Powered by Deep Web Technologies
Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Inbicon | Open Energy Information  

Open Energy Info (EERE)

Inbicon Inbicon Jump to: navigation, search Logo: Inbicon Name Inbicon Address Kraftværksvej 53 7000 Fredericia Denmark Place Denmark Website http://www.inbicon.com/pages/i Coordinates 55.515985°, 9.623265° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.515985,"lon":9.623265,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Slide 1  

Gasoline and Diesel Fuel Update (EIA)

Inbicon Biomass Refinery Inbicon Biomass Refinery Cellulosic Ethanol Technology Platforms Growth and Sustainability through Biomass Refining, CHP Technology Review - July 2012 Inbicon Biomass Refinery(tm) Building a path to The New Ethanol (tm) $100MM+ investment in technology and a demonstration refinery * Ongoing optimization, reduction in capital and operating costs = reduced risk * Quality assurance for commercial development world-wide * Proven integration with Coal Power Generation 100 tons/day production facility in Kalundborg, Denmark 2 Cellulosic Ethanol available for Danish drivers, now Inbicon Biomass Refinery Meeting Outline DONG Energy - Inbicon Profile Feedstock Supply Technology and Scale Up Sugar Platform Engineering and Project Execution Project Development Pathway DONG Energy - Inbicon

3

Preliminary life-cycle assessment of biomass-derived refinery feedstocks for reducing CO{sub 2} emissions  

SciTech Connect (OSTI)

The US by ratification of the United Nations Framework Convention on Climate Change has pledged to emit no higher levels of greenhouse gases in the year 2000 than it did in 1990. Biomass-derived products have been touted as a possible solution to the potential problem of global warming. However, past studies related to the production of liquid fuels, chemicals, gaseous products, or electricity from biomass, have only considered the economics of producing these commodities. The environmental benefits have not been fully quantified and factored into these estimates until recently. Evaluating the environmental impact of various biomass systems has begun using life-cycle assessment. A refinery Linear Programming model previously developed has been modified to examine the effects of CO{sub 2}-capping on the US refining industry and the transportation sector as a whole. By incorporating the results of a CO{sub 2} emissions inventory into the model, the economic impact of emissions reduction strategies can be estimated. Thus, the degree to which global warming can be solved by supplementing fossil fuels with biomass-derived products can be measured, allowing research and development to be concentrated on the most environmentally and economically attractive technology mix. Biomass gasification to produce four different refinery feedstocks was considered in this analysis. These biomass-derived products include power, fuel gas, hydrogen for refinery processing, and Fischer-Tropsch liquids for upgrading and blending into finished transportation fuels.

Marano, J.J. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Rogers, S. [Dept. of Energy, Pittsburgh, PA (United States); Spath, P.L.; Mann, M.K. [National Renewable Energy Lab., Golden, CO (United States)

1995-12-31T23:59:59.000Z

4

Bio-char refineries: an accessible approach for the development of biomass-based industry  

Science Journals Connector (OSTI)

Being a by-product of the well-established charcoal industry, slow pyrolysis bio-oil can be an excellent, cost-effective and renewable liquid fuel. However, even in Brazil, a country with a very clean energy profile and large-scale charcoal production, bio-oil is not properly utilised yet. A simple upgrade of traditional methods of charcoal production can significantly increase liquid fuel output. The concept of a bio-char-refinery, introduced in this paper, for production of charcoal, activated carbon, liquid fuel and variety of chemicals presents a possible approach for the development of biomass-based industry. Successful implementation of this concept could provide significant amounts of fuel and chemicals able to enhance economic development and reduce the consumption of petroleum derived products.

Venelin Stamatov; Jose Dilcio Rocha

2007-01-01T23:59:59.000Z

5

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

6

Refinery Capacity Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

7

Biomass in a petrochemical world  

Science Journals Connector (OSTI)

...refinery, mapping out the possible routes from biomass feedstocks to fuels and petrochemical-type products, drawing...biorefinery enables the conversion of a range of biomass feedstocks into fuels and chemical feedstocks [6]. As with...

2013-01-01T23:59:59.000Z

8

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

9

Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)  

SciTech Connect (OSTI)

Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

2014-09-01T23:59:59.000Z

10

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

11

Refinery Outages: Fall 2014  

Reports and Publications (EIA)

This report examines refinery outages planned for Fall 2014 and the potential implications for available refinery capacity, petroleum product markets and supply of gasoline and middle distillate fuel oil (diesel, jet fuel, and heating oil). EIA believes that dissemination of such analyses can be beneficial to market participants who may otherwise be unable to access such information.

2014-01-01T23:59:59.000Z

12

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

13

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

14

Hydrogen Generation for Refineries  

Broader source: Energy.gov (indexed) [DOE]

bottoms (VTB), vacuum resid) * Dilbit (tar sand bitumen diluted with 30% condensate) * Biomass fast pyrolysis oil (whole raw oil) * Norpar 12 (C 11 C 12 paraffinic solvent -...

15

Leslie Pezzullo: ... Biomass Program Webinar series. Today...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

we can take biomass make an oil that is more energy dense and so this could be done on a small scale and then this oil can be moved into a larger central facility i.e. a refinery....

16

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect (OSTI)

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

17

Encon Motivation in European Refineries  

E-Print Network [OSTI]

One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization...

Gambera, S.; Lockett, W., Jr.

1982-01-01T23:59:59.000Z

18

A Louisiana Refinery Success Story  

E-Print Network [OSTI]

manager, operations manager and production manager. From 2004 through 2006, the team presented a series of ESG seminars at the refinery site. The numerous models demonstrated quantitative savings with 3- to 12-mo paybacks. For a complete SSI turnkey...

Kacsur, D.

19

Motiva Refinery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Refinery Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some oil-producing regions has tightened supply. The transition from winter gasoline to summer blends, and the phase out of the additive MTBE in favor of ethanol, have increased the pressure on the market. Most significantly, we have very little spare refining capacity in this

20

Making Refinery Wastewater Clean | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Making Refinery Wastewater Clean Making Refinery Wastewater Clean Lei Wang 2014.09.23 About four years ago, I visited Ordos, Inner Mongolia, to work on a project. When I arrived,...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Present and Future Alkylation Processes in Refineries  

Science Journals Connector (OSTI)

Present and Future Alkylation Processes in Refineries ... Second, an accident at a Texas refinery released considerable amounts of gaseous HF. ... In addition, following an accident, it is uncertain whether the sprays would still be operable. ...

Lyle F. Albright

2009-01-08T23:59:59.000Z

22

Integration of Nonlinear CDU Models in RefineryCDU Models in Refinery  

E-Print Network [OSTI]

planning models Optimizing refinery operation C d l ti Crude selection Maximizing profit; minimizing costIntegration of Nonlinear CDU Models in RefineryCDU Models in Refinery Planning Optimization Carnegie Mellon University EWO Meeting ­ March 2011 1 #12;I t d tiIntroduction Refinery production

Grossmann, Ignacio E.

23

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

24

Opportunities for Biorenewables in Petroleum Refineries  

SciTech Connect (OSTI)

a summary of our collaborative 2005 project Opportunities for Biorenewables in Petroleum Refineries at the Rio Oil and Gas Conference this September.

Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2006-10-11T23:59:59.000Z

25

Refinery Production Planning: Multiperiod MINLP with Nonlinear CDU  

E-Print Network [OSTI]

as integrated planning and scheduling refinery operation models are recognized as key 1 Refinery Production Planning: Multiperiod MINLP with Nonlinear CDU Model-Rivera (2011) developed a single-period, nonlinear programing refinery planning model

Grossmann, Ignacio E.

26

Regional Refinery Utilization Shows Gulf Coast Pressure  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: But there is some room for hope. Refineries generally begin maintenance in February or March, and finish in April. The East Coast was experiencing some lengthy refinery maintenance outages, as shown by the drop in utilization that remained low in most of March and April. In the meantime, the East Coast was drawing on extra supplies from the Gulf Coast and imports. The Midwest refineries seem to have been ramping up in April as they finished what maintenance was needed. But the Midwest no longer has the Blue Island refinery, so it also is pulling more product from the Gulf Coast. The high Gulf Coast prices this spring reflect extra "pull" on product from both the Midwest and the East Coast, and probably from California as well. Inputs into Gulf Coast refineries over the last 4 weeks

27

Refinery burner simulation design architecture summary.  

SciTech Connect (OSTI)

This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

2011-10-01T23:59:59.000Z

28

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

29

From the Woods to the Refinery  

Broader source: Energy.gov [DOE]

Breakout Session 2DBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

30

Refinery siting workbook: appendices A and B  

SciTech Connect (OSTI)

The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

Not Available

1980-07-01T23:59:59.000Z

31

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Liquefied Refinery Gases 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 Finished Motor Gasoline 44.4 44.1 44.4 43.9 43.9 44.9 1993-2013 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2013 Kerosene-Type Jet Fuel 10.0 9.1 9.3 9.4 9.8 9.6 1993-2013 Kerosene 0.0 0.1 0.1 0.1 0.0 0.0 1993-2013 Distillate Fuel Oil 28.4 29.4 28.7 29.2 29.3 29.7 1993-2013 Residual Fuel Oil 3.3 2.9 2.8 2.8 2.5 2.6 1993-2013 Naphtha for Petrochemical Feedstock Use 1.4 1.5 1.5 1.6 1.5 1.5 1993-2013 Other Oils for Petrochemical Feedstock Use 0.6 0.6 0.7 0.7 0.6 0.7 1993-2013 Special Naphthas 0.3 0.3 0.3 0.2 0.3 0.2 1993-2013 Lubricants 0.9 1.1 1.1 1.1 1.1 1.1 1993-2013 Waxes

32

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Liquefied Refinery Gases 4.1 4.1 4.1 4.3 4.0 4.1 1993-2012 Finished Motor Gasoline 45.5 44.2 46.1 45.7 44.9 45.0 1993-2012 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012 Kerosene-Type Jet Fuel 9.1 9.7 9.3 9.3 9.4 9.5 1993-2012 Kerosene 0.2 0.1 0.1 0.1 0.1 0.1 1993-2012 Distillate Fuel Oil 26.1 27.8 26.9 27.5 28.9 29.1 1993-2012 Residual Fuel Oil 4.2 4.0 4.0 3.8 3.4 3.2 1993-2012 Naphtha for Petrochemical Feedstock Use 1.3 1.0 1.3 1.4 1.3 1.3 1993-2012 Other Oils for Petrochemical Feedstock Use 1.3 1.2 0.8 0.8 0.7 0.6 1993-2012 Special Naphthas 0.3 0.3 0.2 0.2 0.2 0.3 1993-2012 Lubricants 1.1 1.1 1.0 1.1 1.1 1.0 1993-2012 Waxes 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012

33

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31062,0.88,32.64...

34

,"U.S. Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)","U.S. API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degrees)" 31228,0.91,32.46...

35

Steam System Management Program Yields Fuel Savings for Refinery  

E-Print Network [OSTI]

The Phillips refinery at Borger, Texas, determined the need to develop a utility monitoring system. Shortly after this commitment was made, the refinery was introduced to a flowsheet modeling program that could be used to model and optimize steam...

Gaines, L. D.; Hagan, K. J.

1983-01-01T23:59:59.000Z

36

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network [OSTI]

Refinery Technology Profiles: Gasification and SupportingGasification.to be carried out. 18.5 Gasification Gasification provides

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

37

Model for Gasification of Residual Fuels from Petroleum Refineries Using the Equation Oriented (EO) Approach  

Science Journals Connector (OSTI)

An attractive way to use residual fuels from petroleum refineries (vacuum residue and petcoke) is their gasification to produce syngas, which contains mainly H2, CO and small quantities of CH4, CO2, as well as nitrogen and sulfur compounds. ... Vacuum residue and petroleum coke (petcoke) are, respectively, heavy liquid and solid byproducts from crude oil refining, they are often used as fuel in boilers for power production, natural gas has been more commonly used in the past few years in power generation; reducing the market for both vacuum residue and petcoke. ... Regarding petroleum refinery residuals Uson et al.(1) developed a model for cogasification of coal, petcoke and biomass, based on reaction kinetics. ...

Jorge E. Marin-Sanchez; Miguel A. Rodriguez-Toral

2010-07-29T23:59:59.000Z

38

Fluor to expand Marathon's Detroit refinery  

Science Journals Connector (OSTI)

Fluor Corp will provide integrated engineering, procurement and construction (EPC) for Marathon Oil Corp's projected US$1.9 billion expansion and upgrade of the company's Detroit refinery. The US$1.6 billion EPC contract includes services, the value of procured materials and the construction contracts under Fluor's direct management.

2008-01-01T23:59:59.000Z

39

Integration of Nonlinear CDU Models in Refinery  

E-Print Network [OSTI]

Hydrotreatment Distillate blending Gas oil blending Cat Crack CDU Crude1, ... Crude2, .... butane Fuel gas Prem. Gasoline Reg. Gasoline Distillate Fuel Oil Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum Product Blending 4 #12;Planning Model Example Information Given Refinery

Grossmann, Ignacio E.

40

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production  

Broader source: Energy.gov [DOE]

Breakout Session 2AConversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal, DirectorBusiness Development, Energy Technologies, Southern Research Institute

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Naphthenic acid corrosion in the refinery  

SciTech Connect (OSTI)

Field tests and laboratory studies of refinery process streams are presented. The effects of temperature, velocity and physical state were studied with respect to alloy selection for corrosion resistant service. The amount of molybdenum in the austenitic stainless steel alloys is the dominant factor in conferring corrosion resistance. The Naphthenic Acid Corrosion Index (NACI) is useful in assessing the severity of corrosion under a variety of circumstances.

Craig, H.L. Jr. [Mobil Research and Development Corp., Paulsboro, NJ (United States)

1995-11-01T23:59:59.000Z

42

NREL: Biomass Research - What Is a Biorefinery?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Is a Biorefinery? What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery concept is analogous to today's petroleum refineries, which produce multiple fuels and products from petroleum. Industrial biorefineries have been identified as the most promising route to the creation of a new domestic biobased industry. By producing multiple products, a biorefinery can take advantage of the differences in biomass components and intermediates and maximize the value derived from the biomass feedstock. A biorefinery might, for example, produce one or several low-volume, but high-value, chemical products and a low-value, but high-volume liquid transportation fuel, while generating

43

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2012 a b REACTIVATED PAD District I 185,000 366,700 Monroe Energy LLC Trainer, PA 185,000 366,700 09/12 c SHUTDOWN PAD District I 80,000 47,000 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District III 16,800 19,500 Western Refining Southwest Inc Bloomfield, NM 16,800 19,500 12/09 11/12 PAD District VI 500,000 1,086,000 Hovensa LLC Kingshill, VI 500,000 1,086,000 02/12 02/12 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery Report." c Formerly owned by ConocoPhillips Company.

44

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

45

Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal-biomass Catalytic Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics Background The U.S. Department of Energy (DOE) supports research and development efforts targeted to improve efficiency and reduce the negative environmental effects of the use of fossil fuels. One way to achieve these goals is to combine coal with biomass to create synthesis gas (syngas) for use in turbines and refineries to produce energy, fuels,

46

Biomass Conversion  

Science Journals Connector (OSTI)

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the su...

Stephen R. Decker; John Sheehan

2007-01-01T23:59:59.000Z

47

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan

2012-01-01T23:59:59.000Z

48

Biomass pretreatment  

SciTech Connect (OSTI)

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

49

Potential Impacts of Reductions in Refinery Activity on Northeast...  

Gasoline and Diesel Fuel Update (EIA)

serving Philadelphia-area refineries primarily handle crude oil and their docks and tanks are not equipped to offload waterborne products. Figure 1. Petroleum Product Assets in...

50

Fuel-Flexible Combustion System for Refinery and Chemical Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. Displacing Natural Gas Consumption and Lowering...

51

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network [OSTI]

refineries with specific energy and cost savings data whenoperations. Typically, energy and cost savings are around 5%the potential energy and cost-savings (Frangopoluos et al. ,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

52

Projection and Reaction for Decision Support in Refineries: Combining Multiple Theories  

E-Print Network [OSTI]

system to provide decision support for refinery operations personnel (Krebsbach & Musliner 1997; Musliner) used to optimize control parameters during normal operations. Current Refinery Operations HumanProjection and Reaction for Decision Support in Refineries: Combining Multiple Theories Kurt D

Krebsbach, Kurt D.

53

Naphthenic acid corrosion in refinery settings  

SciTech Connect (OSTI)

Naphthenic acid corrosion has been a problem in the refining industry for many years. Recently interest in this problem has grown because crudes that contain naphthenic acid are being recovered from areas which were not known to produce this type of crude, such as china, India, and Africa. New techniques for identifying naphthenic acid corrosion and chemical treatments for preventing this attack are presented. Refinery case studies include stream analysis, failure analysis, and inhibitor use. Laboratory tests to show the effect of hydrogen sulfide and phosphorus-based inhibitors are discussed.

Babaian-Kibala, E. (Nalco Chemical Co., Sugar Land, TX (United States)); Craig, H.L. Jr. (Mobil Research and Development Corp., Paulsboro, NJ (United States)); Rusk, G.L. (Mobil Oil Co., Torrance, CA (United States)); Blanchard, K.V.; Rose, T.J.; Uehlein, B.L. (Nalco Chemical Co., Paulsboro, NJ (United States)); Quinter, R.C. (Sun Co., Newtown Square, PA (United States)); Summers, M.A. (Sun Co., Marcus Hook, PA (United States))

1993-04-01T23:59:59.000Z

54

,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...  

U.S. Energy Information Administration (EIA) Indexed Site

Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)","U.S. Gasoline Blending Components Stocks at Refineries, Bulk Terminals, and Natural Gas Plants...

55

Reformulated gasoline: Costs and refinery impacts  

SciTech Connect (OSTI)

Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

Hadder, G.R.

1994-02-01T23:59:59.000Z

56

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

57

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

58

Summary of Market Assessment of Upcoming Planned Refinery Outages  

Gasoline and Diesel Fuel Update (EIA)

Summary of Market Assessment of Upcoming Planned Refinery Outages Summary of Market Assessment of Upcoming Planned Refinery Outages Summary of Market Assessment of Upcoming Planned Refinery Outages Market Assessment of Upcoming Planned Refinery Outages, December 2008 - March 2009 reviews planned U.S. refinery outages from December 2008 though March 2009 in order to identify any regions where outages might create enough supply pressure to impact prices significantly. As required under Section 804 of the Energy Independence and Security Act of 2007 (Pub. L. 110-140), this report reviews the supply implications of planned refinery outages for December 2008 through March 2009, which covers the winter period when demand for distillate fuels (diesel and heating oil) is high. As a result, emphasis in this report is on distillate rather than gasoline. Refinery outages are the result of planned maintenance and unplanned outages. Maintenance is usually scheduled during the times when demand is lowest - in the first quarter and again in the fall. Unplanned outages, which occur for many reasons including mechanical failures, fires, and flooding, can occur at any time.

59

Biomass Basics  

Broader source: Energy.gov [DOE]

Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae,...

60

Motiva Enterprises Refinery Expansion Groundbreaking | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enterprises Refinery Expansion Groundbreaking Enterprises Refinery Expansion Groundbreaking Motiva Enterprises Refinery Expansion Groundbreaking December 10, 2007 - 4:44pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Bill. It's good to see Congressman Poe, Rob Routs, Mr. Al-Khayyal and Mayor Prince here. Thank you all for inviting me to be part of this occasion. In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the Texas Oil Boom helped to build America. People moved across the country in search of prosperity. To achieve it, they needed to develop new technologies and build new infrastructure like the original parts of the Port Arthur refinery, which opened here in 1903. As America's need for energy expanded as our demand for oil and gas

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Secretary Bodman Tours Refinery and Calls for More Domestic Refining  

Broader source: Energy.gov (indexed) [DOE]

Tours Refinery and Calls for More Domestic Tours Refinery and Calls for More Domestic Refining Capacity Secretary Bodman Tours Refinery and Calls for More Domestic Refining Capacity May 18, 2006 - 10:43am Addthis Highlights President Bush's Four-Point Plan to Combat High Energy Prices PORT ARTHUR, TX - Secretary of Energy Samuel W. Bodman today renewed the call for expanded oil refining capacity in the United States and discussed additional steps the Department of Energy (DOE) is taking to prepare for the upcoming hurricane season. Secretary Bodman made the statements after touring the Motiva Refinery in Port Arthur, Texas. "We need a more robust energy sector; and one way to do that is to strengthen and expand our domestic oil refining capacity. We're hopeful that Motiva will continue to work to expand their capacity to 600,000

62

Effective Fouling Minimization Increases the Efficiency and Productivity of Refineries  

Broader source: Energy.gov [DOE]

This factsheet details a project to improve operating procedures, including physical and chemical methods and the use of high-temperature coatings, to allow refineries to operate equipment below threshold fouling conditions and use the most effective minimization techniques.

63

Gas Separation Membrane Use in the Refinery and Petrochemical Industries  

E-Print Network [OSTI]

Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

Vari, J.

64

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network [OSTI]

Technologies to economically recover low-temperature waste energy in chemical plants and refineries are the holy grail of industrial energy efficiency. Low temperature waste energy streams were defined by the Texas Industries of the Future Chemical...

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

65

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a new agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

66

U.S. Refinery Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 5,383,494 5,119,100 4,676,865 4,568,301 4,484,600 4,395,128 2005-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 2005-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 2005-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 2005-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 2005-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 2005-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 2005-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 2005-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 2005-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 2005-2012

67

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

of Last of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2013 PAD District I 542,450 GNC Energy Corp Greensboro, NC 3,000 0 a Primary Energy Corp Richmond, VA 6,100 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc Westville, NJ 145,000 263,000 11/09 02/10 Western Refining Yorktown Inc Yorktown, VA 66,300 182,600 09/10 12/11 Sunoco Inc Marcus Hook, PA 178,000 278,000 12/11 12/11 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District II 460,315 Coastal Refining & Mktg El Dorado, KS 0 20,000 b Intercoastal Energy Svcs

68

Retrofitting analysis of integrated bio-refineries  

E-Print Network [OSTI]

for biomass for purpose use (U.S. Department of Energy 2004) 14 There are also other platforms such as biogas, carbon-rich chains, plant products and bio-oil which are beyond the scope of this work. Biogas platform is the decomposition... Thailand 74 Mexico 9 Germany 71 Nicaragua 8 Ukraine 66 Mauritius 6 Canada 61 Zimbabwe 6 Poland 53 Kenya 3 Indonesia 42 Swaziland 3 Argentina 42 Others 338 Total 10770 Many countries try to reduce petroleum imports...

Cormier, Benjamin R.

2007-04-25T23:59:59.000Z

69

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

70

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

71

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

72

DOE - Office of Legacy Management -- International Rare Metals Refinery Inc  

Office of Legacy Management (LM)

Rare Metals Refinery Rare Metals Refinery Inc - NY 38 FUSRAP Considered Sites Site: International Rare Metals Refinery, Inc. (NY.38 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Canadian Radium and Uranium Corporation NY.38-1 Location: 69 Kisko Avenue , Mt. Kisko , New York NY.38-1 NY.38-3 Evaluation Year: 1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. NY.38-5 Site Disposition: Eliminated - No Authority - Site was a commercial operation not under the jurisdiction of DOE predecessor agencies NY.38-2 NY.38-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium, Plutonium NY.38-5 Radiological Survey(s): Yes NY.38-1 NY.38-5 Site Status: Eliminated from consideration under FUSRAP

73

VarPetrRef 1 VARIETY AND THE EVOLUTION OF REFINERY PROCESSING  

E-Print Network [OSTI]

VarPetrRef 1 VARIETY AND THE EVOLUTION OF REFINERY PROCESSING Phuong NGUYEN*, Pier-Paolo SAVIOTTI, refinery processes, variety, niche theory, Weitzman measure. JEL classification : L15 -L93 -O3 1

Paris-Sud XI, Université de

74

U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

75

JANUARY 2007 THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL  

E-Print Network [OSTI]

OF JANUARY 2007 THE REPORT THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL #12;From left;PANEL STATEMENT The B.P. U.S. Refineries Independent Safety Review Panel i Process safety accidents can be prevented. On March 23, 2005, the BP Texas City refinery experienced a catastrophic process accident

Leveson, Nancy

76

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations  

E-Print Network [OSTI]

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced 2013 Available online 5 November 2013 Keywords: Microbial fuel cells Refinery wastewater Biodegradability Separator electrode assembly a b s t r a c t The effectiveness of refinery wastewater (RW

77

GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning  

E-Print Network [OSTI]

AGO HGO HFO RG LPG R95 R100 RG LPG CN CGO RG Refinery Operation and Management - J.P. Favennec Crude1 GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning (Performance Analysis. Grossmann #12;2 Motivation · Refinery planning is an active area in process systems that strongly relies

Grossmann, Ignacio E.

78

GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning  

E-Print Network [OSTI]

RG LPG R95 R100 RG LPG CN CGO RG Refinery Operation and Management - J.P. Favennec Crude Distillation1 GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning Department of Chemical · Refinery planning is an active area in process systems that strongly relies on the accuracy of the CDU

Grossmann, Ignacio E.

79

Perception of an emergency Situation by operators in an oil refinery L.Pioche&J.RPineau  

E-Print Network [OSTI]

Perception of an emergency Situation by operators in an oil refinery L.Pioche&J.RPineau Institut de the operators' behaviour during an emergency Situation m an oil refinery. The aim ofthis stage the general objective is to analyse the operators' behaviour during an emergency Situation in an oil refinery

Paris-Sud XI, Université de

80

Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Information  

Open Energy Info (EERE)

Saudi Aramco Mobile Refinery Company (SAMREF) Saudi Aramco Mobile Refinery Company (SAMREF) Jump to: navigation, search Logo: Saudi Aramco Mobile Refinery Company (SAMREF) Name Saudi Aramco Mobile Refinery Company (SAMREF) Address P.O. Box 30078 Place Yanbu, Saudi Arabia Sector Oil and Gas Product Crude Oil Refining Phone number (966) (4) 396-4443 Website http://www.samref.com.sa/ Coordinates 24.0866932°, 38.0585527° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.0866932,"lon":38.0585527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Refinery and Blender Net Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

18,146 17,882 18,452 18,673 18,564 19,106 1983-2013 Liquefied Refinery Gases 630 623 659 619 630 623 1984-2013 EthaneEthylene 18 19 20 20 18 7 1985-2013 Ethane 13 14 14 14 13 7...

82

Low temperature thermal treatment for petroleum refinery waste sludges  

SciTech Connect (OSTI)

Treatment requirements for waste sludges generated by petroleum refinery operations and designated as waste codes K048, K049, K050, K051 and K052 under the Resource Conservation and Recovery Act (RCRA) became effective in November, 1990 under the Landban regulations. An experimental program evaluated low temperature thermal treatment of filter cakes produced from these sludges using laboratory and pilot-scale equipment. One set of experiments on waste samples from two different refineries demonstrated the effective removal of organics of concern from the sludges to meet the RCRA Best Demonstrated Available Technology (BDAT) treatment standards. Cyanides were also within the acceptable limit. Combined with stabilization of heavy metals in the treatment residues, low temperature thermal treatment therefore provides an effective and efficient means of treating refinery sludges, with most hydrocarbons recovered and recycled to the refinery. A milder thermal treatment was used to remove the bulk of the water from a previously filtered waste sludge, providing effective waste minimization through a 40% decrease in the mass of sludge to be disposed. The heating value of the sludge was increased simultaneously by one-third, thereby producing a residue of greater value in an alternative fuels program. A process based on this approach was successfully designed and commercialized.

Ayen, R.J.; Swanstrom, C.P. (Geneva Research Center, IL (United States))

1992-05-01T23:59:59.000Z

83

NREL: Biomass Research - Biomass Characterization Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

84

Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: August 13, 2: August 13, 2007 Refinery Output by World Region to someone by E-mail Share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Facebook Tweet about Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Twitter Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Google Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Delicious Rank Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Digg Find More places to share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on AddThis.com... Fact #482: August 13, 2007

85

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

86

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

87

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network [OSTI]

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

88

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

NREL: Biomass Research - Biomass Characterization Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

90

Biomass Analytical Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

91

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

92

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

93

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyBiomass Biomass Sandia spearheads research into energy alternatives that will help the nation reduce its dependence on fossil fuels and to combat the effects of climate...

94

Pemex to acquire interest in Shell Texas refinery  

SciTech Connect (OSTI)

This paper reports that Petroleos Mexicanos and Shell Oil Co. have signed a memorandum of understanding to form a joint refining venture involving Shell's 225,000 b/d Deer Park, Tex., refinery. Under the agreement, Mexico's state owned oil company is to purchase a 50% interest in the refinery, and Shell is to sell Pemex unleaded gasoline on a long term basis. Under the venture, Shell and Pemex plan to add undisclosed conversion and upgrading units tailored to process heavy Mexican crude. The revamp will allow Pemex to place more than 100,000 b/d of Mayan heavy crude on the U.S. market. Mayan accounts for 70% of Mexico's crude oil exports. In turn, Shell will sell Pemex as much as 45,000 b/d of unleaded gasoline to help meet Mexico's rapidly growing demand.

Not Available

1992-08-31T23:59:59.000Z

95

Cellulosic ethanol | Open Energy Information  

Open Energy Info (EERE)

Cellulosic ethanol Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural residues, other lignocellulosic raw materials or energy crops. These lignocellulosic raw materials are more widely available than the standard material used for ethanol. They are also considered to be more sustainable, however they need to be broken down (hydrolysed) into simple sugars prior to distillation, a much more complex process than the first generation bioethanol. It first must go through pretreatment,hydrolysis then a conversion. Research since the 1970s and large investments are being made in the US and Europe to speed up development of this route to bioethanol. Biomass refineries like Inbicon in Denmark are producing

96

Kidney cancer and hydrocarbon exposures among petroleum refinery workers  

SciTech Connect (OSTI)

To evaluate the hypothesis of increased kidney cancer risk after exposure to hydrocarbons, especially those present in gasoline, we conducted a case-control study in a cohort of approximately 100,000 male refinery workers from five petroleum companies. A review of 18,323 death certificates identified 102 kidney cancer cases, to each of whom four controls were matched by refinery location and decade of birth. Work histories, containing an average of 15.7 job assignments per subject, were found for 98% of the cases and 94% of the controls. Tb each job, industrial hygienists assigned semiquantitative ratings for the intensity and frequency of exposures to three hydrocarbon categories: nonaromatic liquid gasoline distillates, aromatic hydrocarbons, and the more volatile hydrocarbons. Ratings of {open_quotes}present{close_quotes} or {open_quotes}absent{close_quotes} were assigned for seven additional exposures: higher boiling hydrocarbons, polynuclear aromatic hydrocarbons, asbestos, chlorinated solvents, ionizing radiation, and lead. Each exposure had either no association or a weak association with kidney cancer. For the hydrocarbon category of principal a priori interest, the nonaromatic liquid gasoline distillates, the estimated relative risk (RR) for any exposure above refinery background was 1.0 (95% confidence interval [CI] 0.5-1.9). Analyses of cumulative exposures and of exposures in varying time periods before kidney cancer occurrence also produced null or near-null results. In an analysis of the longest job held by each subject (average duration 9.2 years or 40% of the refiner&y work history), three groups appeared to be at increased risk: laborers (RR = 1.9,95% CI 1.0-3.9); workers in receipt, storage, and movements (RR = 2.5,95% CI 0.9-6.6); and unit cleaners (RR = 2.3, 95% CI 0.5-9.9). 53 refs., 7 tabs.

Poole, C.; Dreyer, N.A.; Satterfield, M.H. [Epidemiology Resources Inc., Newton Lower Falls, MA (United States); Levin, L. [Drexel Univ., Philadelphia, PA (United States)

1993-12-01T23:59:59.000Z

97

Chapter 6 - Alternative valorization routes (refinery, cogeneration, and rerefining residue)  

Science Journals Connector (OSTI)

Publisher Summary Waste oil valorization in a refinery must be considered only after having done a complete feasibility evaluation. Wherever the waste oil is introduced, it should not modify the properties of the refinery products, or the normal operations or functions of the rerefining units. Most oil refineries are complex industrial sites characterized by a very large treated tonnage, a permanent operation of a continuous flow of products from desalination and atmospheric distillation upstream to the storage of finished products downstream passing through all the intermediate refining steps, and the necessity of adapting the units' operating conditions to the treated crude to maintain a good level of quality for the finished products. Other priorities include the need to increase the severity of operating conditions of hydrotreatment to produce gasoline, kerosene, and diesel oil from direct distillation or from thermal or catalytic cracking to comply with the standards for sulfur and aromatic compounds. These constraints provide a better understanding of the importance of alternative valorization routes.

Franois Audibert

2006-01-01T23:59:59.000Z

98

Modeling and Multi-objective Optimization of Refinery Hydrogen Network  

Science Journals Connector (OSTI)

The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single- objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is introduced to illustrate the applicability of the approach.

Yunqiang JIAO; Hongye SU; Zuwei LIAO; Weifeng HOU

2011-01-01T23:59:59.000Z

99

Biomass treatment method  

DOE Patents [OSTI]

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

100

Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets  

Reports and Publications (EIA)

Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets is an update to a previous Energy Information Administration (EIA) report, Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets, released in December 2011. This update analyzes possible market responses and impacts in the event Sunoco's Philadelphia refinery closes this summer, in addition to the recently idled refineries on the East Coast and in the U.S. Virgin Islands.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nations power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

102

Updated estimation of energy efficiencies of U.S. petroleum refineries.  

SciTech Connect (OSTI)

Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

2010-12-08T23:59:59.000Z

103

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell, Massachusetts....

104

NREL: Biomass Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Research Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo...

105

Sandia National Laboratories: Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

106

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

107

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

108

Motor System Upgrades Smooth the Way to Savings of $700,000 at Chevron Refinery  

Broader source: Energy.gov [DOE]

Chevron, the largest U.S. refiner operating six gasoline-producing refineries, completed a motor system efficiency improvement project in 1997 at its Richmond, California, refinery that resulted in savings of $700,000 annually. This two-page fact sheet describes how they achieved the savings.

109

Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)  

E-Print Network [OSTI]

, 2005), brewery (Feng et al., 2008), animal (Min et al., 2005) and paper recycling wastewaters (HuangTreatability studies on different refinery wastewater samples using high-throughput microbial, University Park, PA 16802, USA h i g h l i g h t s Refinery wastewaters were tested as fuels in MECs

110

STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas  

E-Print Network [OSTI]

1 STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas As an example of STAMP, we have taken an accident report produced for a real refinery failures and operator actions (or missing actions) related to the loss. But stopping after identifying

Leveson, Nancy

111

Wireless channel characterization and modeling in oil and gas refinery plants  

E-Print Network [OSTI]

Wireless channel characterization and modeling in oil and gas refinery plants Stefano Savazzi1 modeling approach is validated by experimental measurements in two oil refinery sites using industry standard ISA SP100.11a compliant commercial devices operating at 2.4GHz. I. INTRODUCTION The adoption

Savazzi, Stefano

112

Energie aus Biomasse  

Science Journals Connector (OSTI)

Biomasse ist Sonnenenergie, die mithilfe von Pflanzen ber den Prozess der Photosynthese in organische Materie umgewandelt wird und in dieser Form zur Deckung der Energienachfrage genutzt werden kann. Biomasse...

Martin Kaltschmitt; Wolfgang Streicher

2009-01-01T23:59:59.000Z

113

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

None

2009-12-01T23:59:59.000Z

115

Pretreated densified biomass products  

SciTech Connect (OSTI)

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

116

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

117

Original article Root biomass and biomass increment in a beech  

E-Print Network [OSTI]

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

118

Comparison of predicted and measured noise levels for refinery units  

Science Journals Connector (OSTI)

Predicting noise levels from new refinery units is a vital part of environmental assessment and designing units to meet noise limits. The accuracy of those noise predictions is a very important concern. The simplest way to assess the accuracy of predictions is to compare predicted and measured noise levels. This is usually difficult because measured levels are strongly affected by noise from adjacent units and by atmospheric effects on sound propagation. Further actual noise levels of significant sources often deviate from expected levels used in the noise prediction model. Thus to meaningfully compare predicted and measured levels the actual noise source levels for the major sources atmospheric conditions and noise levels from adjacent units must all be accounted for. Predicted and measured levels are compared for two large refinery units. Measurements were made at locations where noise from adjacent units has little effect and close enough so that atmospheric conditions have little impact on the measured levels. Measured operational noise levels of major sources were used to update the noise prediction model. Accuracy of the predictions is evaluated.

Frank H. Brittain; Mark M. Gmerek

1998-01-01T23:59:59.000Z

119

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

120

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article is a stub. You can help OpenEI by expanding it. Star Biomass...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

AVAILABLE NOW! Biomass Funding  

E-Print Network [OSTI]

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

122

Flash Carbonization of Biomass  

Science Journals Connector (OSTI)

Biomass feedstocks included woods (Leucaena and oak) and agricultural byproducts (macadamia nut shells and corncob). ... Biomass feedstocks employed in this study are listed in Table 1. ... 4 We presume that these differences represent the inherent variability of biomass feedstocks from one year, location, etc. to the next. ...

Michael Jerry Antal, Jr.; Kazuhiro Mochidzuki; Lloyd S. Paredes

2003-07-11T23:59:59.000Z

123

The Energy Minimization Method: A Multiobjective Fitness Evaluation Technique and Its Application to the Production Scheduling in a Petroleum Refinery  

E-Print Network [OSTI]

to the Production Scheduling in a Petroleum Refinery Mayron Rodrigues de Almeida Sílvio Hamacher Industrial applied to production scheduling of a petroleum refinery. The experimental results are presented of the method when applied to the production scheduling in a petroleum refinery. Section 5 discusses

Coello, Carlos A. Coello

124

BNL | Biomass Burns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

125

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

126

Citrus Waste Biomass Program  

SciTech Connect (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

127

Volatility of Mixtures of JP-8 with Biomass Derived Hydroprocessed Renewable Jet Fuels by the Composition Explicit Distillation Curve Method  

Science Journals Connector (OSTI)

Volatility of Mixtures of JP-8 with Biomass Derived Hydroprocessed Renewable Jet Fuels by the Composition Explicit Distillation Curve Method ... Energy Fuels, 2012, 26 (3), ... There are many reasons for this, the most important of which are guarding against potential supply disruptions, overcoming the dependence on foreign sources of petroleum, overcoming the vulnerability of large centralized refineries (to both weather events and terrorist acts), and mitigation of the rising costs of current fuel streams. ...

Jean Van Buren; Kathryn Abel; Tara M. Lovestead; Thomas J. Bruno

2012-02-28T23:59:59.000Z

128

Towards sustainable production of clean energy carriers from biomass resources  

Science Journals Connector (OSTI)

A great fraction of the worlds energy requirements are presently met through the unfettered use of fossil-derived fuels. However, due to the anticipated demise of these energy sources and the environmental and socioeconomic concerns associated with their use, a recent paradigm shift is to displace conventional fuels with renewable energy sources. Among various alternatives, biomasses have garnered tremendous interests as potential feedstock for clean energy production. While numerous biorefinery schemes and conversion technologies exist for the transformation of biomass into usable energy forms, they are not cost-efficient and economically viable to compete with the existing petroleum-refinery technologies. In particular, the recalcitrant nature of several feedstock presents a major technological obstacle for their processing and transformation. Providentially, the synergistic integration of various biochemical and bioprocessing technologies is aiding in the establishment of future biomass energy programs. This article reviews the state of the art and future challenges in the recent development of biomass and associated transformation technologies for clean production of biofuels.

Kajan Srirangan; Lamees Akawi; Murray Moo-Young; C. Perry Chou

2012-01-01T23:59:59.000Z

129

Market Assessment of Planned Refinery Outages March … June 2009  

Gasoline and Diesel Fuel Update (EIA)

09)/1 09)/1 Market Assessment of Planned Refinery Outages March - June 2009 March 2009 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor.

130

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

131

,"U.S. Production Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Production Capacity of Operable Petroleum Refineries" Production Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Production Capacity of Operable Petroleum Refineries",11,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capprod_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capprod_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

132

,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Charge Capacity of Operable Petroleum Refineries" Charge Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Downstream Charge Capacity of Operable Petroleum Refineries",32,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capchg_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capchg_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

133

,"U.S. Total Shell Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity at Operable Refineries" Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capshell_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

134

,"U.S. Working Storage Capacity at Operable Refineries"  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Capacity at Operable Refineries" Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2013,"6/30/1982" ,"Release Date:","6/21/2013" ,"Next Release Date:","6/20/2014" ,"Excel File Name:","pet_pnp_capwork_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

135

NREL: Biomass Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

136

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

137

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

138

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

renewableenergyresourcesincludebiomass,solarthermalresources: wind, closed?loop biomass, open? loop biomass, geothermal energy, solar

Cattolica, Robert

2009-01-01T23:59:59.000Z

139

Downdraft gasification of biomass.  

E-Print Network [OSTI]

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

140

Biomass: Biogas Generator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Middle School (6-8) Small groups (3 to...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Biomass 2012 Agenda  

Office of Environmental Management (EM)

reach of biomass and biofuel applications, helping to build capacity that will allow for bioenergy markets to develop and deepen in the international arena. Moderator: Natasha...

142

DOE 2014 Biomass Conference  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Biomass Conference Jim Williams Senior Manager American Petroleum Institute July 29, 2014 DRAFT 72814 Let's Agree with the Chicken Developing & Implementing Fuels & Vehicle...

143

Biomass Resource Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with universities and industry partners to maintain a library of herbaceous and woody biomass samples. All analyses performed on these samples, including moisture content,...

144

Biomass 2014 Attendee List  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bender Novozymes Bryna Berendzen DOE - Bioenergy Technologies Office Joshua Berg The Earth Partners Dilfia Bermudez Summerhill Biomass Systems Inc. Michael Bernstein BCS, Inc....

145

NREL: Biomass Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

146

Biomass Indirect Liquefaction Workshop  

Broader source: Energy.gov [DOE]

To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL)...

147

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

148

Biomass 2014 Draft Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Draft Agenda Biomass 2014 Draft Agenda The following document is a draft agenda for the Biomass 2014: Growing the Future Bioeconomy conference. Biomass 2014 Draft...

149

Biomass 2011 Conference Agenda | Department of Energy  

Office of Environmental Management (EM)

1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011fullagenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010...

150

Biomass 2009 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009fullagenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011...

151

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum...

152

House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act |  

Broader source: Energy.gov (indexed) [DOE]

Passage of H.R. 5254 - The Refinery Permit Process Schedule Passage of H.R. 5254 - The Refinery Permit Process Schedule Act House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act June 8, 2006 - 2:17pm Addthis Statement from Secretary Bodman WASHINGTON, DC - The following is a statement from the Secretary Samuel W. Bodman of the Department of Energy on the passage of House Resolution 5254, The Refinery Permit Process Schedule Act: "I commend the House of Representatives for their passage of this important piece of legislation. Expanding our nation's refining capacity is an important part of President Bush's four-point plan to confront high gasoline prices and is a key component to strengthening our nation's energy security. By increasing our nation's domestic refining capacity we can help grow our nation's economy and reduce our reliance on foreign sources

153

Market Assessment of Refinery Outages Planned for March 2011 through June 2011  

Gasoline and Diesel Fuel Update (EIA)

Assessment of Refinery Assessment of Refinery Outages Planned for March 2011 through June 2011 APRIL 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration / Market Assessment of Planned Refinery Outages / March 2011 - June 2011 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration / Market Assessment of Planned Refinery Outages /

154

Appendix D Short-Term Analysis of Refinery Costs and Supply  

Broader source: Energy.gov (indexed) [DOE]

Short-Term Analysis of Refinery Costs and Supply 9302 Appendix D Short-Term Analysis of Refinery Costs and Supply As a result of the new regulations issued by the U.S. Estimating Components of the Distillate Environmental Protection Agency (EPA) for ultra-low- Blend Pool sulfur diesel fuel (ULSD) the U.S. refining industry faces two major challenges: to meet the more stringent specifi- The initial step of the analysis was to analyze the poten- cations for diesel product, and to keep up with demand tial economics of producing ULSD for each refinery. by producing more diesel product from feedstocks of Using input and output data submitted to the Energy lower quality. Some refineries in the United States and Information Administration (E1A) by refiners, the cur-

155

Hydrogen Sulfide Exposure among Oil Refinery Workers at Marathon Petroleum Company in Canton, Ohio.  

E-Print Network [OSTI]

??Air monitoring surveys were conducted during loading operations at three locations inside of Marathon Petroleum Companys Canton, Ohio oil refinery. These three locationsthe sulfur truck (more)

Beil, Christine A

2012-01-01T23:59:59.000Z

156

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network [OSTI]

. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW...

Meacher, J. S.

1981-01-01T23:59:59.000Z

157

Regulation: EPA sued for undercounting toxic emissions at refineries, chemical plants  

Science Journals Connector (OSTI)

Several community organizations have filed a lawsuit to force the Environmental Protection Agency to review the way it measures toxic air pollution from oil refineries and petrochemical plants along the Texas-Louisiana Gulf Coast. ... Recent independent studies at Marathon Oil, Shell, and BP refineries measured actual emissions at levels 10 to 100 times higher than estimates based on the methods facilities currently use to report their releases, the suit says. ...

GLENN HESS

2013-05-13T23:59:59.000Z

158

Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection  

SciTech Connect (OSTI)

The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

John W. Berthold

2006-02-22T23:59:59.000Z

159

Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide  

SciTech Connect (OSTI)

The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

Goldberg, M.

2013-12-31T23:59:59.000Z

160

Integration of hydrogen management in refinery planning with rigorous process models and product quality specifications  

Science Journals Connector (OSTI)

New trends of increased heavy crude markets and clean-fuel legislation, to produce ultra low-sulphur (ULS) gasoline and diesel fuels, are forcing refineries to increase their consumption of hydrogen. This critical situation raises the need to have a tool for operating refineries with flexibility and profitability. This paper addresses the planning of refinery with consideration to hydrogen availability. A systematic method for integrating a hydrogen management strategy within a rigorous refinery planning model is undertaken. The presented model consists of two main building blocks: a set of non-linear processing units' models and a hydrogen balance framework. The two blocks are integrated to produce a refinery-wide planning model with hydrogen management. The hydrogen management alternatives were determined by economic analysis. The proposed model improves the hidden hydrogen unavailability that prevents refineries from achieving their maximum production and profit. The model is illustrated on representative case studies and the results are discussed. It was found that an additional annual profit equivalent to $7 million could be achieved with a one-time investment of $13 million in a new purification unit.

Ali Elkamel; Ibrahim Alhajri; A. Almansoori; Yousef Saif

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Driving on Biomass  

Science Journals Connector (OSTI)

...for future liquid biofuels might be better directed...because of higher energy density and at...priority for future biofuel research. However...perhaps including algae or thermochemical...support research alternatives that look beyond...biomass yields and the energy density of biomass...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

162

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

163

Module Handbook Specialisation Biomass Energy  

E-Print Network [OSTI]

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

164

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

165

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

166

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

167

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

168

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

169

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

170

Developing better biomass feedstock | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing better biomass feedstock Developing better biomass feedstock Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research scientist, is bioengineering...

171

NREL: Biomass Research - Video Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

172

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

173

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

174

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 526,996 566,851 559,032 581,600 578,456 543,388 1981-2013 Crude Oil 445,937 474,296 474,991 497,241 489,887 468,825 1981-2013 Natural Gas Plant Liquids and Liquefied Refinery Gases 12,805 11,759 12,769 13,227 13,760 16,794 1981-2013 Pentanes Plus 4,949 4,341 4,752 4,734 5,331 5,666 1981-2013 Liquefied Petroleum Gases 7,856 7,418 8,017 8,493 8,429 11,128 1981-2013 Ethane 1981-1992 Normal Butane 2,668 1,880 1,998 2,014 2,083 4,711 1981-2013 Isobutane 5,188 5,538 6,019 6,479 6,346 6,417 1981-2013 Other Liquids 68,254 80,796 71,272 71,132 74,809 57,769 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 32,667 34,665 34,097 35,446 36,356 33,881 1981-2013

175

U.S. Refinery & Blender Net Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,204,500 6,277,893 6,169,893 6,345,372 6,422,710 6,406,693 1981-2012 Crude Oil 5,532,097 5,361,287 5,232,656 5,374,094 5,404,347 5,489,516 1981-2012 Natural Gas Plant Liquids and Liquefied Refinery Gases 184,383 177,559 177,194 161,479 178,884 186,270 1981-2012 Pentanes Plus 64,603 55,497 59,100 56,686 63,385 63,596 1981-2012 Liquefied Petroleum Gases 119,780 122,062 118,094 104,793 115,499 122,674 1981-2012 Ethane 1981-1992 Normal Butane 48,292 50,024 48,509 43,802 47,571 52,246 1981-2012 Isobutane 71,488 72,038 69,585 60,991 67,928 70,428 1981-2012 Other Liquids 488,020 739,047 760,043 809,799 839,479 730,907 1981-2012 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons

176

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

177

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Total 6,567,929 6,641,293 6,527,069 6,735,067 6,815,590 6,794,407 1981-2012 Liquefied Refinery Gases 238,904 230,431 227,470 240,454 225,992 230,413 1981-2012 Ethane/Ethylene 7,323 6,671 7,069 7,228 7,148 6,597 1981-2012 Ethane 5,145 4,608 5,229 5,200 5,105 4,835 1993-2012 Ethylene 2,178 2,063 1,840 2,028 2,043 1,762 1993-2012 Propane/Propylene 205,179 190,020 196,011 204,223 201,492 202,309 1981-2012 Propane 120,596 114,268 106,177 102,913 98,508 100,933 1995-2012 Propylene 84,583 75,752 89,834 101,310 102,984 101,376 1993-2012 Normal Butane/Butylene 24,285 30,887 24,148 30,281 17,449 20,580 1981-2012 Normal Butane 25,715 33,092 25,825 32,094 19,263 22,965 1993-2012

178

U.S. Refinery and Blender Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Total 559,639 599,643 591,916 616,905 613,451 578,101 1981-2013 Liquefied Refinery Gases 24,599 26,928 25,443 26,819 25,951 19,023 1981-2013 Ethane/Ethylene 464 426 407 441 487 379 1981-2013 Ethane 317 277 283 312 332 232 1993-2013 Ethylene 147 149 124 129 155 147 1993-2013 Propane/Propylene 16,840 17,792 16,966 17,839 18,063 17,254 1981-2013 Propane 8,051 8,949 8,756 9,002 9,153 8,816 1995-2013 Propylene 8,789 8,843 8,210 8,837 8,910 8,438 1993-2013 Normal Butane/Butylene 7,270 8,876 8,122 8,676 7,664 1,738 1981-2013 Normal Butane 7,447 9,044 8,314 8,832 8,067 1,743 1993-2013 Butylene -177 -168 -192 -156 -403 -5 1993-2013 Isobutane/Isobutylene

179

Advanced refinery process heater. Final report, (October 1983-September 1988)  

SciTech Connect (OSTI)

A prototype refinery process heater was designed, built and successfully tested, demonstrating the improvements available to heater design through the use of Zone-Controlled Pyrocore radiant gas burners. The 10 MMBtu/hr rated heater released 17 ppm NOx (corrected to 3% oxygen) under full load operation, the lowest NOx emissions technically and commercially achieved in this type of equipment without the use of post-combustion flue-gas processing. Operating with 400F combustion air preheat and a 500F process fluid outlet temperature, the heater achieved overall thermal efficiencies of 92.8% on a LHV basis due in part to the significantly improved performance of the radiant heat exchange section. The radiant burners used in the heater have been proven in performance and reliability, and have also been shown to be applicable to both new heater designs and retrofits into existing heaters. The improved radiant performance of the heater and the use of 'flameless' radiant burners eliminates tube burn-out failures in both the radiant and convective tube coils, further improving the reliability of equipment based on this design. Three separate U.S. Patents have been issued covering the heater design and the use of Zone-Controlled Pyrocore burners in this application.

Minden, A.C.; Buckley, G.G.

1989-04-01T23:59:59.000Z

180

Increased olefins production via recovery of refinery gas hydrocarbons  

SciTech Connect (OSTI)

In the process of catalytically cracking heavy petroleum fractions to make gasoline and light fuel oil, by-product waste gases are also generated. The waste gases, normally used as fuel, are themselves rich sources of ethylene, propylene and other light hydrocarbons which can be recovered inexpensively via a cryogenic dephlegmator process. This gas separation technique is exploited in a system, in operation since spring of 1987, which reclaims C/sub 2/+ hydrocarbons from a refinery gas. The reclamation process bolsters production in a nearby ethylene plant. Causing no disruption of ethylene plant operations, the cryogenic hydrocarbon recovery system functions smoothly with existing systems. The dephlegmation unit operation melds distillation and heat transfer processes in a single easily-controlled step which boosts the hydrocarbon purity and recovery above the levels profitably achievable with conventional cryogenic separation techniques. Very attractive operating economics follow from high purity, high recovery, and high energy efficiency. This paper discusses process concepts, economic benefits, plant operation, and early performance results.

Bernhard, D.P.; Rowles, H.C.; Moss, J.A.; Pickering, J.L. Jr.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Process simulation of refinery units including chemical reactors  

Science Journals Connector (OSTI)

Process simulation methods for design and operation of refinery units are well established as long as no chemical reactors are included. The feedstocks are divided into pseudo-components which enables calculation of phase equilibria and transport properties. When chemical reactors are present some chemical conversion takes place which obviously affects the nature of the pseudo-components and their properties. The stream leaving the reactor will not only be of a different composition than the stream entering the reactor but in addition, the pseudo-components making up the outlet stream will also have other physical properties than the ones in the inlet stream. These changes affect not only the reactor unit but also the simulation of the whole flow-sheet. The paper presents a detailed model for an adiabatic distillate hydrotreater which takes into account the elemental composition of the feed. A special simulation strategy has been developed to incorporate such reactor units into process simulators. Finally, the simulation strategy is illustrated for a hydrotreating plant.

Jens A. Hansen; Barry H. Cooper

1992-01-01T23:59:59.000Z

182

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

183

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network [OSTI]

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

184

Recovery of hydrogen and other components from refinery gas stream by partial condensation using preliminary reflux condensation  

SciTech Connect (OSTI)

A process is disclosed for separating a hydrogen-containing refinery-type gas mixture into various fractions using reflux condensation, drying and partial condensation and phase separation.

Beddome, R.A.; Fenner, G.W.; Saunders, J.B.

1984-04-17T23:59:59.000Z

185

Biomass | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

186

CLC of biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

187

Driving on Biomass  

Science Journals Connector (OSTI)

...Annual Supply ( USDA and DOE , Washington, DC , 2005 ); www1.eere.energy.gov/biomass/pdfs/final_billionton_vision...hybridcars.com/. 12 Vehicle Technologies Program, DOE , www1.eere.energy.gov/vehiclesandfuels/facts/2008_fotw514...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

188

Driving on Biomass  

Science Journals Connector (OSTI)

...Research Increasing supplies of biodiesel is one priority for future...research. However, production of biodiesel from temperate oilseed crops...systems, perhaps including algae or thermochemical conversion...biomass either for burning or for biodiesel production. Reducing leaf...

John Ohlrogge; Doug Allen; Bill Berguson; Dean DellaPenna; Yair Shachar-Hill; Sten Stymne

2009-05-22T23:59:59.000Z

189

DOE 2014 Biomass Conference  

Broader source: Energy.gov [DOE]

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

190

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

191

AGCO Biomass Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to update any forward-looking statements except as required by law. Who is AGCO? AGCO Biomass - A History * Started approximately 5 years ago - First OEM to have a department...

192

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

193

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network [OSTI]

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

194

Biomass 2014 Poster Session  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

195

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/2005" 3,"Monthly","9/2013","1/15/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Monthly","9/2013","1/15/1986" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:05 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOORO_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

196

,"U.S. Refinery Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Annual",2012,"6/30/2005" 2,"Annual",2012,"6/30/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Annual",2012,"6/30/1986" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:21:04 AM" "Back to Contents","Data 1: Refinery Net Input" "Sourcekey","MTTRO_NUS_1","MCRRO_NUS_1","MNGRO_NUS_1","MPPRO_NUS_1","MLPRO_NUS_1","MBNRO_NUS_1","MBIRO_NUS_1","MOLRO_NUS_1","MOHRO_NUS_1","M_EPOOOH_YIY_NUS_MBBL","M_EPOOXXFE_YIY_NUS_MBBL","MMTRO_NUS_1","MOORO_NUS_1","M_EPOOR_YIY_NUS_MBBL","MFERO_NUS_1","M_EPOORD_YIY_NUS_MBBL","M_EPOOOXH_YIY_NUS_MBBL","MUORO_NUS_1","MNLRO_NUS_1","MKORO_NUS_1","MH1RO_NUS_1","MRURO_NUS_1","MBCRO_NUS_1","MO1RO_NUS_1","M_EPOBGRR_YIY_NUS_MBBL","MO3RO_NUS_1","MO4RO_NUS_1","MO5RO_NUS_1","MO6RO_NUS_1","MO7RO_NUS_1","MO9RO_NUS_1","MBARO_NUS_1"

197

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

198

Increasing Distillate Production at U.S. Refineries … Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

199

,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"  

U.S. Energy Information Administration (EIA) Indexed Site

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","9/2013","1/15/1985" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_crq_a_epc0_ycs_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_crq_a_epc0_ycs_pct_m.htm" ,"Source:","Energy Information Administration"

200

TSNo s02-roberts104537-O Microscopic and Spectroscopic Speciation of Ni in Soils in the Vicinity of a Ni Refinery.  

E-Print Network [OSTI]

in the Vicinity of a Ni Refinery. abstract Accurately predicting the fate and bioavailability of metals in smelter REFINERY ASA-CSSA-SSSA Annual Meetings - October 21 - 25, 2001 - Charlotte, NC #12;

Sparks, Donald L.

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Methods applied to investigate the major VCE that occured in the TOTAL refinery's Fluid Catalytic Cracking Unit at La Mede,  

E-Print Network [OSTI]

95-35 Methods applied to investigate the major ?VCE that occured in the TOTAL refinery's Fluid.V.C.E, occured in the Gas Plant of the TOTAL refinery's Fluid Catalytic Cracking ünit at La Mede, France sources: control room hard copy and electronically stored records: no deviation of process operating

Paris-Sud XI, Université de

202

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

203

The Greenhouse Gas Emissions and Fossil Energy Requirement of Bioplastics from Cradle to Gate of a Biomass Refinery  

Science Journals Connector (OSTI)

With increased concerns on global warming and peak oil, biobased fuels, chemicals, and materials derived from renewable resources have attracted great interest. ... Schematic inputs, outputs, and system boundary of PHA LCA for a mini-biorefinery of corn stover. ... It is assumed that electrical power is generated from coal combustion and purchased from the grid. ...

Jian Yu; Lilian X. L. Chen

2008-08-16T23:59:59.000Z

204

,"U.S. Refinery Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_refp2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:28:05 AM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRX_NUS_1","MLPRX_NUS_1","METRX_NUS_1","MENRX_NUS_1","MEYRX_NUS_1","MPRRX_NUS_1","MPARX_NUS_1","MPLRX_NUS_1","MBNRX_NUS_1","MBURX_NUS_1","MBYRX_NUS_1","MBIRX_NUS_1","MIIRX_NUS_1","MIYRX_NUS_1","MGFRX_NUS_1","MGRRX_NUS_1","MG1RX_NUS_1","M_EPM0RO_YPY_NUS_MBBL","MG4RX_NUS_1","MG5RX_NUS_1","M_EPM0CAL55_YPY_NUS_MBBL","M_EPM0CAG55_YPY_NUS_MBBL","MG6RX_NUS_1","MGARX_NUS_1","MKJRX_NUS_1","M_EPJKC_YPY_NUS_MBBL","M_EPJKM_YPY_NUS_MBBL","MKERX_NUS_1","MDIRX_NUS_1","MD0RX_NUS_1","MD1RX_NUS_1","MDGRX_NUS_1","MRERX_NUS_1","MRXRX_NUS_1","MRMRX_NUS_1","MRGRX_NUS_1","MPCRX_NUS_1","MPNRX_NUS_1","MPORX_NUS_1","MNSRX_NUS_1","MLURX_NUS_1","M_EPPLN_YPY_NUS_MBBL","M_EPPLP_YPY_NUS_MBBL","MWXRX_NUS_1","MCKRX_NUS_1","MCMRX_NUS_1","MCORX_NUS_1","MAPRX_NUS_1","MSGRX_NUS_1","MMSRX_NUS_1","MMFRX_NUS_1","MMNRX_NUS_1","MPGRX_NUS_1"

205

,"U.S. Refinery Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_refp2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp2_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:28:06 AM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRX_NUS_1","MLPRX_NUS_1","METRX_NUS_1","MENRX_NUS_1","MEYRX_NUS_1","MPRRX_NUS_1","MPARX_NUS_1","MPLRX_NUS_1","MBNRX_NUS_1","MBURX_NUS_1","MBYRX_NUS_1","MBIRX_NUS_1","MIIRX_NUS_1","MIYRX_NUS_1","MGFRX_NUS_1","MGRRX_NUS_1","MG1RX_NUS_1","M_EPM0RO_YPY_NUS_MBBL","MG4RX_NUS_1","MG5RX_NUS_1","M_EPM0CAL55_YPY_NUS_MBBL","M_EPM0CAG55_YPY_NUS_MBBL","MG6RX_NUS_1","MGARX_NUS_1","MKJRX_NUS_1","M_EPJKC_YPY_NUS_MBBL","M_EPJKM_YPY_NUS_MBBL","MKERX_NUS_1","MDIRX_NUS_1","MD0RX_NUS_1","MD1RX_NUS_1","MDGRX_NUS_1","MRERX_NUS_1","MRXRX_NUS_1","MRMRX_NUS_1","MRGRX_NUS_1","MPCRX_NUS_1","MPNRX_NUS_1","MPORX_NUS_1","MNSRX_NUS_1","MLURX_NUS_1","M_EPPLN_YPY_NUS_MBBL","M_EPPLP_YPY_NUS_MBBL","MWXRX_NUS_1","MCKRX_NUS_1","MCMRX_NUS_1","MCORX_NUS_1","MAPRX_NUS_1","MSGRX_NUS_1","MMSRX_NUS_1","MMFRX_NUS_1","MMNRX_NUS_1","MPGRX_NUS_1"

206

U.S. Refinery Efficiency: Impacts Analysis and Implications for Fuel Carbon Policy Implementation  

Science Journals Connector (OSTI)

The rapid influx of domestically sourced tight light oil and relative demand shifts for gasoline and diesel will impose challenges on the ability of the U.S. refining industry to satisfy both demand and quality requirements. ... For this study Jacobs developed these models in a Generalized Refining Transportation Marketing and Planning System (GRTMPS) format (licensed by Haverly Systems) which were combined with Jacobs proprietary refinery technology database. ... The product slate was developed based on knowledge of the markets being served by each refinery, making use of EIA data for regional refined product output and product movements between Petroleum Administration for Defense Districts (PADDs), as well as information on product imports. ...

Grant S. Forman; Vincent B. Divita; Jeongwoo Han; Hao Cai; Amgad Elgowainy; Michael Wang

2014-05-28T23:59:59.000Z

207

Problem 65 in Section 4.1 (Page 274) Constructing a pipeline Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery  

E-Print Network [OSTI]

facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs $300.42 miles away from the refinery, or equivalently 3.58 miles away from Point A (as the back of the book has

Schilling, Anne

208

2:00-2:30 Beverages, 2:30-4 PM Seminar Chevron operates two refineries on the west coast of California. Large parcels of  

E-Print Network [OSTI]

4/18/2014 2:00-2:30 Beverages, 2:30-4 PM Seminar Abstract Chevron operates two refineries fuel must be moved between the refineries by ship to balance production. The El Segundo Marine Terminal these vapors are returned to the refinery for processing via a vapor return pipeline. El Segundo's terminal

209

Benchmarking Biomass Gasification Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

210

Biomass 2010 Conference Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010fullagenda.pdf More Documents & Publications QTR Cornerstone Workshop Agenda 2014 Biomass...

211

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

212

Biomass 2012 Agenda | Department of Energy  

Office of Environmental Management (EM)

2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment...

213

Dinuba Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Dinuba Biomass Facility Jump to: navigation, search Name Dinuba Biomass Facility Facility Dinuba Sector Biomass Owner Community Recycling, Inc. Location Dinuba, California...

214

November 2011 Model documentation for biomass,  

E-Print Network [OSTI]

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

215

Mecca Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mecca Biomass Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

216

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

217

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

218

NREL: International Activities - Biomass Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

219

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

220

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid3...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name: Haryana Biomass Power Ltd. Place: Mumbai, Haryana, India Zip: 400025 Sector: Biomass Product: This is a JV consortium...

222

NREL: Biomass Research - David W. Templeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

223

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

224

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

225

Mecca Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

226

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

227

Opportunities for Farmers in Biomass Feedstock Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunities for Farmers in Biomass Feedstock Production Richard Hess Biomass 2014, Feedstocks Plenary July 29, 2014 Getting into the Biomass Business Crop Residue Removal; Farm...

228

NREL: Climate Neutral Research Campuses - Biomass Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basics and biomass organizations. Technology Basics The following resources explain the fundamentals of biomass energy technologies: Biomass Energy Basics: NREL publishes this...

229

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Minimally refined biomass fuel  

DOE Patents [OSTI]

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

231

Fixed Bed Biomass Gasifier  

SciTech Connect (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

232

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

233

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1BIntegration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

234

Energy Guideline Factors Provide a Better Measure of Refinery Energy Performance  

E-Print Network [OSTI]

Exxon Company, U.S.A. refineries reduced energy consumption by 25% between 1972 and 1978 compared with an 18% reduction for the U.S. Petroleum Refining Industry over the same period. The Exxon approach to conserving energy in petroleum refining...

Libbers, D. D.

1980-01-01T23:59:59.000Z

235

Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition  

E-Print Network [OSTI]

a large number of crude-oils, finished products such as liquified petroleum gas, gasoline, diesel fuel product blending and shipping. Some examples of nonlinear refinery planning problems including pooling, 2010 #12;crude-blends, and CDU feed charging. This problem has been addressed since the late 90s

Grossmann, Ignacio E.

236

1994 lubricating oil and wax capacities of U. S. and Canadian refineries  

SciTech Connect (OSTI)

The paper consists of several tables which list the names of US and Canadian refineries, their location, and their capacity for production of lubricating oil and waxes categorized by finishing operations and primary processing. A separate table lists US and Canadian re-refiners and their capacity for refining waste lubricating oils.

Not Available

1994-01-01T23:59:59.000Z

237

Radiation doses and hazards from processing of crude oil at the Tema oil refinery in Ghana  

Science Journals Connector (OSTI)

......petroleum products and wastes at the Tema oil refinery...radionuclides in the wastes than the crude oil and...monitoring to establish long-term effect on both public...accumulate at the bottom of storage tanks, tubings and other...uncontrolled release of waste containing TENORM, concentrated......

E. O. Darko; D. O. Kpeglo; E. H. K. Akaho; C. Schandorf; P. A. S. Adu; A. Faanu; E. Abankwah; H. Lawluvi; A. R. Awudu

2012-02-01T23:59:59.000Z

238

Operational planning of oil refineries under uncertainty Special issue: Applied Stochastic Optimization  

Science Journals Connector (OSTI)

......authors developed a general framework for the...aviation kerosene and diesel) or heavy (paraffin, lubricants, light cycle oil, gas oil, coke...1 psc = 1 . The general formulation of the...model for refinery diesel production. Comput...J. (2004) A general modeling framework......

Gabriela P. Ribas; Adriana Leiras; Silvio Hamacher

2012-10-01T23:59:59.000Z

239

Restoration of Refinery Heaters Using the Technique of Prefabricated Ceramic Fiber Lined Panels  

E-Print Network [OSTI]

Refinery heater fuel requirements often represent 50% of a units operating cost. A one percent change in the efficiency of a heater firing 100 MBtu/hr amounts to more than $25,000 per year. Heater efficiency is influenced by casing hot spots, air...

Sento, H. D.

1981-01-01T23:59:59.000Z

240

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

242

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

243

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

244

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

245

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

246

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network [OSTI]

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

247

13, 3226932289, 2013 Biomass burning  

E-Print Network [OSTI]

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

248

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

249

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

250

7, 1733917366, 2007 Biomass burning  

E-Print Network [OSTI]

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

251

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

252

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

253

Biomass Supply and Carbon Accounting for  

E-Print Network [OSTI]

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

254

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

255

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

256

Biomass: Potato Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

257

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Experiences in the Remediation of Ground Water Contaminated by Petroleum Hydrocarbons in the Vicinity of a Former Refinery Property  

Science Journals Connector (OSTI)

Since 1985, HPC HARRESS PICKEL CONSULT GMBH has conducted a variety of investigations on the property of a former refinery in the German Lower Rhine region, with the purpose of determining the nature and extent o...

Carsten Munk

1993-01-01T23:59:59.000Z

260

High-biomass sorghums for biomass biofuel production  

E-Print Network [OSTI]

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reduction of corrosivity of reused water in refinery water circulating systems  

SciTech Connect (OSTI)

This paper discusses the problem of controlling scale formation in heat transfer equipment in refinery recirculating water systems. One of the effective methods for reducing the degree of pitting is acidification of the medium to pH 6-6.5, thus suppressing the activity of the sulfide and manganese inclusions in the metal that play the role of pitting centers. The authors investigated the effects of the AOC and TPP on the characteristics of refinery recirculating water and combined treatment to reduce the amount of scaling and lower the corrosivity. The untreated recirculating water was unstable; the water treated with AOC or with AOC+TPP is capable of dissolving carbonate deposits.

Sorochenko, V.F.; Beskorovainaya, N.J.; Shut'ko, A.P.; Slipchenko, O.G.; Zorina, N.E.

1985-11-01T23:59:59.000Z

262

LPG recovery from refinery flare by waste heat powered absorption refrigeration  

SciTech Connect (OSTI)

A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

Erickson, D.C.; Kelly, F.

1998-07-01T23:59:59.000Z

263

Health hazard evaluation report HETA 83-248-1515, Arco Philadelphia refinery, Philadelphia, Pennsylvania  

SciTech Connect (OSTI)

A bulk sample of fractionator residue was analyzed for polynuclear aromatic (PNA) compounds at the catalytic cracking unit of ARCO Philadelphia Refinery (SIC-2911), Philadelphia, Pennsylvania in May, 1983. The study was requested by the Atlantic Independent Union to determine if skin rashes and skin irritation occurring among refinery workers were caused by PNA in the fractionators. The authors conclude that a health hazard from exposure to chemicals at the cracking unit may exist. No specific chemical agent can be identified. Dust from the catalyst and oily residues that could contaminate workers shoes and clothing may have contributed to some of the dermatitis cases. Recommendations include laundering workers coveralls by dry cleaning to insure the removal of oily residues, providing workers with oil resistant or oil proof work boots, and repairing the ventilator in the sample preparation room adjacent to the block house.

Lewis, F.A.; Parrish, G.

1984-10-01T23:59:59.000Z

264

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

265

Integration of light hydrocarbons cryogenic separation process in refinery based on LNG cold energy utilization  

Science Journals Connector (OSTI)

Abstract China depends on naphtha (derived from oil) as the main feedstock for ethylene plants, resulting in margins that are negatively co-related with the price of oil. Clearly, light hydrocarbons provide cost advantages over the conventional naphtha feedstock. Consequently, the recovery of light hydrocarbons from refinery gas has been gathering more and more significance. Nonetheless, the cryogenic separation needs low process temperatures, substantially increasing the refrigeration load requirements and, attendantly, the compression requirements associated with the refrigeration system. In this paper, the cold energy of liquefied natural gas (LNG) is applied to light hydrocarbons cryogenic separation process to replace the compression refrigeration system on the basis of one China refinery. The results show that LNG can provide 14,373kW cold energy for the separation process, resulting in a direct compression power saving of 7973kW and making the utilization rate of LNG cold energy as high as 71.9%.

Yajun Li; Hao Luo

2014-01-01T23:59:59.000Z

266

Biomass burning and global change  

Science Journals Connector (OSTI)

The burning of living and dead biomass including forests savanna grasslands and agricultural wastes is much more widespread and extensive than previously believed and may consume as much as 8700 teragrams of dry biomass matter per year. The burning of this much biomass releases about 3940 teragrams of total carbon or about 3550 teragrams of carbon in the form of CO2 which is about 40% of the total global annual production of CO2. Biomass burning may also produce about 32% of the worlds annual production of CO 24% of the nonmethane hydrocarbons 20% of the oxides of nitrogen and biomass burn combustion products may be responsible for producing about 38% of the ozone in the troposphere. Biomass burning has increased with time and today is overwhelmingly human?initiated.

Joel S. Levine; Wesley R. Cofer III; Donald R. Cahoon Jr.; Edward L. Winsted; Brian J. Stocks

1992-01-01T23:59:59.000Z

267

A Case Study of Steam System Evaluation in a Petroleum Refinery  

E-Print Network [OSTI]

on Refinery's management's interest, more technical details and accurate savings & investment estimates will be provided during the Development phase that includes Basic Engineering Design & Detailed Engineering Design. ? Armstrong Service Inc. 176 ESL...-IE-03-05-21 Proceedings from theTwenty-Fifth Industrial Energy Technology Conference, Houston, TX, May 13-16, 2003 Sio-Data of Presenters: Name: Ven V. Venkatesan, Title: Director of Engineering Services Company: Armstrong Service, Inc., 8545...

Venkatesan, V. V.; Iordanova, N.

268

Decision support for integrated refinery supply chains: Part 1. Dynamic simulation  

Science Journals Connector (OSTI)

Supply chain studies are increasingly given top priority in enterprise-wide management. Present-day supply chains involve numerous, heterogeneous, geographically distributed entities with varying dynamics, uncertainties, and complexity. The performance of a supply chain relies on the quality of a multitude of design and operational decisions made by the various entities. In this two-part paper, we demonstrate that a dynamic model of an integrated supply chain can serve as a valuable quantitative tool that aids in such decision-making. In this Part 1, we present a dynamic model of an integrated refinery supply chain. The model explicitly considers the various supply chain activities such as crude oil supply and transportation, along with intra-refinery supply chain activities such as procurement planning, scheduling, and operations management. Discrete supply chain activities are integrated along with continuous production through bridging procurement, production, and demand management activities. Stochastic variations in transportation, yields, prices, and operational problems are considered in the proposed model. The economics of the refinery supply chain includes consideration of different crude slates, product prices, operation costs, transportation, etc. The proposed model has been implemented as a dynamic simulator, called Integrated Refinery In-Silico (IRIS). IRIS allows the user the flexibility to modify not only parameters, but also replace different policies and decision-making algorithms in a plug-and-play manner. It thus allows the user to simulate and analyze different policies, configurations, uncertainties, etc., through an easy-to-use graphical interface. The capabilities of IRIS for strategic and tactical decision support are illustrated using several case studies.

Suresh S. Pitty; Wenkai Li; Arief Adhitya; Rajagopalan Srinivasan; I.A. Karimi

2008-01-01T23:59:59.000Z

269

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network [OSTI]

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

270

Biomass 2014: Breakout Speaker Biographies  

Broader source: Energy.gov [DOE]

This document outlines the biographies of the breakout speakers for Biomass 2014, held July 29July 30 in Washington, D.C.

271

Biomass 2009: Fueling Our Future  

Broader source: Energy.gov [DOE]

We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success.

272

NREL: Biomass Research - Joseph Shekiro  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

273

Biomass IBR Fact Sheet: POET  

Broader source: Energy.gov (indexed) [DOE]

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

274

NREL: Biomass Research - Michael Resch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

275

Hebei Milestone Biomass Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based biomass project developer. References: Hebei Milestone Biomass...

276

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

277

Process for concentrated biomass saccharification  

DOE Patents [OSTI]

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

278

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

279

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

26 January 1983 research-article Ethanol from Cellulosic Biomass [and Discussion...of cellulosic biomass to liquid fuel, ethanol. Within the scope of this objective...maximize the conversion efficiency of ethanol production from biomass. This can be...

1983-01-01T23:59:59.000Z

280

The annual cycles of phytoplankton biomass  

Science Journals Connector (OSTI)

...Forrest The annual cycles of phytoplankton biomass Monika Winder 1 * James E. Cloern 2...Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual...compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate...

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

...research-article Ethanol from Cellulosic Biomass [and Discussion] D. I. C. Wang G...microbiological conversion of cellulosic biomass to liquid fuel, ethanol. Within the...efficiency of ethanol production from biomass. This can be achieved through the effective...

1983-01-01T23:59:59.000Z

282

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network [OSTI]

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

283

Biomass 2013 Agenda | Department of Energy  

Office of Environmental Management (EM)

3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass2013agenda.pdf More Documents &...

284

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass Energy, LLC1 This article is a stub. You can help OpenEI by...

285

Biomass Producer or Collector Tax Credit (Oregon)  

Broader source: Energy.gov [DOE]

The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in...

286

Treatment of biomass to obtain fermentable sugars  

DOE Patents [OSTI]

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

287

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Broader source: Energy.gov [DOE]

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

288

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network [OSTI]

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

289

NREL: Biomass Research - Amie Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amie Sluiter Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis provide guidance on feedstock handling, pretreatment conditions, economic viability, and life cycle analyses. Amie Sluiter has investigated a number of biomass analysis methods and is an author on 11 Laboratory Analytical Procedures (LAPs), which are being used industry-wide. She has taught full biomass compositional analysis

290

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

291

NREL: Biomass Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. August 21, 2013 Can "Drop-In" Biofuels Solve Integration Issues? Lab works to create biofuels indistinguishable from conventional

292

Mobile Biomass Pelletizing System  

SciTech Connect (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

293

Punctuated continuity: The technological trajectory of advanced biomass gasifiers  

Science Journals Connector (OSTI)

Abstract Recent interest in biofuels and bio-refineries has been building upon the technology of biomass gasification. This technology developed since the 1980s in three periods, but failed to break through. We try to explain this by studying the technological development from a quasi-evolutionary perspective, drawing upon the concepts of technological paradigms and technological trajectories. We show that the socio-economic context was most important, as it both offered windows of opportunity as well as provided direction to developments. Changes in this context resulted in paradigm shifts, characterized by a change in considered end-products and technologies, as well as a change in companies involved. Other influences on the technological trajectory were firm specific differences, like the focus on a specific feedstock, scale and more recently biofuels to be produced. These were strengthened by the national focus of supporting policies, as well as specific attention for multiple technologies in policies of the USA and European Commission. Over each period we see strong variation that likely benefitted the long term development of the technology. Despite policy efforts that included variation and institutionalization, our case shows that the large changes in socio-economic context and the technological challenges were hard to overcome.

Arjan F. Kirkels

2014-01-01T23:59:59.000Z

294

WeBiomass Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: http:www.webiomass.com Coordinates: 43.58070919775,...

295

Biomass Program Peer Review Sustainability Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2000. "Biomass and Bioenergy Applications of the POLYSYS Modeling Framework," Biomass & Bioenergy 4(3):1-18. * County model anchored to USDA 10-year baseline & extended to 2030 -...

296

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

297

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

298

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

299

Biomass 2014: Additional Speaker Biographies | Department of...  

Broader source: Energy.gov (indexed) [DOE]

4: Additional Speaker Biographies Biomass 2014: Additional Speaker Biographies This document outlines the biographies of the additional speakers for Biomass 2014, held July 29-July...

300

Biomass Indirect Liquefaction Presentation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Indirect Liquefaction Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D Needs burciagatri.pdf More Documents & Publications...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

302

ARM - Biomass Burning Observation Project (BBOP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

303

Biomass Renewable Energy Opportunities and Strategies | Department...  

Broader source: Energy.gov (indexed) [DOE]

Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power...

304

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

305

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

306

Biomass Webinar Presentation Slides | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian...

307

Pelleting characteristics of torrefied forest biomass.  

E-Print Network [OSTI]

??Forest biomass (pine wood chips) was torrefied at different temperature (225 to 300 C) to generate energy dense and hydrophobic biomass suitable for producing pellets. (more)

Phanphanich, Manunya

2010-01-01T23:59:59.000Z

308

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

309

Heat transfer efficiency of biomass cookstoves.  

E-Print Network [OSTI]

??Nearly half of the worlds human population burns biomass fuel to meet home energy needs for heating and cooking. Biomass combustion often releases harmful chemical (more)

Zube, Daniel Joseph

2010-01-01T23:59:59.000Z

310

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

311

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Ld

2012-01-01T23:59:59.000Z

312

Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reviews Reviews Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance Marcus Foston and Arthur J. Ragauskas BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA Abstract The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in bio- technology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fer- mentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace

313

Investigating and Using Biomass Gases  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time theyll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

314

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network [OSTI]

A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented..., described in Figure 1, 2. The combustion oxygen is carried by a more I I i I' has been used as a design basis. The heater is based on the actual design of a unit built by KTI SpA. The furnace does not include air preheater or steam generation...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

315

BLENDING PROBLEM A refinery blends four petroleum components into three grades of  

E-Print Network [OSTI]

BLENDING PROBLEM A refinery blends four petroleum components into three grades of gasoline/day $/barrel #1 5,000 $9.00 #2 2,400 7.00 #3 4,000 12.00 #4 1,500 6.00 Blending formulas and selling price 4,000 x4R + x4P + x4L 1,500 #12;blending: (1) x1R / (x1R + x2R + x3R + x4R) .40 or x1R .40(x1R

Shier, Douglas R.

316

PAFC fed by biogas produced by the anaerobic fermentation of the waste waters of a beet-sugar refinery  

SciTech Connect (OSTI)

Beet-washing waters of a beet-sugar refinery carry a high COD (Chemical Oxygen Demand), and their conditioning to meet legal constraints before disposal considerably contributes to the operation costs of the refinery. Their fermentation in an anaerobic digestor could instead produce readily disposable non-polluting waters, fertilizers and biogas, useful to feed a phosphoric acid fuel cell (PAFC) heat and power generator system. A real refinery case is considered in this work, where the electrical characteristics V = V(I) of a laboratory PAFC stack, fueled with a dry simulated reforming gas (having the same H{sub 2} and CO{sub 2} content as the biogas obtainable by the above said anaerobic digestion), are determined. The encouraging results show that a possible market niche for fuel cells, in the food-industry waste partial recovery and residual disposal, deserves attention.

Ascoli, A.; Elias, G. [Univ. Diegli Studi di Milano (Italy); Bigoni, L. [CISE Tecnologie Innovative S.p.A., Segrate (Italy); Giachero, R. [Du Pont Pharma Italia, Firenze (Italy)

1996-10-01T23:59:59.000Z

317

Biothermal gasification of biomass  

SciTech Connect (OSTI)

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

318

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

319

Biomass conversion in South Africa  

Science Journals Connector (OSTI)

South Africa is using or is investigating the potential of forest biomass sugar-cane, maize, grain sorghum, cannery...6...GJ per annum. These materials can also be utilized for the production of chemicals and foo...

Hans Jurgens Potgieter

1981-01-01T23:59:59.000Z

320

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

322

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

323

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2012-01-01T23:59:59.000Z

324

Biomass Combustion for Electricity Generation  

Science Journals Connector (OSTI)

Subject of this article is therefore the description of the state-of-the-art technologies, environmental impacts including greenhouse gas emission balances, as well as financial aspects of using biomass for elect...

Andreas Wiese Dr.-Ing.

2013-01-01T23:59:59.000Z

325

(Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1996 producer  

E-Print Network [OSTI]

and Use: The value of domestic refinery production of germanium, based on the 1996 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and two base metal mining operations, one in Tennessee and another in Alaska. Both of these mining

326

(Data in kilograms of germanium content, unless noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1995  

E-Print Network [OSTI]

: The value of domestic refinery production of germanium, based on the 1995 producer price, was approximately industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and a mining operation in Tennessee. The company in Tennessee exported germanium-bearing residues generated

327

Global (International) Energy Policy and Biomass  

SciTech Connect (OSTI)

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

328

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network [OSTI]

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

329

Vanadium catalysts break down biomass for fuels  

E-Print Network [OSTI]

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

330

Fundamental Study of Single Biomass Particle Combustion  

E-Print Network [OSTI]

Fundamental Study of Single Biomass Particle Combustion Maryam Momeni #12;Fundamental Study of Single Biomass Particle Combustion Maryam Momeni Dissertation submitted to the Faculty of Engineering Fundamental Study of Single Biomass Particle Combustion This thesis is a comprehensive study of single biomass

Berning, Torsten

331

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

332

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

333

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

334

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network [OSTI]

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

335

Achieving very low mercury levels in refinery wastewater by membrane filtration.  

SciTech Connect (OSTI)

Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W. (Center for Nanoscale Materials); ( ES)

2012-05-15T23:59:59.000Z

336

Forecast of U. S. Refinery Demand for NGL's (natural gas liquids) in 1978-1985  

SciTech Connect (OSTI)

A forecast of U.S. Refinery Demand for NGL's (Natural Gas Liquids) in 1978-1985 is based on a predicted 1.4%/yr decline in motor gasoline consumption from 7.4 to 6.7 million bbl/day (Mbd), including a 2.6%/yr reduction from 5.3 to 4.4 Mbd for automobiles and a 1.3%/yr growth from 2.1 to 2.3 Mbd for trucks, because of slow growth rates in the U.S. automobile fleet (1.1%/yr) and average annual miles driven (0.9%/yr), a 3.9%/yr growth in average mileage from 14.2 to 18.6 mpg, and diesel penetration to the automobile market which should increase from 0.3 to 3.3%. Leaded gasoline's share is expected to decline from 68% of the market (5.1 Mbd, including 0.8 Mbd leaded premium) to 24% (1.7 Mbd, leaded regular only), including a drop from 56 to 6% for automobiles and from approx. 100 to 60% for trucks. This will require increased production of clean-octane reformates and alkylates and reduce the need for straight-run gasolines, but because of the decline in the total gasoline demand, these changes should be minimal. Butane demand from outside-refinery production should decrease by 5-6%/yr, and natural gasoline will be consumed according to available production as an isopentane source.

Laskosky, J.

1980-01-01T23:59:59.000Z

337

Using Relative Risk Analysis to Set Priorities For Pollution Prevention At A Petroleum Refinery  

Science Journals Connector (OSTI)

Publisher Summary This chapter outlines the development of a detailed refinery release inventory that identifies sources and quantities of releases. It identifies options for preventing releases and minimizing health and environmental risks and discusses a system for evaluating and ranking the options in light of cost, risk, regulatory requirements, and other factors. The chapter also describes the methods of evaluating the incentives and obstacles to implementing the pollution prevention options. The chapter highlights the progress that can occur in identifying creative, cost-effective options for pollution prevention when government, industry, and the public establish partnerships rather than operate as adversaries. Pollution prevention cannot be adequately implemented or monitored for effectiveness unless facility operators and regulators know what is being released from the facility and its origin. Government regulatory systemssuch as those established by the Clean Water Act or Resource Conservation and Recovery Act (RCRA)require refineries and other facilities to monitor and measure releases from a few specific points, such as the end of a discharge pipe, or in specific media, such as groundwater. To bridge the gaps in existing data, a multimedia sample collection and analysis effort needs to be undertaken.

Ronald E. Schmitt; Howard Klee; Debora M. Sparks; Mahesh K. Podar

1998-01-01T23:59:59.000Z

338

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

339

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

340

Vanadium catalysts break down biomass for fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

342

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

storage and transport, biomass conversion to hydrogen, andvehicle served by biomass ($) Conversion facility size (kg/the lowest biomass gasi?cation energy conversion ef?ciency

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

343

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

pretreatment to enhance biomass conversion to ethanol. Appl.pretreatment to enhance biomass conversion to ethanol. Appl.earliest use of acid in biomass conversion that provided a

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

344

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

Follow Xylan Deconstruction in Biomass Conversion . 61 3.1in lignocellulosic biomass conversion, however, is torecalcitrance to biomass conversion, a better understanding

Li, Hongjia

2012-01-01T23:59:59.000Z

345

Catalytic Conversion of Biomass-derived Feedstock (HMF) into...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock...

346

Biomass Program Monthly News Blast: May | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents & Publications Biomass Program Monthly...

347

August 2012 Biomass Program Monthly News Blast | Department of...  

Broader source: Energy.gov (indexed) [DOE]

August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

348

February 2012 Biomass Program News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 2012 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012newsblast.pdf More Documents &...

349

Feedstock Supply and Logistics: Biomass as a Commodity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics: Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

350

Biomass Program Monthly News Blast: October | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October Biomass Program Monthly News Blast: October News and updates from the Biomass Program in October 2011. octobernewsblast.pdf More Documents & Publications Biomass Program...

351

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

352

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

353

Biomass Program Monthly News Blast: July | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July Biomass Program Monthly News Blast: July News and updates from the Biomass Program in July 2011. julynewsblast.pdf More Documents & Publications Biomass Program Monthly News...

354

Buena Vista Biomass Power LCC | Open Energy Information  

Open Energy Info (EERE)

Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW biomass...

355

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

356

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

357

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

358

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

359

Biomass Program Monthly News Blast - March 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2012 Biomass Program Monthly News Blast - March 2012 Monthly updates from the Biomass Program in March 2012. march2012newsblast.pdf More Documents & Publications Biomass...

360

July 2012 Biomass Program Monthly News Blast | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program Monthly News Blast July 2012 monthly newsletter from the Department of Energy's Biomass Program....

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass Program Monthly News Blast: August | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

362

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

363

Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Liuzhou Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product:...

364

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

365

Biomass Program Monthly News Blast: June | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June Biomass Program Monthly News Blast: June News and updates from the Biomass Program in June 2011. junenewsblast.pdf More Documents & Publications Biomass Program Monthly News...

366

April 2012 Biomass Program News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 2012 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities,...

367

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network [OSTI]

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

368

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

369

Producing Beneficial Materials from Biomass and Biodiesel Byproducts...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National...

370

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

371

A Single Multi-Functional Enzyme for Efficient Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy...

372

Woodlake Sanitary Services Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Woodlake Sanitary Services Biomass Facility Jump to: navigation, search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility...

373

Covanta Fairfax Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type...

374

A survey of state clean energy fund support for biomass  

E-Print Network [OSTI]

with the planting of biomass energy crops Pike Countya regional agricultural biomass energy workshop and relatedrenewable energy, biomass energy sources are included in

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

375

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

Figueroa, C.

2012-01-01T23:59:59.000Z

376

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

commercial farm. A biomass energy farm must cover a largeof Symposium on Energy from Biomass and Wastes, Washington,Biomass Yield Energy Content Upwelling

Haven, Kendall F.

2011-01-01T23:59:59.000Z

377

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

context of the full biomass energy system. Clearly, biomassa Business from Biomass in Energy, Environment, Chemicals,by far the lowest biomass gasi?cation energy conversion ef?

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

378

Huaian Huapeng Biomass Electricity Co | Open Energy Information  

Open Energy Info (EERE)

Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

379

Biomass Energy Resources and Technologies | Department of Energy  

Energy Savers [EERE]

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture...

380

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Renewable Resource Data Center - Biomass Resource Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

382

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

Catalysts in thermal biomass conversion, Applied Catalysisfor a description of biomass conversion processes. TheseBiomass Feedstock Biomass Conversion Biomass Energy Forestry

FAN, XIN

2012-01-01T23:59:59.000Z

383

NREL: Biomass Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff NREL's biomass research staff includes: Management team Technology and research areas Research support areas. Search the NREL staff directory to contact any of the research staff listed below. Management Team The biomass management team is composed of: Thomas Foust, National Bioenergy Center Director Robert Baldwin, Principal Scientist, Thermochemical Conversion Phil Pienkos, Applied Science Principal Group Manager Kim Magrini, Catalysis and Thermochemical Sciences and Engineering R&D Principal Group Manager Jim McMillan, Biochemical Process R&D Principal Group Manager Rich Bain, Principal Engineer, Thermochemical Sciences Mark Davis, Thermochemical Platform Lead Richard Elander, Biochemical Platform Lead Dan Blake, Emeritus Back to Top Technology and Research Areas

384

Market Assessment of Refinery Outages Planned for October 2010 through January 2011  

Gasoline and Diesel Fuel Update (EIA)

10)/2 10)/2 Market Assessment of Refinery Outages Planned for October 2010 through January 2011 November 2010 Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. E nergy Information Adminis tration Market As s es s ment of P lanned R

385

Market Assessment of Refinery Outages Planned for October 2009 through January 2010  

Gasoline and Diesel Fuel Update (EIA)

09)/2 09)/2 Market Assessment of Refinery Outages Planned for October 2009 through January 2010 November 2009 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the independent statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views herein should not be construed as representing those of the Department or the Administration. Preface and Contacts The Energy Information Administration (EIA) is the independent statistical and analytical

386

Standard guide for evaluating and qualifying oilfield and refinery corrosion inhibitors in the laboratory  

E-Print Network [OSTI]

1.1 This guide covers some generally accepted laboratory methodologies that are used for evaluating corrosion inhibitors for oilfield and refinery applications in well defined flow conditions. 1.2 This guide does not cover detailed calculations and methods, but rather covers a range of approaches which have found application in inhibitor evaluation. 1.3 Only those methodologies that have found wide acceptance in inhibitor evaluation are considered in this guide. 1.4 This guide is intended to assist in the selection of methodologies that can be used for evaluating corrosion inhibitors. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

387

Classification of bacterial isolates of the Jordanian oil refinery petroleum sludge  

Science Journals Connector (OSTI)

The aim of this study is to characterise the bacterial isolates of Jordanian oil refinery sludge for the purpose of using microorganisms in treating industrial wastewater effluents that contains hydrocarbons. Morphological, physiological, biochemical, antimicrobial susceptibility tests and 16S-23S rRNA spacer region polymorphism were used to characterise the isolated thermotolerant Bacillus, with specific reference to Bacillus strains. Data were coded and analysed by numerical techniques using the Gower coefficients and by average linkage (UPGMA) analysis. The study resulted in allocation of strains into two areas at 50.0% similarity levels and ten major phenons at 78.0% similarity level. Amplification of 16S-32S rRNA genes divided all strains into two areas at 48.0% similarity level; however, at 78.0% similarity level five taxonomically distinct phenons were evident.

Mohammed N. Battikhi; Bassam Mrayyan; Manar Atoum

2009-01-01T23:59:59.000Z

388

Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)  

Reports and Publications (EIA)

On August 27, 1997, the Environmental Protection Agency (EPA) promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the United States would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

1998-01-01T23:59:59.000Z

389

Integrity management of a HIC-damaged pipeline and refinery pressure vessel through hydrogen permeation measurements  

SciTech Connect (OSTI)

Hydrogen permeation measurements were used in the successful operation of a sour gas pipeline subsequent to a hydrogen-induced cracking (HIC) failure in September 1992. Two joints of HIC-resistant pipe were used to repair the failed section and adjacent cut-outs. The pipeline has been operated for five years with no further instances of HIC failure. Hydrogen permeation monitoring was chosen as an integrity management tool because no techniques are currently available to inspect for HIC damage in a pipeline this size. Self-powered electrochemical devices installed on the pipeline were employed to monitor and control the effectiveness of a batch inhibition program in maintaining diffusing hydrogen atom concentrations below the laboratory-measured threshold for initiation of HIC damage. Permeation monitoring of a HIC-damaged refinery pressure vessel indicated very high hydrogen atom flux, despite attempts to inhibit corrosion with ammonium polysulfide injection. In this instance it was decided that replacement of the vessel was necessary.

Hay, M.G.; Rider, D.W. [Shell Canada Ltd., Calgary, Alberta (Canada)

1998-12-31T23:59:59.000Z

390

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

391

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

392

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

393

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

394

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

395

Biomass One LP | Open Energy Information  

Open Energy Info (EERE)

Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One LP1 This article is a stub. You...

396

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels from Biomass Liquid Fuels from Biomass Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel...

397

Biomass Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1 This article is a stub. You can help OpenEI by...

398

Treatment of biomass to obtain ethanol  

DOE Patents [OSTI]

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

399

Biomass 2013: Welcome | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2013: Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting Director, BETO, U.S. Department of Energy b13reedday1-welcome.pdf More...

400

Biomass Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biomass Webinar Text Version | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational...

402

Trading biomass or GHG emission credits?  

Science Journals Connector (OSTI)

Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the countr...

Jobien Laurijssen; Andr P. C. Faaij

2009-06-01T23:59:59.000Z

403

The relative cost of biomass energy transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori

2007-01-01T23:59:59.000Z

404

The Relative Cost of Biomass Energy Transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori

2007-01-01T23:59:59.000Z

405

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

406

Volatile Organic Compounds Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.510 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

407

Biomass Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Data Book Biomass Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: Oak Ridge National Laboratory Sector: Energy Focus Area: Biomass Topics: Resource assessment Resource Type: Dataset Website: cta.ornl.gov/bedb/ References: Program Website[1] Logo: Biomass Energy Data Book The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of

408

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

409

ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Biomass Program Peer...

410

Dairy Biomass as a Renewable Fuel Source  

E-Print Network [OSTI]

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

411

Biomass Derivatives Competitive with Heating Oil Costs.  

Broader source: Energy.gov [DOE]

Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs.

412

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network [OSTI]

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

413

Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL  

E-Print Network [OSTI]

9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY disturbance of the natural global carbon cycle. The "carbon-neutral" renewable energy carrier biomass seems of biomass for energy purposes. The CEBM comprises a biospheric part being based on the "Osnabrück Biosphere

Keeling, Stephen L.

414

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend  

Science Journals Connector (OSTI)

NO Reduction in Decoupling Combustion of Biomass and Biomass?Coal Blend ... Biomass is a form of energy that is CO2-neutral. ... However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. ...

Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

2008-12-09T23:59:59.000Z

415

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

416

Increasing biomass in Amazonian forest plots  

Science Journals Connector (OSTI)

...Malhi and O. L. Phillips Increasing biomass in Amazonian forest plots Timothy R...by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian...Therefore we present a new analysis of biomass change in old-growth Amazonian forest...

2004-01-01T23:59:59.000Z

417

4, 52015260, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

418

4, 707745, 2007 Proxies of biomass  

E-Print Network [OSTI]

BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

Paris-Sud XI, Université de

419

Biomass Gasification at The Evergreen State College  

E-Print Network [OSTI]

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

420

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermodynamics of Energy Production from Biomass  

E-Print Network [OSTI]

Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

Patzek, Tadeusz W.

422

Fermentable sugars by chemical hydrolysis of biomass  

E-Print Network [OSTI]

Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

Raines, Ronald T.

423

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network [OSTI]

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

424

Also inside this issue: Bioengineering Better Biomass  

E-Print Network [OSTI]

Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

425

Woody Biomass Logistics Robert Keefe1  

E-Print Network [OSTI]

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

426

5, 1045510516, 2005 A review of biomass  

E-Print Network [OSTI]

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

427

4, 51355200, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

428

Researchers at the Biomass Energy Center  

E-Print Network [OSTI]

HARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David into fuels and other energy products. Like petroleum and coal, biomass contains carbon taken from the atmosphere via photosynthesis: turning sunlight into energy. Unlike fossil fuels, however, biomass

Lee, Dongwon

429

Energy from Forest Biomass: Potential Economic Impacts  

E-Print Network [OSTI]

Energy from Forest Biomass: Potential Economic Impacts in Massachusetts Prepared for: Massachusetts Bioenergy Initiative, a multifaceted study of biomass energy potential in Massachusetts. The economic impact study looks specifically at impacts in the 5 western counties of the Commonwealth, where biomass energy

Schweik, Charles M.

430

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment (Redirected from Biomass Resource Assessment Presentation) Jump to: navigation, search Tool Summary Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

431

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network [OSTI]

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

432

Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery  

E-Print Network [OSTI]

This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

Molina, Luisa Tan

433

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network [OSTI]

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

434

Colusa Biomass Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Colusa Biomass Energy Corporation Colusa Biomass Energy Corporation Jump to: navigation, search Name Colusa Biomass Energy Corporation Place Colusa, California Zip 95932 Sector Biomass Product Colusa Biomass Energy Corporation is dedicated to converting biomass to energy for transport, and holds a US patent to make ethanol from waste biomass. Coordinates 39.21418°, -122.008594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.21418,"lon":-122.008594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Biomass Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

436

Biomass Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Resource Basics Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are harvested annually after taking 2 to 3 years to reach full productivity. These include such grasses as switchgrass, miscanthus (also known as elephant grass or e-grass), bamboo, sweet sorghum, tall fescue, kochia, wheatgrass, and others. Short-rotation woody crops are fast-growing hardwood trees that are

437

Tropical Africa: Total Forest Biomass (By Country)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

438

PEMEX selects the H-Oil{reg_sign} process for their hydrodesulfurization residue complex at the Miguel Hidalgo Refinery  

SciTech Connect (OSTI)

Petroleos Mexicanos (PEMEX) has selected the H-Oil Process for the conversion and upgrading of a blend of Maya and Isthmus vacuum residua at the Miguel Hidalgo Refinery. The 8,450 metric ton/day (50,000 bpsd) H-Oil Plant will produce a low sulfur (0.8 wt%) fuel oil, diesel, naphtha, and LPG. The H-Oil Plant will be a key component of the Hydrodesulfurization Residue (HDR) Complex which will be located at the Miguel Hidalgo Refinery in Tula, State of Hidalgo, Mexico. The project is part of PEMEX`s Ecology Projects currently underway in Mexico. This paper describes the HDR Complex and the design basis of the H-Oil Plant and provides the current status of this project.

Wisdom, L.I.; Colyar, J.J. [Hydrocarbon Research, Inc., Princeton, NJ (United States)

1995-12-31T23:59:59.000Z

439

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network [OSTI]

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARp?) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution Benjamin Brant Sabine Brueske Donald Erickson Riyaz Papar Planetec Planetec Energy Concepts Company Energy... in Denver, Colorado. The Waste Heat Ammo nia Absorption Refrigeration Plant (WHAARP?) is based on a patented process and cycle design developed by Energy Concepts Co. (ECC) to cost effectively re cover 73,000 barrels a year of salable LPGs and gasoline...

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

440

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

442

Economic and European Union Environmental Sustainability Criteria Assesment of Bio-Oil-Based Biofuel Systems: Refinery Integration Cases  

Science Journals Connector (OSTI)

Between bio-oil gasification and upgrading routes in Figure 2, the former route comprises of proven technologies and can be commercially deployable by industrial companies with infrastructure and expertise available to produce marketable products. ... For the scenario with all hydrogen sold by the refinery, (61.5 + 20.67) kmol/t of bio-oil at the market rate of 1200 $/t and stable oil sold by the upgrader to the refinery at the market rate of 490 $/t, 141.8 $/t or 19.8 $/bbl of crude oil of economic incentive from the selling of all the hydrogen and 39.3 $/t or 3.3 $/bbl of crude oil of economic incentive from the replacement of final biodiesel blending by the renewable diesel production from the stable oil coprocessing are obtained. ... Given the volatile and vulnerable petroleum markets, oil companies are under pressure for moving toward a greener future, within which refinery expansion strategy may be a commonplace. ...

Jhuma Sadhukhan; Kok Siew Ng

2011-04-19T23:59:59.000Z

443

NREL-Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

NREL-Biomass Resource Assessment NREL-Biomass Resource Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Resource Assessment Presentation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps Website: www.nrel.gov/international/biomass_resource.html References: Biomass Resource Assessment at NREL (Int'l)[1] Logo: Biomass Resource Assessment Presentation Overview "Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials

444

Biomass Energy Data Book, 2011, Edition 4  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

Wright, L.; Boundy, B.; Diegel, S.W.; Davis, S.C.

445

Production of Butyric Acid and Butanol from Biomass  

SciTech Connect (OSTI)

Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased reactor productivity, final product concentration, and product yield. Other advantages of the FBB include efficient and continuous operation without requiring repeated inoculation, elimination of cell lag phase, good long-term stability, self cleaning and easier downstream processing. The excellent reactor performance of the FBB can be attributed to the high viable cell density maintained in the bioreactor as a result of the unique cell immobilization mechanism within the porous fibrous matrix Since Butanol replaces gasoline in any car today - right now, its manufacturing from biomass is the focus of EEI and in the long term production of our transportation fuel from biomass will stabilize the cost of our fuel - the underpinning of all commerce. As a Strategic Chemical Butanol has a ready market as an industrial solvent used primarily as paint thinner which sells for twice the price of gasoline and is one entry point for the Company into an established market. However, butanol has demonstrated it is an excellent replacement for gasoline-gallon for gallon. The EEI process has made the economics of producing butanol from biomass for both uses very compelling. With the current costs for gasoline at $3.00 per gallon various size farmstead turn-key Butanol BioRefineries are proposed for 50-1,000 acre farms, to produce butanol as a fuel locally and sold locally. All butanol supplies worldwide are currently being produced from petroleum for $1.50 per gallon and selling for $3.80 wholesale. With the increasing price of gasoline it becomes feasible to manufacture and sell Butanol as a clean-safe replacement for gasoline. Grown locally - sold locally at gas prices. A 500 acre farm at 120 bushels corn per acre would make $150,000 at $2.50 per bushel for its corn, when turned into 150,000 gallons Butanol per year at 2.5 gallons per bushel the gross income would be $430,000. Butanol-s advantage is the fact that no other agricultural product made can be put directly into your gas tank without modifying your car. The farmer making and selling locally has no overhead for shippi

David E. Ramey; Shang-Tian Yang

2005-08-25T23:59:59.000Z

446

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:19 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

447

,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_st_a_epm0f_str_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_st_a_epm0f_str_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:32:18 AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1","MGFSXP11","MGFSXCT1","MGFS3_SDE_1","MGFSXFL1","MGFSXGA1","MGFS3_SME_1","MGFS3_SMD_1","MGFSXMA1","MGFS3_SNH_1","MGFSXNJ1","MGFSXNY1","MGFSXNC1","MGFSXPA1","MGFSXRI1","MGFSXSC1","MGFS3_SVT_1","MGFSXVA1","MGFSXWV1","MGFSXP21","MGFSXIL1","MGFSXIN1","MGFSXIA1","MGFS3_SKS_1","MGFSXKY1","MGFSXMI1","MGFSXMN1","MGFSXMO1","MGFS3_SNE_1","MGFS3_SND_1","MGFSXOH1","MGFSXOK1","MGFS3_SSD_1","MGFSXTN1","MGFSXWI1","MGFSXP31","MGFSXAL1","MGFSXAR1","MGFSXLA1","MGFSXMS1","MGFSXNM1","MGFSXTX1","MGFSXP41","MGFSXCO1","MGFSXID1","MGFSXMT1","MGFSXUT1","MGFSXWY1","MGFSXP51","MGFSXAK1","MGFSXAZ1","MGFSXCA1","MGFSXHI1","MGFSXNV1","MGFSXOR1","MGFSXWA1"

448

Combustion air preheating for refinery heaters using plate-type heat exchangers  

SciTech Connect (OSTI)

Combustion air preheating by recovering heat from combustion gases is a cost effective method of increasing the overall thermal efficiency of the refining and petrochemical processes. This paper presents the advantages of the plate-type air preheaters made of smooth plates without extended surfaces. These exchangers provide a relatively high heat transfer coefficient at a relatively low pressure drop, resulting in a flexible and compact design. The air preheater design can easily be integrated into the heater design. Top mounting with natural draft becomes possible for many applications, eliminating the need for I.D. fan and expensive ductwork. The economical extent of heat recovery function of the fuel fired is presented based on practical experience. The use of porcelain enameled (glass coated) plates and of stainless steel materials allows the operation of the air preheater below the acidic and water dew point. Finally the paper presents the experience of the Canadian refineries and petrochemical plants with plate-type heat exchangers used for combustion air preheating.

Dinulescu, M.

1987-01-01T23:59:59.000Z

449

Summary of the proceedings of the workshop on the refinery of the future  

SciTech Connect (OSTI)

This report on the Workshop on the Refinery of the Future has been prepared for participants to provide them with a succinct summary of the presentations, deliberations, and discussions. In preparing the summary, we have striven to capture the key findings (conclusions) and highlight the issues and concerns raised during the plenary and breakout sessions. The presentation of the summary of the proceedings follows the final workshop agenda, which is given in Section I; each section is tabbed to facilitate access to specific workshop topics. The material presented relies heavily on the outline summaries prepared and presented by the Plenary Session Chairman and the Facilitators for each breakout group. These summaries are included essentially as presented. In addition, individuals were assigned to take notes during each session; these notes were used to reconstruct critical issues that were discussed in more detail. The key comments made by the participants, which tended to represent the range of views expressed relative to the issues, are presented immediately following the facilitator`s summary outline in order to convey the flavor of the discussions. The comments are not attributed to individuals, since in many instances they represent a composite of several similar views expressed during the discussion. The facilitators were asked to review the writeups describing the outcomes of their sessions for accuracy and content; their suggested changes were incorporated. Every effort has thus been made to reconstruct the views expressed as accurately as possible; however, errors and/or misinterpretations undoubtedly have occurred.

Not Available

1994-06-01T23:59:59.000Z

450

IFDM modelling for optimal siting of air quality monitoring stations around five oil refineries  

Science Journals Connector (OSTI)

An IFDM modelling study has been conducted to determine the optimal siting of air quality monitoring stations around five oil refineries. The purpose of this immission monitoring network is specified in environmental legislation. The most appropriate output parameter of the IFDM model for this study is the 98th percentile of the moving 24 h averages, P98,m24h. Modelling for the optimal siting of air quality monitoring stations turned out to be different from modelling for permit granting. Of interest is not the peak value of a relevant immission parameter, but the places where this parameter is most likely to have a higher peak value compared with neighbouring places. For this study, modelling has been done for eleven years of hourly meteorological data. The eleven yearly immission fields obtained by modelling are synthesized using the minimum, median and maximum values of the P98,m24h values obtained for each receptor point. This synthesis of the modelling results was complemented with an analysis of the available immission data for the region, so that the resulting air quality monitoring network is expected to monitor the impact of all emissions, not only those emissions that are in the emission inventory used for modelling.

G. Cosemans; G. Dumont; E. Roekens; J.G. Kretzschmar

1997-01-01T23:59:59.000Z

451

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

452

Gasification of refinery sludge in an updraft reactor for syngas production  

Science Journals Connector (OSTI)

The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time oxidation temperature and equivalence ratios on carbon gas conversion rate gasification efficiency heating value and fuel gas yield are presented. The results show that the oxidation temperature increased sharply up to 858C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 C. This bridging was found to affect also the syngas compositions meanwhile as the temperature decreased the CO H 2 CH 4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction ( CO 2 + C ?=?450?2 CO ) and accelerated the carbon conversion and gasification efficiencies resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies high heating value of gas and fuel gas yield to reach their maximum values of 96.1 % and 53.7 % 5.42 MJ Nm?3 of and 2.5 Nm3 kg?1 respectively.

2014-01-01T23:59:59.000Z

453

Biomass Energy in a Carbon Constrained Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

454

Biomass Energy Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Program Biomass Energy Program Biomass Energy Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Schools State Government Savings Category Bioenergy Maximum Rebate $75,000 Program Info State Alabama Program Type State Grant Program Rebate Amount Varies by project and interest rate Provider Alabama Department of Economic and Community Affairs The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on loans to install approved biomass projects. Technical assistance is also available through the program. Industrial, commercial and institutional facilities; agricultural property owners; and city, county, and state government entities are eligible.

455

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products  

Science Journals Connector (OSTI)

The Impact of Biomass Pretreatment on the Feasibility of Overseas Biomass Conversion to Fischer?Tropsch Products ... One of the most promising options to produce transportation fuels from biomass is the so-called biomass-to-liquids (BtL) route, in which biomass is converted to syngas from which high-quality Fischer?Tropsch (FT) fuels are synthesized. ... Alternatively to converting biomass into liquids or coal-like material, new and dedicated feeding systems for biomass can be developed. ...

Robin W. R. Zwart; Harold Boerrigter; Abraham van der Drift

2006-08-29T23:59:59.000Z

456

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

Not Available

2014-07-01T23:59:59.000Z

457

NREL: Biomass Research - Josh Schaidle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Josh Schaidle Josh Schaidle Photo of Josh Schaidle Josh Schaidle works in the Thermochemical Catalysis Research and Development group, headed by Jesse Hensley. He manages a $500,000 per year task focused on developing catalysts, processes, and reactor systems for the catalytic upgrading of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices Photochemical and electrochemical routes for fuel production Rational design of catalysts through the combination of experiment and theory Early transition metal carbide and nitride catalysts Process design and optimization Life-cycle Assessment (LCA) Catalysts for automotive exhaust treatment Education Ph.D., Chemical Engineering; Concentration in Environmental

458

Solubilization of Biomass Components with Ionic Liquids Toward Biomass Energy Conversions  

Science Journals Connector (OSTI)

Cellulosic biomass essentially consists of cellulose, hemicellulose, and lignin. To obtain energy from cellulosic biomass with minimum given energy, following three steps are required, namely...3, 4...]. Since or...

Mitsuru Abe; Hiroyuki Ohno

2014-01-01T23:59:59.000Z

459

Strategic Biomass Solutions (Mississippi) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) Strategic Biomass Solutions (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Retail Supplier Utility Program Info State Mississippi Program Type Industry Recruitment/Support Training/Technical Assistance Provider Mississippi Technology Alliance The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors and economic developers in the renewable energy sector. It offers companies strategic guidance for making their technology investor ready and connects companies to early stage private capital and available tax incentives. SBS assists

460

Biomass Energy Program Grants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Program Grants Biomass Energy Program Grants Biomass Energy Program Grants < Back Eligibility Local Government Nonprofit Schools State Government Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Varies Program Info Funding Source U.S. Department of Energy's State Energy Program (SEP) State Michigan Program Type State Grant Program Rebate Amount Varies by solicitation; check website for each solicitation's details Provider Michigan Economic Development Corporation '''''The application window for the most recent grant opportunity closed November 26, 2012.''''' The Michigan Biomass Energy Program (MBEP) provides funding for state bioenergy and biofuels projects on a regular basis. Funding categories typically include biofuels and bioenergy education, biofuels

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Figure1:WestBiofuelsBiomassGasificationtoPowerprocesswillutilize gasificationtechnologyprovidedbyis pioneeringthegasificationtechnologythathasbeen

Cattolica, Robert

2009-01-01T23:59:59.000Z

462

Mediterranean land abandonment and associated biomass variation.  

E-Print Network [OSTI]

??Biomass is an important factor in environmental processes, such as erosion, carbon storage, climate change and land degradation. Human-induced changes in plant community systems and (more)

Hoogeveen, S.S.

2011-01-01T23:59:59.000Z

463

Biomass Program Monthly News Blast - May 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2012; Travis Tempel; Atlanta, Georgia U.S. Environmental Protection Agency's Biogas Technology Market Summit, May 14, 2012, Brian Duff; Washington, D.C. Biomass R&D...

464

April 2012 Biomass Program News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chain & Logistics Conference, May 10-11, 2012, Travis Tempel, Atlanta, Georgia EPA Biogas Technology Market Summit, May 14, 2012, Brian Duff, Washington, DC Biomass R&D...

465

Biomass Program Monthly News Blast: August  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The updated report and its supporting data improve our understanding of future biomass markets and will be a critical resource for landowners, businesses, and other potential...

466

Biomass Program Monthly News Blast - March 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Past and Upcoming Events with Biomass Representation International Energy Agency Bioenergy Task 42 Meeting, February 27-March 3, 2012, Melissa Klembara, Copenhagen,...

467

Biomass Renewable Energy Opportunities and Strategies Forum  

Broader source: Energy.gov [DOE]

The forum will give tribal leaders and staff an opportunity to interact with other Tribes, federal agencies, and industry to learn more about biomass energy development.

468

Decentralised energy systems based on biomass.  

E-Print Network [OSTI]

??Replacing fossil fuels with renewable energy sources is recognised as an important measure to mitigate climate change. Residual biomass from agriculture and forestry and short-rotation (more)

Kimming, Marie

2015-01-01T23:59:59.000Z

469

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

usebiomass,waste,orrenewableresources(includingwind,and emerging renewable resource technologies. new, and emerging renewable resources. The goal of

Cattolica, Robert

2009-01-01T23:59:59.000Z

470

Determination of Extractives in Biomass: Laboratory Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extractives in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NRELTP-510-42619...

471

SSF Experimental Protocols -- Lignocellulosic Biomass Hydrolysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSF Experimental Protocols - Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedure (LAP) Issue Date: 10302001 N. Dowe and J. McMillan Technical...

472

Los Alamos scientists advance biomass fuel production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan....

473

NREL: Biomass Research - Thermochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

474

Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enzymatic Saccharification of NRELTP-510-42629 Lignocellulosic Biomass March 2008 Laboratory Analytical Procedure (LAP) Issue Date: 3212008 M. Selig, N. Weiss, and Y. Ji NREL is...

475

NREL: Biomass Research - Courtney E. Payne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

476

Biomass Indirect Liquefaction Strategy Workshop: Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

477

Biomass Indirect Liquefaction Strategy Workshop: Summary Report  

Broader source: Energy.gov [DOE]

This report is based on the proceedings of the U.S. DOEs Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop.

478

Biomass Program Peer Review Sustainability Platform | Department...  

Broader source: Energy.gov (indexed) [DOE]

Program Peer Review Sustainability Platform Biomass Program Peer Review Sustainability Platform Presentation on the Update to the Billion-Ton Study, including differences between...

479

NREL: Biomass Research - Justin B. Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin...

480

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

Note: This page contains sample records for the topic "inbicon biomass refinery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NREL: Biomass Research - Capabilities in Integrated Biorefinery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pilot plant, researchers study biochemical processes for converting lignocellulosic biomass to ethanol. At NREL, teams of researchers focus on developing an integrated...

482

NREL: Biomass Research - Mark R. Nimlos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

483

Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

484

NREL: Biomass Research - Working With Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research expertise. Working with outside organizations is the key to moving advanced biomass conversion technology and processes for the production of bio-based products-i.e.,...

485

Utility Promoters for Biomass Feedstock Biotechnology - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Efficiency Find More Like This Return to Search Utility Promoters for Biomass Feedstock Biotechnology Inventors: Kyung-Hwan Han, Jae-Heung Ko Great Lakes Bioenergy...

486

NREL: Biomass Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. April 26, 2013 Combining Strategies Speeds the Work...

487

Life Cycle Assessment of Biomass Conversion Pathways.  

E-Print Network [OSTI]

??This study has investigated the life cycle of three biomass feedstocks including forest residue, agricultural residue, and whole forest for biohydrogen and biopower production in (more)

Kabir, Md R

2012-01-01T23:59:59.000Z

488

Utilization of durian biomass for biorenewable applications.  

E-Print Network [OSTI]

??The utilization of tropical fruit biomass as feedstock for biorenewable resources is an attractive proposition due to its abundance and potential to reduce reliance on (more)

Bin Bujang, Ahmad Safuan

2014-01-01T23:59:59.000Z

489

BIOMASS PRODUCTION FOR ENERGY IN DEVELOPING COUNTRY.  

E-Print Network [OSTI]

?? Most developing countries of the world still uses biomass for domestic energy, this is mostly used in the rural areas and using our case (more)

Liu, Xiaolin

2012-01-01T23:59:59.000Z

490

NREL: Learning - Student Resources on Biomass Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

resources can provide you with more information on biomass energy. Alternative Fuels Data Center U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy...

491

Developing Functionalized Graphene Materials for Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

492

Characterization of Catalysts for Aftertreatment and Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for...

493

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

494

Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks  

SciTech Connect (OSTI)

The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

Derr, Dan

2013-12-30T23:59:59.000Z

495

Alternative Fuels Data Center: Biomass Research and Development Initiative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biomass Research and Biomass Research and Development Initiative to someone by E-mail Share Alternative Fuels Data Center: Biomass Research and Development Initiative on Facebook Tweet about Alternative Fuels Data Center: Biomass Research and Development Initiative on Twitter Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Google Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Delicious Rank Alternative Fuels Data Center: Biomass Research and Development Initiative on Digg Find More places to share Alternative Fuels Data Center: Biomass Research and Development Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass Research and Development Initiative

496

Alternative Fuels Data Center: Biomass and Biofuels Industry Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biomass and Biofuels Biomass and Biofuels Industry Development to someone by E-mail Share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Facebook Tweet about Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Twitter Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Google Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Delicious Rank Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Digg Find More places to share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass and Biofuels Industry Development

497

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

498

Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006  

SciTech Connect (OSTI)

Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

Not Available

2006-10-01T23:59:59.000Z

499

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network [OSTI]

to Ethanol. Enzymatic Conversion of Biomass for Fuelsto Ethanol. Enzymatic Conversion of Biomass for FuelsBiomass. Enzymatic Conversion of Biomass for Fuels

Qing, Qing

2010-01-01T23:59:59.000Z

500

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network [OSTI]

of the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsof the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsfor analytical pyrolysis. 7.5.2 Biomass analysis All biomass

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z