derived from optimizing the energy utilization from 20% of the combustion equipment. In this case, 11 out of 55 heaters were targeted for inclusion in the program. The fuel savings potential alone exceeded $1,250,000. In addition to the fuel savings, there were reduced costs from improved operation, as well as reduction in maintenance requirements and forced shutdowns. The remainder of this paper discusses the technical approach, the benefits, and the results of the program implemented at the Lyondell-Citgo Refinery.

Wood, S. C.; Agrawal, R. K.; Canon, D.

1996-04-01T23:59:59.000Z

288

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

and green algae and gas bubbles can be seen floating in the liquid. Through biomass research, NREL is developing technologies to convert biomass-plant matter such as...

289

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

290

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

291

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

292

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

293

Multi-functional biomass systems.  

E-Print Network (OSTI)

??Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share (more)

Dornburg, Veronika

2004-01-01T23:59:59.000Z

294

Hydropyrolysis of biomass  

DOE Green Energy (OSTI)

The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

295

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

296

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

297

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

298

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

299

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from...

300

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

302

Flash hydrogenation of biomass  

DOE Green Energy (OSTI)

It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

Steinberg, M

1980-01-01T23:59:59.000Z

303

Biomass cogeneration. A business assessment  

DOE Green Energy (OSTI)

This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

Skelton, J.C.

1981-11-01T23:59:59.000Z

304

,"U.S. Working Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Capacity at Operable Refineries" Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capwork_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

305

,"U.S. Production Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Production Capacity of Operable Petroleum Refineries" Production Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Production Capacity of Operable Petroleum Refineries",11,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capprod_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capprod_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

306

,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Charge Capacity of Operable Petroleum Refineries" Charge Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Downstream Charge Capacity of Operable Petroleum Refineries",32,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capchg_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capchg_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

307

,"U.S. Total Shell Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity at Operable Refineries" Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capshell_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

308

Market Assessment of Planned Refinery Outages March … June 2009  

Gasoline and Diesel Fuel Update (EIA)

09)/1 09)/1 Market Assessment of Planned Refinery Outages March - June 2009 March 2009 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor.

309

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network (OSTI)

Technologies to economically recover low-temperature waste energy in chemical plants and refineries are the holy grail of industrial energy efficiency. Low temperature waste energy streams were defined by the Texas Industries of the Future Chemical and Refining Sectors Advisory Committee as streams with a temperature below 400 degrees F. Their waste energy streams were also characterized as to state, flow rate, heat content, source and temperature. These criteria were then used to identify potential candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle, and fuel cell technologies. This paper characterizes each of these technologies, technical specifications, limitations, potential costs/ payback and commercialization status as was discussed in the Technology Forum held in Houston, TX in May 2012 (TXIOF 2012).

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

310

Optimization of Steam Network in Tehran Oil Refinery  

E-Print Network (OSTI)

Dominated energy crisis in the world dictates to reduce energy consumption and identify energy saving opportunities in large and complex industries especially in oil refining industry. In this paper, Tehran oil refinery is considered as a proper case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating costs (TOC) in two states of fixed fuel fraction and changeable fuel fraction was calculated. In addition, different scenarios were proposed like using HRSG instead of two boilers. The results showed that amount of total operating cost has been reduced, as the result the best scenario regarding TOC is selected.

Khodaie, H.; Nasr, M. R. J.

2008-01-01T23:59:59.000Z

311

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

312

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

313

Appendix D Short-Term Analysis of Refinery Costs and Supply  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Short-Term Analysis of Refinery Costs and Supply 9302 Appendix D Short-Term Analysis of Refinery Costs and Supply As a result of the new regulations issued by the U.S. Estimating Components of the Distillate Environmental Protection Agency (EPA) for ultra-low- Blend Pool sulfur diesel fuel (ULSD) the U.S. refining industry faces two major challenges: to meet the more stringent specifi- The initial step of the analysis was to analyze the poten- cations for diesel product, and to keep up with demand tial economics of producing ULSD for each refinery. by producing more diesel product from feedstocks of Using input and output data submitted to the Energy lower quality. Some refineries in the United States and Information Administration (E1A) by refiners, the cur-

314

House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passage of H.R. 5254 - The Refinery Permit Process Schedule Passage of H.R. 5254 - The Refinery Permit Process Schedule Act House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act June 8, 2006 - 2:17pm Addthis Statement from Secretary Bodman WASHINGTON, DC - The following is a statement from the Secretary Samuel W. Bodman of the Department of Energy on the passage of House Resolution 5254, The Refinery Permit Process Schedule Act: "I commend the House of Representatives for their passage of this important piece of legislation. Expanding our nation's refining capacity is an important part of President Bush's four-point plan to confront high gasoline prices and is a key component to strengthening our nation's energy security. By increasing our nation's domestic refining capacity we can help grow our nation's economy and reduce our reliance on foreign sources

315

Market Assessment of Refinery Outages Planned for March 2011 through June 2011  

Gasoline and Diesel Fuel Update (EIA)

Assessment of Refinery Assessment of Refinery Outages Planned for March 2011 through June 2011 APRIL 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration / Market Assessment of Planned Refinery Outages / March 2011 - June 2011 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration / Market Assessment of Planned Refinery Outages /

316

U.S. Refinery and Blender Net Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993-884: 268: 4,851: 6,387: 6,489 ...

317

Valero: Houston Refinery Uses Plant-Wide Assessment to Develop an Energy Optimization and Management System  

SciTech Connect

This Industrial Technologies Program case study describes an energy assessment team's recommendations for saving $5 million in energy, water, and other costs at an oil refinery in Houston, Texas.

Not Available

2005-08-01T23:59:59.000Z

318

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

319

West Coast (PADD 5) Foreign Crude Oil Refinery Receipts by Tank ...  

U.S. Energy Information Administration (EIA)

West Coast (PADD 5) Foreign Crude Oil Refinery Receipts by Tank Cars (Rail) (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

320

,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...  

U.S. Energy Information Administration (EIA) Indexed Site

S1","MDGSXUS1","MRESXUS1","MPRSXUS1" "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)","U.S. Reformulated Motor...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

322

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Normal Butane/Butylene Shell Storage Capacity as of January 1 (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

323

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Grade Butane Stocks at Bulk Terminals (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 1,077: 999: 1,362: ...

324

U.S. Refinery Hydrogen Production Capacity as of January 1 ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Hydrogen Production Capacity as of January 1 (Million Cubic Feet per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

325

Models and algorithms for a multilevel control system of primary oil refinery installations  

Science Conference Proceedings (OSTI)

Algorithms and mathematical models for the technological process of primary oil refinery operating in the uncertain conditions are developed; the solution of the optimal control problem in the form of stochastic programming with probabilistic characteristics ...

I. A. Guseinov; E. A. Melikov; N. A. Khanbutaeva; I. R. Efendiev

2012-02-01T23:59:59.000Z

326

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

327

Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection  

SciTech Connect

The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

John W. Berthold

2006-02-22T23:59:59.000Z

328

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

329

Successful biomass (wood pellets ) implementation in  

E-Print Network (OSTI)

Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local in Estonia in 1995 - 2002 Regional Energy Centres in Estonia http://www.managenergy.net/conference/biomass

330

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name Florida Biomass Energy Consortium Place Florida Sector Biomass Product Association of biomass energy companies. References Florida...

331

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name Haryana Biomass Power Ltd. Place Mumbai, Haryana, India Zip 400025 Sector Biomass Product This is a JV consortium between...

332

Algae Biomass Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biomass Summit Algae Biomass Summit September 30, 2013 12:00PM EDT to October 3, 2013 12:00PM EDT Algae Biomass Summit...

333

PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION  

E-Print Network (OSTI)

UC-61 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.10093 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.hydrolytic pretreatment to biomass feedstocks, higher acid

Schaleger, Larry L.

2012-01-01T23:59:59.000Z

334

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass category. Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCatego...

335

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

336

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

337

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name Hebei Jiantou Biomass Power Place Jinzhou, Hebei Province, China Zip 50000 Sector Biomass Product A company engages in...

338

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

339

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid...

340

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

342

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Research on Common Biomass Pyrolysis Production of Biomass ...  

Science Conference Proceedings (OSTI)

Textural parameters analysis revealed the caloric value of biomass carbons between 32 MJ/kg and 34 MJ/kg. It also indicated that the surface of biomass carbon...

344

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

345

Fixed Bed Biomass Gasifier  

DOE Green Energy (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

346

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

347

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The as received feedstock to the pyrolysis plant will be reactor ready. This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburg, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-28T23:59:59.000Z

348

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburg, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-25T23:59:59.000Z

349

Biomass Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technologies August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic...

350

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and dead vegetative material that have been removed from the landscape (either sent as biomass to the power

351

ENERGY FROM BIOMASS AND  

E-Print Network (OSTI)

integrated- gasifier steam-injected gasturbine (BIGISTIG) cogenerationsystemsis carried out here. A detailed!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE). Biomassintegrated-gasifier/steam-injectedgas-turbine (BIG/STIG) cogenerationtechnologyand prospectsfor its use

352

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,567,929 6,641,293 6,527,069 6,735,067 6,815,590 6,794,407 1981-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 1981-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 1981-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 1993-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 1993-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 1981-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 1995-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 1993-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 1981-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 1993-2012

353

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 559,639 599,643 591,916 616,905 613,451 578,101 1981-2013 Liquefied Refinery Gases 24,599 26,928 25,443 26,819 25,951 19,023 1981-2013 Ethane/Ethylene 464 426 407 441 487 379 1981-2013 Ethane 317 277 283 312 332 232 1993-2013 Ethylene 147 149 124 129 155 147 1993-2013 Propane/Propylene 16,840 17,792 16,966 17,839 18,063 17,254 1981-2013 Propane 8,051 8,949 8,756 9,002 9,153 8,816 1995-2013 Propylene 8,789 8,843 8,210 8,837 8,910 8,438 1993-2013 Normal Butane/Butylene 7,270 8,876 8,122 8,676 7,664 1,738 1981-2013 Normal Butane 7,447 9,044 8,314 8,832 8,067 1,743 1993-2013 Butylene -177 -168 -192 -156 -403 -5 1993-2013 Isobutane/Isobutylene

354

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 526,996 566,851 559,032 581,600 578,456 543,388 1981-2013 Crude Oil 445,937 474,296 474,991 497,241 489,887 468,825 1981-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,805 11,759 12,769 13,227 13,760 16,794 1981-2013 Pentanes Plus 4,949 4,341 4,752 4,734 5,331 5,666 1981-2013 Liquefied Petroleum Gases 7,856 7,418 8,017 8,493 8,429 11,128 1981-2013 Ethane 1981-1992 Normal Butane 2,668 1,880 1,998 2,014 2,083 4,711 1981-2013 Isobutane 5,188 5,538 6,019 6,479 6,346 6,417 1981-2013 Other Liquids 68,254 80,796 71,272 71,132 74,809 57,769 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 32,667 34,665 34,097 35,446 36,356 33,881 1981-2013

355

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,204,500 6,277,893 6,169,893 6,345,372 6,422,710 6,406,693 1981-2012 Crude Oil 5,532,097 5,361,287 5,232,656 5,374,094 5,404,347 5,489,516 1981-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 184,383 177,559 177,194 161,479 178,884 186,270 1981-2012 Pentanes Plus 64,603 55,497 59,100 56,686 63,385 63,596 1981-2012 Liquefied Petroleum Gases 119,780 122,062 118,094 104,793 115,499 122,674 1981-2012 Ethane 1981-1992 Normal Butane 48,292 50,024 48,509 43,802 47,571 52,246 1981-2012 Isobutane 71,488 72,038 69,585 60,991 67,928 70,428 1981-2012 Other Liquids 488,020 739,047 760,043 809,799 839,479 730,907 1981-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

356

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

357

3, 503539, 2006 Biomass OSSEs  

E-Print Network (OSTI)

OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al. Title Page Abstract Introduction Conclusions for biomass assimilation G. Crispi, M. Pacciaroni, and D. Viezzoli Istituto Nazionale di Oceanografia e di Correspondence to: G. Crispi (gcrispi@ogs.trieste.it) 503 #12;OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al

Paris-Sud XI, Université de

358

5, 21032130, 2008 Biomass Pantanal  

E-Print Network (OSTI)

BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title Page Abstract Introduction dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil J. Sch of the European Geosciences Union. 2103 #12;BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title

Paris-Sud XI, Université de

359

5, 27912831, 2005 Biomass burning  

E-Print Network (OSTI)

ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

Paris-Sud XI, Université de

360

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

362

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

363

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

364

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

365

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

366

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

367

Biomass Energy and Agricultural Sustainability  

E-Print Network (OSTI)

Biomass Energy and Agricultural Sustainability Stephen Kaffka Department of Plant Sciences University of California, Davis & California Biomass Collaborative February 2008 #12;E x p e c t e d d u r 9 ) ---------Biomass era----------- --?????????? #12;By 2025, every source of energy

California at Davis, University of

368

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

369

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

370

6, 60816124, 2006 Modeling biomass  

E-Print Network (OSTI)

ACPD 6, 6081­6124, 2006 Modeling biomass smoke injection into the LS (part II) G. Luderer et al Chemistry and Physics Discussions Modeling of biomass smoke injection into the lower stratosphere by a large Correspondence to: G. Luderer (gunnar@mpch-mainz.mpg.de) 6081 #12;ACPD 6, 6081­6124, 2006 Modeling biomass smoke

Paris-Sud XI, Université de

371

Abundance,Biomass, and Production  

E-Print Network (OSTI)

Abundance,Biomass, and Production Daniel B.Hayes,James R.Bence,Thomas J.Kwak, and Bradley E, the proportion of fish present that are #12;Abundance,Biomass,and Production 329 detected (i.e., sightability; available at http://www.ruwpa.st-and.ac.uk/distance/). #12;Abundance,Biomass,and Production 331 Box 8

Kwak, Thomas J.

372

Biomass Equipment & Materials Compensating Tax Deduction | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Equipment & Materials Compensating Tax Deduction Biomass Equipment & Materials Compensating Tax Deduction Eligibility Commercial Industrial Savings For Bioenergy Biofuels...

373

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource.

374

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

375

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

376

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

377

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

378

FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE  

Science Conference Proceedings (OSTI)

A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

John D. Jones

2004-10-01T23:59:59.000Z

379

A Case Study of Steam System Evaluation in a Petroleum Refinery  

E-Print Network (OSTI)

ASI conducted a steam system evaluation study at a multinational petroleum Refinery located in the Eastern UK during June-July, 1999. At this refinery, Steam, Fuel and Electricity systems are inter-connected. Steam is generated from direct fuel fired boilers as well from Furnace and Kiln waste heat. Steam is also supplied from the CHP waste heat boilers. Steam generation averages 1,500,000 lbs/hr and does not change significantly between winter and summer since steam needs for process and power generation dominates way above comfort heating. To generate steam, the refinery spends about 28 million per year ($46 million). The system evaluation study identified 31 Energy & steam system cost savings measures (ECM) to save fuel, steam and condensate in the areas of: Steam generation, Steam distribution, Steam Utilization, Condensate recovery, and Combustion optimization in kilns. By implementing all the above 31 ECMs, the refinery is estimated to save $3.5 million annually. Based on our preliminary investment estimate the average payback would be within 2 years. The refinery also would reduce 5600 metric tons Carbon emission to environment. Some of the opportunities address the installation defects of the steam system components that would improve the system reliability and longevity.

Venkatesan, V. V.; Iordanova, N.

2003-05-01T23:59:59.000Z

380

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean fractionation of biomass  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

Not Available

1995-01-01T23:59:59.000Z

382

Catalyzed gasification of biomass  

DOE Green Energy (OSTI)

Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is directed at controlling the gasification reaction through the use of specific catalytic agents to produce desired products including synthetic natural gas, ammonia synthesis gas (H/sub 2//N/sub 2/), hydrogen, or syn gas (H/sub 2//CO). Such gaseous products are currently produced in tonnage quantities from non-renewable carbonaceous resources, e.g., natural gas and petroleum. The production of high yields of these specified gases from biomass is accomplished through optimization of gasification conditions and proper choice of catalytic agents. For instance, high yields of synthetic natural gas can be attained through gasification with steam in the presence of gasification catalyst such as trona (Na/sub 2/CO/sub 3/ . NaHCO/sub 3/ . 2H/sub 2/O) and a nickel methanation catalyst. The gasification catalyst enhances the steam-biomass reaction while the methanation catalyst converts gaseous intermediates from this reaction to methane, the most thermodynamically stable hydrocarbon product. This direct conversion to synthetic natural gas represents a significant advancement in the classical approach of producing synthetic natural gas from carbonaceous substrates through several unit operations. A status report, which includes experimental data and results of the program is presented.

Sealock, L.J. Jr.; Robertus, R.J.; Mudge, L.K.; Mitchell, D.H.; Cox, J.L.

1978-06-16T23:59:59.000Z

383

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Annual",2012,"6/30/2005" 2,"Annual",2012,"6/30/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Annual",2012,"6/30/1986" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:04 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

384

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/2005" 3,"Monthly","9/2013","1/15/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Monthly","9/2013","1/15/1986" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:05 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOORO_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

385

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network (OSTI)

Hydrocarbon reforming involves a variety of chemical reactions at high temperatures and pressures in the presence of suitable catalysts. The conversion of naptha to high octane aromatics requires high energy to initiate and sustain the reaction at temperatures of 850-950oF. Hydrogen - rich off - gases are fired in combinations of process furnaces. Heat is transferred to hydrocarbon fluids by radiation, principally. Feed or return stream temperatures determine the need for convection sections. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors and to regenerate catalysts. Firing rates provide an input of 216.2 x 106 Btu/hr. to the furnaces, at $1.90 per 106 Btu. The units are fitted with multiple natural draft burners. There is insufficient turbulence and swirl in the burners. Operators manually set up the burners with excessive airflows for normal, full-load firing. These furnaces represent production limits. Products of combustion exhaust at high thermal levels - the range is from 985-1700oF. The mixed gases flow through a "waste heat" boiler, or they bypass the boiler and enter a single stack. Steam generation at 150 psig averages 38,200 lb/hr. Heat is wasted via the bypass at a rate of 41.1x106 Btu /hr. at 1240oF. When airflows are reduced (to 15% excess air) the loss will be 18.7x106 Btu/hr. at 1180oF. Installation of a second, parallel waste heat boiler will result in a saving of l3.4x106 Btu/hr. Energy savings at this furnace complex will be equivalent to $628,700 per year. Investment costs were estimated to be less than $250,000 for the proposed heat trap addition.

Viar, W. L.

1979-01-01T23:59:59.000Z

386

,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","9/2013","1/15/1985" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_crq_a_epc0_ycs_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_crq_a_epc0_ycs_pct_m.htm" ,"Source:","Energy Information Administration"

387

Increasing Distillate Production at U.S. Refineries … Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

388

Mazheikiai refinery modernization study. Final report. Volume 1. Export trade information  

SciTech Connect

The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 1 of the study.

Not Available

1994-01-01T23:59:59.000Z

389

Mazheikiai refinery modernization study. Final report. Volume 3. Export trade information  

Science Conference Proceedings (OSTI)

The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 3 of the study.

Not Available

1994-01-01T23:59:59.000Z

390

Mazheikiai refinery modernization study. Final report. Volume 2. Export trade information  

Science Conference Proceedings (OSTI)

The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 2 of the study.

Not Available

1994-01-01T23:59:59.000Z

391

Potentials for fuel cells in refineries and chlor-alkali plants  

DOE Green Energy (OSTI)

The market potentials for fuel cell cogeneration systems in petroleum refineries and chlor-alkali plants were evaluated. the most promising application appears to be in chlor-alkali plants where the production process is electricity intensive. Future anticipated changes in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries is not as attractive as in chlor-alkali plants. The phosphoric acid fuel cell is the most developed and the most competitive, but its use is limited by its being able to produce only low-pressure steam. Over the longer term, the molten carbonate and the solid oxide fuel cell both of which operate at significantly higher temperatures, are technically very attractive. However, they do not appear to be cost competitive with conventional systems.

Altseimer, J.H.; Roach, F.

1986-01-01T23:59:59.000Z

392

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Short-Term Schedulability Analysis of Crude Oil Operations in Refinery With Oil Residency Time Constraint Using Petri Nets  

Science Conference Proceedings (OSTI)

A short-term schedule for oil refinery should arrange all the activities in every detail for the whole scheduling horizon, leading to a complex problem. There lacks efficient techniques and software tools for its solution applicable to industrial oil ... Keywords: Automated manufacturing system, Petri net (PN), hybrid Petri net, oil refinery, scheduling, short-term scheduling

NaiQi Wu; Feng Chu; Chengbin Chu; MengChu Zhou

2008-11-01T23:59:59.000Z

395

Modeling and Conflict Detection of Crude Oil Operations for Refinery Process Based on Controlled Colored Timed Petri Net  

Science Conference Proceedings (OSTI)

Recently, there has been a great interest in the modeling and analysis of process industry, and various models are proposed for different uses. It is meaningful to have a model to serve as an analytical aid tool in short-term scheduling for oil refinery ... Keywords: Hybrid systems, petri net, refinery process, system modeling

Naiqi Wu; Liping Bai; Chengbin Chu

2007-07-01T23:59:59.000Z

396

CTR/ANL, July 2010 1 Updated Estimation of Energy Efficiencies of U.S. Petroleum Refineries  

E-Print Network (OSTI)

for emissions associated with hydrogen production. Hydrogen is generated in a refinery's catalytic reformer-process distillate material into commercial diesel and jet fuel. From this perspective catalytic reforming transfers refinery operations, most notably catalytic reforming. References Bredeson, L., Quiceno-Gonzalez, R., Riera

Argonne National Laboratory

397

Supercritical Water Gasification of Biomass & Biomass Model Compounds.  

E-Print Network (OSTI)

??Supercritical water gasification (SCWG) is an innovative, modern, and effective destruction process for the treatment of organic compounds. Hydrogen production using SCWG of biomass or (more)

Youssef, Emhemmed A.E.A

2011-01-01T23:59:59.000Z

398

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network (OSTI)

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

399

State and Regional Biomass Partnerships  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

400

Catalysis in biomass gasification  

DOE Green Energy (OSTI)

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"U.S. Refinery Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_refp2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:28:05 AM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRX_NUS_1","MLPRX_NUS_1","METRX_NUS_1","MENRX_NUS_1","MEYRX_NUS_1","MPRRX_NUS_1","MPARX_NUS_1","MPLRX_NUS_1","MBNRX_NUS_1","MBURX_NUS_1","MBYRX_NUS_1","MBIRX_NUS_1","MIIRX_NUS_1","MIYRX_NUS_1","MGFRX_NUS_1","MGRRX_NUS_1","MG1RX_NUS_1","M_EPM0RO_YPY_NUS_MBBL","MG4RX_NUS_1","MG5RX_NUS_1","M_EPM0CAL55_YPY_NUS_MBBL","M_EPM0CAG55_YPY_NUS_MBBL","MG6RX_NUS_1","MGARX_NUS_1","MKJRX_NUS_1","M_EPJKC_YPY_NUS_MBBL","M_EPJKM_YPY_NUS_MBBL","MKERX_NUS_1","MDIRX_NUS_1","MD0RX_NUS_1","MD1RX_NUS_1","MDGRX_NUS_1","MRERX_NUS_1","MRXRX_NUS_1","MRMRX_NUS_1","MRGRX_NUS_1","MPCRX_NUS_1","MPNRX_NUS_1","MPORX_NUS_1","MNSRX_NUS_1","MLURX_NUS_1","M_EPPLN_YPY_NUS_MBBL","M_EPPLP_YPY_NUS_MBBL","MWXRX_NUS_1","MCKRX_NUS_1","MCMRX_NUS_1","MCORX_NUS_1","MAPRX_NUS_1","MSGRX_NUS_1","MMSRX_NUS_1","MMFRX_NUS_1","MMNRX_NUS_1","MPGRX_NUS_1"

402

,"U.S. Refinery Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_refp2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp2_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:28:06 AM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRX_NUS_1","MLPRX_NUS_1","METRX_NUS_1","MENRX_NUS_1","MEYRX_NUS_1","MPRRX_NUS_1","MPARX_NUS_1","MPLRX_NUS_1","MBNRX_NUS_1","MBURX_NUS_1","MBYRX_NUS_1","MBIRX_NUS_1","MIIRX_NUS_1","MIYRX_NUS_1","MGFRX_NUS_1","MGRRX_NUS_1","MG1RX_NUS_1","M_EPM0RO_YPY_NUS_MBBL","MG4RX_NUS_1","MG5RX_NUS_1","M_EPM0CAL55_YPY_NUS_MBBL","M_EPM0CAG55_YPY_NUS_MBBL","MG6RX_NUS_1","MGARX_NUS_1","MKJRX_NUS_1","M_EPJKC_YPY_NUS_MBBL","M_EPJKM_YPY_NUS_MBBL","MKERX_NUS_1","MDIRX_NUS_1","MD0RX_NUS_1","MD1RX_NUS_1","MDGRX_NUS_1","MRERX_NUS_1","MRXRX_NUS_1","MRMRX_NUS_1","MRGRX_NUS_1","MPCRX_NUS_1","MPNRX_NUS_1","MPORX_NUS_1","MNSRX_NUS_1","MLURX_NUS_1","M_EPPLN_YPY_NUS_MBBL","M_EPPLP_YPY_NUS_MBBL","MWXRX_NUS_1","MCKRX_NUS_1","MCMRX_NUS_1","MCORX_NUS_1","MAPRX_NUS_1","MSGRX_NUS_1","MMSRX_NUS_1","MMFRX_NUS_1","MMNRX_NUS_1","MPGRX_NUS_1"

403

Hydrothermal Liquefaction of Biomass  

SciTech Connect

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

404

Biomass power for rural development  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

405

Biomass Engineering Prize Competition Announced  

Science Conference Proceedings (OSTI)

Posted on: 7/30/2010 12:00:00 AM... The DownEast 2010 Biomass Engineering Prize Competition is seeking innovative solutions focused on revitalizing an...

406

Biomass Pretreatment for Integrated Steelmaking  

Science Conference Proceedings (OSTI)

Presentation Title, Biomass Pretreatment for Integrated Steelmaking. Author(s), Shiju Thomas, Paul Cha, Steven J McKnight, Vincent A Bouma, Andrew L Petrik,

407

Biomass Databook ed4.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, TN 37932 For more information please contact: Stacy Davis (865) 946-1256...

408

NREL: Biomass Research - Daniel Inman  

NLE Websites -- All DOE Office Websites (Extended Search)

us to examine the feasibility of alternative process configurations. Learn more about Biomass Technology Analysis at NREL. System Dynamics I am also interested in dynamic modeling...

409

Biomass Rapid Analysis Network (BRAN)  

DOE Green Energy (OSTI)

Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

Not Available

2003-10-01T23:59:59.000Z

410

System and process for biomass treatment  

DOE Patents (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

411

Biomass Allocation Model - Comparing alternative uses of scarce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Allocation Model - Comparing alternative uses of scarce biomass energy resource through estimations of future biomass use for liquid fuels and electricity. Title Biomass...

412

Biomass for energy and materials Local technologies -  

E-Print Network (OSTI)

Biomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risø National Laboratory Denmark #12;Biomass - a local resource, slaughterhouse waste. #12;Biomass characteristics · Biomass is a storable energy carrier, unlike electricity

413

Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.  

Science Conference Proceedings (OSTI)

Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use.We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-ased allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass -- energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level

Wang, M.; Lee, H.; Molburg, J.

2004-01-01T23:59:59.000Z

414

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

415

U.S. Refinery Net Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Net Production of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005-4,241-2,244: 2,431: 7,319: 7,538 ...

416

Web based multilayered distributed SCADA/HMI system in refinery application  

Science Conference Proceedings (OSTI)

The paper describes system synthesis and architecture of a multilayered distributed SCADA/HMI system. The system is used for monitoring and control of refinery terminals for truck loading and oil products pipeline shipping. Network-centered, distributed ... Keywords: Data server, Fieldbuses, OPC protocols, Real time systems, SCADA/HMI

Adnan Salihbegovic; Vlatko Marinkovi?; Zoran Cico; Elvedin Karavdi?; Nina Delic

2009-03-01T23:59:59.000Z

417

THE NEW GASIFICATION PROJECT AT ENI SANNAZZARO REFINERY AND ITS INTEGRATION WITH A  

E-Print Network (OSTI)

Following the new regulation introduced in Europe in the last years, defining more stringent limits for the emissions to the atmosphere, the necessity to find an alternative use for the fuel oil has created a new challenge for the refineries. At the same time the need to improve the Italian power production has pushed Eni, the Italian energy company, to enter the electricity market.

Mwe Power Plant; Guido Collodi; Dario Camozzi; Snamprogetti Italy

2004-01-01T23:59:59.000Z

418

Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)  

E-Print Network (OSTI)

for the first time. Bioelectrochemical treatability was evaluated relative to oxygen demand. MECs were-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1 ± 0.2 A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal

419

U.S. Gross Inputs to Refineries (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

U.S. Gross Inputs to Refineries (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 11,583: 11,485: 11,484: 11,969: 12,269: 12,422 ...

420

CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario  

E-Print Network (OSTI)

Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered in refineries is introduced. In conjunction with a shortcut model this model has been used to calculate of the steam network of an existing refinery aiming at minimization total annualized cost with considering emissions. In this paper, the case study is steam network of southern Tehran refinery. Simulation of this case has been performed in STAR software that licensed by energy system laboratory at K.N. Toosi University of Technology. Mathematical linear programming method has been applied to optimization of steam network. In addition, the short cut model of CO2 production has been provided for evaluation of steam network with considering CO2 production taxes and other economic effects in total annualized cost. Meanwhile, in this research, new scenario has been defined and evaluated. Results shows new scenario have 45 % less TAOC rather than base scenario in optimal condition.

Manesh, M. H. K; Khodaie, H.; Amidpour, M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 13,255: 14,640: 14,907: 15,583: 14,878 ...

422

Table 4b. U.S. Petroleum Refinery Balance (Million Barrels per Day ...  

U.S. Energy Information Administration (EIA)

Refinery Distillation Utilization Factor ..... 0.86 0.90 0.90 0.89 0.83 0.89 0.91 0.87 0.83 0.88 0.90 0.87 0.89 0.88 0.87 - = no data available Table 4b. U.S ...

423

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

424

Feasibility study on the modernization and expansion of the Tema Oil Refinery. Executive Summary. Export trade information  

Science Conference Proceedings (OSTI)

The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydro-skimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A study of the refinery expansion project takes into consideration earlier studies and, equally important, recognizes the extensive work done by TOR in rehabilitating the refinery. The program, carried out in phases because of funding limitations, has addressed the critical repairs and replacements in the process units and utilities necessary to prolong the life of the refinery and assure reliability and safe operation. It undertook the task of investigating the feasibility of modernizing and expanding the refinery at Tema, Ghana to meet projected market demands until the year 2005. A process planning study was conducted to select the optimal process and utility configuration which would result in economic benefits to Ghana.

Not Available

1992-04-01T23:59:59.000Z

425

Process for concentrated biomass saccharification  

DOE Patents (OSTI)

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

426

OUT Success Stories: Biomass Gasifiers  

DOE Green Energy (OSTI)

The world's first demonstration of an efficient, low-pressure biomass gasifier capable of producing a high-quality fuel is now operating in Vermont. The gasifier converts 200 tons of solid biomass per day into a clean-burning gas with a high energy content for electricity generation.

Jones, J.

2000-08-31T23:59:59.000Z

427

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

428

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network (OSTI)

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

429

NQAATechnical Memorandum NMFS BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES  

E-Print Network (OSTI)

NQAATechnical Memorandum NMFS APRIL BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES FORWASHINGTON corrpletsformalreview,editorialamtrd,ordetailedediting. APRIL 1990 BIOMASS-BASEDMODELSAND HARVESTINGPOLICIES rockfish (S.jordani). A biomass-based delay- difference model with knife-edge recruitment appeared

430

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network (OSTI)

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

431

Biomass Electricity in California Elizabeth K. Stoltzfus  

E-Print Network (OSTI)

Biomass Electricity in California Elizabeth K. Stoltzfus Energy and Resources Group University would also like to thank Bryan Jenkins and other members of the California Biomass Collaborative............................................................................................................................. 1 1.1 Biomass Electricity in California Today

Kammen, Daniel M.

432

Treatment of biomass to obtain fermentable sugars  

DOE Patents (OSTI)

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

433

Biomass Webinar Text Version | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Webinar Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy...

434

Biomass Producer or Collector Tax Credit (Oregon)  

Energy.gov (U.S. Department of Energy (DOE))

The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in...

435

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

with greater supply of biomass, such as northernareasof highersupplywillenablebiomasstobesecuredsupplyoffeedstockis keycomponentindevelopingaviablebiomass

Cattolica, Robert

2009-01-01T23:59:59.000Z

436

NREL: Biomass Research - Amie Sluiter  

NLE Websites -- All DOE Office Websites (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

437

Catalytic Hydrothermal Gasification of Biomass  

Science Conference Proceedings (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

438

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

439

NREL: Biomass Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

440

Mobile Biomass Pelletizing System  

DOE Green Energy (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Comparison of the response of bacterial luminescence and mitochondrial respiration to the effluent of an oil refinery  

Science Conference Proceedings (OSTI)

The effects of oil refinery effluents on rat mitochondrial respiration and on the luminescence of the bacterium Photobacterium phosphoreum were compared. Mitochondria from male Wistar rat livers were exposed to different concentrations of refinery effluents in a semiclosed 3-ml reaction vessel. Respiration was measured polarographically with an oxygen electrode. Effects on P. phosphoreum were measured by the standard test developed by Microbics. The mitochondrial method showed EC50s in the range from 1 to 7.5%, while Microtox gave EC50 in the range from 30 to 42%. The higher sensitivity of mitochondria may be exploited in the development of a sensitive biosensor for toxicity of oil refinery effluents.

Riisberg, M.; Bratlie, E.; Stenersen, J. [Univ. of Oslo (Norway)

1996-04-01T23:59:59.000Z

442

Biomass Gas Cleanup Using a Therminator  

SciTech Connect

The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a ?¢????Therminator?¢??? to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700???°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very active cracking catalysts that lose activity due to coking within the order of several seconds.

David C. Dayton; Atish Kataria; Rabhubir Gupta

2012-03-06T23:59:59.000Z

443

Chinese Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Chinese Station Biomass Facility Jump to: navigation, search Name Chinese Station Biomass Facility Facility...

444

SPI Lincoln Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Lincoln Biomass Facility Jump to: navigation, search Name SPI Lincoln Biomass Facility Facility SPI...

445

Montgomery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Montgomery Biomass Facility Jump to: navigation, search Name Montgomery Biomass Facility Facility...

446

Deblois Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Deblois Biomass Facility Jump to: navigation, search Name Deblois Biomass Facility Facility Deblois...

447

West Enfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon West Enfield Biomass Facility Jump to: navigation, search Name West Enfield Biomass Facility Facility West...

448

MM Nashville Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon MM Nashville Biomass Facility Jump to: navigation, search Name MM Nashville Biomass Facility Facility MM...

449

Olokele Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Olokele Biomass Facility Jump to: navigation, search Name Olokele Biomass Facility Facility Olokele...

450

Pennsbury Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Pennsbury Biomass Facility Jump to: navigation, search Name Pennsbury Biomass Facility Facility...

451

Celanese Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Celanese Biomass Facility Jump to: navigation, search Name Celanese Biomass Facility Facility Celanese...

452

Central LF Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Central LF Biomass Facility Jump to: navigation, search Name Central LF Biomass Facility Facility...

453

US Sugar Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon US Sugar Biomass Facility Jump to: navigation, search Name US Sugar Biomass Facility Facility US Sugar...

454

Rocklin Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Rocklin Biomass Facility Jump to: navigation, search Name Rocklin Biomass Facility Facility Rocklin...

455

Glendale Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Glendale Biomass Facility Jump to: navigation, search Name Glendale Biomass Facility Facility Glendale...

456

SPI Quincy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Quincy Biomass Facility Jump to: navigation, search Name SPI Quincy Biomass Facility Facility SPI...

457

Kettle Falls Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Kettle Falls Biomass Facility Jump to: navigation, search Name Kettle Falls Biomass Facility Facility...

458

DG Whitefield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon DG Whitefield Biomass Facility Jump to: navigation, search Name DG Whitefield Biomass Facility Facility DG...

459

Viking Northumberland Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Viking Northumberland Biomass Facility Jump to: navigation, search Name Viking Northumberland Biomass Facility...

460

Livermore Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Livermore Biomass Facility Jump to: navigation, search Name Livermore Biomass Facility Facility...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca...

462

Oxnard Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Oxnard Biomass Facility Jump to: navigation, search Name Oxnard Biomass Facility Facility Oxnard...

463

Westwood Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Westwood Biomass Facility Jump to: navigation, search Name Westwood Biomass Facility Facility Westwood...

464

Buckeye Florida Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Buckeye Florida Biomass Facility Jump to: navigation, search Name Buckeye Florida Biomass Facility Facility...

465

Wilmarth Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Wilmarth Biomass Facility Jump to: navigation, search Name Wilmarth Biomass Facility Facility Wilmarth...

466

El Nido Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon El Nido Biomass Facility Jump to: navigation, search Name El Nido Biomass Facility Facility El Nido...

467

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba...

468

Stratton Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Stratton Biomass Facility Jump to: navigation, search Name Stratton Biomass Facility Facility Stratton...

469

Jonesboro Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Jonesboro Biomass Facility Jump to: navigation, search Name Jonesboro Biomass Facility Facility...

470

Broome County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Broome County Biomass Facility Jump to: navigation, search Name Broome County Biomass Facility Facility...

471

Salinas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Salinas Biomass Facility Jump to: navigation, search Name Salinas Biomass Facility Facility Salinas...

472

Coventry LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Coventry LFG Biomass Facility Jump to: navigation, search Name Coventry LFG Biomass Facility Facility...

473

Lanchester Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Lanchester Biomass Facility Jump to: navigation, search Name Lanchester Biomass Facility Facility...

474

Troy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Troy Biomass Facility Jump to: navigation, search Name Troy Biomass Facility Facility Troy Sector...

475

SPI Loyalton Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon SPI Loyalton Biomass Facility Jump to: navigation, search Name SPI Loyalton Biomass Facility Facility SPI...

476

Sherman Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Sherman Biomass Facility Jump to: navigation, search Name Sherman Biomass Facility Facility Sherman...

477

Craven County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Craven County Biomass Facility Jump to: navigation, search Name Craven County Biomass Facility Facility...

478

Warren Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Warren Biomass Facility Jump to: navigation, search Name Warren Biomass Facility Facility Warren...

479

Collins Pine Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Collins Pine Biomass Facility Jump to: navigation, search Name Collins Pine Biomass Facility Facility...

480

Davis County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Davis County Biomass Facility Jump to: navigation, search Name Davis County Biomass Facility Facility...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fort Fairfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Fort Fairfield Biomass Facility Jump to: navigation, search Name Fort Fairfield Biomass Facility Facility...

482

Putney Basketville Site Biomass CHP Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

publications. 25 5 Bioenergy Overview Biopower, or biomass power, is the use of biomass to generate electricity. Biopower system technologies include direct-firing,...

483

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here ... The methods of the invention use solar thermal energy as the energy source for the biomass pyrolysis or ...

484

BSCL Use Plan: Solving Biomass Recalcitrance  

DOE Green Energy (OSTI)

Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

2005-08-01T23:59:59.000Z

485

Utility Promoters for Biomass Feedstock Biotechnology ...  

Technology Marketing Summary. Genetic optimization of biomass is necessary to improve the rates and final yields of sugar release from woody biomass.

486

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biomass and Biofuels Technology Marketing Summaries Here youll find marketing summaries of biomass and biofuels technologies available for licensing ...

487

Biomass Energy Services Inc | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Services Inc Place Tifton, Georgia Zip 31794 Product Biodiesel plant developer in Cordele, Georgia. References Biomass Energy Services Inc1 LinkedIn Connections...

488

Biomass Webinar Presentation Slides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

489

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy...

490

Los Alamos scientists advance biomass fuel production  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from...

491

Conservation of Biomass Fuel, Firewood (Minnesota) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation of Biomass Fuel, Firewood (Minnesota) Conservation of Biomass Fuel, Firewood (Minnesota) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned...

492

Biomass Engineering Ltd | Open Energy Information  

Open Energy Info (EERE)

"Biomass Engineering Ltd" Retrieved from "http:en.openei.orgwindex.php?titleBiomassEngineeringLtd&oldid342847" Categories: Clean Energy Organizations Companies...

493

Biomass Resources Corporation | Open Energy Information  

Open Energy Info (EERE)

Biomass Resources Corporation Jump to: navigation, search Name Biomass Resources Corporation Place West Palm Beach, Florida Zip 33401 Product The Company has established a unique...

494

Particle and feeding characteristics of biomass powders.  

E-Print Network (OSTI)

?? Milling of biomass is a necessary key step in suspension gasification or powder combustion. Milled biomass powders are often cohesive, have low bulk density (more)

Falk, Joel

2013-01-01T23:59:59.000Z

495

Biomass Integrated Gasification Combined Cycles (BIGCC).  

E-Print Network (OSTI)

??Conversion of biomass to energy does not contribute to the net increase of carbon dioxide in the environment, therefore the use of biomass waste as (more)

Yap, Mun Roy

2004-01-01T23:59:59.000Z

496

The Economic and Financial Implications of Supplying a Bioenergy Conversion Facility with Cellulosic Biomass Feedstocks  

E-Print Network (OSTI)

Comprehensive analyses are conducted of the holistic farm production-harvesting-transporting-pre-refinery storage supply chain paradigm which represents the totality of important issues affecting the conversion facility front-gate costs of delivered biomass feedstocks. Targeting the Middle Gulf Coast, Edna-Ganado, Texas area, mathematical programming in the form of a cost-minimization linear programming model(Sorghasaurus) is used to assess the financial and economic logistics costs for supplying a hypothetical 30-million gallon conversion facility with high-energy sorghum (HES) and switchgrass (SG) cellulosic biomass feedstock for a 12-month period on a sustainable basis. A corporate biomass feedstock farming entity business organization structure is assumed. Because SG acreage was constrained in the analysis, both HES and SG are in the optimal baseline solution, with the logistics supply chain costs (to the front gate of the conversion facility) totaling $53.60 million on 36,845 acres of HES and 37,225 acres of SG (total farm acreage is 187,760 acres, including HES rotation acres), i.e., $723.67 per harvested acre, $1.7867 per gallon of biofuel produced not including any conversion costs, and $134.01 per dry ton of the requisite 400,000 tons of biomass feedstock. Several sensitivity scenario analyses were conducted, revealing a potential range in these estimates of $84.75-$261.52 per dry ton of biomass feedstock and $1.1300-$3.4870 per gallon of biofuel. These results are predicated on simultaneous consideration of capital and operating costs, trafficable days, timing of operations, machinery and labor constraints, and seasonal harvested biomass feedstock yield relationships. The enhanced accuracy of a comprehensive, detailed analysis as opposed to simplistic approach of extrapolating from crop enterprise budgets are demonstrated. It appears, with the current state of technology, it is uneconomical to produce cellulosic biomass feedstocks in the Middle Gulf Coast, Edna-Ganado, Texas area. That is, the costs estimated in this research for delivering biomass feedstocks to the frontgate of a cellulosic facility are much higher than the $35 per ton the Department of Energy suggests is needed. The several sensitivity scenarios evaluated in this thesis research provides insights in regards to needed degrees of advancements required to enhance the potential economic competitiveness of biomass feedstock logistics in this area.

McLaughlin, Will

2011-12-01T23:59:59.000Z

497

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

498

Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery  

Science Conference Proceedings (OSTI)

Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind ...

S. Guan; G. W. Reuter

1996-08-01T23:59:59.000Z

499

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

500

Washington State biomass data book  

DOE Green Energy (OSTI)

This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

Deshaye, J.A.; Kerstetter, J.D.

1991-07-01T23:59:59.000Z