Powered by Deep Web Technologies
Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Owners of nuclear power plants  

Science Conference Proceedings (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

2

REVIEWS FOR IN SITU LEACH URANIUM EXTRACTION LICENSE APPLICATIONS  

E-Print Network (OSTI)

Review Plan (NUREG–1569) which provides guidance for staff reviews of applications to develop and operate uranium in situ leach facilities. Under the provisions of Title 10 of the Code of Federal Regulations, Part 40 (10 CFR Part 40), Domestic Licensing of Source Material, an NRC Materials License is required to conduct uranium recovery by in situ leach extraction techniques. Applicants for a new license and operators seeking an amendment or renewal of an existing license are required to provided detailed information on the facilities, equipment, and procedures used in the proposed activities. In addition, the applicant for a new license also provides an Environmental Report that discusses the effects of proposed operations on the health and safety of the public and assesses impacts to the environment. For amendment or renewal of an existing license, the original Environmental Report is supplemented, as necessary. This information is used by the NRC staff to determine whether the proposed activities will be protective of public health and safety and the environment and to fulfill NRC responsibilities under the National Environmental Policy Act (NEPA). The purpose of the Standard Review Plan (NUREG–1569) is to provide the NRC staff with guidance on performing reviews of information provided by the applicant, and to ensure a consistent quality and

In Situ; Leach Uranium; In Situ; Leach Uranium; J. Lusher

2003-01-01T23:59:59.000Z

3

RECENT DEVELOPMENTS IN URANIUM RESOURCES AND PRODUCTION WITH EMPHASIS ON IN SITU LEACH MINING  

E-Print Network (OSTI)

resources and production with emphasis on in situ leach mining Proceedings of a technical meeting organized by the IAEA in co-operation with the

unknown authors

2004-01-01T23:59:59.000Z

4

Realities of Chiller Plant Operation: Utility Impacts on Owner...  

NLE Websites -- All DOE Office Websites (Extended Search)

plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut...

5

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating  

NLE Websites -- All DOE Office Websites (Extended Search)

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Costs and Societal Environmental Issues Speaker(s): Don Aumann Date: March 21, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Don Aumann, a Senior Consultant from BKi in Oakland, will present an overview of two projects he completed for the electric utility industry. The first, a case study evaluation of a hybrid chiller plant in Jefferson City, Missouri, demonstrates the importance of carefully evaluating the impact of utility rate structures on plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut chiller-plant operating costs by about 20%, totaling $15,000 per year. In

6

Group Member Names: ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract  

E-Print Network (OSTI)

: ________________________________________________ ________________________________________________ ________________________________________________ Scenario: You are the owner of a potato plant in Idaho. You have recently won a contract to supply Mc

Provancher, William

7

Nuclear plant owners move closer to life extension  

Science Conference Proceedings (OSTI)

A major debate is now underway about the safety of 40-year-old nuclear power plants. Under the Atomic Energy Act of 1954 a nuclear power plant's license is limited to a maximum of 40 years. Although the act permits the renewal of an operating license, it does not outline any standards or procedures for determining when or under what conditions a plant's operating license should be renewed. This paper reports that the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) are co-sponsors of a program to demonstrate the license renewal process for two nuclear power plants - Yankee Atomic Electric's 175-MW Yankee PWR plant and Northern States Power's 536-MW Monticello BWR plant. The demonstration is known as the lead plant project. Yankee Atomic has already analyzed the plant's condition and evaluated aging using computer-based expert systems and the plant's operating experience. During these tests Yankee Atomic found embrittlement of the reactor vessel.

Smith, D.J.

1991-10-01T23:59:59.000Z

8

MEMORANDUM OWNER(S)  

Office of Legacy Management (LM)

OWNER(S) OWNER(S) -------- past : Lb-J ' 0-c @+a+~-~% current: -- ________________________ ------7--- -- Owner cantacted 0 yes 4t no; if yes, date contacted TYPE OF OPERATION ----------------- q Research & Development 0 Facility Type 0 Production scale testing 0 Manufacturing 0 Pilat Scale 0 Bench Scale Process i Theoretical Studies Sample & Analysis 0 Production 0 Di5posal/Storage TYPE OF CONTRACT ----_----------- 0 Prime q Subcontractor Cl Purchase Order 0 University 0 Research Organization 0 Government Spohscred Facility 0 Other --------------------- . 0 Other information (i.e., cost + fixed fee, unit price, time 84 material, e,tc:) ------- 'Canfract/Purchase Order # --. CONTRACTING PERIOD: r4J~--___-----___---_____________ ----- OWNERSHIP:

9

OWNER(S) Past:  

Office of Legacy Management (LM)

--------------__ --------------__ CITY: ' -* -I c.l.&&!,Ck -------------------------- OWNER(S) ------__ Past: Owner contacted q yes current: -------------------------- if yea, date contacted ------_---___ TYPE OF OPERATION --------~~_~----_ q Research & Development 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process,. 0 Theoretical Studies 0 Sample & Analysis 0 Production 0 Disposal/Storage 0 Facility Type a Manufacturing (I University, 0 Research Organization 0 Government Sponsored Facility 0 Other ~~~--~~~---~~~------_ TYPE OF CONTRACT ---_---__------_ 0 Prinie 0 Subcantractbr 0 Purchase Order 0 Other information (i.e., cast + fixed fee, unit price, time b material, qtc) ----'w-- ~~--~~-~~~----~~----________ Contract/Purchase ' Order

10

SUBJECT: OWNER(S)  

Office of Legacy Management (LM)

HEHORANDUH HEHORANDUH ;;&; DC&b ------w--v SUBJECT: OWNER(S) -------- P1st a Owner contrctmd TYPE OF OPERATION ----------------- 0 Research I Development 0 Facility Type 0 Production scale testing 0 Pilot Scrlr 0 Bench Seal0 Procemm 0 Theoretical Studier 0 Sample & Anrlyri l 0 Production x Dimpomrl/Storrgr 0 Hmufrcturing 0 University 0 Rmsmarch Organization 0 Government Sponmored Facility 0 Other -II---------------- TYPE OF CONTRACT ----u---------- 0 d ime Subcontract& 0 Purchrre Order 0 Other information (i.e., comt -w-e--- Contrrct/Purchrsa Order 0 CONTRACTING PERIOD: ------------------ . OWNERSHIPa AEC/HED OWNED m---w LANDS 0 BUILDINSS 0 EQUIPMENT 0 ORE OR RAW HA-I-L 0 FINAL PRODUCT q WASTE & RESIDUE 0 AEC/HED LEASED ---w-w E 0 0

11

OWNER(S)  

Office of Legacy Management (LM)

l . . l . . ; * 3Tb'-j .I OWNER(S) rf yea, date contacted ___ TYPE OF OPERATION --~~----~---__--_ aResearch & Development q Facility Type 0 Production scale testing Et Pilot Scale q Hanufacturing 0 Bench Scale Process 0 University 0 Theoretical Studies 0 Research Organization Cl 0 Government Sponsored Facility Sample SC Analysis Cl Other --------__----___--_ 3 Production 1 Disposal/Storage TYPE OF CONTRACT --~_---__---____ m.p rime SC5 sLta4rM-J / Cl Subcqntractor 0 Purchase Order 0 Other information (i.e., cost + fixed fee, unit price? Contract/Purchase Order # ~~~ti~ --------------------_____________ AECf MED OWNED -_--_ LANDS BUILDINGS ' EQUIPMENT ORE OR RAW MATL [3 FINAL PRODUCT 0 WASTE & RESIDUE q GOVT OWNED ----- GOUT LEASED -----_ E

12

OWNER(S)  

Office of Legacy Management (LM)

_----- _----- past: %J +c - fl*+;o.rrq -____------------- Owner contacted 0 yes Curr@nt: ______ -----------L-----l- if yes, date contacted TYPE OF OPERATION Reeearch & Development 0 Facility Type 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 0 Research Organization Theoretical Studies 0 0 Government Sponsored Facility ~ ~*a;~a.a~~plysis 0 Other ~~~~~~~~------____--- 0 Production 0 DispdsalfStoraqe TYPE OF CONTRACT ---------------- 0 Prime 0 Subcontractor 0 Purchase Order 0 Other information (i.e., cost + fixed fee, unit price, time & mater!&, etc) ------- --------------------LA------ ~~------------~~~-~--------- Contract/Purchase Order # ~-----~-~~~~~~~--~~~_____________ CONTRACTING PERIOD: f?Ar! lts' d' ------------------ ___-_ +----a-

13

OWNER(S)  

Office of Legacy Management (LM)

------ - ------ - Past: ~~~-~~~-~~~~~~~~~~rrent: Owner contacted q yes tina;-. ____ c-lti&pJ-~ lf yes, date contacted -_---__---___ TYPE OF OPERATION -_-----_--_--____ q Research & Development 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process : 'Theoretical Studier Sample & Analysis G Production 0 Disposal/Storage TYPE OF CONTRACT ~-~~~----~~----_ &, Facility Type q Manufacturing 0 University a Research Organizaticn a Other information (i.e., cost + fixed fee,, unit price, -_---- yryoi -37 J-1 4:~zL~~:~:q~&- ,-antract,purchase Order # ,L,U,-37-?\- ---------------------------- --------------------_____________ my~mx~~ai_~Gi~~~Q : _I 7 v 3 _ I 9 V-Y, ---_--_------------------------------ OWNERSHIP: AEC/MED AEC/MED GOUT GOUT

14

Property:Owners | Open Energy Information  

Open Energy Info (EERE)

Owners Owners Jump to: navigation, search Property Name Owners Property Type Page Description A unique list of owners of all power plants in the area. Automatically populated using ask query on Property: Owner of Category: Energy Generation Facility with property InGeothermalResourceArea set to the the variable vName of the Geothermal Resource Area Subproperties This property has the following 301 subproperties: A Abraham Hot Springs Geothermal Area Adak Geothermal Area Akun Strait Geothermal Area Akutan Fumaroles Geothermal Area Alum Geothermal Area Alvord Hot Springs Geothermal Area Arrowhead Hot Springs Geothermal Area Ashton Warm Springs Geothermal Area Astor Pass Geothermal Area Augusta Mountains Geothermal Area B Bailey Bay Hot Springs Geothermal Area Baker Hot Spring Geothermal Area

15

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status 4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status Operating Status at the End of In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

16

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

17

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status" 4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of" ,,,,2012,"1st Quarter 2013","2nd Quarter 2013","3rd Quarter 2013" "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

18

TO: FILE MEMORANDUM SUBJECT: ALTERNATE OWNER(S)  

Office of Legacy Management (LM)

SUBJECT: SUBJECT: ALTERNATE OWNER(S) -__----- Owner csntacted r~ yes current: --------------------A----- if yes, date contacted TYPE OF OPERATION ------------_____ Research & Development 0 Facility Type 0 Production seal e testing 0 Pilot Scale 0 Bench Scale Process i Theoretical Studi es Sample & Analysis Producti on Di spas.31 /Storage a' Manufacturing q University 0 Research Organization 0 Government Sponsored Facility Cl Other ~~~~~~~----~~-------- 0 0 Prime q Other information (i.e., cast 0 Subcontractor 0 'Purchase Order + fixed fee, unit piice, pi time & material, gtc) ~~-----_------~~_-------~-~- .Contract./Purchaee Order # fi~k~ti;3 -----------_---------------- CONTRACTING PEXIOD: tit-k ------------------ would -------------------------------------

19

User_OrgOwner_Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organization Owner Overview Organization Owner Overview © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Organization Owner Overview Purpose The purpose of this job aid is to guide organization owners through the step-by-step process of available features within SuccessFactors Learning. The organization dashboard is a collection of charts and data tables that summarize learning data for your organizations and sub-organizations. Note: Depending on how permissions were configured in, access to the following features will vary for each organization. Task A. Organization Dashboard From the Home page, roll-over the Organization tab and select Dashboard from the list. 1 1 Succession Planner 7 Steps

20

Casablanca Carlos American Electric Power Transmission Owner  

E-Print Network (OSTI)

(Facilitator) Chantal PJM Interconnection Not Applicable Horstmann John Dayton Power & Light Company (The) Transmission Owner Issermoyer John PPL Electric Utilities Corp. dba PPL Utilities Transmission Owner

Pjm Interconnection Llc; Teleconference Webex Participants; Firstenergy Solutions; Corp Transmission Owner; Boltz Jeff; Firstenergy Solutions; Corp Transmission Owner; Fecho Thomas; Indiana Michigan; Power Company; Transmission Owner; Patten Kevin; Company Transmission Owner

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

22

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

23

Definition: Generator Owner | Open Energy Information  

Open Energy Info (EERE)

Generator Owner Entity that owns and maintains generating units.1 References Glossary of Terms Used in Reliability Standards An LikeLike UnlikeLike You like this.Sign Up...

24

Business Owners: Prepare for Fuel Shortages | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Shortages Fuel Shortages Business Owners: Prepare for Fuel Shortages Business Owners: Prepare for Fuel Shortages You may need fuel for vehicles, generators, and other equipment to continue operating your business during an emergency. During a shortage, local authorities and fuel suppliers will prioritize getting fuel to key assets such as emergency operations centers, hospitals, food supply dealers, water supply plants, and telecommunication networks. Plan ahead to help make sure you have adequate supplies. Review your fuel supply contracts-Arrange priority contacts with fuel suppliers, including an out-of-region supplier, and include language for providing fuel supplies during an emergency. Can your fuel suppliers operate with no power? Do they have gravity-fed systems? What if your fuel

25

JOBAID-ORGANZIATION OWNER OVERVIEW | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OWNER OVERVIEW JOBAID-ORGANZIATION OWNER OVERVIEW The purpose of this job aid is to guide organization owners through the step-by-step process of available features within...

26

Energy Efficiency: Helping Home Owners and Businesses Understand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency: Helping Home Owners and Businesses Understand Energy Usage Energy Efficiency: Helping Home Owners and Businesses Understand Energy Usage November 7, 2013 - 3:55pm...

27

Danish Wind Turbine Owners Association | Open Energy Information  

Open Energy Info (EERE)

Owners Association Owners Association Jump to: navigation, search Name Danish Wind Turbine Owners' Association Place Aarhus C, Denmark Zip DK-8000 Sector Wind energy Product Danish Wind Turbine Ownersâ€(tm) Association is a non-profit, independent association overseeing wind turbine ownersâ€(tm) mutual interests regarding the authorities, political decision-makers, utilities and wind turbine manufacturers. References Danish Wind Turbine Owners' Association[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Danish Wind Turbine Owners' Association is a company located in Aarhus C, Denmark . References ↑ "Danish Wind Turbine Owners' Association" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Wind_Turbine_Owners_Association&oldid=344068

28

TO: FILE GiR FROM: SUBJECT: I OWNER(S) Past: Current:  

Office of Legacy Management (LM)

3 749 3 749 '*,. .,;L ----.-. _ 5' . iMEMORANDUM TO: FILE GiR FROM: , SUBJECT: I OWNER(S) ------__ Past: ------------------_----~ Current: Owner contacted q yes qnnc; ~~-~~~---------~~--_______ if yes, date contacted 1 ! I TYPE OF OPERATION --~_--___~---_--_ $ Research b Development a Facility Type 1 I 0 Production scale testing 0 Pilot Scale Bench Scale Process Theoretical 'Studies 0 Sample & Analysis G Production E Disposal/Storage 0 Research 0 Uther --------------T------ I T'/PE OF CONTRACT -----------_____ 0 Prime I2 C! Subcontractor Other information (i.e.:, cost q Purchase Order + fixed fee, unit Arice, time 84 material, etr) i ------- 'I ----------------------i__--_ Contract/Purchase Qrdei. W -----------I--k---j----- ~PJKJbL-I @J OWNERSHIP:

29

PP-82-3 The Joint Owners of the Highgate Interconnection Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 The Joint Owners of the Highgate Interconnection Facilities PP-82-3 The Joint Owners of the Highgate Interconnection Facilities Presidential Permit authorizing The Joint Owners...

30

Property:Owner | Open Energy Information  

Open Energy Info (EERE)

property of type Page. property of type Page. Subproperties This property has the following 1 subproperty: G GRR/Section 4-FD-a - Exploration Permit BLM Pages using the property "Owner" Showing 25 pages using this property. (previous 25) (next 25) A AB Tehachapi Wind Farm + Coram Energy + AFCEE MMR Turbines + AFCEE + AG Land 1 + AG Land Energy LLC + AG Land 2 + AG Land Energy LLC + AG Land 3 + AG Land Energy LLC + AG Land 4 + AG Land Energy LLC + AG Land 5 + AG Land Energy LLC + AG Land 6 + AG Land Energy LLC + AVTEC + AVTEC + Aberdeen Biomass Facility + Sierra Pacific Industries + Adair Wind Farm I + Shafer Systems + Adair Wind Farm II + MidAmerican Energy + Aero Turbine + AeroTurbine Energy Company + Aeroman Repower Wind Farm + Coram Energy + Affinity Wind Farm + Affinity Wind LLC +

31

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

Not Available

1994-04-01T23:59:59.000Z

32

A Study of United States Hydroelectric Plant Ownership  

Science Conference Proceedings (OSTI)

Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.

Douglas G Hall

2006-06-01T23:59:59.000Z

33

Rights and Duties of Mines and Mine Owners, General (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation addresses general operational guidelines for mine owners regarding public notices, fees, land and mineral ownership, requirements for mining in certain municipalities, and mining...

34

Visiting With Santa Fe Small Business Owners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visiting With Santa Fe Small Business Owners Visiting With Santa Fe Small Business Owners Visiting With Santa Fe Small Business Owners May 10, 2012 - 9:02am Addthis Dot Harris Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity You've got to do your homework in order to contract with the federal government. Whether you are a large or small business owner, learning the ins and outs of government contracting takes dedication, perseverance, and taking advantage of opportunities to meet face-to-face with procurement experts and other businesses. That's where our Small Business Roundtables, Business Opportunity Sessions, conference booths, and Regional Small Business Summits come in. We want to meet directly with small business owners, managers, and staffers, to hear what you need to learn from us to make the contracting

35

Tips for Renters and Property Owners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips for Renters and Property Owners Tips for Renters and Property Owners Tips for Renters and Property Owners July 5, 2012 - 4:51pm Addthis Tips for Renters and Property Owners If you rent, or if you own a rental unit, you can use many of the tips throughout this guide to save money and energy. Renters You can reduce your utility bills by following the tips in these sections: Lighting Heating and Cooling (if you control the thermostat) Appliances Home Office and Home Electronics Windows Transportation Encourage your landlord to follow these tips as well. They'll save energy and money, improving your comfort and lowering your utility bills even more. Property Owners Nearly all of the information in this guide applies to rental units. The section on Your Home's Energy Use focuses on air leaks, insulation, heating

36

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Susan E. Bechtol 509-376-3388 Advanced Mixed Waste Treatment Plant (INEEL) EM Idaho Treatment Group, LLC DE-AC07-091D-14813 5272011 9302015 No options 9302015...

37

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

865- 576-0976 Heather Houk 865-576-1894 Advanced Mixed Waste Treatment Plant (INEEL) EM Idaho Treatment Group, LLC 5272011 9302015 No options 9302015 Site Clean upfacility...

38

Microsoft Word - 2.9 Chemical Owners 0913.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Owners Chemical Owners AFRD Line Management personnel who authorize the use of chemicals in their group's work retain responsibility for ensuring that the chemicals are properly inventoried, labeled, stored, used, and disposed. They may choose to remain Chemical Owners as described in the LBNL Chemical Hygiene and Safety Plan and manage the chemicals themselves, or delegate chemical management tasks to appropriately trained AFRD or matrixed personnel who have knowledge of the chemicals' hazards, controls, and procedures for using and storing them safely. The chemical inventory for each AFRD work area must be maintained on the Chemical Management System. When chemical management tasks are delegated, the AFRD Line Management personnel must also

39

Secretaries Chu and Donovan to Host Conference Call on Home Owners...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Donovan to Host Conference Call on Home Owners Energy-Saving Improvements Program Secretaries Chu and Donovan to Host Conference Call on Home Owners Energy-Saving Improvements...

40

Business Owners: Prepare a Business Recovery Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Business Recovery Plan a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a written business recovery plan to support them through disasters and help them stay in operation. Planning ahead will help your company get back to business more quickly. Consider your risks-How might a disaster affect your business operations? What natural disasters are most likely where you operate? Identify your critical business functions-What resources and personnel will you need to restore or reproduce these functions during a recovery? Assign disaster response duties to your employees. Identify critical suppliers-Identify suppliers, providers, shippers, resources, and other businesses you typically interact with and

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Efficiency: Helping Home Owners and Businesses Understand Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency: Helping Home Owners and Businesses Understand Efficiency: Helping Home Owners and Businesses Understand Energy Usage Energy Efficiency: Helping Home Owners and Businesses Understand Energy Usage November 7, 2013 - 3:55pm Addthis Building 90, an 89,000-square foot office building at Berkeley Lab, served as the commercial setting for the miscellaneous and electronic loads (MELs) study. 460 meters were placed throughout the building to serve as a representative sample of a wide range of device types. | Photo courtesy of Berkeley Lab. Building 90, an 89,000-square foot office building at Berkeley Lab, served as the commercial setting for the miscellaneous and electronic loads (MELs) study. 460 meters were placed throughout the building to serve as a representative sample of a wide range of device types. | Photo courtesy of

42

texas well owner network More than a million private water  

E-Print Network (OSTI)

texas well owner network More than a million private water wells in Texas provide water to citi and are at a greater risk for exposure to compromised water quality. The Texas Water Resources Institute along with the Texas AgriLife Extension Service's Department of Soil and Crop Sciences and Department of Biological

43

Maintainability Implemented by Third-Party Contractor for Public Owner  

E-Print Network (OSTI)

is implementation of a computerized maintenance management system CMMS . The CMMS is a tool used to establish maintenance strategy for systems Construction manager · Conduct construction practices that do not alter by NASA, the owner. The policy directive endorses a maintenance management pro- gram capable of developing

Sheridan, Jennifer

44

Business Owners: Respond to an Energy Emergency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Respond to an Energy Emergency Respond to an Energy Emergency Business Owners: Respond to an Energy Emergency Business Owners: Respond to an Energy Emergency Ensure your building is safe to occupy-Initially allow only essential, critical-operations staff into restricted areas. Ask your local or State health department for guidance on determining the safety of your building. Decide whether to activate backup power-If your backup generator doesn't automatically turn on during a power outage, you'll have to determine when to activate backup systems. First determine whether power is likely to be restored within 24 hours. If not, you may want to activate those systems to protect your business assets. Learn more Contact your fuel supplier-If you rely on fuel supplies for your business, vehicles, generators, and other equipment, contact your fuel

45

Business Owners: Prepare for Utility Disruptions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Utility Disruptions for Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other hazard knocks out your business's electricity or natural gas service. Identify energy utilities-The utilities that are absolutely necessary to running your business. How might a disaster impact the availability of those utilities? Determine backup options-Contact your utility companies to discuss potential backup options, such as portable generators to provide power. Learn how and when to turn off utilities-For example, if you turn off your natural gas, a professional technician must turn it back on. Learn more Consider using backup generators-Generators can power the most important aspects of your business in an emergency. This will involve:

46

River resort owners find LPG a power behind their success  

SciTech Connect

This paper reports on a restaurant and resort which runs entirely on LPG. It has two generators converted to LPG that supply the power for the complex. Energy supplied from the propane is used in the kitchens, to drive the water pump and provide electricity for lighting and other power needs, and to heat the swimming pool. Far more importantly for the owners has been the fuel cost savings of at least 60%.

1991-01-01T23:59:59.000Z

47

Wet Corn Milling Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Wet Corn Milling Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

48

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2...

49

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference...

50

Lessons Learned From Implementation of Westinghouse Owners Group Risk-Informed Inservice Inspection Methodology for Piping  

SciTech Connect

Risk-informed inservice inspection (ISI) programs have been in use for over seven years as an alternative to current regulatory requirements in the development and implementation of ISI programs for nuclear plant piping systems. Programs using the Westinghouse Owners Group (WOG) (now known as the Pressurized Water Reactor Owners Group - PWROG) risk-informed ISI methodology have been developed and implemented within the U.S. and several other countries. Additionally, many plants have conducted or are in the process of conducting updates to their risk-informed ISI programs. In the development and implementation of these risk-informed ISI programs and the associated updates to those programs, the following important lessons learned have been identified and are addressed. Concepts such as 'loss of inventory', which are typically not modeled in a plant's probabilistic risk assessment (PRA) model for all systems. The importance of considering operator actions in the identification of consequences associated with a piping failure and the categorization of segments as high safety significant (HSS) or low safety significant (LSS). The impact that the above considerations have had on the large early release frequency (LERF) and categorization of segments as HSS or LSS. The importance of automation. Making the update process more efficient to reduce costs associated with maintaining the risk-informed ISI program. The insights gained are associated with many of the steps in the risk-informed ISI process including: development of the consequences associated with piping failures, categorization of segments, structural element selection and program updates. Many of these lessons learned have impacted the results of the risk-informed ISI programs and have impacted the updates to those programs. This paper summarizes the lessons learned and insights gained from the application of the WOG risk-informed ISI methodology in the U.S., Europe and Asia. (authors)

Stevenson, Paul R.; Haessler, Richard L. [Westinghouse Electric Company, LLC (United States); McNeill, Alex [Dominion Energy, Innsbrook Technical Center (United States); Pyne, Mark A. [Duke Energy (United States); West, Raymond A. [Dominion Nuclear Connecticut, Inc. - Dominion Generation (United States)

2006-07-01T23:59:59.000Z

51

Which idling reduction system is most economical for truck owners?  

NLE Websites -- All DOE Office Websites (Extended Search)

Which idling reduction system is Which idling reduction system is most economical for truck owners? Linda Gaines Center for Transportation Research Argonne National Laboratory Commercial Vehicle Engineering Congress and Exposition Rosemont, Il October 7-9, 2008 The price of diesel is high *Idling a Class 8 truck uses 0.6-1.2 gallons per hour *That can total over $50 a night! *So even without regulations, there's an incentive to reduce idling *Even if the price goes down more, idling reduction makes sense 2 Why do sleepers idle overnight? For services to resting driver and friend y Heating, ventilation, and air conditioning (HVAC) y Power for appliances 8TV, microwave, refrigerator, computer, hair drier To keep fuel and engine warm To mask out noises and smells Because other drivers do it

52

Safety Evaluation Report related to Hydrogen Control Owners Group assessment of Mark 3 containments  

DOE Green Energy (OSTI)

Title 10 of the Code of Federal Regulations (10 CFR), Section 50.44 Standards for Combustible Gas Control System in Light-Water-Cooled Power Reactors,'' requires that systems be provided to control hydrogen concentration in the containment atmosphere following an accident to ensure that containment integrity is maintained. The purpose of this report is to provide regulatory guidance to licensees with Mark III containments with regard to demonstrating compliance with 10 CFR 50.44, Section (c)(3)(vi) and (c)(3)(vii). In this report, the staff provides its evaluation of the generic methodology proposed by the Hydrogen Control Owners Group. This generic methodology is documented in Topical Report HGN-112-NP, Generic Hydrogen Control Information for BWR/6 Mark III Containments.'' In addition, the staff has recommended that the vulnerability to interruption of power to the hydrogen igniters be evaluated further on a plant-specific basis as part of the individual plant examination of the plants with Mark III containments. 10 figs., 1 tab.

Li, C.Y.; Kudrick, J.A.

1990-10-01T23:59:59.000Z

53

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial...

54

Registry of ENERGY STAR Certified Buildings & Plants | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Registry of ENERGY STAR Certified Buildings & Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings...

55

DOE/NNSA Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Contracts Facility Management Contracts Facility Owner Contractor Award Date End Date Options/Award Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies/ LLC Partners DOE Site Procurement Director DOE Contracting Officer SLAC National Accelerator Laboratory (SLAC) SC Stanford University DE-AC03-76SF00515 1/25/1981 9/30/2017 9/30/2017 M&O 1981 Stanford University Barbara Jackson 865-576-0976 Kyong H. Watson 650-926-5203 Pacific Northwest National Laboratory (PNNL) SC Battelle Memorial Institute DE-AC05-76RL01830 12/30/2002 9/30/2017 9/30/2017 M&O 1965 Battelle Memorial Institute Barbara Jackson 865-576-0976 Ryan Kilbury 509-372-4030 Brookhaven National Laboratory (BNL) SC Brookhaven Science Associates, LLC DE-AC02-98CH10886 1/5/1998 1/4/2015 1/4/2015 M&O 1998 Battelle Memorial Institute

56

DOE/NNSA Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Contracts Facility Management Contracts Facility Owner Contractor Award Date End Date Options/Award Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies/ LLC Partners DOE Site Procurement Director DOE Contracting Officer SLAC National Accelerator Laboratory (SLAC) SC Stanford University DE-AC03-76SF00515 1/25/1981 9/30/2017 9/30/2017 M&O 1981 Stanford University Barbara Jackson 865-576-0976 Kyong H. Watson 650-926-5203 Pacific Northwest National Laboratory (PNNL) SC Battelle Memorial Institute DE-AC05-76RL01830 12/30/2002 9/30/2017 9/30/2017 M&O 1965 Battelle Memorial Institute Barbara Jackson 865-576-0976 Ryan Kilbury 509-372-4030 Brookhaven National Laboratory (BNL) SC Brookhaven Science Associates, LLC DE-AC02-98CH10886 1/5/1998 1/4/2015 1/4/2015 M&O 1998 Battelle Memorial Institute

57

Keywords Europe Home-owners Housing wealth Pensions Welfare  

E-Print Network (OSTI)

Abstract Notwithstanding current market volatility, there has been exceptional expansion in owner-occupied housing sectors and increases in house prices across European countries in recent decades. In the EU, individual wealth held in housing equity, especially among older people, has been considered a substantial reserve that could be tapped into to meet future pension needs as the ageing of the population becomes a greater stress on European welfare states. This paper seeks to take the notion of ‘property-based welfare’ further by examining, in principle at least, how home ownership may function as a pension across EU states. This firstly involves very approximate estimates of the types of, and rates of, income homeowners could hypothetically generate from their homes, including forms of income in kind. Secondly, criteria are identified to estimate how ‘adequate ’ such potential incomes are in relation to working incomes and in bringing retired households above poverty levels. Thirdly, different circumstances across EU member states with regard to existing housing and pension arrangements are examined. Broad national groupings appear evident, with housing income having least impact in older member states in central and northern Europe. The paper concludes that while the potential outcome of housing wealth is country specific, in many cases, greater dependency on home ownership in welfare provision, particularly if it is used as a substitute rather than a complement to existing arrangements, may have adverse consequences for many.

John Doling; Richard Ronald; J. Doling; R. Ronald; R. Ronald

2009-01-01T23:59:59.000Z

58

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mo Callaway Unit 1 1,190 8,996 100.0 Union Electric Co 1 Plant 1 Reactor Owner Note: Totals may not equal sum of components due to independent rounding.

59

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ct Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of components due to independent ...

60

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ar Arkansas Nuclear One Unit 1, Unit 2 1,835 15,023 100.0 Entergy Arkansas Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of ...

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Personalized Face Verification System Using Owner-Specific Cluster-Dependent LDA-Subspace  

Science Conference Proceedings (OSTI)

In this paper, we propose an owner-specific cluster-dependent linear discriminant analysis (OSCD-LDA) method, and apply it to develop a personalized face verification system. Before the owner enrollment, our system first divides all the training face ...

Hsien-Chang Liu; Chan-Hung Su; Yueh-Hsuan Chiang; Yi-Ping Hung

2004-08-01T23:59:59.000Z

62

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTB Researchers Demonstrate R&D Successes to Asset Owners at NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference More than 150 energy sector leaders-including nearly 100 asset owners and operators-gathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the Department of Energy's National SCADA Test Bed (NSTB) Program gave a four-hour demonstration and presentation of their Roadmap-related control systems security work. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan Security is Not an Option DOE National SCADA Test Bed Program Multi-Year Plan

63

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference October 1, 2009 - 1:26pm Addthis More than 150 energy sector leaders-including nearly 100 asset owners and operators-gathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the Department of Energy's National SCADA Test Bed (NSTB) Program gave a four-hour demonstration and presentation of their Roadmap-related control systems security work. EnergySec is an information sharing forum with more than 230 utility members representing 75 energy companies across the nation. Its fifth annual conference drew asset owners, vendors, and government

64

Cooling Plant Optimization Guide  

Science Conference Proceedings (OSTI)

Central cooling plants or district cooling systems account for 22 percent of energy costs for cooling commercial buildings. Improving the efficiency of central cooling plants will significantly impact peak demand and energy usage for both building owners and utilities. This guide identifies opportunities for optimizing a central cooling plant and provides a simplified optimization procedure. The guide focuses on plant optimization from the standpoint of minimizing energy costs and maximizing efficiencies...

1998-09-29T23:59:59.000Z

65

Letter of Intent: Commercial Real Estate Developer/Owner | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Letter of Intent: Commercial Real Estate Developer/Owner Letter of Intent: Commercial Real Estate Developer/Owner Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

66

MOTION TO INTERVENE OF THE NEW YORK TRANSMISSION OWNERS PP-230-4 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MOTION TO INTERVENE OF THE NEW YORK TRANSMISSION OWNERS PP-230-4 MOTION TO INTERVENE OF THE NEW YORK TRANSMISSION OWNERS PP-230-4 MOTION TO INTERVENE OF THE NEW YORK TRANSMISSION OWNERS PP-230-4 Pursuant to Rules 212 and 214 of the Rules of Practice and Procedure, 18 C.F.R. §§ 385.212 and 385.214 (2010), Central Hudson Gas & Electric Corporation, Consolidated Edison Company of New York, Inc., Long Island Power Authority, New York Power Authority, New York State Electric & Gas Corporation, Niagara Mohawk Power Corporation d/b/a National Grid, Orange and Rockland Utilities, Inc., and Rochester Gas and Electric Corporation (referred to herein as the "New York Transmission Owners"), individually and collectively move to intervene in the above-captioned proceeding and request an opportunity to comment on International Transmission Company's d/b/a/ ITCTransmission

67

A comparison of noxious facilities` impacts for home owners versus renters  

Science Conference Proceedings (OSTI)

The siting of noxious facilities, such as hazardous waste facilities, is often vigorously opposed by local residents, and thus it is now common for local residents to be compensated for the presence of the facility. One technique that has been employed to implicitly value noxious facilities is the intercity hedonic approach, which examines the wage and land rent premia between cities that result from the presence of the facility. However, most of the focus has been on the behavior of home owners as opposed to renters. Since these two groups of residents vary on numerous dimensions such as marital status, age, sex, and personal mobility, it would not be surprising to find different marginal valuations of local site characteristics. The authors use 1980 Census data to derive separate estimates for owners and renters of the implicit value placed on eight different types of noxious facilities. They find that renters and owners differ in their response to noxious facilities, although the differences are not systematic. Furthermore, the differences between owners and renters are not primarily due to differential mobility or socio-demographic factors. Controlling those factors decreases the differences between renters` and owners` implicit valuations of noxious facilities by less than 10%. Unmeasured differences between the two groups, such as tastes, risk aversion, or commitment to the community, must account for the remaining difference in valuations. These findings suggest that policymakers should separately consider the responses of owners and renters when estimating noxious facility impacts.

Clark, D.E. [Marquette Univ., Milwaukee, WI (United States). Dept. of Economics]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

1995-01-01T23:59:59.000Z

68

Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.  

E-Print Network (OSTI)

where the fuel is kept. Upon exiting you could see the cooling towers. The cooling towers were five doesn't have the traditionally large cooling towers that can be seen from miles and miles away as most of cooling towers instead of have a couple of traditional large ones. I think this definitely increased

Ervin, Elizabeth K.

69

Step 8: Work with the building owner to complete the ENERGY STAR lifecycle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: Work with the building owner to complete the ENERGY STAR 8: Work with the building owner to complete the ENERGY STAR lifecycle Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Why you should design to earn the ENERGY STAR Follow EPA's step-by-step process Step 1: Assemble a team Step 2: Set an energy performance target Step 3: Evaluate your target using ENERGY STAR tools Step 4: Design to be energy efficient

70

Secretaries Chu and Donovan to Host Conference Call on Home Owners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Donovan to Host Conference Call on Home Owners Donovan to Host Conference Call on Home Owners Energy-Saving Improvements Program Secretaries Chu and Donovan to Host Conference Call on Home Owners Energy-Saving Improvements Program April 20, 2011 - 12:00am Addthis WASHINGTON - Thursday, April 21st, U.S. Department of Energy Secretary Steven Chu and U.S. Housing and Urban Development Secretary Shaun Donovan will launch a new pilot program intended to offer homeowners low-cost financing to help make their homes more energy efficient. The Federal Housing Administration's (FHA) new PowerSaver Program will offer homeowners up to $25,000 to finance the installation of insulation, duct sealing, replacement doors and windows, HVAC systems, water heaters, solar panels, and geothermal systems. Donovan and Chu will speak with reporters following a tour of a local

71

A comparison of noxious facilities` impacts for home owners versus renters  

SciTech Connect

The siting of noxious facilities, such as hazardous waste facilities, is often vigorously opposed by local residents. As a result, one would expect people`s residential and employment choices to reflect a desire to avoid proximity to such facilities. Ibis behavior would in turn affect labor and housing prices. One technique that has been employed to implicitly value impacts of noxious facilities is the intercity hedonic approach, which examines the wage and land rent differentials among cities that result from environmental amenities and disamenities. However, most of the research focus has been on the behavioral response of home owners as opposed to renters. Since these two groups of residents vary on numerous dimensions such as marital status, age, sex, and personal mobility, it would not be surprising to find different marginal valuations of local site characteristics. We use 1980 Census data to derive separate estimates for owners and renters of the implicit value placed on eight different types of noxious facilities. Although the magnitude of the responses of renters and owners to noxious facilities and other environmental characteristics varies, the signs are generally consistent. The differences in values between owners and renters are not primarily due to differential mobility or sociodemographic factors. Controlling those factors decreases the differences between renters` and owners` implicit valuations by less than 10%. Unmeasured differences in characteristics between the two groups, such as tastes, risk aversion, or commitment to the community, must account for the remaining difference in valuations. These findings suggest that policymakers should separately consider the responses of owners and renters when estimating noxious facility impacts.

Clark, D.E. [Marquette Univ., Milwaukee, WI (United States). Dept. of Economics]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

1996-09-01T23:59:59.000Z

72

Cogeneration for industrial and mixed-use parks. Volume 3. A guide for park developers, owners, and tenants. Final report  

SciTech Connect

Using cogeneration in mixed-use and industrial parks can cut energy costs ad smooth out peak load demands - benefits for servicing utilities and park owners and tenants. The two handbooks developed by this project can help utilities identify existing or planned parks as potential cogeneration sites as well as help developers and park owners evaluate the advantages of cogeneration. The second handbook (volume 3) describes the benefits of cogeneration for park developers, owners, and tenants.

Schiller, S.R.; Minicucci, D.D.; Tamaro, R.F.

1986-05-01T23:59:59.000Z

73

US prep plant census 2008  

Science Conference Proceedings (OSTI)

Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

Fiscor, S.

2008-10-15T23:59:59.000Z

74

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

75

Guidelines for New High Reliability Fossil Plants  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. New plants should have the optimum cycle chemistry features designed in, and the guidelines provided in this report will assist owners and operators of new plants in specifying these features during the design phase.

2007-02-26T23:59:59.000Z

76

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-2012" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012...

77

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

78

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

23 23 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46723 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory

79

DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference October 1, 2009 More than 150 energy sector leaders-including nearly 100 asset owners and operators-gathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the Department of Energy's National SCADA Test Bed (NSTB) Program gave a four-hour demonstration and presentation of their Roadmap-related control systems security work. EnergySec is an information sharing forum with more than 230 utility members representing 75 energy companies across the nation. Its fifth annual conference drew asset owners, vendors, and government representatives for presentations and discussions on NERC CIP standards, collaborative industry efforts

80

"Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Living Space Characteristics by Owner-Occupied Housing Units, 2005" 2 Living Space Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions) " ,,,"Single-Family Units",,"Apartments in Buildings With--" "Living Space Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,1.1,"Q","Q","Q","Q",0.4 "500 to 999",23.8,7.2,3.5,0.3,0.3,0.9,2.2

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

"Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" 3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,65,54.3,3.3,1.5,1.6,4.4 "1.",28.6,17.9,14,0.9,0.6,0.7,1.7

82

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" 4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

83

"Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Number of Water Heaters" "1.",106.3,74.5,60.9,4,1.8,2.2,5.5 "2 or More",3.7,3.3,3,"Q","Q","Q","Q" "Do Not Use Hot Water",1.1,0.3,"Q","Q","N","Q","Q"

84

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

85

"Table HC3.7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" 7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Cooling Equipment",17.8,11.3,9.3,0.6,"Q",0.4,0.9 "Have Cooling Equipment",93.3,66.8,54.7,3.6,1.7,1.9,4.8 "Use Cooling Equipment",91.4,65.8,54,3.6,1.7,1.9,4.7

86

"Table HC3.11 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005" 1 Home Electronics Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Electronics Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Personal Computers" "Do Not Use a Personal Computer ",35.5,20.3,14.8,1.2,0.6,0.9,2.8 "Use a Personal Computer",75.6,57.8,49.2,2.9,1.2,1.4,3 "Number of Desktop PCs"

87

"Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S.",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Cooking Appliances" "Conventional Ovens" "Use an Oven",109.6,77.3,63.4,4.1,1.8,2.3,5.6 "1.",103.3,71.9,58.6,3.9,1.6,2.2,5.5 "2 or More",6.2,5.4,4.8,"Q","Q","Q","Q"

88

"Table HC3.6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" 6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Cooling Equipment",17.8,11.3,9.3,0.6,"Q",0.4,0.9 "Have Cooling Equipment",93.3,66.8,54.7,3.6,1.7,1.9,4.8 "Use Cooling Equipment",91.4,65.8,54,3.6,1.7,1.9,4.7

89

"Table HC3.1 Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005" Housing Unit Characteristics by Owner-Occupied Housing Unit, 2005" " Million Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Housing Unit Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Census Region and Division" "Northeast",20.6,13.4,10.4,1.4,1,0.3,0.4 "New England",5.5,3.8,3.1,"Q",0.3,"Q","Q" "Middle Atlantic",15.1,9.6,7.3,1.3,0.6,"Q","Q"

90

Community Resilience: Workshops on Private Sector and Property Owner Requirements for Recovery and Restoration from a Diasaster  

SciTech Connect

This report summarizes the results of a proejct sponsored by DTRA to 1) Assess the readiness of private-sector businesses, building owners, and service providers to restore property and recover operations in the aftermath of a wide-area dispersal of anthrax; and 2) Understand what private property owners and businesses "want and need" from federal, state, and local government to support recovery and restoration from such an incident.

Judd, Kathleen S.; Stein, Steven L.; Lesperance, Ann M.

2008-12-22T23:59:59.000Z

91

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners  

DOE Green Energy (OSTI)

Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

Kollins, K.; Speer, B.; Cory, K.

2009-11-01T23:59:59.000Z

92

Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 41.8 35.3 2.8 1.2 1.0 1.6 Central Warm-Air Furnace........................ 44.7 34.8 29.7 2.3 0.7 0.6 1.4 For One Housing Unit........................... 42.9 34.3 29.5 2.3 0.6 0.6 1.4 For Two Housing Units..........................

93

Report on Geothermal Power Plant Cost and Comparative Cost of Geothermal and Coal Fired Steam Power Plants  

DOE Green Energy (OSTI)

This report is to be used by Utah Power and Light Company (UP and L) in making studies of geothermal power plants. The dollars per kilowatt comparison between a geothermal plant and a UP and L coal-fired plant is to be developed. Geothermal gathering system costs and return to owner are to be developed for information.

None

1977-07-01T23:59:59.000Z

94

Asbury power plant, Asbury, Missouri  

Science Conference Proceedings (OSTI)

The Asbury power plant in rural southwest Missouri is off the beaten path in more ways than one. Three years ago, Empire District Electric Co., the plant's owner/operator, began mixing pieces of discarded tires into its coal fuel supply. Each ensuing year, without compromising local air quality, the plant has rid the area of millions of tires that otherwise would have ended up in a landfill. For demonstrating that a blight can be made right, Asbury is one of Power's 2005 top plants. 2 figs., 1 tab.

Wicker, K.

2005-08-01T23:59:59.000Z

95

Results from Case Studies of Pumped-Storage Plants  

Science Conference Proceedings (OSTI)

Detailed plant performance analyses were conducted using unit and plant performance characteristics and 1-minute plant operational data from 2008, 2009, and 2010 for five pumped-storage plants. These five case studies encompass three markets (MISO, NYISO, and PJM) and one non-market region (Southeast area). Owners for the five plants include three investor-owned utilities, one state power authority, and one federal power corporation. This report describes results from detailed performance analyses ...

2012-09-14T23:59:59.000Z

96

EPRI Central Plant Equipment Manufacturers Roundtable, Meeting Summary, October 26-27, 1999, Houston, Texas  

Science Conference Proceedings (OSTI)

EPRI and Reliant Energy co-sponsored the Central Plant Equipment Manufacturers Roundtable on October 26-27, 1999. The meeting gave EPRI members, commercial building owners, and central plant equipment manufacturers an opportunity to enhance their relationships as the electric industry faces deregulation. Representatives from major building owner and facility manager organizations attended the meeting, as did representatives from major equipment suppliers. The roundtable forum provided for extensive and l...

1999-12-13T23:59:59.000Z

97

Table HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, 5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.4 0.4 1.8 2.1 1.4 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Census Region and Division Northeast ...................................... 13.0 10.8 1.1 0.5 0.6 11.4 New England .............................. 3.5 3.1 0.2 Q 0.1 16.9 Middle Atlantic ............................ 9.5 7.7 0.9 0.4 0.4 13.4 Midwest ......................................... 17.5 16.0 0.3 Q 1.0 10.3 East North Central ......................

98

47318 Federal Register / Vol. 77, No. 153 / Wednesday, August 8, 2012 / Rules and Regulations bluefin tuna landed by owners of  

E-Print Network (OSTI)

bluefin tuna landed by owners of vessels not permitted to do so under § 635.4, or purchase, receive, or transfer, or attempt to purchase, receive, or transfer Atlantic bluefin tuna without the appropriate valid Federal Atlantic tunas dealer permit issued under § 635.4. Purchase, receive, or transfer or attempt

99

The consumer's guide to earth sheltered housing: A step-by-step workbook for prospective owners  

SciTech Connect

Earth sheltered homes have captured the imagination of many homeowners seeking the cost and energy savings features they offer. This book provides the discussion of the advantages and disadvantages of such homes and includes illustrations showing interiors and exteriors with advise to owners on dealine with architects and contractors.

Rollwagen, M.

1985-01-01T23:59:59.000Z

100

Table HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, 5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.3 2.1 3.0 1.6 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Households Using Office Equipment .......................... 67.5 59.0 2.0 1.7 4.8 7.0 Personal Computers 1 ................... 45.7 41.1 1.3 0.9 2.4 8.6 Number of Desktop PCs 1 .................................................. 34.1 30.5 1.0 0.7 1.9 9.7 2 or more .................................... 7.4 7.0 Q Q 0.2 18.4 Number of Laptop PCs 1 ..................................................

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Operation and Maintenance Experiences of Pumped-Storage Plants  

Science Conference Proceedings (OSTI)

Owners, operators, and designers of hydroelectric pumped-storage plants now have access to the combined operation and maintenance (O&M) knowledge of more than 30 operating plants around the world. The lessons learned should maximize the benefits of solutions developed for typical operational problems.

1991-05-13T23:59:59.000Z

102

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

103

Training | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Training Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training Facility owners and managers Service providers Energy efficiency program administrators Tools and resources Training Training EPA offers training on a range of energy efficiency topics - from the ins and outs of Portfolio Manager to guidance on improving the energy performance of your buildings and plants. And that's all with no travel,

104

Connecting Distributed Energy Resources to the Grid: Their Benefits to the DER Owner etc.  

SciTech Connect

The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electric capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.

Poore, WP

2003-07-09T23:59:59.000Z

105

STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING SYSTEM FOR TRANSMISSION OWNERS AND OPERATORS WITHIN THE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING SYSTEM FOR TRANSMISSION OWNERS AND OPERATORS WITHIN THE EASTERN AND WESTERN INTERCONNECTIONS A REPORT TO CONGRESS PURSUANT TO SECTION 1839 OF THE ENERGY POLICY ACT OF 2005 Prepared by United States Department of Energy & Federal Energy Regulatory Commission February 3, 2006 Report to Congress Joint Report by the Department of Energy and Federal Energy Regulatory Commission on Steps to Establish a Real-Time Transmission Monitoring System for Transmission Owners and Operators within the Eastern and Western Interconnections February 2006 Executive Summary In August 2003, an electrical outage in one state precipitated a cascading blackout across seven other states and as far north as a province in Canada, leaving more than 50 million

106

Cement Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Plant EPI Cement Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

107

ENERGY STAR plant certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

» ENERGY STAR plant certification » ENERGY STAR plant certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition ENERGY STAR Partner of the Year Award

108

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

109

Juice Processing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Juice Processing Plant EPI Juice Processing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

110

Automobile Assembly Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Automobile Assembly Plant EPI Automobile Assembly Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

111

Environmental quandary shuts Mohave plants  

SciTech Connect

The 1,580 MW coal-fired Mohave Generating Station in Laughlin, NV was closed on 31 December 2005 and is expected to be closed for four years whilst the owners Southern California Edison sort out battles over the plant's pollutant emissions and negotiate with two native tribes over rights to the water needed to deliver fuel to Mohave as a slurry. The plant was forced to close because it was unable to comply with a 1999 court order to reduce emissions of sulphur dioxide, nitrogen oxides and particulates. 1 photo.

NONE

2006-03-15T23:59:59.000Z

112

Effects of Markets and Operations on the Suboptimization of Pumped Storage and Conventional Hydroelectric Plants  

Science Conference Proceedings (OSTI)

Detailed plant performance analyses were conducted using unit performance data, market data, and plant operational data from 2008, 2009, and 2010 for five pumped storage plants and three conventional hydroelectric plants. These eight case studies encompass three markets (MISO, PJM, and NYISO) and two regions (Southeast area and Western area). Owners for the eight plants include three investor-owned utilities, two state power authorities, and one federal power corporation. This report expands on ...

2013-04-02T23:59:59.000Z

113

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

114

A systemic approach to integrated E-maintenance of large engineering plants  

Science Conference Proceedings (OSTI)

Large engineering plants (LEPs) have certain unique features that necessitate a maintenance strategy that is a combination of both time and condition based maintenance. Although this requirement is appreciated to varying degrees by asset owners, applied ... Keywords: Systemic approach, availability, e-maintenance, large engineering plants, reliability

Ajit Kumar Verma; A. Srividya; P. G. Ramesh

2010-05-01T23:59:59.000Z

115

ALMR plant design and performance  

SciTech Connect

The advanced liquid-metal reactor (ALMR) plant, sponsored by the US Department of Energy and being developed by a General Electric Company lead industrial team, features simple and reliable safety systems, seismic isolation, passive decay heat removal, passive reactivity control, and substantial margins to structural and fuel damage limits during potential accident situations. These features will result in significant gains for public safety and protection of the owner's investment. Standardized modular construction and extensive factory fabrication will result in a plant design that is economically competitive. The reference commercial ALMR plant utilizes nine reactor modules arranged in three identical 480-MW(electric) power blocks for an overall plant net electrical rating of 1440 MW(electric). Each power block features three identical reactor modules, each with its own steam generator, that jointly supply power to a single turbine generator.

Kwant, W.; Boardman, C.E.; Dayal, Y.; Magee, P.M. (GE Nuclear Energy, San Jose, CA (United States))

1992-01-01T23:59:59.000Z

116

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

117

Channels and sources used to gather equine-related information by college-age horse owners and enthusiasts  

E-Print Network (OSTI)

This thesis identifies the equine-related topics that are important to Texas college-age horse owners and enthusiasts and the channels/sources they use to get equine-related information. Little research has focused on this group to determine their information needs. Therefore, two focus groups were conducted in 2008 in Texas with college-age horse owners and enthusiasts to conduct a needs assessment. Participants were separated into competitive and recreational groups depending on their level of participation in the industry. They were asked what topics they consider important and what channels/sources they use to gain desired information. Training was the most mentioned topic overall, and the most mentioned by recreational participants. Alternative medical treatments was the most mentioned topic by competitive participants. Competitive participants reported a smaller number of topics as important, indicating that they have specialized information needs. Recreational participants emphasized broader, less specialized topics. Participants showed an interest in relevant and controversial topics affecting the equine industry. Participants also used a combination of channels/sources and competitive and recreational participants often placed importance on different channels/sources. Face-to-face communication was important to both groups. Magazines were important to competitive participants, while the Internet was important to recreational participants. Competitive participants doubted the trustworthiness of sources available through the Internet, but wanted more reliable sources to be made available in the future. Participants preferred to get information from industry specialist sources, such as trainers, veterinarians, other owners and enthusiasts, breed associations, and equine magazines. Participants’ perceptions of trustworthiness were affected by the source’s ability to demonstrate equine-specific knowledge and the source’s reputation and success among equine industry members. The results suggests that the influence of the Internet has altered the traditional models of communication in which source selection determines channel use. In this study, the participants’ Internet channel selection often determined their source use. The results also suggests that communicators wanting to reach this audience should target specific topics to competitive and recreational audiences, use a multi-channel approach, establish trustworthiness, and explore the changing role of the Internet in agricultural communication.

Sullivan, Erin Alene

2008-12-01T23:59:59.000Z

118

Message from the Owner of the Improved Financial Performance Initiative of the Presidents Management Agenda:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I am enthusiastic and proud to be the owner of the Improved Financial Performance initiative of the President's Management Agenda (PMA) in the Department of Energy (DOE). The Department has received clean opinions on its annual financial statements for six straight years with no material internal control weaknesses identified by the auditors. Further, DOE was successful in maintaining its clean opinion for the FY 2004 financial statements while accelerating issuance to 45 days after the end of the fiscal year. For the third quarter of FY 2004, when the Department of Energy received a Green status score on Improved Financial Performance, DOE was one of only five agencies with a Green status score on this initiative. I am enormously proud

119

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

120

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Key Words: Power Plants, Hedonic Price Method, Restricted Census Microdata  

E-Print Network (OSTI)

This paper uses restricted census microdata to examine housing values and rents for neighborhoods in the United States where power plants were opened during the 1990s. Compared to neighborhoods with similar housing and demographic characteristics, neighborhoods within two miles of plants experienced 3-7 percent decreases in housing values and rents with some evidence of larger decreases within one mile and for large capacity plants. In addition, there is evidence of taste-based sorting with neighborhoods near plants associated with modest but statistically significant decreases in mean household income, educational attainment, and the proportion of homes that is owner occupied.

Lucas W. Davis; Jel D; Michael Greenstone; Matt Kahn; Ian Lange; Matt White; Seminar Participants

2010-01-01T23:59:59.000Z

122

Innovative Design of New Geothermal Generating Plants  

SciTech Connect

This very significant and useful report assessed state-of-the-art geothermal technologies. The findings presented in this report are the result of site visits and interviews with plant owners and operators, representatives of major financial institutions, utilities involved with geothermal power purchases and/or wheeling. Information so obtained was supported by literature research and data supplied by engineering firms who have been involved with designing and/or construction of a majority of the plants visited. The interviews were conducted by representatives of the Bonneville Power Administration, the Washington State Energy Office, and the Oregon Department of Energy during the period 1986-1989. [DJE-2005

Bloomquist, R. Gordon; Geyer, John D.; Sifford, B. Alexander III

1989-07-01T23:59:59.000Z

123

Instrumentation and Control, Human System Interface, and Information Technology Requirements Project Plan for Nuclear Power Plant Lo ng-Term Operation  

Science Conference Proceedings (OSTI)

Nuclear power plant owners are looking to extend the operating life of their plants to 80 years and potentially longer. Instrumentation and control, human system interface, and information technologies have changed drastically since the plants were built and will change even more drastically before the plants reach the end of their operating life. A project plan to develop requirements for these technologies is defined here. These requirements will enable plants to better identify future solutions that w...

2010-02-03T23:59:59.000Z

124

Reliability and Availability of Gas Turbines and Combined-Cycle Plants  

Science Conference Proceedings (OSTI)

High reliability, availability, and maintainability (RAM) of gas turbine plants are important attributes affecting the cost of generating electricity. RAM performance is a key indicator of the certainty that the power plant can deliver the electricity required to the grid when needed. Furthermore, events affecting reliability, availability, and starting reliability directly influence the profitability of the plant, equity return to the owner, and ultimately the price consumers pay for generation. Changes...

2008-12-01T23:59:59.000Z

125

Cemex River Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant Jump to: navigation, search Name Cemex River Plant Facility Cemex River Plant Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Cemex River Plant Location Victorville CA Coordinates 34.55527517°, -117.3012614° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.55527517,"lon":-117.3012614,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Pantex Plant Wind Project | Open Energy Information  

Open Energy Info (EERE)

Pantex Plant Wind Project Pantex Plant Wind Project Jump to: navigation, search Name Pantex Plant Wind Project Facility Pantex Plant Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Pantex Developer Siemens Energy Purchaser Pantex Plant Location Amarillo TX Coordinates 35.307841°, -101.535301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.307841,"lon":-101.535301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Draft Tomato Product Processing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Tomato Product Processing Plant EPI Draft Tomato Product Processing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

128

SC Johnson Waxdale Plant | Open Energy Information  

Open Energy Info (EERE)

SC Johnson Waxdale Plant SC Johnson Waxdale Plant Jump to: navigation, search Name SC Johnson Waxdale Plant Facility SC Johnson Waxdale Plant Sector Wind energy Facility Type Community Wind Facility Status In Service Owner SC Johnson Developer SC Johnson Energy Purchaser SC Johnson Location Sturtevant WI Coordinates 42.71313982°, -87.88755655° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.71313982,"lon":-87.88755655,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

130

Manage energy use in manufacturing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve building and plant performance Improve building and plant performance » Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing

131

DOE assists in meeting social impacts of Great Plains Plant  

Science Conference Proceedings (OSTI)

On August 15, 1986 Department of Energy Secretary John S. Herrington pledged that federal funds of $100,000 per month would be provided to the local governments and school districts of Mercer County, North Dakota. These funds are intended to assist the governments meet demands caused by the Great Plains Coal Gasification Plant. The community impact assistance will continue for as long as the government is the owner of the facility.

Not Available

1986-09-01T23:59:59.000Z

132

Decommissioning Process for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

This report describes a staged process for the decommissioning and possible demolition of fossil-fueled power generating facilities. Drawn from experience with power and major industrial facilities, the report provides the owner/operator of a plant that is approaching the end of its useful life with an overview of the key elements necessary to successfully implement decommissioning. The process is applicable to full decommissioning, demolition, and closure; to partial scenarios (that is, partial dismantl...

2010-01-22T23:59:59.000Z

133

BWRVIP-196: BWR Vessel and Internals Project, Assessment of Mixing Tee Thermal Fatigue Susceptibility in BWR Plants  

Science Conference Proceedings (OSTI)

In 1998, a French pressurized water reactor (PWR) plant experienced leakage due to thermal fatigue from piping immediately downstream of a residual heat removal (RHR) heat exchanger. EPRI report 1013305, Materials Reliability Program: Assessment of RHR Mixing Tee Thermal Fatigue in PWR Plants (MRP-192), December 2006, was prepared so that owners of PWR plants could determine if their RHR piping systems might be susceptible to similar thermal fatigue cracking and if additional inspection should be recomme...

2008-09-23T23:59:59.000Z

134

Find ENERGY STAR certified buildings and plants | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

» Buildings & Plants » Buildings & Plants » About us » Find ENERGY STAR certified buildings and plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants Registry of ENERGY STAR certified buildings and plants

135

Plant Level Energy Performance Benchmarking  

E-Print Network (OSTI)

Since the early 1990's, the U.S. Environmental Protection Agency (EPA) has worked with U.S. corporations to reduce their energy requirements in buildings and office space through voluntary programs such as ENERGY STAR®. Corporate partners within ENERGY STAR have enjoyed success by applying the principles fundamental to this program. However, a common view was held that ENERGY STAR did not fully address energy use and performance of manufacturing plants. While there are many partners primarily working in manufacturing industries within ENERGY STAR, the program to date has focused primarily on the energy use and performance of commercial buildings rather than manufacturing plants. In the upcoming year, the EPA is poised to deliver new program components to facilitate broader corporate participation in ENERGY STAR. The business-oriented approach for building owners central to ENERGY STAR will be expanded to accommodate the energy use of manufacturing businesses. With introduction of the enhanced industrial manufacturing offering, ENERGY STAR will have a complete group of tools that will appeal to all corporate partners. Through understanding of their performance relative to their peers, EPA hopes to make available to the public tools to assess the performance of their plants relative to their peers. The objective of these tools is to provide plant managers and corporate executives with actionable information that can make their plants more competitive, more profitable, and more environmentally benign.

Hicks, T. W.

2001-05-01T23:59:59.000Z

136

Creative graphics | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

How can we help you? How can we help you? » Communicate and educate » ENERGY STAR communications toolkit » Motivate with a competition » ENERGY STAR National Building Competition » Competitor resources » Creative graphics Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance

137

Energy guides | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

guides guides Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial service and product providers

138

Estimation Methodology for Total and Elemental Mercury Emissions from Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This report provides a tool for estimating total and speciated mercury emissions from coal-fired power plants. The mercury emissions methodology is based on EPRI's analyses of the results from the U.S. Environmental Protection Agency (EPA) Mercury Information Collection Request (ICR). The Mercury ICR required owner/operators of coal-fired electric utility steam generating units to report for calendar year 1999 the quantity of fuel consumed and the mercury content of that fuel. In addition, 84 power plant...

2001-04-18T23:59:59.000Z

139

PlantView OMX Web Services, Version 1.4 User's Manual  

Science Conference Proceedings (OSTI)

PlantView174 is an enterprise asset management system designed specifically for power generation applications that require system-wide access to information on equipment operational and health status. PlantView174 is a modular tool installed on an enterprise server with access by operations, maintenance, and system owners. Modules are devoted to specific functions such as maintenance basis development; predictive maintenance tech exam results; system health; and operators shift logs. Software enhancemen...

2011-12-15T23:59:59.000Z

140

Management of the Licensed Bases of Advanced Nuclear Plants: Proof of Approach  

Science Conference Proceedings (OSTI)

Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its lifecycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This project adopted and demonstrated a "twin-engine" approach that integrates a program from the emerging class of concept searching tools with a mod...

2000-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear Power Plant Risk Analysis and Management for Critical Asset Protection (RAMCAP) Trial Applications Summary Report  

Science Conference Proceedings (OSTI)

The nuclear power plant risk analysis and management for critical asset protection (NPP RAMCAP ) methodology provides a common, high-level framework for evaluating NPP risk from terrorist attacks that plant owners/operators can use. Development of this method has been coordinated with other U.S. Department of Homeland Security (DHS) efforts in order to enable a consistent risk characterization among all critical infrastructure sectors. This effort culminated in a generic RAMCAP methodology potentially ap...

2005-12-22T23:59:59.000Z

142

Rehabilitating and Upgrading Hydropower Plants: A Hydropower Technology Round-Up Report, Volume 2  

Science Conference Proceedings (OSTI)

Owners of aging hydropower plants are confronted with an array of project and technology options for rehabilitating or upgrading their facilities and are making large capital investment decisions at a time of increasing competitive pressures. Ensuring that investments in plant are optimal requires a thorough understanding of the technologies, approaches and strategies available for rehab and upgrading -- as well as the risks associated with these projects. This volume of EPRI's Hydropower Technology Roun...

1999-10-28T23:59:59.000Z

143

Use of VFDs on Asphalt Plant Induced Draft Fans  

E-Print Network (OSTI)

Studies of 10 asphalt plants in the Intermountain Region have identified average ID fan energy savings of 68% by controlling airflow using Variable Frequency Drives (VFDs) on the fan motors in place of damper control (inlet or outlet). Average paybacks were 3-5 years before utility incentives. In the 10 plants evaluated, the ID fans accounted for as much as 30% of the total plant electrical consumption. In the majority of these plants the outlet dampers were typically 50%-60% closed. Fan motors ranged from 200 Hp to 500 Hp. With approximately 3,600 existing asphalt plants in operation across the United States, a large opportunity for retrofits exists. Working with manufacturers and owners, a new standard can be established for installing VFDs on all plants.

Anderson, G. R.; Case, P. L.; Lowery, J.

2005-01-01T23:59:59.000Z

144

Gas Fired Power Plants: Investment Timing, Operating Flexibility and Abandonment  

E-Print Network (OSTI)

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down and held idle. The owner has also an option to abandon the plant and realize the salvage value of the equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects of emission costs on the value of installing CO2 capture technology are analyzed.

Stein-erik Fleten; Erkka Näsäkkälä

2003-01-01T23:59:59.000Z

145

Assessing Plant Performance for Energy Savings | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Plant Performance for Energy Savings Assessing Plant Performance for Energy Savings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

146

Integrated Paper and Paperboard Manufacturing Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Paper and Paperboard Manufacturing Plant EPI Integrated Paper and Paperboard Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

147

ENERGY STAR Industrial Plant Certification: Instructions for applying |  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Certification: Instructions for Industrial Plant Certification: Instructions for applying Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

148

Industries in focus | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants ENERGY STAR Energy Performance Indicators for plants » Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance

149

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network (OSTI)

In specifying a cogeneration or independent power plant, the owner should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design, reliability/ availability, operating capabilities and modes, etc. This paper will note examples of some of the major factors which could impact the project developer and his economics, as well as discuss potential mitigation measures. Areas treated include wheeling, utility ownership interests, dispatchability, regulatory acceptance and other considerations which could significantly affect the plant definition and, as a result, its attendant business and financing structure. Finally, suggestions are also made for facilitating the process of integration with the electric utility.

Felak, R. P.

1986-06-01T23:59:59.000Z

150

ENERGY STAR Industrial Plant Certification: Professional Engineers' Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Certification: Professional Industrial Plant Certification: Professional Engineers' Guide Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

151

Mohave Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Mohave Solar Power Plant Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Owner Mojave Solar LLC, Developer Abengoa Solar, Mohave Sun LLC Location Mohave County, Arizona Coordinates 35.017264°, -117.316607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.017264,"lon":-117.316607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Plant Operational Status - Pantex Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Status Plant Operational Status Page Content Operational Status Shift 1 - Day The Pantex Plant is open for normal operations. All personnel are to report for duty according to...

153

Imperial Valley Resource Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Imperial Valley Resource Recovery Plant Biomass Facility Imperial Valley Resource Recovery Plant Biomass Facility Jump to: navigation, search Name Imperial Valley Resource Recovery Plant Biomass Facility Facility Imperial Valley Resource Recovery Plant Sector Biomass Owner Itaska Location Brawley, California Coordinates 32.9786566°, -115.530267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9786566,"lon":-115.530267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Generation Maintenance Application Center: Fuel Gas System for Combustion Turbine Combined Cycle Plant Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the fuel gas system at a gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and operators of CTCC facilities may find ...

2013-05-15T23:59:59.000Z

155

ENERGY STAR certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR certification ENERGY STAR certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings ENERGY STAR certification

156

Use ENERGY STAR benchmarking tools | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Use ENERGY STAR benchmarking tools Use ENERGY STAR benchmarking tools Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use Learn about benchmarking Use ENERGY STAR benchmarking tools ENERGY STAR in action Communicate and educate

157

Climate change and buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change and buildings Climate change and buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings Climate change and buildings

158

Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants |  

NLE Websites -- All DOE Office Websites (Extended Search)

Brochure: ENERGY STAR for Commercial Buildings and Industrial Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

159

Measure, track, and benchmark | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Measure, track, and benchmark Measure, track, and benchmark Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

160

www.mdpi.com/journal/ijerph Restaurant and Bar Owners ’ Exposure to Secondhand Smoke and Attitudes Regarding Smoking Bans in Five Chinese Cities  

E-Print Network (OSTI)

Abstract: Despite the great progress made towards smoke-free environments, only 9 % of countries worldwide mandate smoke-free restaurants and bars. Smoking was generally not regulated in restaurants and bars in China before 2008. This study was designed to examine the public attitudes towards banning smoking in these places in China. A convenience sample of 814 restaurants and bars was selected in five Chinese cities and all owners of these venues were interviewed in person by questionnaire in 2007. Eighty six percent of current nonsmoking subjects had at least one-day exposure to secondhand smoke (SHS) at work in the past week. Only 51 % of subjects knew SHS could cause heart disease. Only 17 % and 11 % of subjects supported prohibiting smoking completely in restaurants and in bars, respectively, while their support for restricting smoking to designated areas was much higher. Fifty three percent of subjects were willing to prohibit or restrict smoking in their own venues. Of those unwilling to do so, 82 % thought smokingInt. J. Environ. Res. Public Health 2011, 8 1521

Ruiling Liu; S. Katharine Hammond; Andrew Hyl; Mark J. Travers; Yan Yang; Yi Nan; Guoze Feng; Qiang Li; Yuan Jiang

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Power Plant and Industrial Fuel Use Act | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended (42 U.S.C. 8301 et seq.), provides that no new baseload electric powerplant may be constructed or operated without the capability to use coal or another alternate fuel as a primary energy source. In order to meet the requirement of coal capability, the owner or operator of such facilities proposing to use natural gas or petroleum as its primary energy source shall certify, pursuant to FUA section 201(d), and Section 501.60(a)(2) of DOE's regulations to the Secretary of Energy prior to construction, or prior to operation as a base load powerplant, that such powerplant has the capability to use coal or another alternate fuel.

162

Solar Millenium Palen Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Palen Solar Power Plant Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Owner BrightSource Developer Solar Millenium, LLC Location Palen, California Coordinates 33.695923°, -115.225468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.695923,"lon":-115.225468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

164

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

165

Great Plains Coal Gasification Plant public design report. Volume I  

SciTech Connect

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume I contains: (1) introduction; (2) overview of project (plant and mine, plant facilities, Basin Electric Antelope Valley Station); and (3) plant process data (coal, oxygen and steam, gasification and gas processing). 53 refs., 80 figs., 36 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

166

Great Plains Coal Gasification Plant Public Design Report. Volume II  

Science Conference Proceedings (OSTI)

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume II contains: (1) plant process data (sulfur recovery, main flare - area 8300, liquid processing, ash handling and solids disposal, other systems); (2) plant startup procedure and schedule; (3) plant and employee safety; (4) GPGP cost data; and (5) references. 53 refs., 46 figs., 38 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

167

Motor Vehicle Plant Lighting Level Best Practices | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Plant Lighting Level Best Practices Motor Vehicle Plant Lighting Level Best Practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

168

[Your Industrial Plant] Earns the ENERGY STAR | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant] Earns the ENERGY STAR Industrial Plant] Earns the ENERGY STAR Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

169

ENERGY STAR Score for Wastewater Treatment Plants | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Wastewater Treatment Plants Wastewater Treatment Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

170

BWR radiation control: plant demonstration  

Science Conference Proceedings (OSTI)

The first year's progress is presented for a four-year program intended to implement and evaluate BRAC radiation reduction operational guidelines at the Vermont Yankee BWR and to document the results in sufficient detail to provide guidance to other BWR owners. Past operational, chemistry and radiation level data have been reviewed to provide a historical base of reference. Extensive sampling and chemistry monitoring systems have been installed to evaluate plant chemistry status and the effects of program implemented changes. Radiation surveys and piping gamma scans are being performed at targeted locations to quantify radiation level trends and to identify and quantify piping isotopics. Contact radiation levels on the recirculation line at Vermont Yankee have been increasing at a rate of 175 mR/h-EFPY since 1978. A materials survey of feedwater and reactor components in contact with the process liquid has been performed to identify sources of corrosion product release, particularly cobalt and nickel. A feedwater oxygen injection system has been installed to evaluate the effects of oxygen control on feedwater materials corrosion product releases. A baseline performance evaluation of the condensate treatment and reactor water cleanup systems has been completed. Data on organics and ionics at Vermont Yankee have been obtained. A methodology of BWR feedwater system layup during extended outages was developed, and an evaluation performed of layup and startup practices utilized at Vermont Yankee during the fall 1980 and 1981 refueling outages.

Palino, G.F.; Hobart, R.L.; Wall, P.S.; Sawochka, S.G.

1982-11-01T23:59:59.000Z

171

Incentive regulation of nuclear power plants by state public utility commissions  

Science Conference Proceedings (OSTI)

This report on incentive regulation of nuclear power plants by state public utility commissions (PUCs). Economic performance incentives established by state PUCs are applicable to the construction or operation of about 45 nuclear power reactors owned by 30 utilities in 17 states. The NRC staff monitors development of the incentives and periodically provides an updated report on all nuclear plant incentives to its regional offices. The staff maintains contact with the PUCs and the utilities responsible for implementing the incentives in order to obtain the updated information and to consider potential safety effects of the incentives. This report presents the NRC staff's concerns on potential safety effects of economic performance incentives. It also includes a plant-by-plant survey that describes the mechanics of each incentive and discusses the financial effects of the incentive on the utility-owner(s) of the plant.

Petersen, J.C.

1987-12-01T23:59:59.000Z

172

Incentive regulation of nuclear power plants by state Public Utility Commissions  

Science Conference Proceedings (OSTI)

Economic performance incentives established by state Public Utility Commissions (PUCs) currently are applicable to the construction or operation of approximately 73 nuclear power reactors owned by 27 utilities with investment greater than 10% in 18 states. The NRC staff monitors development of the incentives and periodically provides an updated report on all nuclear plant incentives to its headquarters and regional offices. The staff maintains contact with the PUCs and the utilities responsible for implementing the incentives in order to obtain the updated information and to consider potential safety effects of the incentives. This report on incentive regulation of nuclear power plants by state PUCs presents the NRC staff's concerns on potential safety effects of economic performance incentives. It also includes a plant-by-plant survey that describes the mechanics of each incentive and discusses the financial effects of the incentive on the utility-owner(s) of the plant.

Martin, R.L.; Olson, J. (Battelle Human Affairs Research Center, Seattle, WA (USA)); Hendrickson, P. (Pacific Northwest Lab., Richland, WA (USA))

1989-12-01T23:59:59.000Z

173

Leaders recognition for your portfolio | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Earn the ENERGY STAR and other recognition Earn the ENERGY STAR and other recognition » ENERGY STAR portfolio-wide recognition » Leaders recognition for your portfolio Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Earn recognition for your building or plant

174

SEGS III Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

III Solar Power Plant III Solar Power Plant Facility SEGS III Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Owner NextEra Developer Luz Location Kramer Junction, California Coordinates 35.021632311687°, -117.56598472595° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.021632311687,"lon":-117.56598472595,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

SEGS I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

I Solar Power Plant I Solar Power Plant Facility SEGS I Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Owner Cogentrix Developer Luz Location Daggett, California Coordinates 34.866479°, -116.825556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.866479,"lon":-116.825556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

SEGS II Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

II Solar Power Plant II Solar Power Plant Facility SEGS II Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Owner Cogentrix Developer Luz Location Daggett, California Coordinates 34.862218°, -116.828012° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.862218,"lon":-116.828012,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

178

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

179

Snapshot (Spring 2013) | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snapshot (Spring 2013) Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

180

Non-Class 1 Mechanical Implementation Guideline and Mechanical Tools: B&W Owners Group Generic License Renewal Program, BAW-2270, Re vision 2, 1999  

Science Conference Proceedings (OSTI)

As part of the application process for license renewal, nuclear utilities must perform an evaluation to confirm that they have appropriately considered any aging effects on plant components. A management plan must be developed for all components subject to aging effects. This report presents a set of mechanical tools for utility use in determining which aging effects are applicable to Non-Class 1 mechanical components.

2000-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

182

Map of Solar Power Plants/Data | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plants/Data Solar Power Plants/Data < Map of Solar Power Plants Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus AV Solar Ranch I Solar Power Plant Photovoltaics NextLight Renewable Power Antelope Valley, California 230 MW230,000 kW 230,000,000 W 230,000,000,000 mW 0.23 GW 2.3e-4 TW Agua Caliente Solar Power Plant Photovoltaics NextLight Renewable Power Yuma County, Arizona 280 MW280,000 kW 280,000,000 W 280,000,000,000 mW 0.28 GW 2.8e-4 TW Agua Caliente Solar Project Utility scale solar First Solar Yuma County, Arizona 290 MW290,000 kW 290,000,000 W 290,000,000,000 mW

183

Bagdad Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

184

Co-branded plant posters for communicating energy-efficient best practices  

NLE Websites -- All DOE Office Websites (Extended Search)

Communicate energy efficiency Communicate energy efficiency » Communication tools to promote energy efficiency » Co-branded plant posters for communicating energy-efficient best practices Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance

185

Improve energy use in commercial buildings | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Improve energy use in commercial buildings Improve energy use in commercial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Improve energy use in commercial buildings Find guidance for energy-efficient design projects Manage energy use in manufacturing Develop programs and policies

186

Plant Rosettes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

187

Benchmark energy use | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmark energy use Benchmark energy use Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use Learn about benchmarking Use ENERGY STAR benchmarking tools ENERGY STAR in action Communicate and educate Find out who's partnered with ENERGY STAR

188

Chicago Green Office Challenge | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Chicago Green Office Challenge Chicago Green Office Challenge Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

189

Earn ENERGY STAR certification | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Earn ENERGY STAR certification Earn ENERGY STAR certification Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

190

Learn about benchmarking | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Learn about benchmarking Learn about benchmarking Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use Learn about benchmarking Use ENERGY STAR benchmarking tools ENERGY STAR in action Communicate and educate Find out who's partnered with ENERGY STAR

191

Denver Watts to Water | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver Watts to Water Denver Watts to Water Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

192

Portfolio Manager DataTrends | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Portfolio Manager DataTrends Portfolio Manager DataTrends Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Portfolio Manager DataTrends ENERGY STAR Snapshot Energy strategy for the future

193

B Plant treatment, storage, and disposal (TSD) units inspection plan  

Science Conference Proceedings (OSTI)

This inspection plan is written to meet the requirements of WAC 173-303 for operations of a TSD facility. Owners/operators of TSD facilities are required to inspection their facility and active waste management units to prevent and/or detect malfunctions, discharges and other conditions potentially hazardous to human health and the environment. A written plan detailing these inspection efforts must be maintained at the facility in accordance with Washington Administrative Code (WAC), Chapter 173-303, ``Dangerous Waste Regulations`` (WAC 173-303), a written inspection plan is required for the operation of a treatment, storage and disposal (TSD) facility and individual TSD units. B Plant is a permitted TSD facility currently operating under interim status with an approved Part A Permit. Various operational systems and locations within or under the control of B Plant have been permitted for waste management activities. Included are the following TSD units: Cell 4 Container Storage Area; B Plant Containment Building; Low Level Waste Tank System; Organic Waste Tank System; Neutralized Current Acid Waste (NCAW) Tank System; Low Level Waste Concentrator Tank System. This inspection plan complies with the requirements of WAC 173-303. It addresses both general TSD facility and TSD unit-specific inspection requirements. Sections on each of the TSD units provide a brief description of the system configuration and the permitted waste management activity, a summary of the inspection requirements, and details on the activities B Plant uses to maintain compliance with those requirements.

Beam, T.G.

1996-04-26T23:59:59.000Z

194

Standard technical specifications, Westinghouse Plants: Bases (Sections 2.0--3.3). Volume 2, Revision 1  

SciTech Connect

This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the Westinghouse Owners Group (WOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

NONE

1995-04-01T23:59:59.000Z

195

Long-day plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-day plants Name: Ryan S Martin Status: NA Age: NA Location: NA Country: NA Date: NA Question: What are long-day plants? Replies: Long-day plants are those that require a...

196

Development of an Evaluation and Acceptance Methodology for Commercial Two- and Three-Dimensional Plant Modeling Software  

Science Conference Proceedings (OSTI)

This report identifies a methodology for owner-operators to use to evaluate and then accept commercial two-dimensional (2-D) and three-dimensional (3-D) software tools and databases to support maintaining nuclear plant design basis information. These tools are currently used only to produce hard copy documents, which are then manually reviewed corner-to-corner each time the document is printed. After the manual review, the signed hard copy documents are used as a source of configuration-controlled ...

2013-10-15T23:59:59.000Z

197

An analysis of the impacts of economic incentive programs on commercial nuclear power plant operations and maintenance costs  

SciTech Connect

Operations and Maintenance (O and M) expenditures by nuclear power plant owner/operators possess a very logical and vital link in considerations relating to plant safety and reliability. Since the determinants of O and M outlays are considerable and varied, the potential linkages to plant safety, both directly and indirectly, can likewise be substantial. One significant issue before the US Nuclear Regulatory Commission is the impact, if any, on O and M spending from state programs that attempt to improve plant operating performance, and how and to what extent these programs may affect plant safety and pose public health risks. The purpose of this study is to examine the role and degree of impacts from state promulgated economic incentive programs (EIPs) on plant O and M spending. A multivariate regression framework is specified, and the model is estimated on industry data over a five-year period, 1986--1990. Explanatory variables for the O and M spending model include plant characteristics, regulatory effects, financial strength factors, replacement power costs, and the performance incentive programs. EIPs are found to have statistically significant effects on plant O and M outlays, albeit small in relation to other factors. Moreover, the results indicate that the relatively financially weaker firms are more sensitive in their O and M spending to the presence of such programs. Formulations for linking spending behavior and EIPs with plant safety performance remains for future analysis.

Kavanaugh, D.C.; Monroe, W.H. [Pacific Northwest Lab., Richland, WA (United States); Wood, R.S. [Nuclear Regulatory Commission, Washington, DC (United States)

1996-02-01T23:59:59.000Z

198

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Plant Databases Welcome to the U. S. Department of Energy, National Energy Technology Laboratory's Gasification Plant Databases Within these...

199

ENERGY STAR portfolio-wide recognition | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR portfolio-wide recognition ENERGY STAR portfolio-wide recognition Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Earn recognition for your building or plant Earn recognition for your commercial construction project ENERGY STAR portfolio-wide recognition

200

New small HTGR power plant concept with inherently safe features - an engineering and economic challenge  

SciTech Connect

Studies are in a very early design stage to establish a modular concept High-Temperature Gas-Cooled Reactor (HTGR) plant of about 100-MW(e) size to meet the special needs of small energy users in the industrialized and developing nations. The basic approach is to design a small system in which, even under the extreme conditions of loss of reactor pressure and loss of forced core cooling, the temperature would remain low enough so that the fuel would retain essentially all the fission products and the owner's investment would not be jeopardized. To realize economic goals, the designer faces the challenge of providing a standardized nuclear heat source, relying on a high percentage of factory fabrication to reduce site construction time, and keeping the system simple. While the proposed nuclear plant concept embodies new features, there is a large technology base to draw upon for the design of a small HTGR.

McDonald, C.F.; Sonn, D.L.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New small HTGR power plant concept with inherently safe features - an engineering and economic challenge  

SciTech Connect

Studies are in a very early design stage to establish a modular concept High-Temperature Gas-Cooled Reactor (HTGR) plant of about 100-MW(e) size to meet the special needs of small energy users in the industrialized and developing nations. The basic approach is to design a small system in which, even under the extreme conditions of loss of reactor pressure and loss of forced core cooling, the temperature would remain low enough so that the fuel would retain essentially all the fission products and the owner's investment would not be jeopardized. To realize economic goals, the designer faces the challenge of providing a standardized nuclear heat source, relying on a high percentage of factory fabrication to reduce site construction time, and keeping the system simple. While the proposed nuclear plant concept embodies new features, there is a large technology base to draw upon for the design of a small HTGR.

McDonald, C.F.; Sonn, D.L.

1983-01-01T23:59:59.000Z

202

ENERGY STAR Score for Warehouses | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product...

203

Partner with ENERGY STAR | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product...

204

ENERGY STAR Score for Hotels | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product...

205

Energy Program Assessment Matrix | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Assessment Matrix Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

206

Put computers to sleep | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Put computers to sleep Secondary menu join us About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

207

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Univ. Of Chicago Argonne Univ. Of Chicago Argonne LLC 7/31/2006 9/30/2011 4 yrs Award Term Earned/additional 11 yrs Award Term Available 9/30/2026 M&O 2006 http://www.anl.gov/contract/ Patricia Schuneman 630-252-2956 Sergio Martinez 630-252-2075 Kristin Palmer 630-252-2127 Oak Ridge Environmental Management EM Bechtel Jacobs Co LLC 12/18/1997 12/31/2011 12/31/2011 Environmental Mgmt 1998 http://www.oakridge.doe.gov/external/Home/Procurement/RecentAwards/tabid/101/De fault.aspx Barbara Jackson 865-576-0976 Karen Shears 865-241-6411 Ames National Laboratory SC Iowa State University 12/4/2006 12/31/2011 4yrs Award Term Earned/additional 11yrs Award Term Available 12/31/2026 M&O 2007 http://www.ameslab.gov/operations/resources/contract Patricia Schuneman

208

Certification of Timesharing LOGON ID Owner Responsibilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FORM AD-798 FORM AD-798 (3-78) Section 1 - Section 2 - Section 3 - Section 4 - Section 5 - Hi - 3 Dates (Include all Within-Grade Increases) (Begin with most recent date in Card 20) Service Periods For Which Retirement Deductions Were Withdrawn (Begin with old- est period in Card 30) Service Periods For Which Retirement Deductions Were Not Withheld (Begin with old- est period in Card 40) Periods of Separation Prior to 10/1/56 (Begin with most recent date in Card 50) Request Number 1 45 49 50 20 30 40 50 / / / / / / / / / / / / / / / / / / / / / / / / 21 31 41 51 / / / / / / / / / / / / / / / / 22 32 42 52 / / / / / / / / / / / / / / / / 23 33 43 53 / / / / / / / / / / / / / / / / 24 34 44 54 / / / / / / / / / / / / / / / / 25 35 45 55 / / / / / / / / / / / / / / / / 26 36 46 56 / / / / / / / / / / / / / / / / 27 37 47 57 / / / / / / / / / / / / / / / / 28 38 48 58 / / / / / / / / / / / / / / / / 29 39 49 59 / / / / / / / / / / / / / / / / 11 11 11 11 12 12 12 12 13 13 13 13 18 18 18 18 19 19 19 19 24 24 24 24 25 25 25 29 29 29 30 30 30 32 32 32 33 33 33 35 35 35 52 53 58 59 62 63 68 69 70 75

209

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultimate Potential Ultimate Potential Expiration Date Contract FY Competed Parent Companies INEEL (AMWTP Ops) EM Bechtel BWXT Idaho LLC (Under Protest) 6/15/1999 3/31/2011 2 three month option periods until protest resolved 9/30/2011 M&O 1999 Bechtel National, Inc. (67%) and Babcock and Wilcox Company (33%) Portsmouth Remediation EM LATA/Parallax 1/10/2005 6/30/2010 2/28/2011 Site Clean up 2005 Los Alamos Technical Associates (LATA) 51%; Parallax (name changed to ES Performance Plus) 49% Paducah Remediation EM LATA Environmental Services of Kentucky 4/22/2010 7/21/2015 7/21/2015 Site Clean up 2009 Los Alamos Technical Associates, Inc. 100% West Valley Demonstration Project EM West Valley Environmental Svcs 6/29/2007 6/30/2011 6/30/2011 Site Clean up 2007 URS -60% Jacobs - 20% ECC - 10% Paralax - 10%

210

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7292008 9302013 one 5 Yr Option Avaialble 9302018 M&O 2008 http:www.eere.energy.govgoldenNRELPrime.aspx Carol Battershell 303-275- 1438 Steve Scott 303-275-4724...

211

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

transition) transition) 6/15/1999 6/30/2011 2 three month option periods 9/30/2011 M&O 1999 http://www.id.energy.gov/PSD/AMWTPHomepage.html Mike Adams 208-526-5277 Wendy Bauer 208-526-2808 Paducah Remediation EM LATA Environmental Services of Kentucky 4/22/2010 7/21/2015 7/21/2015 Site Clean up 2009 http://www.emcbc.doe.gov/dept/contracting/primecontracts.php Pam Thompson 859-219-4056 Bill Creech 859-219-4044 Argonne National Laboratory SC UChicago Argonne, LLC 7/31/2006 9/30/2015 4 yrs Award Term Earned/additional 11 yrs Award Term Available 9/30/2026 M&O 2006 http://www.anl.gov/contract/ Patricia Schuneman 630-252-2956 Sergio Martinez 630-252-2075 Kristin Palmer 630-252-2127 Oak Ridge Environmental Management

212

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UChicago Argonne, LLC UChicago Argonne, LLC 7/31/2006 9/30/2011 4 yrs Award Term Earned/additional 11 yrs Award Term Available 9/30/2026 M&O 2006 http://www.anl.gov/contract/ Patricia Schuneman 630-252-2956 Sergio Martinez 630-252-2075 Kristin Palmer 630-252-2127 Oak Ridge Environmental Management EM Bechtel Jacobs Co LLC 12/18/1997 12/31/2011 12/31/2011 Environmental Mgmt 1998 http://www.oakridge.doe.gov/external/Home/Procurement/RecentAwards/tabid/101/De fault.aspx Barbara Jackson 865-576-0976 Karen Shears 865-241-6411 Ames National Laboratory SC Iowa State University 12/4/2006 12/31/2011 4yrs Award Term Earned/additional 11 yrs Award Term Available 12/31/2026 M&O 2007 http://www.ameslab.gov/operations/resources/contract Patricia Schuneman

213

Scott Roseman: Owner, New Leaf Community Markets  

E-Print Network (OSTI)

history, first met Roseman while she was an undergraduate student at UCSC doing an internship in alternative energy

Reti, Irene H.

2010-01-01T23:59:59.000Z

214

Corporate Law's Current-Owner Bias  

E-Print Network (OSTI)

reported on firms’ financial statements do not reflect theto the firm’s financial statements. Following the corporatein the footnotes to firms’ financial statements, and thus is

Fried, Jesse M.

2005-01-01T23:59:59.000Z

215

Corporate Law's Current-Owner Bias  

E-Print Network (OSTI)

reported on firms’ financial statements do not reflect theto the firm’s financial statements. Following the corporatein the footnotes to firms’ financial statements, and thus is

Fried, Jesse M.

2006-01-01T23:59:59.000Z

216

Scott Roseman: Owner, New Leaf Community Markets  

E-Print Network (OSTI)

there was some kind of, say, cod-type fish that was eitheror yellow, we didn’t carry a cod fish that was red. It wasn’

Reti, Irene H.

2010-01-01T23:59:59.000Z

217

Scott Roseman: Owner, New Leaf Community Markets  

E-Print Network (OSTI)

worked for the Alternative Energy Co-op, an organizationdoing an internship in alternative energy systems. After theat what was called the Alternative Energy Co-op, which was a

Reti, Irene H.

2010-01-01T23:59:59.000Z

218

Definition: Transmission Owner | Open Energy Information  

Open Energy Info (EERE)

facilities.1 Related Terms Transmission Operatortransmission lines, transmission line, transmission lines References Glossary of Terms Used in Reliability Standards An in...

219

How do PEV owners respond to  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility System Load Profiles Figure 1 shows the Southern California Edison (SCE) hourly load profile for the top 12 days of summer (red line), the top 3 days in winter (dashed...

220

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory SC Stanford University 1251981 9302017 9302017 M&O 1981 http:www-group.slac.stanford.edulegalcontract.asp Barbara Jackson 865- 576-0976 Tyndal Lindler...

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Plant immune systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant immune systems Plant immune systems Name: stephanie Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Do plants have an immune system? How does it work? Are plants able to "fight off" infections such as Dutch Elm disease? Replies: In the broadest sense, an immune system is any method an organism has protect itself from succeeding to another organism's efforts to undermine its health and integrity. In this sense, yes, plants have immune systems. Plants do NOT have "active" immune systems, like humans, including macrophages, lymls, antibodies, complements, interferon, etc., which help us ward off infection. Rather, plants have "passive" mechanisms of protection. For instance, the waxy secretion of some plants (cuticle) functions to help hold in moisture and keep out microorganisms. Plants can also secrete irritating juices that prevent insects and animals from eating it. The thick bark of woody plants is another example of a defensive adaptation, that protects the more delicate tissues inside. The chemical secretions of some plants are downright poisonous to many organisms, which greatly enhance the chances of survival for the plant. Fruits of plants contain large amounts of vitamin C and bioflavonoids, compounds which have been shown in the lab to be anti-bacterial and antiviral. So in these ways, plants can improve their chances of survival. Hundreds of viruses and bacteria attack plants each year, and the cost to agriculture is enormous. I would venture to guess that once an organism establishes an infection in a plant, the plant will not be able to "fight" it. However, exposure to the sun's UV light may help control an infection, possibly even defeat it, but the plant does not have any inherent "active" way to fight the infection

222

Plant Phenotype Characterization System  

DOE Green Energy (OSTI)

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

223

Standard technical specifications - Babcock and Wilcox Plants: Bases (Sections 2.0-3.3). Volume 2, Revision 1  

SciTech Connect

This NUREG contains the improved Standard Technical Specifications (STS) for Babcock and Wilcox (B&W) plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the B&W Owners Group (BWOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.

NONE

1995-04-01T23:59:59.000Z

224

Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1995-04-01T23:59:59.000Z

225

Integrated safety assessment of an oxygen reduction project at Connecticut Yankee Atomic Power's Haddam Neck plant  

SciTech Connect

Connecticut Yankee Atomic Power Company (CYAPCo) has implemented an Integrated Safety Assessment Program (ISAP) for the integrated evaluation and prioritization of plant-specific licensing issues, regulatory policy issues, and plant improvement projects. As part of the ISAP process, probabilistic risk assessment (PRA) is utilized to evaluate the net safety impact of plant modification projects. On a few occasions, implementation of this approach has resulted in the identification of projects with negative safety impacts that could not be quantified via the normal design review and 10CFR50.59 safety evaluation process. An example is a plant modification that was proposed to reduce the oxygen in the Haddam Neck plant's demineralized water storage tank (DWST). The project involved the design and installation of a nitrogen blanketing system on the DWST. The purpose of the project was to reduce the oxygen content on the secondary side, consistent with recommendations from the Electric Power Research Institute Steam Generator Owners Group. Oxygen is one of the contributors to the corrosion process in systems in contact with the feedwater and can cause damage to associated components if not controlled.

Aubrey, J.E.

1987-01-01T23:59:59.000Z

226

Investigation of Containment Flooding Strategy for Mark-III Nuclear Power Plant with MAAP4  

Science Conference Proceedings (OSTI)

Containment flooding is an important strategy for severe accident management of a conventional boiling water reactor (BWR) system. The purpose of this work is to investigate the containment flooding strategy of the Mark-III system after a reactor pressure vessel (RPV) breach. The Kuosheng Power Plant is a typical BWR-6 nuclear power plant (NPP) with Mark-III containment. The Severe Accident Management Guideline (SAMG) of the Kuosheng NPP has been developed based on the BWR Owners Group (BWROG) Emergency Procedure and Severe Accident Guidelines, Rev. 2. Therefore, the Kuosheng NPP is selected as the plant for study, and the MAAP4 code is chosen as the tool for analysis. A postulated specific station blackout sequence for the Kuosheng NPP is cited as a reference case for this analysis. Because of the design features of Mark-III containment, the debris in the reactor cavity may not be submerged after an RPV breach when one follows the containment flooding strategy as suggested in the BWROG generic guideline, and the containment integrity could be challenged eventually. A more specific containment flooding strategy with drywell venting after an RPV breach is investigated, and a more stable plant condition is achieved with this strategy. Accordingly, the containment flooding strategy after an RPV breach will be modified for the Kuosheng SAMG, and these results are applicable to typical Mark-III plants with drywell vent path.

Su Weinian; Wang, S.-J.; Chiang, S.-C

2005-06-15T23:59:59.000Z

227

Should a coal-fired power plant be replaced or retrofitted?  

SciTech Connect

In a cap-and-trade system, a power plant operator can choose to operate while paying for the necessary emissions allowances, retrofit emissions controls to the plant, or replace the unit with a new plant. Allowance prices are uncertain, as are the timing and stringency of requirements for control of mercury and carbon emissions. We model the evolution of allowance prices for SO{sub 2}, NOx, Hg, and CO{sub 2} using geometric Brownian motion with drift, volatility, and jumps, and use an options-based analysis to find the value of the alternatives. In the absence of a carbon price, only if the owners have a planning horizon longer than 30 years would they replace a conventional coal-fired plant with a high-performance unit such as a supercritical plant; otherwise, they would install SO{sub 2} and NOx controls on the existing unit. An expectation that the CO{sub 2} price will reach $50/t in 2020 makes the installation of an IGCC with carbon capture and sequestration attractive today, even for planning horizons as short as 20 years. A carbon price below $40/t is unlikely to produce investments in carbon capture for electric power. 1 ref., 5 figs., 2 tabs.

Dalia Patino-Echeverri; Benoit Morel; Jay Apt; Chao Chen [Carnegie Mellon University, Pittsburgh, PA (USA)

2007-12-15T23:59:59.000Z

228

Chlorine and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine and Plants Name: Paul Location: NA Country: NA Date: NA Question: Is too Much chlorine going to kill or harm plants? I couldn't find information anywhere but I found...

229

Chlorine and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine and Plants Name: james Location: NA Country: NA Date: NA Question: I am doing project on the effects of chlorine on plant growth and i cant find any info. If you could...

230

PLANT BIOLOGY DEPARTMENT HANDBOOK  

E-Print Network (OSTI)

PLANT BIOLOGY DEPARTMENT HANDBOOK 2012-2013 University of Georgia Athens, GA 30602 Updated: 9/5/12 #12;Plant Biology Handbook Table of Contents General Information and Operating Procedures 1

Arnold, Jonathan

231

Plants producing DHA  

Science Conference Proceedings (OSTI)

CSIRO researchers published results in November 2012 showing that the long-chain n-3 fatty acid docosahexaenoic acid (DHA) can be produced in land plants in commercially valuable quantities. Plants producing DHA inform Magazine algae algal AOCS bi

232

Oil and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Plants Name: Matt Location: NA Country: NA Date: NA Question: If you could please tell me exactly what motor oil (unused) does to plants, and the effects. Does it...

233

Paste Plant Operations  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... It now provides data extraction features that aggregate system ... DUBAL Carbon Plant management team defined and implemented a 3-year strategic ... how to best approach Paste Plant operating and maintenance activities.

234

Plants and Dirt Compaction  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirt Compaction Name: Conor Location: NA Country: NA Date: NA Question: When growing corn and soybean plants does the compaction of dirt effect the growth of the plant? Replies:...

235

Light Wavelength and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Wavelength and Plants Name: John Location: NA Country: NA Date: NA Question: I just was wandering whether plants grow better in artificial light or in sunlight. I am...

236

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2006-06-26T23:59:59.000Z

237

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2007-06-05T23:59:59.000Z

238

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer M. (Chicago, IL); Zieler, Helge (Del Mar, CA); Jin, RongGuan (Chesterfield, MO); Keith, Kevin (Three Forks, MT); Copenhaver, Gregory P. (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2011-08-02T23:59:59.000Z

239

Plant centromere compositions  

Science Conference Proceedings (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach; Jennifer M. (Chicago, IL), Zieler; Helge (Del Mar, CA), Jin; RongGuan (Chesterfield, MO), Keith; Kevin (Three Forks, MT), Copenhaver; Gregory P. (Chapel Hill, NC), Preuss; Daphne (Chicago, IL)

2011-11-22T23:59:59.000Z

240

Plants & Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants & Animals Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. April 12, 2012 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other plants and animals not considered food sources. What plants and animals do we monitor? LANL monitors both edible and non-edible plants and animals to determine whether Laboratory operations are impacting human health via the food chain, or to find contaminants that indicate they are being moved in the

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

Not Available

1993-04-01T23:59:59.000Z

242

Plant design: Integrating Plant and Equipment Models  

Science Conference Proceedings (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

243

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed--has been benchmarked against measurements.30 At the Ringhals nuclear power plant, this measurement is car a measurement performed at the PWR Unit 4 of the Ring hals Nuclear Power Plant was available to us

Demazière, Christophe

244

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed reactivity effects--has been benchmarked against measurements.30 At the Ringhals nuclear power plant a measurement performed at the PWR Unit 4 of the Ring- hals Nuclear Power Plant was available to us

Demazière, Christophe

245

Decisions decisions plant vessels  

Science Conference Proceedings (OSTI)

This paper describes concepts for a family of plant vessels that help users make decisions or reach goals. The concepts use plants to mark time or answer questions for the user, creating a connection between the user and the individual plant. These concepts ...

Jenny Liang

2007-08-01T23:59:59.000Z

246

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

247

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

248

prairie plant list  

NLE Websites -- All DOE Office Websites (Extended Search)

List of Native Prairie Plant Illustrations List of Native Prairie Plant Illustrations Select the common name of the plant you want to view. Common Name Scientific Name Grasses BIG BLUESTEM Andropogon gerardii INDIAN GRASS Sorghastrum nutans LITTLE BLUESTEM Andropogon scoparius SWITCH GRASS Panicum virgatum CORD GRASS Spartina pectinata NEEDLEGRASS Stipa spartea PRAIRIE DROPSEED Sporobolus pectinata SIDE-OATS GRAMA Bouteloua curtipendula FORBS ROSINWEED Silphium integrifolium SAW-TOOTHED SUNFLOWER Helianthus grossesserratus WILD BERGAMOT Monarda fistulosa YELLOW CONEFLOWER Ratibida pinnata BLACK-EYED SUSAN Rudbeckia hirta COMPASS PLANT Silphium lactiniatum CUP PLANT Silphium perfoliatum NEW ENGLAND ASTER Aster novae-angilae PRAIRIE DOCK Silphium terebinthinaceum RATTLESNAKE MASTER Eryngium yuccifolium STIFF GOLDENROD Solidaga rigida

249

Win ENERGY STAR Partner of the Year | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Win ENERGY STAR Partner of the Year Win ENERGY STAR Partner of the Year Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

250

Energy-saving tips for everyone | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-saving tips for everyone Energy-saving tips for everyone Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

251

See who has achieved the Challenge | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

See who has achieved the Challenge See who has achieved the Challenge Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition ENERGY STAR Partner of the Year Award ENERGY STAR plant certification

252

Method for evaluating the technical state of boilers and piping in thermal power plants  

Science Conference Proceedings (OSTI)

An approach for evaluating the current technical state of thermal equipment in thermal power plants is discussed. A system of parameters and corresponding criteria are developed for the technical state of groups of essential components of boilers and piping. Ascale for evaluation of safety factors is proposed in terms of the relationship between state parameters and the corresponding criteria. Analytic expressions are given for an approximate evaluation of the maximum lifetime limit for operation of an object in terms of an integral safety factor and an evaluation of this type is illustrated for the case of the live steam pipeline in a 300-MW unit. An algorithm is set up for actions to be taken by equipment owners in organizing monitoring of the technical state of the equipment.

Grin', E. A. [JSC 'All-Russian Thermal Engineering Institute' (JSC 'VTI') (Russian Federation); Stepanov, V. V.; Sarkisyan, V. A.; Babkina, R. I. [JSC 'All-Russian Thermal Engineering Institute' (JSC 'VTI') (Russian Federation)

2012-01-15T23:59:59.000Z

253

Incentive regulation of investor-owned nuclear power plants by public utility regulators  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, including states with new programs, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Elliot, D.B. (Pacific Northwest Lab., Richland, WA (United States))

1993-01-01T23:59:59.000Z

254

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Mills - conventional milling 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 Mills - other operations 2 2 3 2 2 2 1 1 0 0 1 1 1 0 1 0 0 0 1 In-Situ-Leach Plants 3 5 6 6 4 3 3 2 2 3 3 5 5 6 3 4 5 5 5 Byproduct Recovery Plants 4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 9 11 9 7 6 4 3 2 3 4 6 6 7 4 5 6 6 6 End of 2005 End of 2006 End of 2007 End of 2008 End of 2009 3 Not including in-situ-leach plants that only produced uranium concentrate from restoration. 4 Uranium concentrate as a byproduct from phosphate production. Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report." End of 2010 End of 2011 End of 2012 End of 3rd Quarter 2013 1 Milling uranium-bearing ore. 2 Not milling ore, but producing uranium concentrate from other (non-ore) materials.

255

prairie restoration plant ident  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Identification Plant Identification Once your restoration is started and plants begin to germinate, the next issue you are faced with is the identification of what is growing. From my experience, the seeds you planted should start germinating after about a week to ten days. Of course, this is dependent on the weather conditions and the amount of moisture in the soil. If you are watering regularly, you will get growth much more quickly than if you are just waiting for nature to take its course. Identifying prairie plants as they germinate is very difficult. If you are an experienced botanist or an expert on prairie plants, your identification will still be a little more than an educated guess. In other words identifying prairie species from non-native species will take some time.

256

Conditional sterility in plants  

DOE Patents (OSTI)

The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

2010-02-23T23:59:59.000Z

257

Crystals and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Crystals and Plants Crystals and Plants Name: Diab Location: N/A Country: N/A Date: N/A Question: What will the likely effects of crystallized filaments in plant cells be? I had noticed that moth balls (para dichlorbenzene) tends within a very short temperature range to transform from a solid to gas and back to solid in the form of crystal filaments. I been wondering about the likely effects of an experiment in which a plant is placed in a chamber saturated with the fumes of a substance that had the same transformation properties of its state but none of the toxic effects be on the plants and will such filaments form inside the cell and rearrange its DNA strands or kill it outright? Replies: The following might be helpful: http://biowww.clemson.edu/biolab/mitosis.html http://koning.ecsu.ctstateu.edu/Plant_Physiology/osmosis.html

258

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

259

Plant Growth and Photosynthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Growth and Photosynthesis Plant Growth and Photosynthesis Name: Jack Location: N/A Country: N/A Date: N/A Question: Do plants have any other way of growing besides photosythesis? Plants do not use photosynthesis to grow!!! They use cellular respiration just like every other organism to process energy into work. Plants use oxygen just like we do. Photosynthesis is principally only a process to change sunlight into a chemical form for storage. Replies: Check out our archives for more information. www.newton.dep.anl.gov/archive.htm Steve Sample Jack, Several kinds of flowering plants survive without the use of chlorophyll which is what makes plants green and able to produce sugar through photosynthesis. Dodder is a parasitic nongreen (without chlorophyll) plant that is commonly found growing on jewelweed and other plants in damp areas. Dodder twines around its host, (A host is an organism that has fallen victim to a parasite.), like a morning glory and attaches itself at certain points along the stem where it absorbs sugar and nutrients from the hosts sap.

260

Sunrise II Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sunrise Power Company, LLC (Sunrise), has planned the modification of an existing power plant project to increase its generation capacity by 265 megawatts by 2003. The initial...

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plant and Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

publicationshouseplantligh t.html Sincerely, Anthony R. Brach "Artificial" light comes from many kinds of bulbs that emit different wavelengths of light; Many plants...

262

Repurposing a Hydroelectric Plant.  

E-Print Network (OSTI)

??This thesis project explores repurposing a hydroelectric plant along Richmond Virginia's Canal Walk. The building has been redesigned to create a community-oriented space programmed as… (more)

Pritcher, Melissa

2008-01-01T23:59:59.000Z

263

& Immobilization Plant Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the current mixing, erosion, corrosion, instrumentation and monitoring challenges at the Waste Treatment Plant (WTP) in Hanford. The "black cell" design concept and the use of...

264

Plant Award Specification Sheet | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Specification Sheet Specification Sheet Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

265

Plant Award Application Letter | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Letter Application Letter Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

266

Institutional impediments to using alternative water sources in thermoelectric power plants.  

Science Conference Proceedings (OSTI)

This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the local political organizations that can influence decisions regarding the use of the alternative source. Often a plan to use reclaimed water will work only if local politics and power plant goals converge. Even then, lengthy negotiations are often needed for the plans to come to fruition. (3) Regulatory requirements for planning and developing associated infrastructure such as pipelines, storage facilities, and back-up supplies that can require numerous approvals, permits, and public participation, all of which can create delays and increased costs. (4) Permitting requirements that may be difficult to meet, such as load-based discharge limits for wastewater or air emissions limitations for particulate matter (which will be in the mist of cooling towers that use reclaimed water high in dissolved solids). (5) Finding discharge options for cooling tower blowdown of reclaimed water that are acceptable to permitting authorities. Constituents in this wastewater can limit options for discharge. For example, discharge to rivers requires National Pollutant Discharge Elimination System (NPDES) permits whose limits may be difficult to meet, and underground injection can be limited because many potential injection sites have already been claimed for disposal of produced waters from oil and gas wells or waters associated with gas shale extraction. (6) Potential liabilities associated with using alternative sources. A power plant can be liable for damages associated with leaks from reclaimed water conveyance systems or storage areas, or with mine water that has been contaminated by unscrupulous drillers that is subsequently discharged by the power plant. (7) Community concerns that include, but are not limited to, increased saltwater drift on farmers fields; the possibility that the reclaimed water will contaminate local drinking water aquifers; determining the 'best' use of WWTP effluent; and potential health concerns associated with emissions from the cooling towers that use recycled water. (8) Interveners that raise public concerns about the potential for emissions of emergi

Elcock, D. (Environmental Science Division)

2011-08-03T23:59:59.000Z

267

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

268

BWR radiation control: plant demonstration. Volume 2. Appendixes  

Science Conference Proceedings (OSTI)

The first year's progress is presented for a four-year program intended to implement and evaluate BRAC radiation reduction operational guidelines at the Vermont Yankee BWR and to document the results in sufficient detail to provide guidance to other BWR owners. Past operational, chemistry and radiation level data have been reviewed to provide a historical base of reference. Extensive sampling and chemistry monitoring systems have been installed to evaluate plant chemistry status and the effects of program implemented changes. Radiation surveys and piping gamma scans are being performed at targeted locations to quantify radiation level trends and to identify and quantify piping isotopics. Contact radiation levels on the recirculation line at Vermont Yankee have been increasing at a rate of 175 mR/h-EFPY since 1978. A materials survey of feedwater and reactor components in contact with the process liquid has been performed to identify sources of corrosion product release, particularly cobalt and nickel. A feedwater oxygen injection system has been installed to evaluate the effects of oxygen control on feedwater materials corrosion product releases. A baseline performance evaluation of the condensate treatment and reactor water cleanup systems has been completed. Data on organics and ionics at Vermont Yankee have been obtained. A methodology of BWR feedwater system layup during extended outages was developed, and an evaluation performed of layup and startup practices utilized at Vermont Yankee during the fall 1980 and 1981 refueling outages.

Palino, G.F.; Hobart, R.L.; Wall, P.S.; Sawochka, S.G.

1982-11-01T23:59:59.000Z

269

Modulating lignin in plants  

DOE Patents (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

270

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

271

Plants “remember” drought, adapt  

Science Conference Proceedings (OSTI)

Research carried out at the University of Nebraska-Lincoln (UNL; USA) shows that plants subjected to a previous period of drought learn to deal with the stress owing to their “memories” of the experience. Plants “remember” drought, adapt Inform Magazine

272

Focus group discussions among owners and non-owners of ground source heat pumps  

SciTech Connect

This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

Roberson, B.F.

1988-07-01T23:59:59.000Z

273

BNL | Plant Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Sciences Plant Sciences The Plant Sciences group's goal is to understand the principles underlying carbon capture, conversion, and storage in living systems; and develop the capability to model, predict and optimize these processes in plants and microorganisms. Staff Members John Shanklin Jason Candreva Jilian Fan Hui Liu Qin Liu Edward Whittle Xiaohong Yu Dax Fu Jin Chai Chang-Jun Liu Yuanheng Cai Mingyue Gou Guoyin Kai Zhaoyang Wei Huijun Yang Kewei Zhang Xuebin Zhang Jörg Schwender Jordan Hay Inga Hebbelmann Hai Shi Zhijie Sun Changcheng Xu Chengshi Yan Zhiyang Zhai Plant Sciences Contact John Shanklin, (631)344-3414 In the News No stories available Funding Agencies DOE Basic Energy Sciences Bayer CropScience The Biosciences Department is part of the Environment and Life Sciences Directorate at Brookhaven National Laboratory

274

Granby Pumping Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

275

AVESTAR® - Smart Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Plant In the area of smart plant operations, AVESTAR's dynamic simulators enable researchers to analyze plant-wide performance over a wide range of operating scenarios, including plant startup (cold, warm, hot), shutdown, fuel switchovers, on-load cycling, high-load operations of 90-120% of rated capacity, and high frequency megawatt changes for automatic generation control. The dynamic simulators also let researchers analyze the plant's response to disturbances and malfunctions. The AVESTAR team is also using dynamic simulators to develop effective strategies for the operation and control of pre-combustion capture technology capable of removing at least 90% of the CO2 emissions. Achieving operational excellence can have significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. If deployment of new CO2 capture technologies is to be accelerated, power generators must be confident in ensuring efficient, flexible, reliable, environmentally-friendly, and profitable plant operations.

276

Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report  

DOE Green Energy (OSTI)

The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

NONE

1995-01-01T23:59:59.000Z

277

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

278

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

279

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

280

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

282

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

283

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

284

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

285

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

286

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

287

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

288

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

289

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

290

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

291

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

292

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

293

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

294

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

295

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

296

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Major Demonstrations Power Plant Improvement Initiative (PPII) The Power Plant Improvement Initiative (PPII) was established in October 2000 to further the commercial-scale...

297

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

298

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

299

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

300

Artificial light and plant growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Artificial light and plant growth Name: Lim Age: NA Location: NA Country: NA Date: NA Question: What color of artificial light works the best in plant growth? Replies:...

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

302

Fermilab Prairie Plant Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Crack the Quadrat* Code! Crack the Quadrat* Code! compass plasnt * What is a Quadrat? It's a one-meter square plot. Plants in the quadrat are identified and counted. Fermilab quadrat specialists can! Attention Citizen Scientists Are you a prairie enthusiast? Learn scientific plant monitoring techniques while enjoying our beautiful prairie. Join a unique science program open to the public, adult groups, families, scouts and more …. Become a prairie quadrat specialist and do real science at Fermilab! In the Fermilab Prairie Plant Survey you will learn how to identify prairie plants, map a prairie plot and track restoration progress along with our experts. Use our Website to contribute data you collect. Come once or come back two or three times to see how the prairie changes. Keep an eye on this prairie for years to come!

303

prairie restoration planting  

NLE Websites -- All DOE Office Websites (Extended Search)

Planting Planting The most common method of planting is to broadcast spread your seeds. This is usually done by hand, but you can also use a lawn-type spreader. After you have spread your seeds, rake the area over lightly. For seeds to germinate correctly they need to have good seed to soil contact, but you also don't want to bury the seeds too deeply. The general rule is to cover seeds to a depth no deeper than twice the seed's size. For example, if a seed is 4 mm in size, you would not want to bury it any deeper than 8 mm. The seeds commonly found in a prairie matrix are usually small enough, that raking over the spread seed to mix and cover them with a thin layer of soil, is adequate. If you are involving large numbers of people in the planting, a plastic cup

304

Pollution adn Plant Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution adn Plant Growth Pollution adn Plant Growth Name: Virdina Location: N/A Country: N/A Date: N/A Question: What are the effcts off water polltuion on plant growth? Are there any good websites where I can find current or on going research being done by other scientist? Replies: Dear Virdina, Possibly helpful: http://www.ec.gc.ca/water/en/manage/poll/e_poll.htm http://www.epa.vic.gov.au/wq/info/wq987.htm Sincerely, Anthony R. Brach This is a very complicated question, there are so many different types of water pollution and different species of plants react very differently. Good places to start are the U.S. environmental protection agency, the office of water is at: http://www.epa.gov/ow/ and there is a link to a kid's page from there: http://www.epa.gov/OST/KidsStuff/ You might also try state EPA's, Illinois is at:

305

Water Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

to see the operation than have us explain it. Basically, most treatment plants remove the solid material and use living organisms and chlorine to clean up the water. Steve Sample...

306

Fuel rod reprocessing plant  

Science Conference Proceedings (OSTI)

A plant for the reprocessing of fuel rods for a nuclear reactor comprises a plurality of rectangular compartments desirably arranged on a rectangular grid. Signal lines, power lines, pipes, conduits for instrumentation, and other communication lines leave a compartment just below its top edges. A vehicle access zone permits overhead and/or mobile cranes to remove covers from compartments. The number of compartments is at least 25% greater than the number of compartments used in the initial design and operation of the plant. Vacant compartments are available in which replacement apparatus can be constructed. At the time of the replacement of a unit, the piping and conduits are altered to utilize the substitute equipment in the formerly vacant compartment, and it is put on stream prior to dismantling old equipment from the previous compartment. Thus the downtime for the reprocessing plant for such a changeover is less than in a traditional reprocessing plant.

Szulinski, M.J.

1981-04-14T23:59:59.000Z

307

Power Plant Closure Guidebook  

Science Conference Proceedings (OSTI)

Organizations that are planning to decommission an aged power plant face a host of issues that must be addressed and many tasks that must be properly executed in order to ensure a successful closure of the facility.

2010-10-20T23:59:59.000Z

308

B Plant facility description  

SciTech Connect

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

309

Plant Pathogen Resistance  

Crop plants are infected by numerous fungal and bacterial pathogens that reduce crop quality and yield. Common methods for addessing this problem include time consuming processes such as genetic engeneering, and possibly enviromentally risky ...

310

The Effect of Composite Leaching Agent on the Swell of the ...  

Science Conference Proceedings (OSTI)

... contribute to the landslides and other geological disasters in in-situ leaching rare earth ... Current Korean R&D and Investment Strategies in Response to REE

311

3rd Quarter 2011 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

3rd Quarter 2011 Domestic Uranium Production Report Subject: U.S ... drilling, employment, exploration, in situ leach, inventory, mill, mine, nuclear, ...

312

Plant critical concept  

SciTech Connect

The achievement of operation and maintenance (O&M) cost reductions is a prime concern for plant operators. Initiatives by the nuclear industry to address this concern are under way and/or in development. These efforts include plant reliability studies, reliability-centered maintenance, risk ranking and testing philosophies, performance-based testing philosophies, graded quality assurance, and so forth. This paper presents the results of an effort to develop a methodology that integrates and applies the common data and analysis requirements for a number of risk-based and performance-based initiatives. This initial phase of the effort applied the methodology and its results to two initiatives. These were the procurement function and the preventive maintenance function. This effort integrated multiple programs and functions to identify those components that are truly critical from an integrated plant performance perspective. The paper describes the scope of the effort, the development of a methodology to identify plant critical components, and the application of these results to the maintenance rule compliance, preventive maintenance, and procurement functions at the candidate plant.

O`Regan, P.J. [Yankee Atomic Electric Co., Bolton, MA (United States)

1995-12-31T23:59:59.000Z

313

How do plants grow?  

NLE Websites -- All DOE Office Websites (Extended Search)

How do plants grow? How do plants grow? Name: Sally McCombs Location: N/A Country: N/A Date: N/A Question: A 4th grade class at our school is doing plant research and would like to know if plants grow from the top up or from the bottom up? Thanks for your help! Replies: Plants grow from the top up (or from the bottom down, in the case of root growth). Right at the tip, more cells form by division, and just behind that is an area where cells get bigger). More amazing than all of this is where your question comes from. I went to 4th grade there!!! Amazing, Just after the school was built, I think, maybe around 1959 to about early 1960's. Then I moved on to St. Pete High School, then my parents got jobs in Alabama, where I did the last year of High School. Then onto college in New England, graduate school in California, a research job in England, and now finally as a professor at the University of Washington in Seattle. Brings back memories...

314

Maintaining plant safety margins  

SciTech Connect

The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type (boiling water reactor/pressurized water reactor (BWR/PWR)), nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports.

Bergeron, P.A.

1989-01-01T23:59:59.000Z

315

NISTIR 6005 Plant Spatial Configuration Application Protocol ...  

Science Conference Proceedings (OSTI)

... Part 12, Description method: The EXPRESS-I language reference manual; ... Decommission Plant ... Plant operating procedures; ...

1998-01-14T23:59:59.000Z

316

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

317

Plant Tumor Growth Rates  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

318

Plant and Animal Immigrants  

NLE Websites -- All DOE Office Websites (Extended Search)

and Animal Immigrants and Animal Immigrants Nature Bulletin No. 43 December 1, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Roberts Mann, Superintendent of Conservation PLANT AND ANIMAL IMMIGRANTS When foreign plants and animals are brought to a new country they either become naturalized and thrive, or they cling to their old ways and die out. after they, too, find new freedoms because they leave their enemies, competitors, parasites, and some of their diseases behind them -- much as immigrant people do. The United States now supports about 300 times as many people as it did when Columbus discovered America. This is possible because the domesticated plants and animals that the early settlers brought with them give much higher yields of food and clothing than the Indians got from wild ones.

319

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

320

Plants making oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants making oxygen Plants making oxygen Name: Doug Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How many plants are needed to make enough oxygen for one person for one hour? We are experimenting with Anacharis plants. Replies: The problem can be solved when broken down into smaller questions: 1. How much oxygen does a person need in an hour? 2. How much oxygen does a plant produce in an hour? 3. Based on the above, how many plants will provide the oxygen needs of the person for the hour? Here is the solution to the first question: A resting, healthy adult on an average, cool day breathes in about 53 liters of oxygen per hour. An average, resting, health adult breathes in about 500 mL of air per breath. This is called the normal tidal volume. Now, 150 mL of this air will go to non- functioning areas of the lung, called the "dead space." The average breath rate for this average person is 12 breaths per minute. So, the amount of air breathed in by the person which is available for use is 12 x (500 mL -150 mL) = 4,200 mL/minute. Multiply by 60 to get 252,000 mL/hour. That is, every hour, the person will breathe in 252 L of air. Now, on an average, cool, clear day, only 21% of that air is oxygen. So, 21% of 252 L is 53 L. So, in an hour, the person breathes in about 53 L of oxygen.

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

322

Snakes and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snakes and Plants Snakes and Plants Name: kathy Location: N/A Country: N/A Date: N/A Question: We live in the southern most tip of Illinois,on horseshoe lake. I would like to know what time of the year do snakes come out and when do they go back in? Also is there any plants to plant to keep them away? Replies: What kind of snakes, in what kind of habitat? All snakes in Illinois hibernate in winter, but their habits differ by species. I'm not sure of the range of dates for southern Illinois, but they start to come out of hibernation in northern Illinois around the end of March or in April, depending on the weather. Advance of spring is usually about 3 weeks earlier in southern Illinois than northern, so i guess snake emergence would be about that much advanced as well. They will come out when there are warm sunny days to get them warmed up, and nights are not so cold that they will be harmed. Fall entry into hibernation is roughly parallel, snakes will often bask in the sun on sunny fall days before going into hibernation, again in no. Ill usually in October but widely varying.

323

Pinellas Plant facts  

SciTech Connect

The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

NONE

1990-11-01T23:59:59.000Z

324

Troubleshooting power plant controls  

SciTech Connect

Using an example from an 80 MW cogeneration plant working at near capacity on a hot day, the paper illustrates the steps involved in troubleshooting a maintenance problem. It discusses identification of the problem, the planning involved in the identification of the problem, development of proof of an hypothesis, human factors, implementing effective solutions, and determination of the root cause.

Alley, S.D. [ANNA, Inc., Annapolis, MD (United States)

1995-05-01T23:59:59.000Z

325

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

326

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Power Inspectorate SE- 10658 Stockholm, Sweden. NUCLEAR TECHNOLOGY VOL. 131 AUG. 2000 239 by the Swedish Nuclear Power Inspectorate, contract 14.5-980942-98242. REFERENCES 1. A. M. WEINBERG and H. C

Pázsit, Imre

327

Mechanisms in Plant Development  

SciTech Connect

This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

Hake, Sarah [USDA ARS Plant Gene Expression Center

2013-08-21T23:59:59.000Z

328

Plantings that save energy  

SciTech Connect

In this 12th of a series on urban forestry, homeowners and community planners are offered practical guidance in selection of landscape plantings which will significantly reduce wind velocity and heat loss from homes in winter and reduce energy costs for air conditioning in summer.

Heisler, G.M.; DeWalle, D.R.

1984-09-01T23:59:59.000Z

329

AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

2001-06-30T23:59:59.000Z

330

An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.  

DOE Green Energy (OSTI)

This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

331

the decision of the ReliabilityFirst Corporation (“RFC”) to include Holland Board of Public Works (“Holland”) on the NERC Compliance Registry as a Transmission Owner (“TO”) and Transmission Operator (“TOP”). Statement of Appeal  

E-Print Network (OSTI)

NERC Compliance Registry within the RFC Region for the functions of TO and TOP. Holland appeals its registration as a TO and TOP arguing that: (a) its facilities are operated as radial facilities and, therefore, fall under the exclusion of RFC’s definition of bulk electric system (“BES”) facilities; 1 (b) its facilities are not material to the BES; (c) registration of its facilities will not improve BES reliability; (d) excluding its facilities from the registry will not result in a gap in BES reliability; and (e) compliance with TO and TOP standards presents a disproportionate and undue hardship on Holland. 2 Holland serves approximately 27,000 retail and commercial customers in Holland, Michigan, as well as portions of Holland, Park, Laketown, and Fillmore townships. 3 Holland owns and operates 24 miles of 138 kV transmission lines, seven generating units (ranging from 11.5 to 83 MW) and eight high voltage substations. 4 Holland has a total of 226 MW of internal generation. 5 Holland also owns shares in the J.H. Campbell Complex and the Belle River Plant which are operated by Consumers Energy and Detroit Edison, respectively. 6

unknown authors

2010-01-01T23:59:59.000Z

332

Plant and Soil An International Journal on Plant-Soil  

E-Print Network (OSTI)

1 23 Plant and Soil An International Journal on Plant-Soil Relationships ISSN 0032-079X Plant Soil DOI 10.1007/s11104-012-1353-x Seedling growth and soil nutrient availability in exotic and native tree growth and soil nutrient availability in exotic and native tree species: implications for afforestation

Neher, Deborah A.

333

The Iowa Stored Energy Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert Haug Executive Director Iowa Association of Municipal Utilities for Iowa Stored Energy Plant Agency THE IOWA STORED ENERGY PLANT What is ISEP? ISEP is a DOE-supported effort...

334

Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Plant Pantex Plant Pantex Plant Pantex Plant | September 2010 Aerial View Pantex Plant | September 2010 Aerial View The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear weapons in support of the NNSA stockpile stewardship program. Pantex also performs research and development in conventional high explosives and serves as an interim storage site for plutonium pits removed from dismantled weapons. Enforcement January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant November 21, 2006 Preliminary Notice of Violation, BWXT Pantex, LLC - EA-2006-04 Issued to BWXT Pantex, LLC, related to Quality Assurance and Safety Basis Requirements Violations at the Pantex Plant

335

Production of virus resistant plants  

DOE Patents (OSTI)

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection.

Dougherty, William G. (Philomath, OR); Lindbo, John A. (Kent, WA)

1996-01-01T23:59:59.000Z

336

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

337

Production of virus resistant plants  

DOE Patents (OSTI)

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

Dougherty, W.G.; Lindbo, J.A.

1996-12-10T23:59:59.000Z

338

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

Thomas, Andrew

339

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

Thomas, Andrew

340

T Plant Cell Investigation  

Science Conference Proceedings (OSTI)

The Waste Management Project within Fluor Hanford performed an initial investigation of the current and historical contents of 221-T (T Plant Canyon) process cells. This Phase I report is intended to be followed by a final, more detailed, Phase II report. This information has been gathered in order to help reduce uncertainties and future surprises regarding cell contents during future work in and around T Plant process cells. The information was obtained from available documentation and was compiled into a database that is included in the report. Resolution of any apparently conflicting information was not a part of the Phase I effort. No information has been found to date that would indicate there could be a significant unexpected hazard in any of the process cells.

HLADEK, K.L.

2001-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Jennings Demonstration PLant  

DOE Green Energy (OSTI)

Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

Russ Heissner

2010-08-31T23:59:59.000Z

342

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Performance Summaries Power Plant Improvement Initiative (PPII) Project Performance Summaries Project Performance Summaries are written after project completion. These...

343

Importance of Processing Plant Information  

U.S. Energy Information Administration (EIA)

... new survey instrument to collect information from natural gas processing plants during non-emergency and supply-emergency conditions. ...

344

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. Number of uranium mills and plants producing uranium concentrate in the United States" 2. Number of uranium mills and plants producing uranium concentrate in the United States" "Uranium Concentrate Processing Facilities","End of 1996","End of 1997","End of 1998","End of 1999","End of 2000","End of 2001","End of 2002","End of 2003","End of 2004","End of 2005","End of 2006","End of 2007","End of 2008","End of 2009","End of 2010","End of 2011","End of 2012","End of 3rd Quarter 2013" "Mills - conventional milling 1",0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,1,1,0 "Mills - other operations 2",2,3,2,2,2,1,1,0,0,1,1,1,0,1,0,0,0,1 "In-Situ-Leach Plants 3",5,6,6,4,3,3,2,2,3,3,5,5,6,3,4,5,5,5

345

IMPROVEMENTS IN POWER PLANT  

SciTech Connect

A power plant for nuclear reactors is designed for improved cycle efficiency. In addition to the usual heat exchanger for heat transfer from gaseous reactor coolant to water for vaporization, a second heat exchanger is provided between the first heat exchanger and a point betwveen the intermediate- pressure and low-pressure turbine stages. In this way, interstage reheating of the steam is obtained without passage of the steam back to the first heat exchanger. (D.L.C.) Research Reactors

Peters, M.C.

1961-10-11T23:59:59.000Z

346

Nuclear Plant Decommissioning  

Science Conference Proceedings (OSTI)

In the 1990s several nuclear utilities proceeded with full decommissioning of their nuclear power plants based on perceived economics. This major shift to immediate decommissioning presented a significant challenge to the industry in terms of the development of a decommissioning process and a comprehensive updated regulatory framework. EPRI responded by undertaking the formation of the Decommissioning Support Program. The initial work involved conducting a series of topical workshops directed to specific...

2010-11-24T23:59:59.000Z

347

NEUTRONIC REACTOR POWER PLANT  

DOE Patents (OSTI)

This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

Metcalf, H.E.

1962-12-25T23:59:59.000Z

348

Poinsettia -- The Christmas Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Poinsettia -- The Christmas Plant Poinsettia -- The Christmas Plant Nature Bulletin No. 699 December 22, 1962 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor POINSETTIA -- THE CHRISTMAS PLANT Christmas is a day of family gatherings. In each home they have their own traditional customs. Some of us cherish those that are peculiar to the region where we were children, or the land from whence our forefathers came. Most of us have also adopted customs -- such as decorating with holly and mistletoe -- that stem from ancient pagan ceremonies or festivals but have lost their original significance. There are many myths and legends about the origin of our Yuletide customs. (See Bulletins No. 135, 173, 211, 326 and 475). In this country most families have a Christmas tree, a custom that was introduced from Germany by Hessian troops in the British army during the Revolutionary War. It prevails in Britain and most of northern Europe but is unusual in Italy, Spain and Latin America. There, the symbol of Christmas and heart of the celebration in a home is not an Evergreen tree but a miniature reproduction of the stable and manger where Christ was born.

349

Plants of the Bible  

NLE Websites -- All DOE Office Websites (Extended Search)

Bible Bible Nature Bulletin No. 188-A April 16, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE BIBLE When Jesus suffered on the cross, we are told in the Gospel according to St. Matthew (27:48) that at the ninth hour he thirsted and a sponge, filled with vinegar and put upon a reed, was raised to His lips. It is so related in St. Mark (15:36) but according to St. John (19:29), "they filled a sponge with vinegar, and put it upon hyssop, and put it into his mouth. " What was hyssop. The plant is mentioned frequently in the Bible. The hyssop of our herb gardens is not native to Palestine, Syria or Egypt, but there is evidence that when Solomon "spoke of trees, from the cedar tree that is in Lebanon even unto the hyssop that springeth out of the wall" (I Kings 4:23), he spoke of the herb we call marjoram. The hyssop dipped in the blood of a sacrificial lamb and used by the Israelites in Egypt to mark their doorways (Exodus 12:22), and the hyssop referred to by St. John but called a reed by St. Matthew and St. Mark, was probably sorghum, a tall cereal plant grown by the Jews for food and also used for brushes and brooms.

350

Delayed Planting Considerations for Corn  

E-Print Network (OSTI)

Quite a bit of Indiana’s corn crop remains to be planted, especially in southern Indiana, due to the current rainy spell that put the brakes on what had been a very rapid planting pace. As of 11 May, 42 % of Indiana’s intended corn acreage was yet to be planted (USDA-NASS,

John Obermeyer; Entomology Dept; Tony Vyn; Agronomy Dept

2003-01-01T23:59:59.000Z

351

Pantex Plant | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Locations > Pantex Plant Pantex Plant http:www.pantex.com Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in...

352

The Kansas City Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Kansas City Plant The Kansas City Plant The Kansas City Plant More Documents & Publications OPSAID Initial Design and TestingReport SECURITY CORE FUNCTION AND DEFINITION REPORT...

353

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

B plant mission analysis report  

SciTech Connect

This report further develops the mission for B Plant originally defined in WHC-EP-0722, ``System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.`` The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline.

Lund, D.P.

1995-05-24T23:59:59.000Z

358

Waste Isolation Pilot Plant - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

359

Pinellas Plant Environmental Baseline Report  

Science Conference Proceedings (OSTI)

The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

Not Available

1997-06-01T23:59:59.000Z

360

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plant Pathogen Resistance - Energy Innovation Portal  

Plant Pathogen Resistance Agent for Plant Protection from Common Virulent Pathogens Oak Ridge National Laboratory. Contact ORNL About This Technology

362

A LUNAR POWER PLANT  

SciTech Connect

A concept of a nuclear power plant to be assembled on earth and operated on the moon is presented. The two principal design objectives are reliability and high specific power. Wherever there is an incompatibility between these two objectives, the decision favors reliability. The design is based on the premise that the power plant must be designed on the basis of current technology and with a minimum amount of research and development. The principal components consist of a fast reactor in a direct cycle with a mercury-vapor turbine. The high- frequency generator, hydrogen compressor for the generator cooling system, mercury-recirculating pump, and condensate pump are on an extension of the turbine shaft. Ths mercury vapor is condensed and the hydrogen cooled in wing radiators. The reactor is of a construction quite similar to EBR-I Mark IlI for which there is a large amount of operating experience. The radiator is a vertical tube-and-fin type built in concentric cylindrical sections of increseing diameter. The curved headers are connected by swivel joints so that, upon arrival, the radiator can be quickly unfolded from the compact cylindrical package it formed during transportation. (auth)

Armstrong, R.H.; Carter, J.C.; Hummel, H.H.; Janicke, M.J.; Marchaterre, J.F.

1960-12-01T23:59:59.000Z

363

Next Generation Safeguards Initiative: Analysis of Probability of Detection of Plausible Diversion Scenarios at Gas Centrifuge Enrichment Plants Using Advanced Safeguards  

Science Conference Proceedings (OSTI)

Over the last decade, efforts by the safeguards community, including inspectorates, governments, operators and owners of centrifuge facilities, have given rise to new possibilities for safeguards approaches in enrichment plants. Many of these efforts have involved development of new instrumentation to measure uranium mass and uranium-235 enrichment and inspection schemes using unannounced and random site inspections. We have chosen select diversion scenarios and put together a reasonable system of safeguards equipment and safeguards approaches and analyzed the effectiveness and efficiency of the proposed safeguards approach by predicting the probability of detection of diversion in the chosen safeguards approaches. We analyzed the effect of redundancy in instrumentation, cross verification of operator instrumentation by inspector instrumentation, and the effects of failures or anomalous readings on verification data. Armed with these esults we were able to quantify the technical cost benefit of the addition of certain instrument suites and show the promise of these new systems.

Hase, Kevin R. [Los Alamos National Laboratory; Hawkins Erpenbeck, Heather [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

364

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

DOE Green Energy (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

365

Balance of Plant Corrosion Issues in Aging Nuclear Power Plants  

Science Conference Proceedings (OSTI)

... number of times, can be used to forecast the most probable number of leaks. ... Conditions for Long Term Operation of Nuclear Power Plants in Sweden.

366

The SONATRACH jumbo LPG plant  

SciTech Connect

The authors aim is to give to the 17 TH world gas conference a general idea on SONATRACH LPG PLANT which is located in the ARZEW area. They develop this communication as follows: general presentation of LPG plant: During the communication, the author's will give the assistance all the information concerning the contractions the erection's date and the LPG PLANT process, start-up of the plant: In this chapter, the authors's will describe the start-up condition, the performance test result, the flexibility test result and the total mechanical achievement of the plant; operation by SONATRACH: After the success that obtained during the mechanical achievement and performance test, the contractor handed over the plant to SONATRACH.

Ahmed Khodja, A.; Bennaceur, A.

1988-01-01T23:59:59.000Z

367

How plants grow toward light  

NLE Websites -- All DOE Office Websites (Extended Search)

How plants grow toward light How plants grow toward light Name: schwobtj Location: N/A Country: N/A Date: N/A Question: When a seed is planted below the surface of the ground, how does it "know" to grow toward the light? Replies: Plants don't know where the light is, they do respond to gravity. Since light is usually up, a plant seed grows up and finds light enough to keep things going. Psych One way that plants below ground can tell which way is up is with the use of STATOLITHS. Statoliths are dense pieces of material that settle to the bottom of a STATOCYST. In plants, pieces of starch or another material denser than water will settle to the bottom of the cell. Somehow the plant cell determines on what side the statolith has fallen, and then somehow relays a message (probably a chemical) that tells the bottom cells to grow faster than the top cells, therefore causing upward growth. There is still quite a lot of mystery in there to be discovered. I got this explanation from BIOLOGY by Neil Campbell. This is similar to the way in which plants use chemical signals to help them grow towards light.

368

Development of Virtual Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Power Plants We are working in the emerging intersection between information, computation, and complexity Applications * Design * Environmental modeling * Controls with...

369

Research Addressing Power Plant Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Power Plant Water Management to Minimize Water Use while Providing Reliable Electricity Generation Water and Energy 2 Water and Energy are inextricably linked. Because...

370

MEASUREMENT OF POWER PLANT EXHAUST ...  

Science Conference Proceedings (OSTI)

... by tracking propagation of acoustic plane waves in a ... of the robustness of plane wave propagation to ... for GHG monitoring in power plant stacks and ...

371

The northeast Georgia hydroelectric plants.  

E-Print Network (OSTI)

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these… (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

372

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

373

Plant energy auditing | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial...

374

ALARA at nuclear power plants  

SciTech Connect

Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

Baum, J.W.

1990-01-01T23:59:59.000Z

375

Fossil Energy Power Plant Desk  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Power Plant Desk Reference Revision 1: Bituminous Coal and Natural Gas to Electricity October 18, 2011 DOENETL-20111516 Preliminary - Do Not Cite or Quote Fossil...

376

Plant construction and community stress  

SciTech Connect

Reports on a study commissioned by EPRI's Energy Analysis and Environment Division to acquire a better understanding of the power plant construction process and the socioeconomic impacts it can bring about. Points out that because of a parallel study the NRC conducted involving nuclear plants, the EPRI study's emphasis was on coal-fired power plants, which represented 9 of the 12 case studies. Finds that the impacts on communities near the case study plants were considerably less than had been forecast. Emphasizes that improper socioeconomic assessment procedures and poor mitigation planning can contribute to costly construction delays and lower construction worker productivity.

Lihach, N.

1982-11-01T23:59:59.000Z

377

,"Texas Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

378

MHD plant turn down considerations  

DOE Green Energy (OSTI)

The topic of part load operation of the MHD power plant is assessed. Current and future planned MHD research is reviewed in terms of addressing topping and bottoming cycle integration needs. The response of the MHD generator to turn up and down scenarios is reviewed. The concept of turning the MHD power to met changes in plant load is discussed. The need for new ideas and focused research to study MHD plant integration and problems of plant turn down and up is cited. 7 refs., 5 figs., 1 tab.

Lineberry, J.T.; Chapman, J.N.

1991-01-01T23:59:59.000Z

379

Advanced Manufacturing Office: Better Plants  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Better Buildings, Better Plants Program Partners are demonstrating their commitment to energy savings by signing a voluntary pledge to reduce energy intensity by 25% over ten...

380

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

2 3 "Operator Company:" "PART 3. CONTACTS" "Section A: Contact information during an emergency (such as a hurricane):" "Processing Plant Operations Contact:",,,...

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pantex Plant Emergency Response Exercise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assurance November 2000 Independent Oversight Evaluation of the Pantex Plant Emergency Response Exercise OVERSIGHT Table of Contents 1.0 INTRODUCTION ......

382

Importance of Processing Plant Information  

U.S. Energy Information Administration (EIA)

During an Emergency. 12. Department of Energy Situation Reports During an Energy Emergency. 13. Why Survey Natural Gas Processing Plants? 14.

383

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

384

THE SCIOTO ORDNANCE PLANT  

Office of Legacy Management (LM)

' ' 1 . \." _ j. .I > * .A; .i ,' / / ,/ ' , ( , ( 1: 1 i I l-1 5 ' / ,,' :A' ' , THE SCIOTO ORDNANCE PLANT . and THE MARION ENGINEER DEPOT of Marion, Ohio A Profile AFTER FORTY YEARS BY Charles D. Mosher and Delpha Ruth Mosher . . . 111 THE AUTHORS Charles D. Mosher was born on a farm located in Morrow County on Mosher Road near Mt. Gilead. He received his TH.B. from Malone College, B.A. from Baldwin-Wallace College and his B.Div. and M.Div. at the Nazarene Theological Seminary in Kansas City, MO. He did additional graduate work at Western Reserve University, Kent State University and Florida State University. He has taught in Cleveland and in Morrow County and has been an Occupational Work Adjustment teacher at Harding High School in Marion

385

Hanford Waste Vitrification Plant  

SciTech Connect

The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs.

Larson, D.E.; Allen, C.R. (Pacific Northwest Lab., Richland, WA (United States)); Kruger, O.L.; Weber, E.T. (Westinghouse Hanford Co., Richland, WA (United States))

1991-10-01T23:59:59.000Z

386

ATOMIC POWER PLANT  

DOE Patents (OSTI)

This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

Daniels, F.

1957-11-01T23:59:59.000Z

387

Advances in Energy Efficiency, Capital Cost, and Installation Schedules for Large Capacity Cooling Applications Using a Packaged Chiller Plant Approach  

E-Print Network (OSTI)

Cooling equipment, whether used to meet air-conditioning or process cooling loads, represents a large consumer of energy. Even more to the point, cooling loads and the associated cooling equipment energy consumption tend to be at maximum levels during periods of high ambient air temperatures. It is precisely at those times that the general demand for energy is at its peak and therefore the price or value of energy is also at its highest level. Cooling loads often drive the peak electric power demand of energy users and thus affect not only the level of consumption of high cost energy, but also affect the peak power demand. Together, the energy and demand costs equate to very high unit costs for operating cooling equipment. Accordingly, it is of interest to minimize cooling energy use and costs by maximizing the energy efficiency of cooling equipment installations. A relatively new approach has been developed and is being increasingly used to maximize chiller plant efficiency. The approach involves the use of a standardized, pre-engineered, shop-fabricated approach to entire chiller plant installations. Compared to the traditional, piece-meal approach to chiller plants that utilize individual component specification, procurement and installation, the "packaged" or modular chiller plant approach often delivers substantially improved energy efficiencies. Also, the packaged plant approach achieves further benefits for large cooling system owners and operators. These additional benefits include: 1) dramatic reductions in unit capital costs of installed chiller plant capacity on a dollar per ton basis, 2) marked improvements in total procurement and installation schedules, 3) significantly smaller space requirements, and 4) enhanced control over total system quality and performance. The capacities and performance characteristics of available chiller plant modules are described, including both electric and non-electric chiller technologies. Examples are presented to illustrate the typical sizes and locations of actual installations as well as the growth and extent of the use of this technology to-date. Case studies document the energy efficiency improvements, cost reductions in both operating and capital costs, and improvements in schedule and space utilization, of the packaged chiller plant approach relative to the traditional chiller plant approach.

Pierson, T. L.; Andrepont, J. S.

2003-05-01T23:59:59.000Z

388

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

389

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

390

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

391

Uniform power plant identification system  

Science Conference Proceedings (OSTI)

In the seventies in the Federal Republic of Germany a uniform power plant identification system (Kraftwerks-Kennzeichen-System, KKS) was developed and introduced. It allows to keep the identification by all engineering disciplines from planning to waste management for any type of power plant. The paper explains the historical development, the structure and the application of this system.

Christiansen, W. (RWE Energie AG, Hauptverwaltung, Essen (DE)); Pannenbacker, K. (GABO mbH, Erlangen (DE)); Popp, H. (Siemens AG, Bereich Anlagentechnik, Erlangen (DE)); Seltmann, A. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

392

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

393

Refinery, petrochemical plant injuries decline  

Science Conference Proceedings (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

394

Hydrocarbons from plants and trees  

DOE Green Energy (OSTI)

The way energy was used in the US in 1980 was examined. A diagram shows the development of energy from its source to its end use. The following are described: the carbon dioxide problem - the greenhouse effect, sugar cane as an energy source, hydrocarbon-producing plants and trees, and isoprenoids from plants and trees. (MHR)

Calvin, M.

1982-07-01T23:59:59.000Z

395

AQUATIC PLANT CONTROL RESEARCH PROGRAM  

E-Print Network (OSTI)

AQUATIC PLANT CONTROL RESEARCH PROGRAM TECHNICAL REPORT A-S3-1 AERIAL SURVEY TECHNIQUES TO MAP NUMBER rGOVT ACCESSION NO. 3. Technical Report A-83-l 4. TI T L E (""d Subtitle) 5. AERIAL SURVEY···..,." -.d Identity by block numb,,,) Aerial surveys Computer applications Aquatic plant control Mapping

US Army Corps of Engineers

396

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

397

Importance of Processing Plant Information  

Reports and Publications (EIA)

This presentation provides information about the importance of information about natural gas processing plants, particularly during periods of natural gas supply disruption, such as hurricanes. It also provides information about a relatively new survey instrument to collect information from natural gas processing plants during non-emergency and supply-emergency conditions.

Information Center

2009-06-22T23:59:59.000Z

398

Find financing | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Find financing Find financing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Find financing Calculate returns on energy efficiency investments Rebates, incentives, and financing services Public sector financing options Earn recognition Communicate your success Find financing Postponing the installation of energy-saving equipment can be an expensive

399

Technical documentation | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical documentation Technical documentation Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

400

Success stories | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Success stories Success stories Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Communications resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools and resources Tools and resources » Communications resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

402

Portfolio Manager | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools and resources Tools and resources » Portfolio Manager Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

403

Recognition | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Recognition Recognition Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

404

Financial resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools and resources Tools and resources » Financial resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

405

Retail resources | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Retail resources Retail resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

406

Portfolio Manager | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Manager Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

407

Plants and Night Oxygen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants and Night Oxygen Production Plants and Night Oxygen Production Name: Ashar Status: other Grade: other Location: Outside U.S. Country: India Date: Winter 2011-2012 Question: I would like to know if there are any plants which produces oxygen at night (without photosynthesis). I was told by a friend that Holy Basil (Ocimum tenuiflorum) produces oxygen even at night and I'm not convinced. I would like to get confirmation from experts. Replies: Some plants (particularly those of dry regions, e.g., deserts) only open their stomates at night to avoid drying out to intake CO2 (and output O2) (CAM photosynthesis) http://en.wikipedia.org/wiki/Crassulacean_acid_metabolism Sincerely, Anthony R. Brach, PhD Missouri Botanical Garden Bringing oxygen producing plants into your home is a way to mimic the healthy lifestyle factors of longevity in humans from the longest lived cultures.

408

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

409

Amine plant troubleshooting and optimization  

Science Conference Proceedings (OSTI)

A systematic method for troubleshooting and optimization of amine plants, if properly used, will result in fewer plant upsets, quick and correct responses to changing conditions and long-term profitable operations of any amine unit. It is important for amine plants to maintain safe, continuous and optimized operations for short- and long-term success. Effective and fast resolution of maine unit upsets plays a large part in this success. These considerations are as important in plants using generic amines such as monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA) and specialty amines based on MDEA. The key to troubleshooting and optimization is a systematic approach. Developing and using control charts can also be used to monitor amine plant operations. By using these techniques collectively, a formal method for troubleshooting and optimization can be established. This will ultimately result in a more trouble-free, continuous operation.

Abry, R.G.F. [Dow Chemical Co., Ft. Saskatchewan, Alberta (Canada); DuPart, M.S. [Dow Chemical Co., Freeport, TX (United States)

1995-04-01T23:59:59.000Z

410

AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

2001-06-30T23:59:59.000Z

411

Aquatic plant control research  

DOE Green Energy (OSTI)

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

412

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

2000-10-26T23:59:59.000Z

413

EARLY ENTRANCE COPRODUCTION PLANT  

Science Conference Proceedings (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal or coal in combination with some other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Test Plan (RD and T) for implementation in Phase II. The objective of Phase II is to conduct RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of Coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Lalit S. Shah; William K. Davis

2000-05-01T23:59:59.000Z

414

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

2001-05-17T23:59:59.000Z

415

Bidding for Industrial Plants: Does Winning a 'Million Dollar Plant' Increase Welfare?  

E-Print Network (OSTI)

for Industrial Plants: Does Winning a ‘Million Dollar Plant’for Industrial Plants: Does Winning a ‘Million Dollar Plant’fundamentally, this approach does not offer a framework for

Moretti, Enrico

2004-01-01T23:59:59.000Z

416

Geothermal Power Plants in China  

DOE Green Energy (OSTI)

Nine small experimental geothermal power plants are now operating at six sites in the People's Republic of China. These range in capacity from 50 kW to 3MW, and include plants of the flash-steam and binary type. All except two units utilize geofluids at temperatures lower than 100 C. The working fluids for the binary plants include normal- and iso-butane, ethyl chloride, and Freon. The first geothermal plant came on-line in 1970, the most recent ones in 1979. Figure 1 shows the location of the plants. Major cities are also shown for reference. Table 1 contains a listing of the plants and some pertinent characteristics. The total installed capacity is 5,186 kW, of which 4,386 kW is from flash-steam units. In the report, they given an example of the results of exploratory surveys, and show system diagrams, technical specifications, and test results for several of the power plants.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

417

Melvin Calvin: Fuels from Plants  

DOE Green Energy (OSTI)

A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

Taylor, S.E.; Otvos, J.W.

1998-11-24T23:59:59.000Z

418

Plant Support Engineering: Elastomer Handbook for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

On a daily basis, engineers and maintenance personnel make judgments regarding the capabilities, degradation, and longevity of elastomeric material and its compatibility with other materials. Although most applications of elastomers in nuclear power plants are not unique to the industry, there is an extra emphasis in certain applications with regard to reliability, quality, and resistance to nuclear-plant-specific environments. Existing resources on elastomers are extensive, but they are not tailored to ...

2007-08-20T23:59:59.000Z

419

HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS  

E-Print Network (OSTI)

been using the green plants' stored energy in the form ofannually renewable energy resources using green plants. 7 •the green plant to capture and store solar energy, is Brazil

Calvin, Melvin

2013-01-01T23:59:59.000Z

420

Oversight Reports - Pantex Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant Oversight Reports - Pantex Plant December 31, 2013 Independent Oversight Review, Pantex Plant, December 2013 Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant June 6, 2013 Independent Activity Report, Pantex Plant - May 2013 Operational Awareness Oversight of the Pantex Plant [HIAR PTX-2013-05-20] December 11, 2012 Independent Activity Report, Pantex Plant - November 2012 Pantex Plant Operational Awareness Site Visit [HIAR PTX-2012-11-08] November 28, 2012 Independent Oversight Assessment, Pantex Plant - November 2012 Assessment of Nuclear Safety Culture at the Pantex Plant August 8, 2012 Independent Activity Report, Pantex Plant - July 2012

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficiency: Helping Home Owners and Businesses Understand...  

NLE Websites -- All DOE Office Websites (Extended Search)

Understand Energy Usage November 7, 2013 - 3:55pm Addthis Building 90, an 89,000-square foot office building at Berkeley Lab, served as the commercial setting for the miscellaneous...

422

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

52,9000,48,1305,0026,7,50022,"FO2","GT" 93,06,1,7,"D",149,170,"SOUTHERN CALIF EDISON CO","WIND",0,"NA",17609,5,0,984,"A",480,84,-249,0,0,25797,0,0,38832,0,0,6546,0,0,55668,0,0,961...

423

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3564,0,99999,"WAT","GT" 74,48,,2,,579,229,"SOUTHLAND PAPER MILLS INC","HOUSTON",55000,,0,0,0,1282,,"I",83,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0...

424

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

43,957,0,0,1219,0026,7,00195,"FO2","GT" 93,06,1,7,"D",149,170,"SOUTHERN CALIF EDISON CO","WIND",650,"NA",52721,0,0,486,,480,86,1140,0,0,4860,0,0,7440,0,0,7740,0,0,41480,0,0,9960,0...

425

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

7,11000,43,1217,0026,7,00195,"FO2","GT" 93,06,1,7,"D",149,170,"SOUTHERN CALIF EDISON CO","WIND",0,"NA",52721,0,0,1286,,480,87,1800,0,0,3540,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6630,...

426

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

8,14000,57,1092,0026,7,00195,"FO2","GT" 93,06,1,7,"D",149,170,"SOUTHERN CALIF EDISON CO","WIND",330,"NA",52721,0,0,985,,480,85,13806,0,0,4542,0,0,6840,0,0,-30,0,0,7380,0,0,10140,0...

427

Table 17. Purchases of enrichment services by owners and operators ...  

U.S. Energy Information Administration (EIA)

Next Release Date: May 2014 Enrichment Service Contract Type: U.S. Enrichment Foreign Enrichment: Total Spot : 0 521 : 521 Long-Term : 3,261 11,808 : 15,069

428

FINAL CONTRACT WITH OWNER 1 TOWN OF BABYLON  

E-Print Network (OSTI)

of the number and gender in which used, shall be deemed to include any other number and any other gender,330.00 DEDUCTIONS: LESS: Applied Energy Audit Expense $250.00 LESS: LIPA Rebate (@10% of qualified costs) TBD1 TOTAL DEDUCTIONS from CONTRACT AMOUNT $250.00 NET AMOUNT of BENEFIT ASSESSMENT $11,080.00 ESTIMATED ANNUAL ENERGY

Kammen, Daniel M.

429

DOE/NNSA Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Option Period have been exercised) 7312018 M&O 2008 Northrop Grumman Flour Honeywell Craig Armstrong 803-952-9345 James Lovett 803-952-9829 National Renewable Energy Laboratory...

430

Facility Name Facility Name Facility FacilityType Owner Developer...  

Open Energy Info (EERE)

In Service Mountain Air Mountain Air Mountain Air Definition Commercial Scale Wind Terna Energy Terna Energy Idaho Power Hammett ID MW Vestas In Service Mountain Home Wind Farm...

431

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,0,0,0,0,0,0,8000,65,0,2904,1,50356,"OIL","GT" 31,39,5,4,9,552,15,"BRYAN (CITY OF)","NEW TURBINE",0,"NAT GAS",0,0,0,379,"A",,79,0,0,0,0,0,0,485500,8622,0,0,0,0,827900,14582,0,9153...

432

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,27818,0,4080000,42888,0,2910,1,50635,"NG","ST" 31,39,5,4,8,568,10,"COLUMBUS (CITY OF)","GAS TURBINE",14480,"FUEL OIL",0,0,0,1271,,,72,211000,705,898,377290,1001,897,155800,567,97...

433

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

,85899,0,5139500,130779,0,2910,1,50635,"NG","ST" 31,39,5,4,8,568,10,"COLUMBUS (CITY OF)","GAS TURBINE",14480,"FUEL OIL",0,0,0,1269,,,70,630226,2190,1206,753632,2634,1048,402210,136...

434

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,0,0,0,120850,1525,0,0,0,0,1299,8,51596,"NG","IC" 47,20,5,4,9,659,10,"LARNED (CITY OF)","GAS TURBINE",1250,"NAT GAS",0,0,0,1277,,,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...

435

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

108263,0,5860000,114923,0,2910,1,50635,"NG","ST" 31,39,5,4,8,568,10,"COLUMBUS (CITY OF)","GAS TURBINE",14480,"FUEL OIL",0,0,0,1272,,,73,1549300,5207,1000,685700,2238,1000,447000,12...

436

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,56601,0,4685000,54343,0,2910,1,50635,"NG","ST" 31,39,5,4,8,568,10,"COLUMBUS (CITY OF)","GAS TURBINE",14480,"FUEL OIL",0,0,0,1270,,,71,0,0,1240,102000,276,965,114000,260,1133,2480...

437

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

5400,1618,0,168000,4865,0,2910,1,50635,"NG","ST" 31,39,5,4,8,568,10,"COLUMBUS (CITY OF)","GAS TURBINE",14480,"FUEL OIL",0,0,0,1275,,,76,753500,3666,1197,583900,2207,1190,802700,315...

438

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,0,0,0,0,0,0,0,0,0,0,0,2904,1,50356,"FO2","GT" 31,39,5,4,9,552,15,"BRYAN (CITY OF)","NEW TURBINE",0,"NAT GAS",0,0,0,1280,,,81,0,116,0,0,165,0,0,222,0,74700,2393,0,0,64,0,7200,507,...

439

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,0,0,0,0,48200,648,0,0,0,0,1299,8,51596,"NG","IC" 47,20,5,4,9,659,10,"LARNED (CITY OF)","GAS TURBINE",1250,"NAT GAS",0,0,0,1276,,,77,600,105,0,0,0,0,1600,29,0,0,0,0,0,0,0,0,0,0,0,...

440

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,29791,0,2533200,67336,0,2910,1,50635,"NG","ST" 31,39,5,4,8,568,10,"COLUMBUS (CITY OF)","GAS TURBINE",14480,"FUEL OIL",0,0,0,1273,,,74,0,0,1142,504000,1400,1192,15000,34,1124,6000...

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pages that link to "Danish Wind Turbine Owners Association" ...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

442

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,0,0,0,0,0,0,0,0,0,0,0,2904,1,50356,"FO2","GT" 31,39,5,4,9,552,15,"BRYAN (CITY OF)","NEW TURBINE",0,"NAT GAS",0,0,0,1281,,,82,0,649,0,0,691,0,0,20,0,0,158,0,0,404,0,0,378,0,0,199,...

443

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

67300,23025,0,0,0,0,0,0,0,2910,1,50635,"NG","ST" 31,39,5,4,8,568,10,"COLUMBUS (CITY OF)","GAS TURBINE",14480,"FUEL OIL",0,0,0,1274,,,75,223000,1008,972,440600,1600,1058,127500,683,...

444

CENSUS","FIPST","OWNER","PMOVER","FUELTYP","COCODE","PLTCODE...  

U.S. Energy Information Administration (EIA) Indexed Site

0,0,0,0,0,0,0,0,0,0,0,0,2904,1,50356,"FO2","GT" 31,39,5,4,9,552,15,"BRYAN (CITY OF)","NEW TURBINE",0,"NAT GAS",0,0,0,1279,,,80,588300,10583,0,0,1893,0,534900,9246,0,0,32,0,0,29,0,0...

445

Changes related to "Danish Wind Turbine Owners Association" ...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

446

A GENERALIZATION OF THE L¨OWNER-JOHN'S ELLIPSOID ...  

E-Print Network (OSTI)

“Approximating” data by relatively simple geometrical objects is a fun- ... niques are available; see e.g. Calafiore [7] and Sun and Freund [32] for more details. ... In this context the center of the ellipsoid is called the minimum volume el- ...... symmetric matrix whose each entry is affine in x ? Rt. An LMI always define a convex.

447

NREL: Learning - Renewable Energy for Small Business Owners  

NLE Websites -- All DOE Office Websites (Extended Search)

include: Biofuels Geothermal heat pumps Passive solar heating Photovoltaic (solar cell) systems Solar hot water systems Wind energy More Information NREL Commercialization...

448

Monitoring residential noise for prospective home owners and renters  

Science Conference Proceedings (OSTI)

Residential noise is a leading cause of neighborhood dissatisfaction but is difficult to quantify for it varies in intensity and spectra over time. We have developed a noise model and data representation techniques that prospective homeowners and renters ... Keywords: location-based services, mobile devices, sensors

Thomas Zimmerman; Christine Robson

2011-06-01T23:59:59.000Z

449

Building Information Modeling : value for real estate developers and owners  

E-Print Network (OSTI)

The Architecture, Engineering, and Construction industry severely lags behind the manufacturing industry in terms of efficiency and productivity growth. This lag is a result of the fragmented nature of the industry and its ...

Clason, John C. (John Charles)

2007-01-01T23:59:59.000Z

450

Secretary Chu Speaks with Minority Small Business Owners | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American, Hispanic, Asian, Native American, and women CEOs of the top minority-owned companies in America. The organization provides companies an avenue to expand their access to...

451

Patent Infringement and Relief for the Patent Owner  

Science Conference Proceedings (OSTI)

In a patent infringement suit, an injunction is a court order prohibiting the ... infringer does not have to have actual knowledge of the patent in the case of marking; ...

452

The owner's approach : Daylighting The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

to self-commission, and whoever can do this will own the market. Headshot of King Kong Dollar sign The New York Times Company issued a challenge to industry in the form of a "big,...

453

Design Team:Owners Team: Solaris Group, LLC  

E-Print Network (OSTI)

. Mixed-Use Development 4. Quality Architecture and Design 5. Increased Neighborhood Density 6. Smart) Charging Stations DC Mini Grid Supporting Clean On-Site Power Generation Centralized Hot and Chilled Water

454

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

455

Portsmouth Gaseous Diffusion Plant, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant, Former Production Workers Screening Projects Portsmouth Gaseous Diffusion Plant, Former Production Workers Screening Projects Project Name: Worker Health Protection Program...

456

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

457

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

458

NETL: Emissions Characterization - TVA Cumberland Plant Plume...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cumberland Power Plant Plume Study Sulfur dioxide (SO2) emission reductions at the Tennessee Valley Authority (TVA) Cumberland fossil plant (CUF) at Cumberland City, Tennessee will...

459

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

460

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review ARPT-WTP-2011-002...

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Qing an Cogeneration Plant | Open Energy Information  

Open Energy Info (EERE)

Qing an Cogeneration Plant Jump to: navigation, search Name Qing'an Cogeneration Plant Place Heilongjiang Province, China Zip 152400 Sector Biomass Product China-based biomass...

462

Natural Gas Processing Plant- Sulfur (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

463

Rare Plants of the ORR  

NLE Websites -- All DOE Office Websites (Extended Search)

or applying herbicides to maintain rights-of-way can kill plants, and changes in adjacent land use can impact a population. Other threats include illegal harvesting of some...

464

Better Tools for Better Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Tools for Better Plants Better Tools for Better Plants Andre de Fontaine Bill Orthwein, CEM Advanced Manufacturing Office, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy November 15, 2011 2 | Advanced Manufacturing Office eere.energy.gov Today * New opportunities - AMO Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * New and revised tool suite - Energy Management Toolkit - Updated system assessment tools - Tool-related training 3 | Advanced Manufacturing Office eere.energy.gov Manufacturing Matters * 11% of U.S. GDP * 12 million U.S. jobs * 60% of U.S. engineering and science jobs % Manufacturing Job Growth or Loss 31.8% of all manufacturing jobs lost from 2000-2011 Jobs 31% of all 2010 U.S. total energy consumption

465

Plants of the Coal Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Age Nature Bulletin No. 330-A February 1, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation PLANTS OF THE COAL...

466

Materials Guidelines for Gasification Plants  

Science Conference Proceedings (OSTI)

This report distills and condenses EPRI's knowledge of materials performance in numerous pilot and commercial-scale gasifiers into guidelines for the application and expected performance of materials in key parts of gasification-combined-cycle power plants.

1998-06-16T23:59:59.000Z

467

Optimal Scheduling of Cogeneration Plants  

E-Print Network (OSTI)

A cogeneration plant, feeding its output water into a district-heating grid, may include several types of energy producing units. The most important being the cogeneration unit, which produces both heat and electricity. Most plants also have a heat water storage. Finding the optimal production of both heat and electricity and the optimal use of the storage is a difficult optimization problem. This paper formulates a general approach for the mathematical modeling of a cogeneration plant. The model objective function is nonlinear, with nonlinear constraints. Internal plant temperatures, mass flows, storage losses, minimal up and down times and time depending start-up costs are considered. The unit commitment, i.e. the units on and off modes, is found with an algorithm based on Lagrangian relaxation. The dual search direction is given by the subgradient method and the step length by the Polyak rule II. The economic dispatch problem, i.e. the problem of determining the units production giv...

Erik Dotzauer; Kenneth Holmström

1997-01-01T23:59:59.000Z

468

A neighborhood alternative energy plant  

E-Print Network (OSTI)

A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

Brooks, Douglas James

1982-01-01T23:59:59.000Z

469

Upgrading coal plant damper drives  

Science Conference Proceedings (OSTI)

The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

Hood, N.R.; Simmons, K. [Alamaba Power (United States)

2009-11-15T23:59:59.000Z

470

Deoxygenation in Cycling Fossil Plants  

Science Conference Proceedings (OSTI)

Minimizing shutdown oxygen levels at a cycling fossil plant can reduce corrosion product transport to the boilers. In this study two forms of activated carbon were used to catalyze the oxygen/hydrazine reaction and minimize oxygen levels.

1992-05-01T23:59:59.000Z

471

Balancing people, plants, and practices  

Science Conference Proceedings (OSTI)

Two of the biggest challenges facing the US power industry today are retaining an experienced, capable workforce and operating and maintaining a reliable, diversified fleet of generating plants. Success in the marketplace requires a proper balancing of staff and new technology, something few gencos do well. Following this introductory paper in this issue are several technical articles representing a small sample of the steps that gencos nationwide are taking to prolong plant life. Unlike the false promise of Ponce de Leon's fountain of youth in Florida, the promise of longer life for aging plants is real wherever experienced engineers and technicians are on the job. The article looks at problems across America, from the East Coast to the West Coast. It is supported by diagrams projecting US new capacity and plant type additions up to 2014. 5 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

472

Morris Plant Energy Efficiency Program  

E-Print Network (OSTI)

Competing in an increasingly global industry, U.S. chemical facilities have intensified their efforts to improve energy utilization. Increases in energy efficiency can offset age, scale, or other disadvantages of a chemical plant when compared with its in

Betczynski, M. T.

2004-01-01T23:59:59.000Z

473

Fiberglass plastics in power plants  

Science Conference Proceedings (OSTI)

Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

Kelley, D. [Ashland Performance Materials (United States)

2007-08-15T23:59:59.000Z

474

Phytochromes in photosynthetically competent plants  

DOE Green Energy (OSTI)

Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

Pratt, L.H.

1990-07-01T23:59:59.000Z

475

Sedoheptulose in Photosynthesis by Plants  

E-Print Network (OSTI)

48 SEDOHEPT[JLOSE IN PHOTOSYNTHESIS BY PLANTS A. A. Benson,a v i t a l function during a photosynthesis. W h a wmonopho sphate i n e cl% 2 photosynthesis products o f a l l

Benson, A.A.; Bassham, J.A.; Calvin, M.

1951-01-01T23:59:59.000Z

476

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

Thomas, Andrew

477

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

2004-01-12T23:59:59.000Z

478

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

479

EARLY ENTRANCE COPRODUCTION PLANT  

DOE Green Energy (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

2004-01-27T23:59:59.000Z

480

SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION  

SciTech Connect

Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

JOHN C WALKER

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "in-situ-leach plant owner" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EARLY ENTRANCE COPRODUCTION PLANT  

DOE Green Energy (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

482

EARLY ENTRANCE COPRODUCTION PLANT  

Science Conference Proceedings (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

2004-01-12T23:59:59.000Z

483

EARLY ENTRANCE COPRODUCTION PLANT  

Science Conference Proceedings (OSTI)

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

2004-01-12T23:59:59.000Z

484

The Water Circuit of the Plants - Do Plants have Hearts ?  

E-Print Network (OSTI)

There is a correspondence between the circulation of blood in all higher animals and the circulation of sap in all higher plants - up to heights h of 140 m - through the xylem and phloem vessels. Plants suck in water from the soil, osmotically through the roothair zone, and subsequently lift it osmotically again, and by capillary suction (via their buds, leaves, and fruits) into their crowns. In between happens a reverse osmosis - the endodermis jump - realized by two layers of subcellular mechanical pumps in the endodermis walls which are powered by ATP, or in addition by two analogous layers of such pumps in the exodermis. The thus established root pressure helps forcing the absorbed ground water upward, through the whole plant, and often out again, in the form of guttation, or exudation.

Wolfgang Kundt; Eva Gruber

2006-03-17T23:59:59.000Z

485

Method of identifying plant pathogen tolerance  

DOE Patents (OSTI)

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

Ecker, Joseph R. (Erial, NJ); Staskawicz, Brian J. (Castro Valley, CA); Bent, Andrew F. (Piedmont, CA); Innes, Roger W. (Bloomington, IN)

1997-10-07T23:59:59.000Z

486

Method of identifying plant pathogen tolerance  

DOE Patents (OSTI)

A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

1997-10-07T23:59:59.000Z

487

Pilot plant environmental conditions (OPDD Appendix C)  

DOE Green Energy (OSTI)

This is Appendix C to the Pilot Plant Overall Plant design description document for the 10-MW pilot central receiver plant to be located at Barstow, California. The environmental design criteria to be used for plant design day performance, operational limits, and survival environmental limits are specified. Data are presented on insolation, wind, temperature, and other meteorological conditions. (WHK)

Randall, C.M.; Whitson, M.E.; Coggi, J.V.

1978-08-15T23:59:59.000Z

488

Biochemical Conversion Pilot Plant (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

489

Expression of multiple proteins in transgenic plants  

DOE Patents (OSTI)

A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

Vierstra, Richard D. (Madison, WI); Walker, Joseph M. (Madison, WI)

2002-01-01T23:59:59.000Z

490

EARLY ENTRANCE COPRODUCTION PLANT  

SciTech Connect

The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

2003-04-16T23:59:59.000Z

491

The Iowa Stored Energy Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Systems Annual Peer Review November 2-3, 2006 Progress Report Presented by Robert Haug Executive Director Iowa Association of Municipal Utilities for Iowa Stored Energy Plant Agency THE IOWA STORED ENERGY PLANT What is ISEP? ISEP is a DOE-supported effort of municipal utilities in Iowa, Minnesota, and the Dakotas for development of 200 (now 268) MW of compressed air energy storage (CAES) and 75 MW of wind capacity. THE IOWA STORED ENERGY PLANT What is the ISEP Agency? The ISEP Agency is an intergovernmental entity formed under Iowa law in 2005 and governed by a board of directors composed of representatives of participating local governments. Board of Directors: * Dennis Fannin, Osage * John Bilsten, Algona * Sheila Boeckman, Waverly * Scott Tonderum, Graettinger * Niel Ruddy, Carlisle