Sample records for in cludes charges

  1. Child neurology: Autism as a model: Considerations for advanced training in behavioral child neurology

    E-Print Network [OSTI]

    Jeste, SS; Friedman, SL; Urion, DK

    2009-01-01T23:59:59.000Z

    through outpatient clinics and didactics, there is no formalneuropsychological assessments. Didactics would in- clude

  2. Electric Charge Quantization in Standard Model

    E-Print Network [OSTI]

    O. B. Abdinov; F. T. Khalil-zade; S. S. Rzaeva

    2008-07-28T23:59:59.000Z

    In the framework of Standard Model for the arbitrary values of Higgs and fermions fields hypercharges, taking into account parity invariance of electromagnetic interaction, expressions for the fermions charges, testifying the electric charge quantization are obtained. From the chiral anomalies cancellation condition within one family of leptons and quarks, numerical values of fermions charges, coinciding with standard values of charges have been obtained.

  3. Study of space charge compensation phenomena in charged particle beams

    SciTech Connect (OSTI)

    Veltri, P.; Serianni, G. [Consorzio RFX, C.so Stati Uniti 4, 35100 Padova (Italy); Cavenago, M. [INFN-LNL, Viale dell'Universita 2, 35020 Legnaro (Italy)

    2012-02-15T23:59:59.000Z

    The propagation of a charged particle beam is accompanied by the production of secondary particles created in the interaction of the beam itself with the background gas flowing in the accelerator tube. In the drift region, where the electric field of the electrodes is negligible, secondary particles may accumulate giving a plasma which shields the self-induced potential of the charged beam. This phenomenon, known as space charge compensation is a typical issue in accelerator physics, where it is usually addressed by means of 1D radial transport codes or Monte Carlo codes. The present paper describes some theoretical studies on this phenomenon, presenting a Particle in Cell-Monte Carlo (PIC-MC) Code developed ad hoc where both radial and axial confinements of secondary particles are calculated. The features of the model, offering a new insight on the problem, are described and some results discussed.

  4. Vortex Structure in Charged Condensate

    E-Print Network [OSTI]

    Gabadadze, Gregory

    2009-01-01T23:59:59.000Z

    We study magnetic fields in the charged condensate that we have previously argued should be present in helium-core white dwarf stars. We show that below a certain critical value the magnetic field is entirely expelled from the condensate, while for larger values it penetrates the condensate within flux-tubes that are similar to Abrikosov vortex lines; yet higher fields lead to the disruption of the condensate. We find the solution for the vortex lines in both relativistic and nonrelativistic theories that exhibit the charged condensation. We calculate the energy density of the vortex solution and the values of the critical magnetic fields. The minimum magnetic field required for vortices to penetrate the helium white dwarf cores ranges from roughly 10^7 to 10^9 Gauss. Fields of this strength have been observed in white dwarfs. We also calculate the London magnetic field due to the rotation of a dwarf star and show that its value is rather small.

  5. Vortex Structure in Charged Condensate

    E-Print Network [OSTI]

    Gregory Gabadadze; Rachel A. Rosen

    2009-05-14T23:59:59.000Z

    We study magnetic fields in the charged condensate that we have previously argued should be present in helium-core white dwarf stars. We show that below a certain critical value the magnetic field is entirely expelled from the condensate, while for larger values it penetrates the condensate within flux-tubes that are similar to Abrikosov vortex lines; yet higher fields lead to the disruption of the condensate. We find the solution for the vortex lines in both relativistic and nonrelativistic theories that exhibit the charged condensation. We calculate the energy density of the vortex solution and the values of the critical magnetic fields. The minimum magnetic field required for vortices to penetrate the helium white dwarf cores ranges from roughly 10^7 to 10^9 Gauss. Fields of this strength have been observed in white dwarfs. We also calculate the London magnetic field due to the rotation of a dwarf star and show that its value is rather small.

  6. PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging

    E-Print Network [OSTI]

    Bigelow, Stephen

    PLUG-IN ELECTRIC VEHICLE CHARGING ONLY Must be ACTIVELY Charging All Others Subject to Citation. PLUG-IN ELECTRIC VEHICLE CHARGING RATES Monday­Friday, 7:30am­5pm Hours Power Parking Power+Parking 1://chargepoint.net PAYMENT IS REQUIRED FOR USE OF A CHARGING STATION The rate for charging your vehicle is $1/hour. Please

  7. Residual dust charges in discharge afterglow

    SciTech Connect (OSTI)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A. [GREMI - Groupe de Recherches sur l'Energetique des Milieux Ionises, CNRS/Universite d'Orleans, 14 rue d'Issoudun, 45067 Orleans Cedex 2 (France); School of Physics A28, University of Sydney, NSW 2006 (Australia)

    2006-08-15T23:59:59.000Z

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar.

  8. Space Charge and Equilibrium Emittances in Damping Rings

    E-Print Network [OSTI]

    Venturini, Marco; Oide, Katsunobu; Wolski, Andy

    2006-01-01T23:59:59.000Z

    SPACE CHARGE AND EQUILIBRIUM EMITTANCES IN DAMPING RINGS ?for the pos- sible impact of space charge on the equilibriumrings. INTRODUCTION Direct space charge effects have the

  9. Randomly charged polymers in porous environment

    E-Print Network [OSTI]

    V. Blavatska; C. von Ferber

    2013-11-22T23:59:59.000Z

    We study the conformational properties of charged polymers in a solvent in the presence of structural obstacles correlated according to a power law $\\sim x^{-a}$. We work within the continuous representation of a model of linear chain considered as a random sequence of charges $q_i=\\pm q_0$. Such a model captures the properties of polyampholytes -- heteropolymers comprising both positively and negatively charged monomers. We apply the direct polymer renormalization scheme and analyze the scaling behavior of charged polymers up to the first order of an $\\epsilon=6-d$, $\\delta=4-a$-expansion.

  10. Aspects of charge recombination and charge transport in organic solar cells and light-emitting devices

    E-Print Network [OSTI]

    Difley, Seth

    2010-01-01T23:59:59.000Z

    In this thesis, aspects of charge reconbination and charge transport in organic solar cells and light-emitting devices are presented. These devices show promise relative to traditional inorganic semiconductors. We show ...

  11. Congestion control in charging of electric vehicles

    E-Print Network [OSTI]

    Carvalho, Rui; Gibbens, Richard; Kelly, Frank

    2015-01-01T23:59:59.000Z

    The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks, and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on distribution networks. We analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more uneven in max-flow than in proportional fairness. We also analyse the onset of instability, and find that the critical arrival rate is indistinguishable between the two protocols.

  12. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

  13. Charge Trapping in High Efficiency Alternating Copolymers: Implication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in...

  14. A Shell Model for Atomistic Simulation of Charge Transfer in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shell Model for Atomistic Simulation of Charge Transfer in Titania. A Shell Model for Atomistic Simulation of Charge Transfer in Titania. Abstract: The derivation of atomistic...

  15. Charge transfer reactions in nematic liquid crystals

    SciTech Connect (OSTI)

    Wiederrecht, G.P. [Argonne National Lab., IL (United States). Chemistry Div.; Wasielewski, M.R. [Argonne National Lab., IL (United States). Chemistry Div.; [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Galili, T.; Levanon, H. [Hebrew Univ. of Jerusalem (Israel). Dept. of Physical Chemistry

    1998-07-01T23:59:59.000Z

    Ultrafast transient absorption studies of intramolecular photoinduced charge separation and thermal charge recombination were carried out on a molecule consisting of a 4-(N-pyrrolidino)naphthalene-1,8-imide donor (PNI) covalently attached to a pyromellitimide acceptor (PI) dissolved in the liquid crystal 4{prime}-(n-pentyl)-4-cyanobiphenyl (5CB). The temperature dependencies of the charge separation and recombination rates were obtained at temperatures above the nematic-isotropic phase transition of 5CB, where ordered microdomains exist and scattering of visible light by these domains is absent. The authors show that excited state charge separation is dominated by molecular reorientation of 5CB perpendicular to the director within the liquid crystal microdomains. They also show that charge recombination is adiabatic and is controlled by the comparatively slow collective reorientation of the liquid crystal microdomains relative to the orientation of PNI{sup +}-PI{sup {minus}}. They also report the results of time resolved electron paramagnetic resonance (TREPR) studies of photoinduced charge separation in a series of supramolecular compounds dissolved in oriented liquid crystal solvents. These studies permit the determination of the radical pair energy levels as the solvent reorganization energy increases from the low temperature crystalline phase, through the soft glass phase, to the nematic phase of the liquid crystal.

  16. Charge Noise in Graphene Transistors Iddo Heller,,

    E-Print Network [OSTI]

    Dekker, Cees

    Charge Noise in Graphene Transistors Iddo Heller,,§ Sohail Chatoor, Jaan Ma¨nnik, Marcel A. G an experimental study of 1/f noise in liquid-gated graphene transistors. We show that the gate dependence to the graphene, while at high carrier density it is consistent with noise due to scattering in the channel

  17. Static charged fluid spheres in general relativity

    E-Print Network [OSTI]

    B. V. Ivanov

    2001-09-04T23:59:59.000Z

    Interior perfect fluid solutions for the Reissner-Nordstrom metric are studied on the basis of a new classification scheme. It specifies which two of the fluid's characteristics are given functions and picks up accordingly one of the three main field equations, the other two being universal. General formulae are found for charged de Sitter solutions, the case of constant energy component of the energy-momentum tensor, the case of known pressure (including charged dust) and the case of linear equation of state. Explicit new global solutions, mainly in elementary functions, are given as illustrations. Known solutions are briefly reviewed and corrected.

  18. Where do Nissan Leaf drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01T23:59:59.000Z

    This paper invesigates where Nissan Leaf drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at work, home, or some other location?

  19. Where do Chevrolet Volt drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01T23:59:59.000Z

    This paper investigates where Chevy Volt drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at home, work, or some other location.

  20. Driving and Charging Behavior of Nissan Leafs in The EV Project with Access to Workplace Charging

    SciTech Connect (OSTI)

    Don Scoffield; Shawn Salisbury; John Smart

    2014-11-01T23:59:59.000Z

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  1. Charge breaking bounds in the Zee model

    E-Print Network [OSTI]

    A. Barroso; P. M. Ferreira

    2005-10-11T23:59:59.000Z

    We study the possibility that charge breaking minima occur in the Zee model. We reach very different conclusions from those attained in simpler, two Higgs doublet models, and the reason for this is traced back to the existence of cubic terms in the potential. A scan of the Zee model's parameter space shows that CB is restricted to a narrow region of values of the parameters.

  2. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Wednesday, 29 October 2008 00:00 Graphene-a single layer...

  3. Stochastic Dynamics of Charge Fluctuations in Dusty Plasma

    SciTech Connect (OSTI)

    Asgari, H.; Muniandy, S. V.; Wong, C. S. [Plasma Research Laboratory, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-11-29T23:59:59.000Z

    Dust particles immersed in plasma acquire charge by collecting electrons and ions and also by emitting electrons. The grain charge fluctuates due to the discrete nature of the charge. The rates of ions and electrons capturing depend on the grain charge and therefore on the history of the absorption. Memory effects can be introduced into stochastic charging dynamics by generalizing the standard Langevin equation to fractional Langevin equation with shifted fractional derivative. The temporal autocorrelation function of grain charge fluctuation is derived and average amplitude of fluctuations is determined.

  4. Charge Prediction of Lipid Fragments in Mass Spectrometry

    SciTech Connect (OSTI)

    Schrom, Brian T.; Kangas, Lars J.; Ginovska, Bojana; Metz, Thomas O.; Miller, John H.

    2011-12-18T23:59:59.000Z

    An artificial neural network is developed for predicting which fragment is charged and which fragment is neutral for lipid fragment pairs produced from a liquid chromatography tandem mass spectrometry simulation process. This charge predictor is integrated into software developed at PNNL for in silico spectra generation and identification of metabolites known as Met ISIS. To test the effect of including charge prediction in Met ISIS, 46 lipids are used which show a reduction in false positive identifications when the charge predictor is utilized.

  5. Residential Blink Charging Units Reporting Data in The EV Project

    Broader source: Energy.gov (indexed) [DOE]

    500 62.5 Miles Idaho National Laboratory 812013 INLMIS-12-26074 All EV Project residential charging units are AC Level 2. Residential Blink Charging Units Reporting Data in...

  6. Residential Blink Charging Units Reporting Data in The EV Project

    Broader source: Energy.gov (indexed) [DOE]

    62.5 Miles Idaho National Laboratory 10162012 INLMIS-12-26074 All EV Project residential charging units are AC Level 2. Residential Blink Charging Units Reporting Data in...

  7. Plug-In Electric Vehicle Handbook for Public Charging

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Public Charging Station Hosts #12;Plug-In Electric Vehicle PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique at www.cleancities.energy.gov . Acknowledgement Thanks to the Electric Vehicle Infrastructure Training

  8. Charged black holes in expanding Einstein-de Sitter universes

    E-Print Network [OSTI]

    Manuela G. Rodrigues; Vilson T. Zanchin

    2015-02-02T23:59:59.000Z

    Inspired in a previous work by McClure and Dyer (Classical Quantum Gravity 23, 1971 (2006)), we analyze some solutions of the Einstein-Maxwell equations which were originally written to describe charged black holes in cosmological backgrounds. A detailed analysis of the electromagnetic sources for a sufficiently general metric is performed, and then we focus on deriving the electromagnetic four-current as well as the conserved electric charge of each metric. The charged McVittie solution is revisited and a brief study of its causal structure is performed, showing that it may represent a charged black hole in an expanding universe, with the black hole horizon being formed at infinite late times. Charged versions of solutions originally put forward by Vaidya (Vd) and Sultana and Dyer (SD) are also analyzed. It is shown that the charged Sultana-Dyer metric requires a global electric current, besides a central (pointlike) electric charge. With the aim of comparing to the charged McVittie metric, new charged solutions of Vd and SD type are considered. In these cases, the original mass and charge parameters are replaced by particular functions of the cosmological time. In the new generalized charged Vaidya metric the black hole horizon never forms, whereas in the new generalized Sultana-Dyer case both the Cauchy and the black hole horizons develop at infinite late times. A charged version of the Thakurta metric is also studied here. It is also a new solution. As in the charged Sultana-Dyer case, the natural source of the electromagnetic field is a central electric charge with an additional global electric current. The global structure is briefly studied and it is verified that the corresponding spacetime may represent a charged black hole in a cosmological background. All the solutions present initial singularities as found in the McVittie metric.

  9. Nanoscale Charge Transport in Excitonic Solar Cells

    SciTech Connect (OSTI)

    Venkat Bommisetty, South Dakota State University

    2011-06-23T23:59:59.000Z

    Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  10. Diffuse-Charge Dynamics in Electrochemical Systems

    E-Print Network [OSTI]

    Martin Z. Bazant; Katsuyo Thornton; Armand Ajdari

    2004-01-08T23:59:59.000Z

    The response of a model micro-electrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate, blocking electrodes which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The ``weakly nonlinear'' limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter $\\epsilon = \\lambda_D/L$, where $\\lambda_D$ is the screening length and $L$ the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of $\\lambda_D L / D$ (not $\\lambda_D^2/D$), where $D$ is the ionic diffusivity, but nonlinearity violates this common picture and introduce multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, $L^2/D$. In the ``strongly nonlinear'' regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multi-component electrolytes, and Faradaic processes.

  11. Surface charge in dielectric barrier discharge plasma actuators

    SciTech Connect (OSTI)

    Opaits, D. F.; Shneider, M. N.; Miles, Richard B. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Likhanskii, A. V. [Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Macheret, S. O. [Lockheed Martin Aeronautics Company, Palmdale, California 93599 (United States)

    2008-07-15T23:59:59.000Z

    Direct measurements of the dielectric surface potential and its dynamics in asymmetric dielectric barrier discharge (DBD) plasma actuators show that the charge builds up at the dielectric surface and extends far downstream of the plasma. The surface charge persists for a long time (tens of minutes) after the driving voltage has been turned off. For a sinusoidal voltage waveform, the dielectric surface charges positively. With the voltage waveform consisting of nanosecond pulses superimposed on a dc bias, the sign of the dielectric surface charge is the same as the sign (polarity) of the bias voltage. The surface charging significantly affects DBD plasma actuator performance.

  12. Space charge emission in cylindrical diode

    SciTech Connect (OSTI)

    Torres-Córdoba, Rafael; Martínez-García, Edgar [Universidad Autónoma de Cd. Juárez-IIT, Cd. Juárez, Chihuahua, México (Mexico)] [Universidad Autónoma de Cd. Juárez-IIT, Cd. Juárez, Chihuahua, México (Mexico)

    2014-02-15T23:59:59.000Z

    In this paper, a mathematical model to describe cylindrical electron current emissions through a physics approximation method is presented. The proposed mathematical approximation consists of analyzing and solving the nonlinear Poisson's equation, with some determined mathematical restrictions. Our findings tackle the problem when charge-space creates potential barrier that disable the steady-state of the beam propagation. In this problem, the potential barrier effects of electron's speed with zero velocity emitted through the virtual cathode happens. The interaction between particles and the virtual cathode have been to find the inter-atomic potentials as boundary conditions from a quantum mechanics perspective. Furthermore, a non-stationary spatial solution of the electrical potential between anode and cathode is presented. The proposed solution is a 2D differential equation that was linearized from the generalized Poisson equation. A single condition was used solely, throughout the radial boundary conditions of the current density formation.

  13. Geodesics and Geodesic Deviation in static Charged Black Holes

    E-Print Network [OSTI]

    Ragab M. Gad

    2010-03-03T23:59:59.000Z

    The radial motion along null geodesics in static charged black hole space-times, in particular, the Reissner-Nordstr\\"om and stringy charged black holes are studied. We analyzed the properties of the effective potential. The circular photon orbits in these space-times are investigated. We found that the radius of circular photon orbits in both charged black holes are different and differ from that given in Schwarzschild space-time. We studied the physical effects of the gravitational field between two test particles in stringy charged black hole and compared the results with that given in Schwarzschild and Reissner-Nordstr\\"om black holes.

  14. Particles and scalar waves in noncommutative charged black hole spacetime

    E-Print Network [OSTI]

    Bhar, Piyali; Biswas, Ritabrata; Mondal, U F

    2015-01-01T23:59:59.000Z

    In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

  15. Charging Up in King County, Washington

    Broader source: Energy.gov [DOE]

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

  16. Charging Up in King County, Washington

    ScienceCinema (OSTI)

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

    2013-05-29T23:59:59.000Z

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  17. Residential Blink Charging Units Reporting Data in The EV Project

    Broader source: Energy.gov (indexed) [DOE]

    Residential Blink Charging Units Reporting Data in The EV Project Project to Date through December 2012 Chicago 88 Atlanta 118 Philadelphia 37 Washington State 934 Oregon 632 San...

  18. Dynamics and thermodynamics of decay in charged clusters

    E-Print Network [OSTI]

    Miller, Mark A; Moerland, Christian P; Gray, Sarah J; Gaigeot, Marie-Pierre

    2015-01-01T23:59:59.000Z

    We propose a method for quantifying charge-driven instabilities in clusters, based on equilibrium simulations under confinement at constant external pressure. This approach makes no assumptions about the mode of decay and allows different clusters to be compared on an equal footing. A comprehensive survey of stability in model clusters of 309 Lennard-Jones particles augmented with Coulomb interactions is presented. We proceed to examine dynamic signatures of instability, finding that rate constants for ejection of charged particles increase smoothly as a function of total charge with no sudden changes. For clusters where many particles carry charge, ejection of individual charges competes with a fission process that leads to more symmetric division of the cluster into large fragments. The rate constants for fission depend much more sensitively on total charge than those for ejection of individual particles.

  19. Decay of charged fields in de Sitter spacetime

    E-Print Network [OSTI]

    A. A. Smirnov

    2005-05-12T23:59:59.000Z

    We study the decay of charged scalar and spinor fields around Reissner-Nordstrom black holes in de Sitter spacetime through calculations of quasinormal frequencies of the fields. The influence of the parameters of the black hole (charge, mass), of the decaying fields (charge, spin), and of the spacetime (cosmological constant) on the decay is analyzed. The analytic formula for calculation quasinormal frequencies for a large multipole number (eikonal approximation) is derived both for the spinor and scalar fieldss.

  20. Charge symmetry breaking in $\\Lambda$ hypernuclei revisited

    E-Print Network [OSTI]

    Gal, Avraham

    2015-01-01T23:59:59.000Z

    The large charge symmetry breaking (CSB) implied by the $\\Lambda$ binding energy difference $\\Delta B^{4}_{\\Lambda}(0^+_{\\rm g.s.})\\equiv B_{\\Lambda}(_{\\Lambda}^4$He)$-$$B_{\\Lambda}(_{\\Lambda}^4$H) = 0.35$\\pm$0.06 MeV of the $A=4$ mirror hypernuclei ground states, determined from emulsion studies, has defied theoretical attempts to reproduce it in terms of CSB in hyperon masses and in hyperon-nucleon interactions, including one pion exchange arising from $\\Lambda-\\Sigma^0$ mixing. Using a schematic strong-interaction $\\Lambda N\\leftrightarrow\\Sigma N$ coupling model developed by Akaishi and collaborators for $s$-shell $\\Lambda$ hypernuclei, we revisit the evaluation of CSB in the $A=4$ $\\Lambda$ hypernuclei and extend it to $p$-shell mirror $\\Lambda$ hypernuclei. The model yields values of $\\Delta B^{4}_{\\Lambda} (0^+_{\\rm g.s.})\\sim 0.25$ MeV. Smaller size and mostly negative $p$-shell binding energy differences are calculated for the $A=7-10$ mirror hypernuclei, in rough agreement with the few available dat...

  1. Title of Document: STUDY OF LONGITUDINAL SPACE CHARGE WAVES IN SPACE-CHARGE DOMINATED BEAMS

    E-Print Network [OSTI]

    Anlage, Steven

    BEAMS Jayakar Charles Tobin Thangaraj, Doctor of Philosophy, 2009 Directed By: Prof. Patrick O'Shea Prof current electron beam with very low emittance and energy spread. Any density fluctuation in an intense beam can launch space charge waves that lead to energy modulation. The energy modulations may cause

  2. Charge separation in photoredox reactions. Final report

    SciTech Connect (OSTI)

    Kevan, L.

    1993-07-15T23:59:59.000Z

    The structural aspects controlling charge separation in molecular photoionization reactions in organized molecular assemblies involving micelles, reverse micelles and vesicles are being studied by optical and electron magnetic resonance techniques including the time domain technique of deuterium electron spin echo modulation (ESEM) and matrix proton electron nuclear double resonance (ENDOR) to measure weak electron-nuclear dipolar interactions. ESEM and matrix ENDOR are particularly well adapted to the study of disordered systems as exemplified by micelles and vesicles. The photoionization yields of alkylphenothiazines in micelles and vesicles have been shown to depend on the alkyl chain length and to correlate with relative distances from the surfactant assembly interface measured by deuterium ESEM and matrix proton ENDOR. The photoionization of alkylmethylviologens versus alkyl chain length has also been studied in vesicles, micelles and reverse micelles. Nitroxide spin probes have been used to study the degree of water penetration into mixed ionic/nonionic poly(ethylene oxide) and cationic/anionic micelles by using ESEM methods and selectively deuterated surfactants. The effect of urea interaction at micellar interfaces on the interface hydration has also been evaluated by studying nitroxide probes with ESEM.

  3. Effects of global charge conservation on time evolution of cumulants of conserved charges in relativistic heavy ion collisions

    E-Print Network [OSTI]

    Miki Sakaida; Masayuki Asakawa; Masakiyo Kitazawa

    2014-09-24T23:59:59.000Z

    We investigate the effect of the global charge conservation on the cumulants of conserved charges observed in relativistic heavy ion collisions in a finite rapidity window, $\\Delta\\eta$, with a special emphasis on the time evolution of fluctuations in the hadronic medium. It is argued that the experimental result of the net-electric charge fluctuation observed by ALICE does not receive effects from the global charge conservation, because of the finite diffusion distance of charged particles in the hadronic stage. We emphasize that the magnitude of the effect of the global charge conservation can be estimated experimentally by combining the information on the $\\Delta\\eta$ dependences of various cumulants of conserved charges, similarly to other dynamical properties of the hot medium.

  4. Mergers in the GB Electricity Market: effects on Retail Charges

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -efficiency as variables relating to price and profitability. The retail electricity market is a case in point, as highMergers in the GB Electricity Market: effects on Retail Charges N° 2006-08 Mai 2006 Evens SALIES OFCE hal-00972962,version1-3Apr2014 #12;Mergers in the GB Electricity Market: effects on Retail Charges

  5. Competitive Charging Station Pricing for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Huang, Jianwei

    . To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

  6. Self-similar and charged spheres in the diffusion approximation

    E-Print Network [OSTI]

    Barreto, W

    1999-01-01T23:59:59.000Z

    We study spherical, charged and self--similar distributions of matter in the diffusion approximation. We propose a simple, dynamic but physically meaningful solution. For such a solution we obtain a model in which the distribution becomes static and changes to dust. The collapse is halted with damped mass oscillations about the absolute value of the total charge.

  7. Visualization of Charge Distribution in a Lithium Battery Electrode

    SciTech Connect (OSTI)

    Liu, Jun; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Richardson, Thomas J.

    2010-07-02T23:59:59.000Z

    We describe a method for direct determination and visualization of the distribution of charge in a composite electrode. Using synchrotron X-ray microdiffraction, state-of-charge profiles in-plane and normal to the current collector were measured. In electrodes charged at high rate, the signatures of nonuniform current distribution were evident. The portion of a prismatic cell electrode closest to the current collector tab had the highest state of charge due to electronic resistance in the composite electrode and supporting foil. In a coin cell electrode, the active material at the electrode surface was more fully charged than that close to the current collector because the limiting factor in this case is ion conduction in the electrolyte contained within the porous electrode.

  8. Charge pumping techniques in ultra-low current transconductor design

    E-Print Network [OSTI]

    Becker-Gomez, Adriana

    2002-01-01T23:59:59.000Z

    generated by the interface-trap charge pump. An interface-trap charge-pump has been used as an ultra low current source for biasing an operational transconductance amplifier in both single-ended and fully differential configurations. Source degeneration...

  9. Charge Trapping in Carbon Nanotube Loops Demonstrated by Electrostatic

    E-Print Network [OSTI]

    Nygård, Jesper

    Charge Trapping in Carbon Nanotube Loops Demonstrated by Electrostatic Force Microscopy Thomas Sand ABSTRACT Electronic devices made from carbon nanotubes (CNTs) can be greatly affected by substrate charges nanotube loops for extended periods of time, showing that nanotubes can act as confining barriers

  10. Charge Density Effects in Salt-Free Polyelectrolyte Solution Rheology

    E-Print Network [OSTI]

    Colby, Ralph H.

    of 2-vinyl pyridine and N-methyl-2-vinyl pyridinium chloride random copolymers in ethylene glycol of 2-vinyl pyridine and N- methyl-2-vinyl pyridinium chloride (PMVP-Cl) of any charge density was studied over wide ranges of con- centration and effective charge. The fraction of quaternized monomers

  11. Plasmons in inhomogeneously doped neutral and charged graphene nanodisks

    SciTech Connect (OSTI)

    Silveiro, Iván [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Javier García de Abajo, F., E-mail: javier.garciadeabajo@icfo.es [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona (Spain)

    2014-03-31T23:59:59.000Z

    We study plasmons in graphene nanodisks including the effect of inhomogeneity in the distribution of the doping charge. Specifically, we discuss the following two configurations: charged disks containing a fixed amount of additional carriers, which are self-consistently distributed along the surface to produce a uniform DC potential; and neutral disks exposed to a neighboring external point charge. A suitable finite-element method is elaborated to compute the charge density associated with the plasmons in the electrostatic limit. For charged disks, we find dipolar plasmons similar to those of uniformly doped graphene structures, in which the plasmon induced charge piles up near the edges. In contrast, in neutral disks placed near an external point charge, plasmons are strongly localized away from the edges. Surprisingly, a single external electron is enough to trap plasmons. The disks also display axially symmetric dark-plasmons, which can be excited through external illumination by coupling them to a neighboring metallic element. Our results have practical relevance for graphene nanophotonics under inhomogeneous doping conditions.

  12. Geodesic Motion in the (Charged) Doubly Spinning Black Ring Spacetime

    E-Print Network [OSTI]

    Saskia Grunau; Valeria Kagramanova; Jutta Kunz

    2012-12-03T23:59:59.000Z

    In this article we analyze the geodesics of test particles and light in the five dimensional (charged) doubly spinning black ring spacetime. Apparently it is not possible to separate the Hamilton-Jacobi-equation for (charged) doubly spinning black rings in general, so we concentrate on special cases: null geodesics in the ergosphere and geodesics on the two rotational axes of the (charged) doubly spinning black ring. We present analytical solutions to the geodesic equations for these special cases. Using effective potential techniques we study the motion of test particles and light and discuss the corresponding orbits.

  13. Fuel effects in homogeneous charge compression ignition (HCCI) engines

    E-Print Network [OSTI]

    Angelos, John P. (John Phillip)

    2009-01-01T23:59:59.000Z

    Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

  14. Extremal charged rotating dilaton black holes in odd dimensions

    SciTech Connect (OSTI)

    Allahverdizadeh, Masoud; Kunz, Jutta; Navarro-Lerida, Francisco [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503 D-26111 Oldenburg (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Ciencias Fisicas Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2010-09-15T23:59:59.000Z

    Employing higher-order perturbation theory, we find a new class of charged rotating black hole solutions of Einstein-Maxwell-dilaton theory with general dilaton coupling constant. Starting from the Myers-Perry solutions, we use the electric charge as the perturbative parameter, and focus on extremal black holes with equal-magnitude angular momenta in odd dimensions. We perform the perturbations up to 4th order for black holes in 5 dimensions and up to 3rd order in higher odd dimensions. We calculate the physical properties of these black holes and study their dependence on the charge and the dilaton coupling constant.

  15. Extremal Charged Rotating Dilaton Black Holes in Odd Dimensions

    E-Print Network [OSTI]

    Masoud Allahverdizadeh; Jutta Kunz; Francisco Navarro-Lerida

    2010-07-24T23:59:59.000Z

    Employing higher order perturbation theory, we find a new class of charged rotating black hole solutions of Einstein-Maxwell-dilaton theory with general dilaton coupling constant. Starting from the Myers-Perry solutions, we use the electric charge as the perturbative parameter, and focus on extremal black holes with equal-magnitude angular momenta in odd dimensions. We perform the perturbations up to 4th order for black holes in 5 dimensions and up to 3rd order in higher odd dimensions. We calculate the physical properties of these black holes and study their dependence on the charge and the dilaton coupling constant.

  16. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned...

  17. Topological charge in 1+1 dimensional lattice $?^4$ theory

    E-Print Network [OSTI]

    Asit K. De; A. Harindranath; Jyotirmoy Maiti; Tilak Sinha

    2005-11-10T23:59:59.000Z

    We investigate the topological charge in 1+1 dimensional $\\phi^4$ theory on a lattice with Anti Periodic Boundary Condition (APBC) in the spatial direction. We propose a simple order parameter for the lattice theory with APBC and we demonstrate its effectiveness. Our study suggests that kink condensation is a possible mechanism for the order-disorder phase transition in the 1+1 dimensional $\\phi^4$ theory. With renormalizations performed on the lattice with Periodic Boundary Condition (PBC), the topological charge in the renormalized theory is given as the ratio of the order parameters in the lattices with APBC and PBC. We present a comparison of topological charges in the bare and the renormalized theory and demonstrate invariance of the charge of the renormalized theory in the broken symmetry phase.

  18. Interpretation of the atmospheric muon charge ratio in MINOS

    E-Print Network [OSTI]

    Philip Schreiner; Maury Goodman

    2007-06-04T23:59:59.000Z

    MINOS is the first large magnetic detector deep underground and is the first to measure the muon charge ratio with high statistics in the region near 1 TeV.\\cite{bib:adamson} An approximate formula for the muon charge ratio can be expressed in terms of $\\epsilon_\\pi$ = 115 GeV, $\\epsilon_K$ = 850 GeV and $\\ec$. The implications for K production in the atmosphere will be discussed.

  19. Surface charge algebra in gauge theories and thermodynamic integrability

    SciTech Connect (OSTI)

    Barnich, Glenn [Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, Campus Plaine, CP 231, B-1050 Bruxelles (Belgium); Compere, Geoffrey [Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, Campus Plaine, CP 231, B-1050 Bruxelles (Belgium); Gravity Group, University of California at Santa Barbara, Broida Hall 9530, California 93106-9530 (United States)

    2008-04-15T23:59:59.000Z

    Surface charges and their algebra in interacting Lagrangian gauge field theories are constructed out of the underlying linearized theory using techniques from the variational calculus. In the case of exact solutions and symmetries, the surface charges are interpreted as a Pfaff system. Integrability is governed by Frobenius' theorem and the charges associated with the derived symmetry algebra are shown to vanish. In the asymptotic context, we provide a generalized covariant derivation of the result that the representation of the asymptotic symmetry algebra through charges may be centrally extended. Comparison with Hamiltonian and covariant phase space methods is made. All approaches are shown to agree for exact solutions and symmetries while there are differences in the asymptotic context.

  20. John Papanikolas: Visualizing Charge Carrier Motion in Nanowires...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John Papanikolas: Visualizing Charge Carrier Motion in Nanowires Using Femtosecond Pump-Probe Microscopy Apr 17, 2014 | 4:00 PM - 5:00 PM John Papanikolas Professor of Chemistry &...

  1. Residual dust charges in an afterglow plasma , M. Mikikian

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    plasma was performed in a rf discharge. An upward thermophoretic force was used to balance]. For the study concerning residual charges, the top electrode was cooled. An upward thermophoretic force

  2. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect (OSTI)

    Qiao, Rui [Clemson University; Meunier, V. [Rensselaer Polytechnic Institute (RPI); Huang, Jingsong [ORNL; Wu, Peng [ORNL; Sumpter, Bobby G [ORNL

    2012-01-01T23:59:59.000Z

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.

  3. Effect of topology on the critical charge in graphene

    E-Print Network [OSTI]

    Baishali Chakraborty; Kumar S. Gupta; Siddhartha Sen

    2010-11-18T23:59:59.000Z

    We show that the critical charge for the Dirac excitations in gapless graphene depends on the spatial topology of the sample. In particular, for graphene cones, the effective value of the critical charge can tend towards zero for a suitable angle of the conical sample. We discuss the nature of the scattering phase shifts, quasi-bound state energies and local density of states for a gapless graphene cone and determine the dependence of these physical quantities on the sample topology.

  4. Method for mapping charge pulses in semiconductor radiation detectors

    SciTech Connect (OSTI)

    Prettyman, T.H.

    1998-12-01T23:59:59.000Z

    An efficient method for determining the distribution of charge pulses produced by semiconductor detectors is presented. The method is based on a quasi-steady-state model for semiconductor detector operation. A complete description of the model and underlying assumptions is given. Mapping of charge pulses is accomplished by solving an adjoint carrier continuity equation. The solution of the adjoint equation yields Green`s function, a time- and position-dependent map that contains all possible charge pulses that can be produced by the detector for charge generated at discrete locations (e.g., by gamma-ray interactions). Because the map is generated by solving a single, time-dependent problem, the potential for reduction in computational effort over direct mapping methods is significant, particularly for detectors with complex electrode structures. In this paper, the adjoint equation is derived and the mapping method is illustrated for a simple case.

  5. Effect of charge distribution on RDX adsorption in IRMOF-10

    SciTech Connect (OSTI)

    Xiong, Ruichang [University of Tennessee, Knoxville (UTK); Keffer, David J. [University of Tennessee, Knoxville (UTK); Fuentes-Cabrera, Miguel A [ORNL; Nicholson, Don M [ORNL; Michalkova, Andrea [Jackson State University; Petrova, Tetyana [Jackson State University; Leszczynski, Jerzy [Computational Center for Molecular Structure and Interactions, Jackson, MS; Odbadrakh, Khorgolkhuu [ORNL; Doss, Bryant [West Virginia University; Lewis, James [West Virginia University

    2010-01-01T23:59:59.000Z

    Quantum mechanical (QM) calculations, classical grand canonical Monte Carlo (GCMC) simulations, and classical molecular dynamics (MD) simulations are performed to test the effect of charge distribution on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) adsorption and diffusion in IRMOF-10. Several different methods for mapping QM electron distributions onto atomic point charges are explored, including the electrostatic potential (ESP) method, Mulliken population analysis, L{sub 0}wdin population analysis, and natural bond orbital analysis. Classical GCMC and MD simulations of RDX in IRMOF-10 are performed using 15 combinations of charge sources of RDX and IRMOF-10. As the charge distributions vary, interaction potential energies, the adsorption loading, and the self-diffusivities are significantly different. None of the 15 combinations are able to quantitatively capture the dependence of the energy of adsorption on local configuration of RDX as observed in the QM calculations. We observe changes in the charge distributions of RDX and IRMOF-10 with the introduction of an RDX molecule into the cage. We also observe a large dispersion contribution to the interaction energy from QM calculations that is not reproduced in the classical simulations, indicating that the source of discrepancy may not lie exclusively with the assignment of charges.

  6. BEV Charging Behavior Observed in The EV Project for 2013

    SciTech Connect (OSTI)

    Brion D. Bennett

    2014-01-01T23:59:59.000Z

    This fact sheet will be issued quarterly to report on the number of Nissan Leafs vehicle usage, charging locations, and charging completeness as part of the EV Project. It will be posted on the INL/AVTA and ECOtality websites and will be accessible by the general public. The raw data that is used to create the report is considered proprietary/OUO and NDA protected, but the information in this report is NOT proprietary nor NDA protected.

  7. Isovector spin observables in nuclear charge reactions at LAMPF

    SciTech Connect (OSTI)

    McClelland, J.B.

    1988-01-01T23:59:59.000Z

    LAMPF has undertaken a major development program to upgrade facilities for nuclear charge-exchange studies at intermediate energies. The major components of this upgrade are a medium-resolution spectrometer and neutron time-of-flight system for good resolution (delta E < 1 MeV) charge-exchange perograms in (n,p) and (p,n) respectively. Major emphasis is placed on polarization phenomena using polarized beams and analyzing the polarization of the outgoing particle.

  8. Gas-Solid Coexistence in Highly Charged Colloidal Suspensions

    E-Print Network [OSTI]

    P. S. Mohanty; B. V. R. Tata; A. Toyotama; T. Sawada

    2005-07-17T23:59:59.000Z

    Aqueous suspensions of highly charged polystyrene particles with different volume fractions have been investigated for structural ordering and phase behavior using static light scattering (SLS) and confocal laser scanning microscope (CLSM). Under deionized conditions, suspensions of high charge density colloidal particles remained disordered whereas suspensions of relatively low charge density showed crystallization by exhibiting iridescence for the visible light. Though for unaided eye crystallized suspensions appeared homogeneous, static light scattering measurements and CLSM observations have revealed their inhomogeneous nature in the form of coexistence of voids with dense ordered regions. CLSM investigations on disordered suspensions showed their inhomogeneous nature in the form coexistence of voids with dense disordered (amorphous) regions. Our studies on highly charged colloids confirm the occurrence of gas-solid transition and are in accordance with predictions of Monte Carlo simulations using a pair-potential having a long-range attractive term [Mohanty and Tata, Journal of Colloid and Interface Science 2003, 264, 101]. Based on our experimental and simulation results we argue that the reported reentrant disordered state [Yamanaka et al Phys. Rev. Lett. 1998, 80, 5806 and Toyotama et al Langmuir, 2003, 19, 3236] in charged colloids observed at high charge densities is a gas-solid coexistence state.

  9. Phenomenology of electrostatically charged droplet combustion in normal gravity

    SciTech Connect (OSTI)

    Anderson, Eric K.; Koch, Jeremy A.; Kyritsis, Dimitrios C. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2008-08-15T23:59:59.000Z

    Experimental findings are provided on the effect of electrostatically charging a fuel on single-burning droplet combustion in normal gravity. It was established that significant modification of the flame morphology and the droplet burning time could be achieved, solely by the droplet charge, without the application of external electric fields. Negative charging of the droplets of mixtures of isooctane with either ethanol or a commercially available anti-static additive generated intense motion of the flame and abbreviated the droplet burning time by as much as 40% for certain blend compositions. Positive charging of the droplets generated almost spherical flames, because electrostatic attraction toward the droplets countered the effect of buoyancy. By comparing combustion of droplets of the same conductivity but different compositions, coupling of electrostatics with combustion chemistry was established. (author)

  10. Charge independence, charge symmetry breaking in the S-wave nucleon-nucleon interaction, and renormalization

    SciTech Connect (OSTI)

    Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola

    2012-02-01T23:59:59.000Z

    We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.

  11. Space-Charge Effects in the Super B-Factory LER

    E-Print Network [OSTI]

    Venturini, Marco

    2007-01-01T23:59:59.000Z

    K. Oide, and A. Wolski, Space-Charge and EquilibriumVenturini and K. Oide, Direct Space-Charge E?ects on the ILCLBNL-62259 January 2007 Space-Charge E?ects in the Super B-

  12. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  13. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  14. Charge transport and charge clustering in polymer electrolytes: Results from simulations

    SciTech Connect (OSTI)

    Payne, V.A.; Forsyth, M.; Shriver, D.F.; DeLeeuw, S.W.; Ratner, M.A. [Northeastern Univ., Evanston, IL (United States)

    1993-12-31T23:59:59.000Z

    This paper reports results of molecular dynamics simulations on models for polymer electrolytes. These initial models use reasonable potentials, with proper thermal dynamics and appropriate treatment of boundary conditions. The solvents themselves range in complexity from simple Lennar-Jones spheres with embedded dipoles to constraint geometry models for small etheric solvents. The paper reports structural, transport and thermal dependences of these model electrolytes. The authors observe some important changes in the extent of clustering with temperature and with dielectric constant, as well as with concentration. Mechanistic interpretation, in terms of effective ion flows and charge transport characteristics, are reported. In particular, the authors find an analysis of pairing using the thermal dependence of the potential of mean force shows clearly that entropic effects, as well as reduced dielectric screening, result in cluster stabilization. In the extreme limit of oversaturation, such stabilization can actually lead to changes in the mechanism, in agreement with recent suggestions by Angell based on ionene materials.

  15. Dynamics of Charge Transfer in Ordered and Chaotic Nucleotide Sequences

    E-Print Network [OSTI]

    Fialko, N S

    2013-01-01T23:59:59.000Z

    Charge transfer is considered in systems composed of a donor, an acceptor and bridge sites of (AT) nucleotide pairs. For a bridge consisting of 180 (AT) pairs, three cases are dealt with: a uniform case, when all the nucleotides in each strand are identical; an ordered case, when nucleotides in each DNA strand are arranged in an orderly fashion; a chaotic case, when (AT) and (TA) pairs are arranged randomly. It is shown that in all the cases a charge transfer from a donor to an acceptor can take place. All other factors being equal, the transfer is the most efficient in the uniform case, the ordered and chaotic cases are less and the least efficient, accordingly. The results obtained are in agreement with experimental data on long-range charge transfer in DNA.

  16. Conserved charges in (Lovelock) gravity in first order formalism

    SciTech Connect (OSTI)

    Gravanis, Elias [Akropoleos 1 Nicosia 2101 (Cyprus)

    2010-04-15T23:59:59.000Z

    We derive conserved charges as quasilocal Hamiltonians by covariant phase space methods for a class of geometric Lagrangians that can be written in terms of the spin connection, the vielbein, and possibly other tensorial form fields, allowing also for nonzero torsion. We then recalculate certain known results and derive some new ones in three to six dimensions hopefully enlightening certain aspects of all of them. The quasilocal energy is defined in terms of the metric and not its first derivatives, requiring 'regularization' for convergence in most cases. Counterterms consistent with Dirichlet boundary conditions in first order formalism are shown to be an efficient way to remove divergencies and derive the values of conserved charges, the clear-cut application being metrics with anti-de Sitter (or de Sitter) asymptotics. The emerging scheme is: all is required to remove the divergencies of a Lovelock gravity is a boundary Lovelock gravity.

  17. Energy conservation for a radiating charge in classical electrodynamics

    E-Print Network [OSTI]

    Singal, Ashok K

    2014-01-01T23:59:59.000Z

    It is shown that the well-known disparity in classical electrodynamics between the power radiated in electromagnetic fields and the power-loss, as calculated from the radiation reaction on a charge undergoing a non-uniform motion, is successfully resolved when a proper distinction is made between quantities expressed in terms of a "real time" and those expressed in terms of a retarded time. It is shown that the expression for the real-time radiative power loss from a charged particle is somewhat different from the familiar Larmor's formula, or in a relativistic case, from Li\\'{e}nard's formula.

  18. Shielding of a moving test charge in a quantum plasma

    SciTech Connect (OSTI)

    Else, D.; Kompaneets, R.; Vladimirov, S. V. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2010-08-15T23:59:59.000Z

    The linearized potential of a moving test charge in a one-component fully degenerate fermion plasma is studied using the Lindhard dielectric function. The motion is found to greatly enhance the Friedel oscillations behind the charge, especially for velocities larger than half of the Fermi velocity, in which case the asymptotic behavior of their amplitude changes from 1/r{sup 3} to 1/r{sup 2.5}. In the absence of the quantum recoil (tunneling) the potential reduces to a form similar to that in a classical Maxwellian plasma, with a difference being that the plasma oscillations behind the charge at velocities larger than the Fermi velocity are not Landau damped.

  19. Electromagnetic fluctuation-induced interactions in randomly charged slabs

    E-Print Network [OSTI]

    Vahid Rezvani; Jalal Sarabadani; Ali Naji; Rudolf Podgornik

    2012-07-19T23:59:59.000Z

    Randomly charged net-neutral dielectric slabs are shown to interact across a featureless dielectric continuum with long-range electrostatic forces that scale with the statistical variance of their quenched random charge distribution and inversely with the distance between their bounding surfaces. By accounting for the whole spectrum of electromagnetic field fluctuations, we show that this long-range disorder-generated interaction extends well into the retarded regime where higher-order Matsubara frequencies contribute significantly. This occurs even for highly clean samples with only a trace amount of charge disorder and shows that disorder effects can be important down to the nano scale. As a result, the previously predicted non-monotonic behavior for the total force between dissimilar slabs as a function of their separation distance is substantially modified by higher-order contributions, and in almost all cases of interest, we find that the equilibrium inter-surface separation is shifted to substantially larger values compared to predictions based solely on the zero-frequency component. This suggests that the ensuing non-monotonic interaction is more easily amenable to experimental detection. The presence of charge disorder in the intervening dielectric medium between the two slabs is shown to lead to an additional force that can be repulsive or attractive depending on the system parameters and can, for instance, wash out the non-monotonic behavior of the total force when the intervening slab contains a sufficiently large amount of disorder charges.

  20. CHARGED TORI IN SPHERICAL GRAVITATIONAL AND DIPOLAR MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Slany, P.; Kovar, J.; Stuchlik, Z. [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava Bezrucovo nam. 13, CZ-746 01 Opava (Czech Republic)] [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava Bezrucovo nam. 13, CZ-746 01 Opava (Czech Republic); Karas, V., E-mail: petr.slany@fpf.slu.cz [Astronomical Institute, Academy of Sciences, Bocni II, Prague CZ-141 31 (Czech Republic)

    2013-03-01T23:59:59.000Z

    A Newtonian model of non-conductive, charged, perfect fluid tori orbiting in combined spherical gravitational and dipolar magnetic fields is presented and stationary, axisymmetric toroidal structures are analyzed. Matter in such tori exhibits a purely circulatory motion and the resulting convection carries charges into permanent rotation around the symmetry axis. As a main result, we demonstrate the possible existence of off-equatorial charged tori and equatorial tori with cusps that also enable outflows of matter from the torus in the Newtonian regime. These phenomena qualitatively represent a new consequence of the interplay between gravity and electromagnetism. From an astrophysical point of view, our investigation can provide insight into processes that determine the vertical structure of dusty tori surrounding accretion disks.

  1. Electron cloud and space charge effects in the Fermilab Booster

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2007-06-01T23:59:59.000Z

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  2. Charge symmetry breaking in n p --> d pi^0

    E-Print Network [OSTI]

    A. K. Opper; E. Korkmaz; D. A. Hutcheon; R. Abegg; C. A. Davis; R. W. Finlay; P. W. Green; L. G. Greeniaus; D. V. Jordan; J. A. Niskanen; G. V. O'Rielly; T. A. Porcelli; S. D. Reitzner; P. L. Walden; S. Yen

    2003-06-19T23:59:59.000Z

    The forward--backward asymmetry in n p --> d pi^0, which must be zero in the center-of-mass system if charge symmetry is respected, has been measured to be [17.2 +/- 8 (stat) +/- 5.5 (sys)] * 10^{-4}, at an incident neutron energy of 279.5 MeV. This charge symmetry breaking observable was extracted by fitting the data with GEANT-based simulations and is compared to recent chiral effective field theory calculations, with implications regarding the value of the u d quark mass difference.

  3. Systems for detecting charged particles in object inspection

    DOE Patents [OSTI]

    Morris, Christopher L.; Makela, Mark F.

    2013-08-20T23:59:59.000Z

    Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  4. Space charge effects in ultrafast electron diffraction and imaging

    SciTech Connect (OSTI)

    Tao Zhensheng; Zhang He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824-2320 (United States)

    2012-02-15T23:59:59.000Z

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  5. Charge splitting of directed flow and charge-dependent effects in pion spectra in heavy ion collisions

    E-Print Network [OSTI]

    A. Rybicki; A. Szczurek; M. Klusek-Gawenda; M. Kielbowicz

    2015-02-12T23:59:59.000Z

    The large and rapidly varying electric and magnetic fields induced by the spectator systems moving at ultrarelativistic velocities induce a charge splitting of directed flow, $v_1$, of positive and negative pions in the final state of the heavy ion collision. The same effect results in a very sizeable distortion of charged pion spectra as well as ratios of charged pions ($\\pi^+/\\pi^-$) emitted at high values of rapidity. Both phenomena are sensitive to the actual distance between the pion emission site and the spectator system. This distance $d_E$ appears to decrease with increasing rapidity of the pion, and comes below $\\sim$1~fm for pions emitted close to beam rapidity. In this paper we discuss how these findings can shed new light on the space-time evolution of pion production as a function of rapidity, and on the longitudinal evolution of the system created in heavy ion collisions.

  6. Published in Phys: Rev: D 44 3887 \\Gamma 3898 (1991) COULOMB FIELD OF AN ACCELERATED CHARGE

    E-Print Network [OSTI]

    Gerlach, Ulrich

    Published in Phys: Rev: D 44 3887 \\Gamma 3898 (1991) COULOMB FIELD OF AN ACCELERATED CHARGE Columbus, Ohio 43210 ABSTRACT The Coulomb field of a charge static in an accelerated frame has properties the accelerated charge and the charge induced on the surface whose history is the event horizon. A spectral

  7. Charged Condensation

    E-Print Network [OSTI]

    Gregory Gabadadze; Rachel A. Rosen

    2007-08-24T23:59:59.000Z

    We consider Bose-Einstein condensation of massive electrically charged scalars in a uniform background of charged fermions. We focus on the case when the scalar condensate screens the background charge, while the net charge of the system resides on its boundary surface. A distinctive signature of this substance is that the photon acquires a Lorentz-violating mass in the bulk of the condensate. Due to this mass, the transverse and longitudinal gauge modes propagate with different group velocities. We give qualitative arguments that at high enough densities and low temperatures a charged system of electrons and helium-4 nuclei, if held together by laboratory devices or by force of gravity, can form such a substance. We briefly discuss possible manifestations of the charged condensate in compact astrophysical objects.

  8. Charge and CP symmetry breaking in two Higgs doublet models

    E-Print Network [OSTI]

    A. Barroso; P. M. Ferreira; R. Santos

    2005-11-07T23:59:59.000Z

    We show that, for the most generic model with two Higgs doublets possessing a minimum that preserves the $U(1)_{em}$ symmetry, charge breaking (CB) cannot occur. If CB does not occur, the potential could have two different minima, and there is in principle no general argument to show which one is the deepest. The depth of the potential at a stationary point that breaks CB or CP, relative to the $U(1)_{em}$ preserving minimum, is proportional to the squared mass of the charged or pseudoscalar Higgs, respectively.

  9. Charge transport in molecular devices. Nanoscience and nanotechologies: new science?

    E-Print Network [OSTI]

    Qian, Ning

    Charge transport in molecular devices. Nanoscience and nanotechologies: new science? Nanoscience and other developing countries are also joining in this scientific effort. What does nanoscience of an intrinsic nanoscale science that existed before "nanoscience". So we can now reformulate our question: what

  10. Charge Separation via Strain in Silicon Zhigang Wu,

    E-Print Network [OSTI]

    Wu, Zhigang

    been used in hybrid organic polymer/inorganic nanocrystal solar cells2,3 and in dye-sensitized solar cells by morphology control, where effectively a type-II homojunction is formed and charge separation expensive solar cells, comparable to the costs of fossil-based electricity, from abundant, environmen- tally

  11. Adiabatic Charge Pumping in Open Quantum Systems JOSEPH E. AVRON

    E-Print Network [OSTI]

    Avron, Joseph

    Adiabatic Charge Pumping in Open Quantum Systems JOSEPH E. AVRON Technion ALEXANDER ELGART Courant pumps con- nected to a number of external leads. It is proven that under the rather general assumption on the Hamiltonian describing the system, in the adiabatic limit, the current through the pump is given by a formula

  12. Ultrafast charge localization in a stripe-phase nickelate

    SciTech Connect (OSTI)

    Coslovich, Giacomo; Huber, Bernhard; Lee, Wei-Sheng; Sasagawa, Takao; Hussain, Zahid; Bechtel, Hans A.; Martin, Michael C.; Shen, Zhi-Xun; W. Schoenlein, Robert; A. Kaindl, Robert

    2013-08-30T23:59:59.000Z

    Self-organized electronically-ordered phases are a recurring feature in correlated materials, resulting in e.g. fluctuating charge stripes whose role in high-Tc superconductivity is under debate. However, the relevant cause-effect relations between real-space charge correlations and low-energy excitations remain hidden in time-averaged studies. Here, we reveal ultrafast charge localization and lattice vibrational coupling as dynamical precursors of stripe formation in the model compound La1.75Sr0.25NiO4, using ultrafast and equilibrium mid-infrared spectroscopy. The opening of a pseudogap at a crossover temperature T* far above long-range stripe formation establishes the onset of electronic localization which is accompanied by an enhanced Fano asymmetry of Ni-O stretch vibrations. Ultrafast excitation triggers a sub-picosecond dynamics exposing the synchronous modulation of electron-phonon coupling and charge localization. These results illuminate the role of localization in forming the pseudogap in nickelates, opening a path to understanding this mysterious phase in a broad class of complex oxides.

  13. INTRAMOLECULAR CHARGE AND ENERGY TRANSFER IN MULTICHROMOPHORIC AROMATIC SYSTEMS

    SciTech Connect (OSTI)

    Edward C. Lim

    2008-09-09T23:59:59.000Z

    A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.

  14. Transport in charged colloids driven by thermoelectricity Alois Wrger

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . There is no complete description for the underlying physical forces, and even the sign of the thermophoretic mobility negative thermophoretic mobility has been reported for charged latex spheres in a bu¤ered so- lution. Like any linear transport coe¢ cient in a viscous uid, the thermophoretic mobility DT has

  15. Pulverization Induced Charge: In-Line Dry Coal Cleaning

    SciTech Connect (OSTI)

    Schaefer, J.L.; Stencel, J.M.

    1997-05-13T23:59:59.000Z

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to boilers in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

  16. PULVERIZATION INDUCED CHARGE: IN-LINE DRY COAL CLEANING

    SciTech Connect (OSTI)

    JOHN M. STENCEL

    1998-07-01T23:59:59.000Z

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

  17. Pulverization Induced Charge: In-Line Dry Coal Cleaning

    SciTech Connect (OSTI)

    John M. Stencel

    1998-05-26T23:59:59.000Z

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

  18. Pulverization Induced Charge: In-Line Dry Coal Cleaning

    SciTech Connect (OSTI)

    John M. Stencel

    1998-01-21T23:59:59.000Z

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

  19. Shock-Dispersed-Fuel Charges: Combustion in Chambers and Tunnels

    SciTech Connect (OSTI)

    Neuwald, P; Reichenbach, H; Kuhl, A L

    2003-04-22T23:59:59.000Z

    In previous studies we have investigated after-burning effects of a fuel-rich explosive (TNT). In that case the detonation only releases about 30% of the available energy, but generates a hot cloud of fuel that can burn in the ambient air, thus evoking an additional energy release that is distributed in space and time. The current series of small-scale experiments can be looked upon as a natural generalization of this mechanism: a booster charge disperses a (non-explosive) fuel, provides mixing with air and, by means of the hot detonation products, the energy to ignite the fuel. The current version of our miniature Shock-Dispersed-Fuel (SDF) charges consists of a spherical booster charge of 0.5 g PETN, embedded in a paper cylinder of approximately 2.2 cm, which is filled with powdered fuel compositions. The main compositions studied up to now contain aluminum flakes, hydrocarbon powders like polyethylene or hexosen (sucrose) and/or carbon particles. These charges were studied in four different chambers: two cylindrical vessels of 6.6-1 and 40.5-1 volume with a height-to-diameter ratio of approximately 1, a rectangular chamber of 41 (10.5 x 10.5 x 38.6 cm) and a 299.6 cm long tunnel model with a cross section of 8 x 8 cm (volume 19.21) closed at both ends.

  20. Charge Distributions in Transverse Coordinate Space and in Impact Parameter Space

    E-Print Network [OSTI]

    Dae Sung Hwang; Dong Soo Kim; Jonghyun Kim

    2008-05-30T23:59:59.000Z

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  1. Self-consistent modeling of charge redistributions in Josephson junctions

    E-Print Network [OSTI]

    Freericks, Jim

    Self-consistent modeling of charge redistributions in Josephson junctions J. K. Freericks, Josephson Junction talk, 2000 #12;Josephson Proximity-Effect Junctions · A Superconductor-Normal metal, Georgetown University, Josephson Junction talk, 2000 S N S I I V V Ic #12;Andreev Bound States · At an N

  2. Charge regulation in ionic solutions: thermal fluctuations and Kirkwood-Schumaker interaction

    E-Print Network [OSTI]

    Natasa Adzic; Rudolf Podgornik

    2014-12-21T23:59:59.000Z

    We study the behavior of two macroions with dissociable charge groups, regulated by local variables such as pH and electrostatic potential, immersed in a mono-valent salt solution, considering cases where the net charge can either change sign or remain of the same sign depending on these local parameters. The charge regulation, in both cases, is described with the proper free energy function for each of the macroions, while the coupling between the charges is evaluated on the approximate Debye-H\\"uckel level. The charge correlation functions and the ensuing charge fluctuation forces are calculated analytically and numerically. Strong attraction between like-charged macroions is found close to the point of zero charge, specifically due to asymmetric, anticorrelated charge fluctuations of the macroion charges. The general theory is then implemented for a system of two protein-like macroions, generalizing the form and magnitude of the Kirkwood-Schumaker interaction.

  3. Diffuse charge effects in fuel cell membranes

    E-Print Network [OSTI]

    Biesheuvel, P. M.

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, ...

  4. Charge, spin and pseudospin in graphene

    E-Print Network [OSTI]

    Abanin, Dmitry A

    2008-01-01T23:59:59.000Z

    Graphene, a one-atom-thick form of carbon, has emerged in the last few years as a fertile electron system, highly promising for both fundamental research and applications. In this thesis we consider several topics in ...

  5. Influence of Induced Charges in the Electric Aharonov-Bohm Effect

    E-Print Network [OSTI]

    Rui-Feng Wang

    2014-09-24T23:59:59.000Z

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scale potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.

  6. Charge separation in organic photovoltaic cells

    E-Print Network [OSTI]

    Giazitzidis, Paraskevas; Bisquert, Juan; Vikhrenko, Vyacheslav S

    2014-01-01T23:59:59.000Z

    We consider a simple model for the geminate electron-hole separation process in organic photovoltaicssss cells, in order to illustrate the influence of dimensionality of conducting channels on the efficiency of the process. The Miller-Abrahams expression for the transition rates between nearest neighbor sites was used for simulating random walks of the electron in the Coulomb field of the hole. The non-equilibrium kinetic Monte Carlo simulation results qualitatively confirm the equilibrium estimations, although quantitatively the efficiency of the higher dimensional systems is less pronounced. The lifetime of the electron prior to recombination is approximately equal to the lifetime prior to dissociation. Their values indicate that electrons perform long stochastic walks before they are captured by the collector or recombined. The non-equilibrium free energy considerably differs from the equilibrium one. The efficiency of the separation process decreases with increasing the distance to the collector, and this...

  7. Plasma effect in Silicon Charge Coupled Devices (CCDs)

    E-Print Network [OSTI]

    Juan Estrada; Jorge Molina; J. Blostein; G. Fernandez

    2011-05-28T23:59:59.000Z

    Plasma effect is observed in CCDs exposed to heavy ionizing alpha-particles with energies in the range 0.5 - 5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agrees with previous measurements in the high energy region (>3.5 MeV). The measurements were extended to lower energies using alpha-particles produced by (n,alpha) reactions of neutrons in a Boron-10 target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of alpha particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  8. Dust acoustic shock waves in two temperatures charged dusty grains

    SciTech Connect (OSTI)

    El-Shewy, E. K. [Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura (Egypt); Science and Arts College in Al-Rass, Physics Department, Qassim University, Al-Rass Province (Saudi Arabia); Abdelwahed, H. G. [Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura (Egypt); College of Science and Humanitarian Studies, Physics Department, Alkharj University, Al-kharj (Saudi Arabia); Elmessary, M. A. [Engineering Mathematics and Physics Department, Faculty of Engineering, Mansoura University, Mansoura (Egypt)

    2011-11-15T23:59:59.000Z

    The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger equation and modified Korteweg-de Vries-Burger for dust acoustic shock waves in a homogeneous unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The behavior of the shock waves in the dusty plasma has been investigated.

  9. Spontaneous Charging and Crystallization of Water Droplets in Oil

    E-Print Network [OSTI]

    Joost de Graaf; Jos Zwanikken; Markus Bier; Arjen Baarsma; Yasha Oloumi; Mischa Spelt; Rene van Roij

    2008-07-31T23:59:59.000Z

    We study the spontaneous charging and the crystallization of spherical micron-sized water-droplets dispersed in oil by numerically solving, within a Poisson-Boltzmann theory in the geometry of a spherical cell, for the density profiles of the cations and anions in the system. We take into account screening, ionic Born self-energy differences between oil and water, and partitioning of ions over the two media. We find that the surface charge density of the droplet as induced by the ion partitioning is significantly affected by the droplet curvature and by the finite density of the droplets. We also find that the salt concentration and the dielectric constant regime in which crystallization of the water droplets is predicted is enhanced substantially compared to results based on the planar oil-water interface, thereby improving quantitative agreement with recent experiments.

  10. Transverse charge and magnetization densities in the nucleon's chiral periphery

    SciTech Connect (OSTI)

    Granados, Carlos G. [JLAB Newport News, VA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01T23:59:59.000Z

    In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.

  11. Charging and de-charging of dust particles in bulk region of a radio frequency discharge plasma

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research, Gandhinagar 382428 (India); Misra, Shikha; Sodha, M. S. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2013-03-15T23:59:59.000Z

    An analysis to investigate the effect of the dust particle size and density on the floating potential of the dust particles of uniform radius and other plasma parameters in the bulk region plasma of a RF-discharge in collisionless/collisional regime has been presented herein. For this purpose, the average charge theory based on charge balance on dust and number balance of plasma constituents has been utilized; a derivation for the accretion rate of electrons corresponding to a drifting Maxwellian energy distribution in the presence of an oscillatory RF field has been given and the resulting expression has been used to determine the floating potential of the dust grains. Further, the de-charging of the dust grains after switching off the RF field has also been discussed.

  12. Charged Majoron Emission in Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    C. Barbero; J. M. Cline; F. Krmpotic; D. Tadic

    1995-11-30T23:59:59.000Z

    We examine in detail the predictions of the charged majoron model, introduced recently by Burgess and Cline, for 0+ --> 0+ double beta decay transitions. The relevant nuclear matrix elements are evaluated, within the quasiparticle random phase approximation, for 76Ge, 82Se, 100Mo, 128Te and 150Nd nuclei. The calculated transition rates turn out to be much smaller than the experimental upper limits on possible majoron emission, except in a small region of the model's parameter space.

  13. Variable valve timing in a homogenous charge compression ignition engine

    DOE Patents [OSTI]

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03T23:59:59.000Z

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  14. Photoinduced charge separation in a porphyrin-tetraviologen supramolecular array

    SciTech Connect (OSTI)

    Batteas, J.D.; Harriman, A. (Univ. of Texas, Austin (USA)); Kanda, Yu.; Mataga, Noboru (Osaka Univ. (Japan)); Nowak, A.K. (Royal Institution, London (England))

    1990-01-03T23:59:59.000Z

    A porphyrin-tetraviologen supramolecule P-V{sub 4}, in which a viologen molecule is appended to each of the porphyrin meso positions via a 1,3-propanoxy-4-phenyl chain, has been studied by picosecond and nanosecond laser flash photolysis techniques. In DMSO solution, rapid charge separation (CS) occurs from the first excited singlet state of the porphyrin, giving rise to long-lived redox products. These products recombine via first-order kinetics ({tau} = 6.4 {plus minus} 0.7 {mu}s) to restore the ground-state reactants. Similar, but much slower, CS takes place from the porphyrin triplet excited state, which is formed in competition to CS from the singlet state. Quantum yields for formation of redox products and rates of both CS and charge recombination (CR) are solvent dependent, protic solvents favoring rapid CR.

  15. Gravity Role in Classical Electrodynamics of Charged Point Source

    E-Print Network [OSTI]

    M. B. Golubev

    1999-07-14T23:59:59.000Z

    This paper deals with the problem of a point-like charged source under the influence of the external electromagnetic field in terms of perturbation theory for GR equations. It is obtained that GR, in contrast with the classical electrodynamics, in linear perturbation theory predicts an unlimited growth of the dipole perturbation. It is shown that the reason for this unlimited perturbation growth might be related to the presence of the unstable rotational perturbation mode. The analysis of the conditions under which this instability may disappear is performed. The momentum value at which the stability is reached is estimated. These estimations give the electron spin by the order of magnitude (when charge value is equal to elementary one).

  16. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect (OSTI)

    Sangoro, Joshua R [ORNL; Kremer, Friedrich [University of Leipzig

    2012-01-01T23:59:59.000Z

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  17. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01T23:59:59.000Z

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  18. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24T23:59:59.000Z

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  19. Cosmic ray muon charge ratio in the MINOS far detector

    SciTech Connect (OSTI)

    Beall, Erik B; /Minnesota U.

    2005-12-01T23:59:59.000Z

    The MINOS Far Detector is a 5.4 kiloton (5.2 kt steel plus 0.2 kt scintillator plus aluminum skin) magnetized tracking calorimeter located 710 meters underground in the Soudan mine in Northern Minnesota. MINOS is the first large, deep underground detector with a magnetic field and thus capable of making measurements of the momentum and charge of cosmic ray muons. Despite encountering unexpected anomalies in distributions of the charge ratio (N{sub {mu}{sup +}}/N{sub {mu}{sup -}}) of cosmic muons, a method of canceling systematic errors is proposed and demonstrated. The result is R{sub eff} = 1.346 {+-} 0.002 (stat) {+-} 0.016 (syst) for the averaged charge ratio, and a result for a rising fit to slant depth of R(X) = 1.300 {+-} 0.008 (stat) {+-} 0.016 (syst) + (1.8 {+-} 0.3) x 10{sup -5} x X, valid over the range of slant depths from 2000 < X < 6000 MWE. This slant depth range corresponds to minimum surface muon energies between 750 GeV and 5 TeV.

  20. Ionic strength independence of charge distributions in solvation of biomolecules

    SciTech Connect (OSTI)

    Virtanen, J. J. [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Sosnick, T. R. [Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 (United States); Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Freed, K. F. [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States)

    2014-12-14T23:59:59.000Z

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  1. Charged star in (2+1)-dimensional gravity

    E-Print Network [OSTI]

    Ayan Banerjee; Farook Rahaman; Tanuka Chattopadhyay

    2014-07-26T23:59:59.000Z

    We obtain a new class of exact solutions for the Einstein-Maxwell system in static spherically symmetric charged star in (2+1)-dimensional gravity. In order to obtain the analytical solutions we treat the matter distribution anisotropic in nature admitting linear or nonlinear equation of state and the electric field intensity was specified. By choosing a suitable choice of mass function m(r), it is possible to integrate the system in closed form. All the solution, which are obtained in both linear and nonlinear cases are regular at the center and well behaved in the stellar interior.

  2. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    SciTech Connect (OSTI)

    Hiraide, Katsuki; /Kyoto U.

    2009-01-01T23:59:59.000Z

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for {nu}{sub {mu}} {yields} {nu}{sub x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance ({nu}{sub {mu}}N {yields} {mu}{sup -} N{pi}{sup +}) and coherent pion production interacting with the entire nucleus ({nu}{sub {mu}}A {yields} {mu}{sup -} A{pi}{sup +}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, {nu}{sub {mu}} {sup 12}C {yields} {mu}{sup -12}C{pi}{sup +}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 10{sup 20} protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 10{sup 20} protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67 x 10{sup -2} at mean neutrino energy 1.1 GeV and 1.36 x 10{sup -2} at mean neutrino energy 2.2 GeV. We reveal that the Rein-Sehgal model widely used in neutrino oscillation experiments breaks down at the neutrino energy region of a few GeV. This creates active controversies on the model of coherent pion production, and the understanding of coherent pion production is being progressed. In addition, future prospects of measurements of charged current single charged pion production in SciBooNE are discussed.

  3. Extension of the high load limit in the Homogeneous Charge Compression Ignition engine

    E-Print Network [OSTI]

    Scaringe, Robert J. (Robert Joseph)

    2009-01-01T23:59:59.000Z

    The Homogeneous Charge Compression Ignition (HCCI) engine offers diesel-like efficiency with very low soot and NOx emissions. In a HCCI engine, a premixed charge of air, fuel and burned gas is compressed to achieve ...

  4. Interaction for solitary waves in coasting charged particle beams

    SciTech Connect (OSTI)

    Liu, Shi-Wei; Hong, Xue-Ren; Shi, Yu-Ren; Duan, Wen-shan, E-mail: duanws@nwnu.edu.cn [College of Physics and Electronic Engineering and Joint Laboratory of Atomic an Molecular Physics of NWNU and IMPCAS, Northwest Normal University, Lanzhou 730070 (China)] [College of Physics and Electronic Engineering and Joint Laboratory of Atomic an Molecular Physics of NWNU and IMPCAS, Northwest Normal University, Lanzhou 730070 (China); Qi, Xin; Yang, Lei, E-mail: lyang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Han, Jiu-Ning [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)] [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)

    2014-03-15T23:59:59.000Z

    By using the extended Poincare-Lighthill-Kuo perturbation method, the collision of solitary waves in a coasting charged particle beams is studied. The results show that the system admits a solution with two solitary waves, which move in opposite directions and can be described by two Korteweg-deVries equation in small-amplitude limit. The collision of two solitary waves is elastic, and after the interaction they preserve their original properties. Then the weak phase shift in traveling direction of collision between two solitary waves is derived explicitly.

  5. Measurement of charge asymmetries in charmless hadronic B meson decays

    E-Print Network [OSTI]

    Ammar, Raymond G.; Bean, Alice; Besson, David Zeke; Davis, Robin E. P.; Kravchenko, I.; Kwak, Nowhan; Zhao, X.

    2000-07-01T23:59:59.000Z

    for continuum background stud- ies. CLEO is a general purpose solenoidal magnet detector, described in detail elsewhere [12]. Cylindrical drift cham- bers in a 1.5 T solenoidal magnetic field measure momenta and specific ionization (dEH20862dx) of charged tracks... for q?q events and is helium-propane mixture. These modifications led to im- proved dEH20862dx resolution in the main drift chamber, as well as improved momentum resolution. Two-thirds of the data used in the present analysis were taken with the improved...

  6. Space charge behaviour in an epoxy resin: the influence of fillers, temperature and electrode material

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Space charge behaviour in an epoxy resin: the influence of fillers, temperature and electrode material Short title: Space charge in an epoxy resin O. Gallot-lavallée 1 *, G. Teyssedre 1 , C. Laurent 1 the possibility of performing space charge measurement on filled epoxy resin despite the piezoelectricity

  7. Topological Charge Pumping in a One-Dimensional Optical Lattice Lei Wang,1,2

    E-Print Network [OSTI]

    Wang, Wei Hua

    Topological Charge Pumping in a One-Dimensional Optical Lattice Lei Wang,1,2 Matthias Troyer,1 (Received 30 January 2013; published 9 July 2013) A topological charge pump transfers charge in a quantized fashion. The quantization is stable against the detailed form of the pumping protocols and external noises

  8. Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas

    E-Print Network [OSTI]

    Harilal, S. S.

    Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas S.S. HARILAL,1 C charge-exchange collisions between highly charged Mg ions in colliding laser-produced magnesium plasmas magnesium plasmas. 1. INTRODUCTION Several applications of laser-produced plasmas involve an experimental

  9. Optimizing small wind turbine performance in battery charging applications

    SciTech Connect (OSTI)

    Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

    1995-05-01T23:59:59.000Z

    Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

  10. ARCHITECTURE FOR A SERVICE-ORIENTED AND CONVERGENT CHARGING IN 3G MOBILE NETWORKS

    E-Print Network [OSTI]

    Carle, Georg

    ARCHITECTURE FOR A SERVICE-ORIENTED AND CONVERGENT CHARGING IN 3G MOBILE NETWORKS AND BEYOND R Systems, Erlangen, Germany Keywords: Charging architecture, service-oriented, convergent, 3G mobile we present a service-oriented charging architecture. The key idea of the architecture

  11. Spur Reduction in Wideband PLLs by Random Positioning of Charge Pump Current Pulses

    E-Print Network [OSTI]

    Krishnapura, Nagendra

    Spur Reduction in Wideband PLLs by Random Positioning of Charge Pump Current Pulses Chembiyan, Madras, Chennai 600 036, India Abstract-- Charge pump PLL is prone to reference spurs due to non-idealities like feedthrough, charge pump current mismatch and loop filter leakage. To resolve the problem

  12. Experimental Characterization of Space Charge in IZIP Detectors

    SciTech Connect (OSTI)

    Doughty, T; /UC, Berkeley; Pyle, M.; /Stanford U.; Mirabolfathi, N.; Serfass, B.; /UC, Berkeley; Kamaev, O.; /Queen's U., Kingston; Hertel, S.; Leman, S.W.; /MIT; Brink, P.; /SLAC; Cabrera, B.; /Stanford U.; Sadoulet, B.; /UC, Berkeley

    2012-06-12T23:59:59.000Z

    Interleaved ionization electrode geometries offer the possibility of efficient rejection of near-surface events. The CDMS collaboration has recently implemented this interleaved approach for the charge and phonon readout for our germanium detectors. During a recent engineering run, the detectors were found to lose ionization stability quickly. This paper summarizes studies done in order to determine the underlying cause of the instability, as well as possible running modes that maintain stability without unacceptable loss of livetime. Additionally, results are shown for the new version IZIP mask which attempts to improve the overall stability of the detectors.

  13. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

    2008-05-27T23:59:59.000Z

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  14. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape,PhysicsDileepDirac Charge Dynamcs in Graphene

  15. Surface States and the Charge of a Dust Particle in a Plasma

    SciTech Connect (OSTI)

    Bronold, F. X.; Fehske, H.; Deutsch, H. [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, D-17489 Greifswald (Germany); Kersten, H. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet zu Kiel, D-24098 Kiel (Germany)

    2008-10-24T23:59:59.000Z

    We investigate electron and ion surface states of a negatively charged dust particle in a gas discharge and identify the charge of the particle with the electron surface density bound in the polarization-induced short-range part of the particle potential. On that scale, ions do not affect the charge. They are trapped in the shallow states of the Coulomb tail of the potential and act only as screening charges. Using orbital-motion limited electron charging fluxes and the particle temperature as an adjustable parameter, we obtain excellent agreement with experimental data.

  16. Charge states of Ca atoms in {beta}-dicalcium silicate

    SciTech Connect (OSTI)

    Mori, Kazuhiro [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)]. E-mail: kmori@rri.kyoto-u.ac.jp; Kiyanagi, Ryoji [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Yonemura, Masao [Institute of Applied Beam Science, Graduate School of Engineering and Science, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitach, Ibaraki 316-8511 (Japan); Iwase, Kenji [Department of Materials Structure Science, Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Sato, Takashi [Department of Engineering Physics and Mechanics, Kyoto University, Kyoto 606-8501 (Japan); Itoh, Keiji [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sugiyama, Masaaki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Kamiyama, Takashi [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Fukunaga, Toshiharu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2006-11-15T23:59:59.000Z

    In order to study the crystal structure of {beta}-bar Ca{sub 2}SiO{sub 4}, time-of-flight neutron powder diffraction experiments were carried out at temperatures between room temperature (RT) and 600 deg. C. Rietveld refinement at RT has shown that {beta}-bar Ca{sub 2}SiO{sub 4} is monoclinic based on P2{sub 1}/n symmetry and two different types of Ca sites, Ca(1) and Ca(2). All interatomic distances within 3A were calculated, with the valences of Ca(1) with seven Ca-O bonds and Ca(2) with eight were estimated to be 1.87+ and 2+ by the Zachariasen-Brown-Altermatt formula (bond valence sum). Applying charge neutrality the two charge states of Ca in {beta}-bar Ca{sub 2}SiO{sub 4} are [Ca(1)SiO{sub 4}]{sup 2-} and Ca(2){sup 2+}, respectively. Furthermore, the [Ca(1)SiO{sub 4}]{sup 2-} unit has the shortest Ca-O distance, and its length kept constant at 2.23A at all temperatures. In the short-range structure analysis at RT, the shortest Ca-O bond was also observed in a radial distribution function. These results imply that the [Ca(1)SiO{sub 4}]{sup 2-} unit has covalency on the shortest Ca-O in addition to Si-O.

  17. Hawking Radiation of a Charged Black Hole in Quantum Gravity

    E-Print Network [OSTI]

    Ichiro Oda

    2015-03-18T23:59:59.000Z

    We study black hole radiation of a Reissner-Nordstrom black hole with an electric charge in the framework of quantum gravity. Based on a canonical quantization for a spherically symmetric geometry, under physically plausible assumptions, we solve the Wheeler-De Witt equation in the regions not only between the outer apparent horizon and the spatial infinity but also between the spacetime singularity and the inner apparent horizon, and then show that the mass loss rate of an evaporating black hole due to thermal radiation agrees with the semiclassical result when we choose an integration constant properly by physical reasoning. Furthermore, we also solve the Wheeler-De Witt equation in the region between the inner Cauchy horizon and the outer apparent horizon, and show that the mass loss rate of an evaporating black hole has the same expression. The present study is the natural generalization of the case of a Schwarzschild black hole to that of a charged Reissner-Nordstrom black hole.

  18. Hawking Radiation of a Charged Black Hole in Quantum Gravity

    E-Print Network [OSTI]

    Oda, Ichiro

    2015-01-01T23:59:59.000Z

    We study black hole radiation of a Reissner-Nordstrom black hole with an electric charge in the framework of quantum gravity. Based on a canonical quantization for a spherically symmetric geometry, under physically plausible assumptions, we solve the Wheeler-De Witt equation in the regions not only between the outer apparent horizon and the spatial infinity but also between the spacetime singularity and the inner apparent horizon, and then show that the mass loss rate of an evaporating black hole due to thermal radiation agrees with the semiclassical result when we choose an integration constant properly by physical reasoning. Furthermore, we also solve the Wheeler-De Witt equation in the region between the inner Cauchy horizon and the outer apparent horizon, and show that the mass loss rate of an evaporating black hole has the same expression. The present study is the natural generalization of the case of a Schwarzschild black hole to that of a charged Reissner-Nordstrom black hole.

  19. Control of charge migration in molecules by ultrashort laser pulses

    E-Print Network [OSTI]

    Nikolay V. Golubev; Alexander I. Kuleff

    2015-02-19T23:59:59.000Z

    Due to electronic many-body effects, the ionization of a molecule can trigger ultrafast electron dynamics appearing as a migration of the created hole charge throughout the system. Here we propose a scheme for control of the charge migration dynamics with a single ultrashort laser pulse. We demonstrate by fully ab initio calculations on a molecule containing a chromophore and an amine moieties that simple pulses can be used for stopping the charge-migration oscillations and localizing the charge on the desired site of the system. We argue that this control may be used to predetermine the follow-up nuclear rearrangement and thus the molecular reactivity.

  20. Control of charge migration in molecules by ultrashort laser pulses

    E-Print Network [OSTI]

    Golubev, Nikolay V

    2015-01-01T23:59:59.000Z

    Due to electronic many-body effects, the ionization of a molecule can trigger ultrafast electron dynamics appearing as a migration of the created hole charge throughout the system. Here we propose a scheme for control of the charge migration dynamics with a single ultrashort laser pulse. We demonstrate by fully ab initio calculations on a molecule containing a chromophore and an amine moieties that simple pulses can be used for stopping the charge-migration oscillations and localizing the charge on the desired site of the system. We argue that this control may be used to predetermine the follow-up nuclear rearrangement and thus the molecular reactivity.

  1. Electric Charge and Electric Field Electrostatics: Charge at rest

    E-Print Network [OSTI]

    Yu, Jaehoon

    Chapter 16 Electric Charge and Electric Field #12;Electrostatics: Charge at rest Electric Charges of conservation of Electric Charge: The net amount of electric charge produced in any process is zero. Model, neutral). #12;· All protons and electrons have same magnitude of electric charge but their masses

  2. Charge Transfer and Support Effects in Heterogeneous Catalysis

    SciTech Connect (OSTI)

    Hervier, Antoine

    2011-12-21T23:59:59.000Z

    The kinetic, electronic and spectroscopic properties of two?dimensional oxide?supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO{sub 2} nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I?V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non?adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO{sub 2}. The yield for this phenomenon is on the order of 10{sup ?4} electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO{sub 2} system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D{sub 2} compared to H{sub 2}, contrary to what is expected given the higher mass of D{sub 2}. Reversible changes in the rectification factor of the diode are observed when switching between D{sub 2} and H{sub 2}. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H{sub 2} oxidation. Absorption of the light in the Si, combined with the band bending at the interface, gives rise to a steady?state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO{sub 2} films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO{sub 2}, F was found to act as an n?type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO{sub 2} films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO{sub 2} as the support, F?doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO{sub 2}. With non?stoichiometric TiO{sub 2}, F?doping had the reverse effect. Ambient Pressure X?Ray Photoelectron Spectroscopy was used to investigate this F?doping effect in reaction conditions. In O2 alone, and in CO oxidation conditions, the O1s spectrum showed a high binding energy peak that correlated in intensity with the activity of the different films: for stoichiomet

  3. Electron-exchange effects on the charge capture process in degenerate quantum plasmas

    SciTech Connect (OSTI)

    Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of); Akbari-Moghanjoughi, M. [Azarbaijan Shahid Madani University, Faculty of Sciences, Department of Physics, 51745-406 Tabriz (Iran, Islamic Republic of) [Azarbaijan Shahid Madani University, Faculty of Sciences, Department of Physics, 51745-406 Tabriz (Iran, Islamic Republic of); International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany)

    2014-03-15T23:59:59.000Z

    The electron-exchange effects on the charge capture process are investigated in degenerate quantum plasmas. The Bohr-Lindhard formalism with the effective interaction potential is employed to obtain the charge capture radius, capture probability, and capture cross section as functions of the impact parameter, projectile energy, electron-exchange parameter, Fermi energy, and plasmon energy. The result shows that the electron-exchange effect enhances the charge capture radius and the charge capture cross section in semiconductor quantum plasmas. It is also found that the charge capture radius and charge capture cross section increases with an increase of the Fermi energy and, however, decreases with increasing plasmon energy. Additionally, it is found that the peak position of the charge capture cross section is receded from the collision center with an increase of the electron-exchange parameter.

  4. Dirac charge dynamics in graphene by infrared spectroscopy

    SciTech Connect (OSTI)

    Martin, Michael C; Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, Michael C; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-04-29T23:59:59.000Z

    A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schrödinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene.

  5. Massive charged scalar field in the Kerr-Newman background II: Hawking radiation

    E-Print Network [OSTI]

    R. A. Konoplya; A. Zhidenko

    2014-04-03T23:59:59.000Z

    We perform accurate calculations of the energy-, momentum-, and charge-emission rates of a charged scalar field in the background of the Kerr-Newman black hole at the range of parameters for which the effect is not negligibly small and, at the same time, the semiclassical regime is, at least marginally, valid. For black holes with charge below or not much higher than the charge accretion limit $Q \\sim \\mu M/e$ (where $e$ and $\\mu$ are the electron's mass and charge), the time between the consequent emitting of two charged particles is very large. For primordial black holes the transition between the increasing and decreasing of the ratio $Q/M$ occurs around the charge accretion limit. The rotation increases the intensity of radiation up to three orders, while the effect of the field's mass strongly suppresses the radiation.

  6. Generalized charge-screening in relativistic Thomas–Fermi model

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz, Iran and International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany)

    2014-10-15T23:59:59.000Z

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}?r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.

  7. Higher Derivative Corrections to Charged Fluids in 2n Dimensions

    E-Print Network [OSTI]

    Nabamita Banerjee; Suvankar Dutta; Akash Jain

    2015-02-25T23:59:59.000Z

    We study anomalous charged fluid in $2n$-dimensions ($n\\geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.

  8. Higher Derivative Corrections to Charged Fluids in 2n Dimensions

    E-Print Network [OSTI]

    Banerjee, Nabamita; Jain, Akash

    2015-01-01T23:59:59.000Z

    We study anomalous charged fluid in $2n$-dimensions ($n\\geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.

  9. Higher Derivative Corrections to Charged Fluids in 2n Dimensions

    E-Print Network [OSTI]

    Nabamita Banerjee; Suvankar Dutta; Akash Jain

    2015-01-31T23:59:59.000Z

    We study anomalous charged fluid in $2n$-dimensions ($n\\geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.

  10. Quantitative Assessment of Range Fluctuations in Charged Particle Lung Irradiation

    SciTech Connect (OSTI)

    Mori, Shinichiro [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)], E-mail: shinshin@nirs.go.jp; Wolfgang, John; Lu, H.-M.; Schneider, Robert; Choi, Noah C.; Chen, George T.Y. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2008-01-01T23:59:59.000Z

    Purpose: Water equivalent path length (WEL) variations due to respiration can change the range of a charged particle beam and result in beam overshoot to critical organs or beam undershoot to tumor. We have studied range fluctuations by analyzing four-dimensional computed tomography data and quantitatively assessing potential beam overshoot. Methods and Materials: The maximal intensity volume is calculated by combining the gross tumor volume contours at each respiratory phase in the four-dimensional computed tomography study. The first target volume calculates the maximal intensity volume for the entire respiratory cycle (internal target volume [ITV]-radiotherapy [RT]), and the second target volume is the maximal intensity volume corresponding to gated RT (gated-RT, {approx}30% phase window around exhalation). A compensator at each respiratory phase is calculated. Two 'composite' compensators for ITV-RT and gated-RT are then designed by selecting the minimal compensator depth at the respective respiratory phase. These compensators are then applied to the four-dimensional computed tomography data to estimate beam penetration. Analysis metrics include range fluctuation and overshoot volume, both as a function of gantry angle. We compared WEL fluctuations observed in treating the ITV-RT versus gated-RT in 11 lung patients. Results: The WEL fluctuations were <21.8 mm-WEL and 9.5 mm-WEL for ITV-RT and gated-RT, respectively for all patients. Gated-RT reduced the beam overshoot volume by approximately a factor of four compared with ITV-RT. Such range fluctuations can affect the efficacy of treatment and result in an excessive dose to a distal critical organ. Conclusion: Time varying range fluctuation analysis provides information useful for determining appropriate patient-specific treatment parameters in charged particle RT. This analysis can also be useful for optimizing planning and delivery.

  11. Quantum phase transition from triangular to stripe charge order in NbSe[subscript 2

    E-Print Network [OSTI]

    Hudson, E. W.

    The competition between proximate electronic phases produces a complex phenomenology in strongly correlated systems. In particular, fluctuations associated with periodic charge or spin modulations, known as density waves, ...

  12. On the absence of scalar hair for charged rotating blackholes in non minimally coupled theories

    E-Print Network [OSTI]

    S. Sen; N. Banerjee

    2001-05-31T23:59:59.000Z

    In this work we check the validity of the no scalar hair theorem in charged axisymmetric stationary black holes for a wide class of scalar tensor theories.

  13. Associated charged Higgs boson and squark production in the NUHM model.

    E-Print Network [OSTI]

    Lund, Gustav

    2010-01-01T23:59:59.000Z

    ?? Conventional searches for the charged Higgs boson using its production in association with Standard Model (SM) quarks is notoriously weak in the mid-tanB range.… (more)

  14. Screening model for nanowire surface-charge sensors in liquid

    E-Print Network [OSTI]

    Martin H. Sorensen; Niels Asger Mortensen; Mads Brandbyge

    2007-08-17T23:59:59.000Z

    The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers. We discuss this effect within Thomas-Fermi and Debye-Huckel theory and derive analytical results for cylindrical wires which can be used to estimate the sensitivity of nanowire surface-charge sensors. We study the interplay between the nanowire radius, the Thomas-Fermi and Debye screening lengths, and the length of the functionalization molecules. The analytical results are compared to finite-element calculations on a realistic geometry.

  15. Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes

    SciTech Connect (OSTI)

    Kovar, Jiri; Slany, Petr; Stuchlik, Zdenek; Karas, Vladimir; Cremaschini, Claudio; Miller, John C. [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava Bezrucovo nam. 13, CZ-74601 Opava (Czech Republic); Astronomical Institute, Academy of Sciences, Bocni II, CZ-14131 Prague (Czech Republic); SISSA and INFN, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Via Bonomea 265, I-34136 Trieste, Italy and Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2011-10-15T23:59:59.000Z

    Astrophysical fluids may acquire nonzero electrical charge because of strong irradiation or charge separation in a magnetic field. In this case, electromagnetic and gravitational forces may act together and produce new equilibrium configurations, which are different from the uncharged ones. Following our previous studies of charged test particles and uncharged perfect fluid tori encircling compact objects, we introduce here a simple test model of a charged perfect fluid torus in strong gravitational and electromagnetic fields. In contrast to ideal magnetohydrodynamic models, we consider here the opposite limit of negligible conductivity, where the charges are tied completely to the moving matter. This is an extreme limiting case which can provide a useful reference against which to compare subsequent more complicated astrophysically motivated calculations. To clearly demonstrate the features of our model, we construct three-dimensional axisymmetric charged toroidal configurations around Reissner-Nordstroem black holes and compare them with equivalent configurations of electrically neutral tori.

  16. Statistical charge distribution over dust particles in a non-Maxwellian Lorentzian plasma

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar-382428 (India); Misra, Shikha, E-mail: shikhamish@gmail.com [Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi-110016 (India)

    2014-07-15T23:59:59.000Z

    On the basis of statistical mechanics and charging kinetics, the charge distribution over uniform size spherical dust particles in a non-Maxwellian Lorentzian plasma is investigated. Two specific situations, viz., (i) the plasma in thermal equilibrium and (ii) non-equilibrium state where the plasma is dark (no emission) or irradiated by laser light (including photoemission) are taken into account. The formulation includes the population balance equation for the charged particles along with number and energy balance of the complex plasma constituents. The departure of the results for the Lorentzian plasma, from that in case of Maxwellian plasma, is graphically illustrated and discussed; it is shown that the charge distribution tends to results corresponding to Maxwellian plasma for large spectral index. The charge distribution predicts the opposite charging of the dust particles in certain cases.

  17. Polarization Effects In The Charged Lepton Pair Production By A Neutrino (Antineutrino) In A Magnetic Field

    SciTech Connect (OSTI)

    Huseynov, Vali A. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan); Laboratory of Physical Research, Nakhchivan Division of Azerbaijan National Academy of Sciences, AZ 7000, Nakhchivan (Azerbaijan); Ahmad, Ali S. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan)

    2007-06-13T23:59:59.000Z

    The probability of the process of the charged lepton pair production by a neutrino (an antineutrino) with allowance for the longitudinal and transverse polarizations of the charged leptons in a magnetic field is presented. The dependence of the probability of the process on the spin variables of the charged leptons and on the azimuthal and polar angles of the initial and final neutrinos (antineutrinos) are investigated. It is shown that the probability of the process is sensitive to the spin variables of the charged leptons and to the direction of the neutrino (antineutrino) momentum. It is determined that the neutrino (antineutrino) energy and momentum loss through the production of a charged lepton pair happens asymmetrically.

  18. Net-charge probability distributions in heavy ion collisions at chemical freeze-out

    E-Print Network [OSTI]

    P. Braun-Munzinger; B. Friman; F. Karsch; K. Redlich; V. Skokov

    2011-11-21T23:59:59.000Z

    We explore net charge probability distributions in heavy ion collisions within the hadron resonance gas model. The distributions for strangeness, electric charge and baryon number are derived. We show that, within this model, net charge probability distributions and the resulting fluctuations can be computed directly from the measured yields of charged and multi-charged hadrons. The influence of multi-charged particles and quantum statistics on the shape of the distribution is examined. We discuss the properties of the net proton distribution along the chemical freeze-out line. The model results presented here can be compared with data at RHIC energies and at the LHC to possibly search for the relation between chemical freeze-out and QCD cross-over lines in heavy ion collisions.

  19. On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems

    E-Print Network [OSTI]

    Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

    2011-01-01T23:59:59.000Z

    Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

  20. Role of positively charged dust grains on dust acoustic wave propagation in presence of nonthermal ions

    SciTech Connect (OSTI)

    Sarkar, Susmita; Maity, Saumyen [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India)] [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2013-08-15T23:59:59.000Z

    An expression for ion current flowing to the dust grains is proposed, when dust charge is positive and the ions are nonthermal. Secondary electron emission has been considered as the source of positive charging of the dust grains. Investigation shows that presence of positively charged dust grains along with thermal electrons and nonthermal ions generate purely growing dust acoustic waves for both the cases of ion nonthermal parameter greater than one and less than one. In the later case, the growth is conditional.

  1. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    E-Print Network [OSTI]

    P. V. Buividovich; T. Kalaydzhyan; M. I. Polikarpov

    2012-10-21T23:59:59.000Z

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d = 2..3 towards the total space dimension. Therefore, the cooling procedure destroys some of the essential properties of the topological charge distribution.

  2. CHARGE STATE EVOLUTION IN THE SOLAR WIND. II. PLASMA CHARGE STATE COMPOSITION IN THE INNER CORONA AND ACCELERATING FAST SOLAR WIND

    SciTech Connect (OSTI)

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-12-10T23:59:59.000Z

    In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R{sub sun} from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.

  3. The effect of a direct current field on the microparticle charge in the plasma afterglow

    SciTech Connect (OSTI)

    Wörner, L. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany) [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Groupe de Recherches sur l'Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Ivlev, A. V.; Huber, P.; Hagl, T.; Thomas, H. M.; Morfill, G. E. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany)] [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Couëdel, L. [Centre National de la Recherche Scientifique, Aix-Marseille-Université, Laboiratoire de Physique des Intéractions Ioniques et Moléculaires, UMR 7345, 13397 Marseille cedex 20 (France)] [Centre National de la Recherche Scientifique, Aix-Marseille-Université, Laboiratoire de Physique des Intéractions Ioniques et Moléculaires, UMR 7345, 13397 Marseille cedex 20 (France); Schwabe, M. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany) [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 (United States); Mikikian, M.; Boufendi, L. [Groupe de Recherches sur l'Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France)] [Groupe de Recherches sur l'Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Skvortsov, A. [Yuri Gagarin Cosmonauts Training Center, RU-141160 Star City (Russian Federation)] [Yuri Gagarin Cosmonauts Training Center, RU-141160 Star City (Russian Federation); Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E. [Joint Institute for High Temperatures, RU-125412 Moscow (Russian Federation)] [Joint Institute for High Temperatures, RU-125412 Moscow (Russian Federation)

    2013-12-15T23:59:59.000Z

    Residual charges of individual microparticles forming dense clouds were measured in a RF discharge afterglow. Experiments were performed under microgravity conditions on board the International Space Station, which ensured particle levitation inside the gas volume after the plasma switch-off. The distribution of residual charges as well as the spatial distribution of charged particles across the cloud were analyzed by applying a low-frequency voltage to the electrodes and measuring amplitudes of the resulting particle oscillations. Upon “free decharging” conditions, the charge distribution had a sharp peak at zero and was rather symmetric (with charges concentrated between ?10e and +10e), yet positively and negatively charged particles were homogeneously distributed over the cloud. However, when decharging evolved in the presence of an external DC field (applied shortly before the plasma switch-off) practically all residual charges were positive. In this case, the overall charge distribution had a sharp peak at about +15e and was highly asymmetric, while the spatial distribution exhibited a significant charge gradient along the direction of the applied DC field.

  4. Oxygen sublattice defect in cobalt oxide : formation, migration, charge localization and thermodynamic processes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    643 Oxygen sublattice defect in cobalt oxide : formation, migration, charge localization of oxygen defects in CoO using classical simulations. The charge localization in the oxygen vacancy has]. The defect concentration in the oxygen sublattice is several orders of magnitude smaller, but never- theless

  5. Rapidity Dependence of Charged Hadron Production in Central Au+Au Collisions at

    E-Print Network [OSTI]

    ­chemical potential in energy and rapidity. In ultra-relativistic heavy ion collisions, final state hadrons are used (-0.1 y 3.5). In this paper, we report on some of our latest results on identified charged particle. Detector efficiency, multiple scattering and in­flight decay corrections #12;Charged Hadron Production

  6. Controllable spin-charge transport in strained graphene nanoribbon devices

    SciTech Connect (OSTI)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Guassi, Marcos R. [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Qu, Fanyao [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-09-21T23:59:59.000Z

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance of ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.

  7. WASTE DISPOSAL IN GRANITE: PRELIMINARY RESULTS FROM STRIPA, SWEDEN

    E-Print Network [OSTI]

    Cook, N.G.W.

    2010-01-01T23:59:59.000Z

    of intact specimens cf granite are of the order of onemost hard rock, in­ cluding granite. Is Interrupted by setsthe pro­ perties of the granite as measured in laboratory

  8. Dynamically generated electric charge distributions in Abelian projected SU(2) lattice gauge theories

    E-Print Network [OSTI]

    A. Hart; R. W. Haymaker; Y. Sasai

    1998-08-28T23:59:59.000Z

    We show in the maximal Abelian gauge the dynamical electric charge density generated by the coset fields, gauge fixing and ghosts shows antiscreening as in the case of the non-Abelian charge. We verify that with the completion of the ghost term all contributions to flux are accounted for in an exact lattice Ehrenfest relation.

  9. A Decentralized MPC Strategy for Charging Large Populations of Plug-in

    E-Print Network [OSTI]

    Hiskens, Ian A.

    A Decentralized MPC Strategy for Charging Large Populations of Plug-in Electric Vehicles Zhongjing Ma Ian Hiskens Duncan Callaway School of Automation, Beijing Institute of Technology, Beijing for decentralized coordination of plug-in electric vehicle (PEV) charging patterns in scenarios where the future

  10. Comparison of quantization of charge transport in periodic and open pumps

    E-Print Network [OSTI]

    Comparison of quantization of charge transport in periodic and open pumps G.M. Graf and G. Ortelli the charges transported in two systems, a spatially periodic and an open quantum pump, both depending physical situations become the same, i.e., that of a large open pump. 1 Introduction In this note we

  11. In-Order Pulsed Charge Recycling in Off-Chip Data Buses Kimish Patel, Wonbok Lee, Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    In-Order Pulsed Charge Recycling in Off-Chip Data Buses Kimish Patel, Wonbok Lee, Massoud Pedram,wonbokle,pedram}@usc.edu ABSTRACT This paper presents in-order pulsed charge recycling to reduce energy consumption in an off-chip data bus. The proposed technique performs charge recycling by employing three steps: i

  12. Conserved Charges in Asymptotically (Locally) AdS Spacetimes

    E-Print Network [OSTI]

    Sebastian Fischetti; William Kelly; Donald Marolf

    2014-04-24T23:59:59.000Z

    We review issues related to conservation laws for gravity with a negative cosmological constant subject to asymptotically (locally) anti-de Sitter boundary conditions. Beginning with the empty AdS spacetime, we introduce asymptotically (locally) AdS (AlAdS) boundary conditions, important properties of the boundary metric, the notion of conformal frames, and the Fefferman-Graham expansion. These tools are used to construct variational principles for AlAdS gravity, to more properly define the notion of asymptotic symmetry, and to construct the associated boundary stress tensor. The resulting conserved charges are shown to agree (up to possible choices of zero-point) with those built using Hamiltonian methods. Brief comments are included on AdS positive energy theorems and the appearance of a central extension of the AdS$_3$ asymptotic symmetry algebra. We also describe the algebra of boundary observables and introduce the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence using only tools from gravitational physics (and without other input from string theory). Our review focuses on motivations, current status, and open issues as opposed to calculational details. We emphasize the relativist (as opposed to particle physics) perspective and assume as background a standard graduate course in general relativity.

  13. Selectivity in the interactions between positively charged small molecules and negatively charged biopolymers

    E-Print Network [OSTI]

    Elson-Schwab, Lev

    2006-01-01T23:59:59.000Z

    1 H NMR (400 MHz, acetonitrile-d 3 ) ? 8.58-8.50 (q, 2H),HPLC (C-18, 0-30% acetonitrile (0.1% TFA) in water (0.1 %purification (C-8, 5-13% acetonitrile (0.1% TFA) in water

  14. Charging Games in Networks of Electrical Vehicles Olivier Beaude, Samson Lasaulce, and Martin Hennebel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Charging Games in Networks of Electrical Vehicles Olivier Beaude, Samson Lasaulce, and Martin charging in electrical vehicle (EV) networks is proposed. This formulation allows one to model games, electrical vehicle, distribution net- works, potential games, Nash equilibrium, price of anarchy

  15. RENORMALIZED ENERGY EQUIDISTRIBUTION AND LOCAL CHARGE BALANCE IN 2D COULOMB SYSTEMS

    E-Print Network [OSTI]

    RENORMALIZED ENERGY EQUIDISTRIBUTION AND LOCAL CHARGE BALANCE IN 2D COULOMB SYSTEMS SIMONA ROTA of the "Coulomb renormalized energy" of Sandier-Serfaty, which corresponds to the total Coulomb interaction point charges with Coulomb pair interaction, in a con- fining potential (minimizers of this energy also

  16. Charge solitons and their dynamical mass in one-dimensional arrays of Josephson junctions

    SciTech Connect (OSTI)

    Homfeld, Jens [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Protopopov, Ivan [Institut fuer Nanotechnologie, Karlsruhe Institute of Technology, D-76021 Karlsruhe (Germany); Landau Institute for Theoretical Physics, RU-119334 Moscow (Russian Federation); Rachel, Stephan [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Shnirman, Alexander [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2011-02-01T23:59:59.000Z

    We investigate charge transport in one-dimensional arrays of Josephson junctions. In the interesting regime of ''small charge solitons'' (polarons), {Lambda}E{sub J}>E{sub C}>E{sub J}, where {Lambda} is the (electrostatic) screening length, the charge dynamics are strongly influenced by the polaronic effects (i.e., by dressing of a Cooper pair by charge dipoles). In particular, the soliton's mass in this regime scales approximately as E{sub J}{sup -2}. We employ two theoretical techniques: the many-body tight-binding approach and the mean-field approach, and the results of the two approaches agree in the regime of ''small charge solitons.'' Renormalization of the soliton's mass could be observed; for example, as enhancement of the persistent current in a ring-shaped array.

  17. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect (OSTI)

    Kakati, B., E-mail: bharatkakati15@gmail.com; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics-Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup 782402, Assam (India); Bandyopadhyay, M.; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-10-28T23:59:59.000Z

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  18. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOE Patents [OSTI]

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14T23:59:59.000Z

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  19. Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms with different EV battery charging rate constraints, that is distributed across a smart power grid network the power grid. One way to tackle this problem is to adopt a "smart grid" solution, which allows EVs

  20. International Journal of Mass Spectrometry 219 (2002) 7377 Protein charge transport in gas phase

    E-Print Network [OSTI]

    Sheu, Sheh-Yi

    temperature limit, the rotational energy can be transferred with very high efficiency and hence one obtainsInternational Journal of Mass Spectrometry 219 (2002) 73­77 Protein charge transport in gas phase high charge transport efficiency. (Int J Mass Spectrom 219 (2002) 73­77) © 2002 Elsevier Science B

  1. Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    different settings. Index Terms--Optimal power flow, electric vehicle charging, valley-filling, onlineForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms, IEEE. Abstract--Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence

  2. Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites

    SciTech Connect (OSTI)

    David Rohrbaugh; John Smart

    2014-11-01T23:59:59.000Z

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  3. Small-Angle Neutron Scattering Studies of Charged Carboxyl-Terminated Dendrimers in Solutions

    E-Print Network [OSTI]

    Dubin, Paul D.

    Small-Angle Neutron Scattering Studies of Charged Carboxyl-Terminated Dendrimers in Solutions Q. R-angle neutron scattering was used to characterize the solution behavior of charged carboxylic acid terminated- copy,16 small-angle X-ray scattering,17 and small-angle neutron scattering (SANS),18-25 have been used

  4. Infrared Charge-Modulation Spectroscopy of Defects in Phosphorus Doped Amorphous Silicon

    E-Print Network [OSTI]

    Schiff, Eric A.

    Infrared Charge-Modulation Spectroscopy of Defects in Phosphorus Doped Amorphous Silicon KAI ZHU Solar, Toano, VA 23168 USA ABSTRACT We present infrared charge-modulation absorption spectra have been developing an infrared modulation spectroscopy technique that probes the optical spectra

  5. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01T23:59:59.000Z

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  6. Thermoelectric eect on charged colloids in the Hckel limit Julien Morthomas and Alois Wrger

    E-Print Network [OSTI]

    Boyer, Edmond

    the thermophoretic coe¢ cient DT of a charged colloid. The non-uniform electrolyte is characterized in terms, a host of experimental data pro- vided clear evidence that the thermophoretic coe¢ cient DT of charged the electrolyte composition. The thermophoretic mobility of latex nanoparticles was shown to depend

  7. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    SciTech Connect (OSTI)

    Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur-782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar- 382 428 (India)

    2011-06-15T23:59:59.000Z

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  8. IIR Workshop on Refrigerant Charge Reduction in Refrigerating Systems Corresponding author: P. Leblay

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    3rd IIR Workshop on Refrigerant Charge Reduction in Refrigerating Systems Corresponding author: P on the refrigerant side and louver fins on the air side. The flat tubes are grouped within a header, to use the heat exchangers with round tubes, such as charge reduction and higher heat transfer efficiency. But a reduced

  9. Charge structure and lightning sensitivity in a simulated multicell thunderstorm

    E-Print Network [OSTI]

    Mansell, Edward "Ted"

    continental multicell storm. Five laboratory-based parameterizations of noninductive graupel-ice charge for rebounding graupel-droplet collisions. Each noninductive graupel-ice parameterization is combined. [3] Only a few studies have employed multidimensional dynamical simulation models with predicted ice-phase

  10. Charge carrier transport properties in layer structured hexagonal boron nitride

    SciTech Connect (OSTI)

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-10-15T23:59:59.000Z

    Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700?°K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of ? ? (T/T{sub 0}){sup ??} with ? = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ?? = 192 meV (or 1546 cm{sup -1}), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  11. Electric charge in the field of a magnetic event in three-dimensional spacetime

    E-Print Network [OSTI]

    Claudio Bunster; Cristian Martinez

    2012-02-09T23:59:59.000Z

    We analyze the motion of an electric charge in the field of a magnetically charged event in three-dimensional spacetime. We start by exhibiting a first integral of the equations of motion in terms of the three conserved components of the spacetime angular momentum, and then proceed numerically. After crossing the light cone of the event, an electric charge initially at rest starts rotating and slowing down. There are two lengths appearing in the problem: (i) the characteristic length $\\frac{q g}{2 \\pi m}$, where $q$ and $m$ are the electric charge and mass of the particle, and $g$ is the magnetic charge of the event; and (ii) the spacetime impact parameter $r_0$. For $r_0 \\gg \\frac{q g}{2 \\pi m}$, after a time of order $r_0$, the particle makes sharply a quarter of a turn and comes to rest at the same spatial position at which the event happened in the past. This jump is the main signature of the presence of the magnetic event as felt by an electric charge. A derivation of the expression for the angular momentum that uses Noether's theorem in the magnetic representation is given in the Appendix.

  12. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    SciTech Connect (OSTI)

    John Smart; Stephen Schey

    2012-04-01T23:59:59.000Z

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.

  13. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horowitz, C J; Jen, C -M; Rakhman, A; Souder, P A; Dalton, M M; Liyanage, N; Paschke, K D; Saenboonruang, K; Silwal, R; Franklin, G B; Friend, M; Quinn, B; Kumar, K S; McNulty, D; Mercado, L; Riordan, S; Wexler, J

    2012-03-26T23:59:59.000Z

    We use distorted wave electron scattering calculations to extract the weak charge form factor FW(q?), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q? = 0.475 fm-1. We find FW(q?) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW(q?). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in RW from uncertainties in the surface thickness ? of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. Finally, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.

  14. Orbital-free density functional theory of out-of-plane charge screening in graphene

    E-Print Network [OSTI]

    Jianfeng Lu; Vitaly Moroz; Cyrill B. Muratov

    2014-05-20T23:59:59.000Z

    We propose a density functional theory of Thomas-Fermi-Dirac-von Weizs\\"acker type to describe the response of a single layer of graphene resting on a dielectric substrate to a point charge or a collection of point charges some distance away from the layer. We formulate a variational setting in which the proposed energy functional admits minimizers, both in the case of free graphene layers and under back-gating. We further provide conditions under which those minimizers are unique and correspond to configurations consisting of inhomogeneous density profiles of charge carrier of only one type. The associated Euler-Lagrange equation for the charge density is also obtained, and uniqueness, regularity and decay of the minimizers are proved under general conditions. In addition, a bifurcation from zero to non-zero response at a finite threshold value of the external charge is proved.

  15. A Dynamic Algorithm for Facilitated Charging of Plug-In Electric Vehicles

    E-Print Network [OSTI]

    Taheri, Nicole; Ye, Yinyu

    2011-01-01T23:59:59.000Z

    Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can reduce greenhouse gas emissions and change the way vehicles obtain power. PEV charging stations will most likely be available at home and at work, and occasionally be publicly available, offering flexible charging options. Ideally, each vehicle will charge during periods when electricity prices are relatively low, to minimize the cost to the consumer and maximize societal benefits. A Demand Response (DR) service for a fleet of PEVs could yield such charging schedules by regulating consumer electricity use during certain time periods, in order to meet an obligation to the market. We construct an automated DR mechanism for a fleet of PEVs that facilitates vehicle charging to ensure the demands of the vehicles and the market are met. Our dynamic algorithm depends only on the knowledge of a few hundred driving behaviors from a previous similar day, and uses a simple adjusted pricing scheme to instantly assign feasible and satisfactory c...

  16. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2003-06-24T23:59:59.000Z

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  17. An investigation into the cutting forces generated for sharp and dull end milling tools used in Flexible Manufacturing Systems

    E-Print Network [OSTI]

    Jones, Alan Sam

    1988-01-01T23:59:59.000Z

    , Arsovski 1983, Tlusty and Andrews 1983). Tool wear sensing techniques fall into two general categories: direct methods and indirect methods. Direct methods measure the actual wear to the tool, in- cluding the tool geometry change and the workpiece size...

  18. Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch

    SciTech Connect (OSTI)

    Li Gang; Chen Xuyuan [Pen-Tung Sah Micro-Electro-Mechanical Systems Research Center, Xiamen University, Xiamen, Fujian 361005 (China); Faculty of Science and Engineering, Vestfold University College, P.O. Box 2243, N-3103 Toensberg (Norway); San Haisheng [Pen-Tung Sah Micro-Electro-Mechanical Systems Research Center, Xiamen University, Xiamen, Fujian 361005 (China)

    2009-06-15T23:59:59.000Z

    In this work, metal-insulator-semiconductor (MIS) capacitor structure was used to investigate the dielectric charging and discharging in the capacitive radio frequency microelectromechanical switches. The insulator in MIS structure is silicon nitride films (SiN), which were deposited by either low pressure chemical vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD) processes. Phosphorus or boron ions were implanted into dielectric layer in order to introduce impurity energy levels into the band gap of SiN. The relaxation processes of the injected charges in SiN were changed due to the ion implantation, which led to the change in relaxation time of the trapped charges. In our experiments, the space charges were introduced by stressing the sample electrically with dc biasing. The effects of implantation process on charge accumulation and dissipation in the dielectric are studied by capacitance-voltage (C-V) measurement qualitatively and quantitatively. The experimental results show that the charging and discharging behavior of the ion implanted silicon nitride films deposited by LPCVD is quite different from the one deposited by PECVD. The charge accumulation in the dielectric film can be reduced by ion implantation with proper dielectric deposition method.

  19. Charge transport in micas: The kinetics of FeII/III electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport in micas: The kinetics of FeIIIII electron transfer in the octahedral sheet. Charge transport in micas: The kinetics of FeIIIII electron transfer in the octahedral...

  20. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  1. High load operation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Liechty, Michael P. (Chillicothe, IL); Hardy, William L. (Peoria, IL); Rodman, Anthony (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL)

    2008-12-23T23:59:59.000Z

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  2. Measurement of single charged pion production in the charged-current interactions of neutrinos in a 1.3 GeV wide band beam

    E-Print Network [OSTI]

    Rodríguez, A; Whitehead, L; Alcaraz, J L; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berghaus, F; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Catala, J; Cavata, C; Cervera-Villanueva, Anselmo; Chen, S M; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernández, E; Fujii, Y; Fukuda, Y; Gomez-Cadenas, J; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayato, Y; Helmer, R L; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S B; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kudenko, Yu; Kuno, Y; Kurimoto, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Matsuno, S; Matveev, V; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mine, S; Mineev, O; Mitsuda, C; Miura, M; Moriguchi, Y; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Saji, C; Sakuda, M; Sánchez, F; Scholberg, K; Schroeter, R; Sekiguchi, M; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M; Sobel, H; Sorel, M; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Tada, M; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Vagins, M; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamada, Y; Yamamoto, S; Yanagisawa, C; Yershov, N; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2008-01-01T23:59:59.000Z

    Single charged pion production in charged-current muon neutrino interactions with carbon is studied using data collected in the K2K long-baseline neutrino experiment. The mean energy of the incident muon neutrinos is 1.3 GeV. The data used in this analysis are mainly from a fully active scintillator detector, SciBar. The cross section for single $\\pi^{+}$ production in the resonance region ($W<2$ GeV/$c^2$) relative to the charged-current quasi-elastic cross section is found to be 0.734 $^{+0.140}_{-0.153}$. The energy-dependent cross section ratio is also measured. The results are consistent with a previous experiment and the prediction of our model.

  3. Discrepancy between hadron matter and quark-gluon matter in net charge transfer fluctuation

    E-Print Network [OSTI]

    Dai-Mei Zhou; Xiao-Mei Li; Bao-Guo Dong; Ben-Hao Sa

    2006-02-08T23:59:59.000Z

    A parton and hadron cascade model, PACIAE, is employed to investigate the net charge transfer fluctuation within $|\\eta|$=1 in Au+Au collisions at $\\sqrt{s_{NN}}$=200 GeV. It is turned out that the observable of net charge transfer fluctuation, $\\kappa$, in hadronic final state (HM) is nearly a factor of 3 to 5 larger than that in initial partonic state (QGM). However, only twenty percent of the net charge transfer fluctuation in the QGM can survive the hadronization

  4. Dynamical Studies of Charged Di-Block Copolymer in Different Dielectric Media

    SciTech Connect (OSTI)

    Goswami, Monojoy [ORNL; Kumar, Rajeev [ORNL; Sumpter, Bobby G [ORNL; Mays, Jimmy [University of Tennessee, Knoxville (UTK)

    2011-01-01T23:59:59.000Z

    Brownian Dynamics simulations are carried out to understand the effect of temperature and dielectric constant of the medium on microphase separation of charged-neutral diblock copolymer systems. For different dielectric media, we focus on the effect of temperature on the morphology and dynamics of model charged diblock copolymers. In this study we examine in detail a system with a partially charged block copolymer consisting of 75% neutral blocks and 25% of charged blocks with 50% degree of ionization. Our investigations show that due to the presence of strong electrostatic interactions between the charged block and counterions, the block copolymermorphologies are rather different than those of their neutral counterpart at low dielectric constant, however at high dielectric constant the neutral diblock behaviors are observed. This article highlights the effect of dielectric constant of two different media on different thermodynamic and dynamic quantities. At low dielectric constant, the morphologies are a direct outcome of the ion-counterion multiplet formation. At high dielectric constant, these charged diblocks behavior resembles that of neutral and weakly charged polymers with sustainable long-range order. Similar behavior has been observed in chain swelling, albeit with small changes in swelling ratio for large changes in polarity of the medium. The results of our simulations agree with recent experimental results and are consistent with recent theoretical predictions of counterion adsorption on flexible polyelectrolytes.

  5. Direct observation of dynamic charge stripes in La2 xSrxNiO4

    SciTech Connect (OSTI)

    Anissimova, S. [University of Colorado, Boulder] [University of Colorado, Boulder; Parshall, D [University of Colorado, Boulder] [University of Colorado, Boulder; Gu, Genda [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Marty, K. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Lumsden, Mark D [ORNL] [ORNL; Chi, Songxue [ORNL] [ORNL; Fernandez-Baca, Jaime A [ORNL] [ORNL; Abernathy, D. [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Lamago, D. [Laboratoire Leon Brillouin, France] [Laboratoire Leon Brillouin, France; Tranquada, John M. [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Reznik, Dmitry [University of Colorado, Boulder] [University of Colorado, Boulder

    2014-01-01T23:59:59.000Z

    The insulator-to-metal transition continues to be a challenging subject, especially when electronic correlations are strong. In layered compounds, such as La2 xSrxNiO4 and La2 xBaxCuO4, the doped charge carriers can segregate into periodically spaced charge stripes separating narrow domains of antiferromagnetic order. Although there have been theoretical proposals of dynamically fluctuating stripes, direct spectroscopic evidence of charge-stripe fluctuations has been lacking. Here we report the detection of critical lattice fluctuations, driven by charge-stripe correlations, in La2 xSrxNiO4 using inelastic neutron scattering. This scattering is detected at large momentum transfers where the magnetic form factor suppresses the spin fluctuation signal. The lattice fluctuations associated with the dynamic charge stripes are narrow in q and broad in energy. They are strongest near the charge-stripe melting temperature. Our results open the way towards the quantitative theory of dynamic stripes and for directly detecting dynamical charge stripes in other strongly correlated systems, including high-temperature superconductors such as La2 xSrxCuO4.

  6. Quantum dynamics in condensed phases : charge carrier mobility, decoherence, and excitation energy transfer

    E-Print Network [OSTI]

    Cheng, Yuan-Chung, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In this thesis, we develop analytical models for quantum systems and perform theoretical investigations on several dynamical processes in condensed phases. First, we study charge-carrier mobilities in organic molecular ...

  7. Ionic Cloud Distribution close to a Charged Surface in the Presence of Salt

    E-Print Network [OSTI]

    Olli Punkkinen; Ali Naji; Rudolf Podgornik; Ilpo Vattulainen; Per-Lyngs Hansen

    2007-12-29T23:59:59.000Z

    Despite its importance, the understanding of ionic cloud distribution close to a charged macroion under physiological salt conditions has remained very limited especially for strongly coupled systems with, for instance, multivalent counterions. Here we present a formalism that predicts both counterion and coion distributions in the vicinity of a charged macroion for an arbitrary amount of added salt and in both limits of mean field and strong coupling. The distribution functions are calculated explicitly for ions next to an infinite planar charged wall. We present a schematic phase diagram identifying different physical regimes in terms of electrostatic coupling parameter and bulk salt concentration.

  8. Nonlinear mechanism of charge-qubit decoherence in a lossy cavity: Quasi-normal-mode approach

    SciTech Connect (OSTI)

    Gao, Y.B. [Department of Applied Physics, Beijing University of Technology, Beijing 100022 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wang, Y.D. [Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China); Sun, C.P. [Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China); Department of Physics, Nankai University, Tianjin 300071 (China)

    2005-03-01T23:59:59.000Z

    From the viewpoint of quasinormal modes, we describe a decoherence mechanism of charge qubit of Josephson junctions (JJ) in a lossy microcavity, which can appear in a realistic experiment for quantum computation based on a JJ qubit. We show that nonlinear coupling of a charge qubit to the quantum cavity field can result in additional dissipation of the resonant mode due to the effective interaction between those nonresonant modes and the resonant mode, which is induced by the charge qubit itself. We calculate the characteristic time of the decoherence by making use of the system plus bath method.

  9. Localization of positive charge in DNA induced by its interaction with environment

    E-Print Network [OSTI]

    Dmitry B. Uskov; Alexander L. Burin

    2008-06-06T23:59:59.000Z

    Microscopic mechanisms of positive charge transfer in DNA remain unclear. A quantum state of electron hole in DNA is determined by the competition of the pi-stacking interaction $b$ sharing a charge between different base pairs and the interaction $\\lambda$ with the local environment which attempts to trap charge. To determine which interaction dominates we investigated charge quantum states in various $(GC)_{n}$ sequences choosing DNA parameters satisfying experimental data for the balance of charge transfer rates $G^{+} \\leftrightarrow G_{n}^{+}$, $n=2,3$ \\cite{FredMain}. We show that experimental data can be consistent with theory only assuming $b\\ll \\lambda$ meaning that charge is typically localized within the single $G$ site. Consequently any DNA sequence including the one consisting of identical base pairs behaves more like an insulating material then a molecular conductor. Our theory can be verified experimentally, for instance measuring balance of charge transfer reactions $G^{+} \\leftrightarrow G_{n}^{+}$, $n \\geq 4$ and comparing the experimental results with our predictions.

  10. APS/123-QED Influence of the ambipolar-to-free diffusion transition on dust particle charge in a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the thermophoretic force [10, 11]. Dust particle charge is a key parameter in a complex plasma. It determines

  11. Emission Spectroscopy of Highly Charged Ions in Plasma of an Electron Beam Ion Trap

    SciTech Connect (OSTI)

    Draganic, I. [Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia and Montenegro); Max-Planck Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Crespo Lopez-Urrutia, J.R.; Soria Orts, R.; Ullrich, J. [Max-Planck Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); DuBois, R. [University of Missouri-Rolla, Physics Building, Rolla, MO 63409-0640 (United States); Shevelko, V. [Lebedev Physical Institute, Russian Academy of Science, 117924 Moscow (Russian Federation); Fritzsche, S. [Department of Physics, University of Kassel, Heinrich-Plett-St. 40, D-34132 Kassel (Germany); Zou, Y. [Applied Ion Beam Physics Lab, Fudan University, Shanghai 200433 (China)

    2004-12-01T23:59:59.000Z

    The results of experimental study of magnetic dipole (M1) transitions in highly charged ions of argon (Ar9+, Ar10+, Ar13+ and Ar14+) and krypton (Kr18+ and Kr22+) are presented. The forbidden transitions of the highly charged ions in the visible and near UV range of the photon emission spectra have been measured with accuracy better than 1 ppm. Our measurements for the 'coronal lines' are the most accurate yet reported using an EBIT as a spectroscopic source of highly charged ions. These precise wavelength determinations provide a useful test and challenge for atomic structure calculations of many-electron systems.

  12. Branching fractions and charge asymmetries in charmless hadronic decays at BABAR

    SciTech Connect (OSTI)

    Biassoni, Pietro; /Milan U. /INFN, Milan

    2009-10-30T23:59:59.000Z

    We present measurements of branching fraction, polarization and charge asymmetry in charmless hadronic B decays with {eta}, {eta}{prime}, {omega}, and b{sub 1} in the final state. All the results use the final BABAR dataset.

  13. First Measurement of the Charge Asymmetry in Beauty-Quark Pair Production

    E-Print Network [OSTI]

    Counts, Ian Thomas Hunt

    The difference in the angular distributions between beauty quarks and antiquarks, referred to as the charge asymmetry, is measured for the first time in b[bar over b] pair production at a hadron collider. The data used ...

  14. Solvent eects on the charge storage ability in polypyrrole T.F. Otero, I. Cantero, H. Grande

    E-Print Network [OSTI]

    Otero, Toribio Fernández

    charge is in¯uenced by the conditions of synthesis of the poly- mer and by the charge storage variables electrode was an Ag/AgCl electrode from Crison Instruments which introduced directly into the cell. Pyrrole

  15. Net charge fluctuations in Au+Au collisions at root s(NN)=130 GeV

    E-Print Network [OSTI]

    Adams, J.; Adler, C.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Anderson, M.; Arkhipkin, D.; Averichev, GS; Badyal, SK; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bhardwaj, S.; Bhaskar, P.; Bhati, AK; Bichsel, H.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, HF; Chen, Y.; Chernenko, SP; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; Derevschikov, AA; Didenko, L.; Dietel, T.; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Majumdar, MRD; Eckardt, V.; Efimov, LG; Emelianov, V.; Elage, JE; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, KJ; Fu, J.; Gagliardi, Carl A.; Ganti, MS; Gutierrez, TD; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, E.; Ghazikhanian, V.; Ghosh, R.; Gonzalez, JE; Grachov, O.; Grigoriev, V.; Gronstal, S.; Grosnick, D.; Guedon, M.; Guertin, SM; Gupta, A.; Gushin, E.; Hallman, TJ; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, GW; Horsley, M.; Huang, HZ; Huang, SL; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Johnson, I.; Jones, PG; Judd, EG; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, SR; Klyachko, A.; Koetke, DD; Kolleger, T.; Konstantmov, AS; Kopytine, M.; Kotchenda, L.; Kovalenko, AD; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kunde, GJ; Kunz, CL; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Lansdell, CP; Lasiuk, B.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Leontiev, VM; LeVine, MJ; Li, C.; Li, Q.; Lindenbatim, SJ; Lisa, MA; Liu, E.; Liu, L.; Liu, Z.; Liu, QJ; Ljubicic, T.; Llope, WJ; Long, H.; Longacre, RS; Lopez-Noriega, M.; Love, WA; Ludlam, T.; Lynn, D.; Ma, J.; Ma, YG; Maestro, D.; Mahajan, S.; Mangotra, LK; Mahapatra, DP; Majka, R.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, J.; Matis, HS; Matulenko, YA; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Messer, M.; Miller, ML; Milosevich, Z.; Minaev, NG; Mironov, C.; Mishra, D.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Mora-Corral, MJ; Morozov, V.; de Moura, MM; Munhoz, MG; Nandi, BK; Nayak, SK; Nayak, TK; Nelson, JM; Nevski, P.; Nikitin, VA; Nogach, LV; Norman, B.; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Paic, G.; Pandey, SU; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Perevoztchikov, V.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rai, G.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevski, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, LJ; Rykov, V.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Savin, I.; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schroeder, LS; Schweda, K.; Seger, J.; Seliverstov, D.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shestermanov, KE; Shimanskii, SS; Singaraju, RN; Simon, F.; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Struck, C.; Suaide, AAP; Sugarbaker, E.; Suite, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Thein, D.; Thomas, JH; Tikhomirov, V.; Tokarev, M.; Tonjes, MB; Trentalange, S.; Tribble, Robert E.; Trivedi, MD; Trofimov, V.; Tsai, O.; Ullrich, T.; Underwood, DG; Van Buren, G.; VanderMolen, AM; Vasiliev, AN; Vasiliev, M.; Vigdor, SE; Viyogi, YP; Voloshin, SA; Waggoner, W.; Wang, F.; Wang, G.; Wang, XL; Wang, ZM; Ward, H.; Watson, JW; Wells, R.; Westfall, GD; Whitten, C.; Wieman, H.; Willson, R.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yakutin, AE; Yamamoto, E.; Yang, J.; Yepes, P.; Yurevich, VI; Zanevski, YV; Zborovsky, I.; Zhang, H.; Zhang, HY; Zhang, WM; Zhang, ZP; Zolnierczuk, PA; Zoulkarneev, R.; Zoulkarneeva, J.; Zubarev, AN; STAR Collaboration.

    2003-01-01T23:59:59.000Z

    We present the results of charged particle fluctuations measurements in Au+Au collisions at rootS(NN)=130 GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well...

  16. Anomalous charged fluids in 1+1d from equilibrium partition function

    E-Print Network [OSTI]

    Sachin Jain; Tarun Sharma

    2012-03-23T23:59:59.000Z

    In this note we explore the constraints imposed by the existence of equilibrium partition on parity violating charged fluids in 1+1 dimensions at zero derivative order. We write the equilibrium partition function consistent with 1+1 dimensional CPT invariance and which reproduces the correct anomaly in the charge current. The constraints on constitutive relations obtained in this way matches precisely with those obtained using the second law of thermodynamics.

  17. Comparison of quantization of charge transport in periodic and open pumps

    E-Print Network [OSTI]

    Gian Michele Graf; Gregorio Ortelli

    2007-09-19T23:59:59.000Z

    We compare the charges transported in two systems, a spatially periodic and an open quantum pump, both depending periodically and adiabatically on time. The charge transported in a cycle was computed by Thouless, respectively by Buttiker et al. in the two cases. We show that the results agree in the limit where the two physical situations become the same, i.e., that of a large open pump.

  18. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    E-Print Network [OSTI]

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2013-01-01T23:59:59.000Z

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  19. Distance dependent rates of photoinduced charge separation and dark charge recombination in fixed distance porphyrin-quinone molecules

    SciTech Connect (OSTI)

    Wasielewski, M.R.; Niemczyk, M.P.

    1986-01-01T23:59:59.000Z

    Three zinc tetraphenylporphyrin-anthraquinone derivatives were prepared in which the edge-to-edge distances between the porphyrin and quinone ..pi.. systems are fixed by a rigid hydrocarbon spacer molecule. Triptycene, trans-1,2-diphenylcyclopentane, and adamantane were used to fix the porphyrin-anthraquinone distance at 2.5, 3.7, and 4.9 A, respectively. These molecules possess 1,2, and 3 saturated carbon atoms, respectively, between the porphyrin donor and the quinone acceptor. Rate constants for photoinduced electron transfer from the lowest excited singlet state of the zinc tetraphenylporphyrin donor to the anthraquinone acceptor were measured. In addition, the corresponding radical ion pair recombination rate constants for each of these molecules were also determined. The rate constants for both photoinduced charge separation and subsequent radical ion pair recombination decrease by approximately a factor of 10 for each saturated carbon atom intervening between the porphyrin donor and the quinone acceptor. These results are consistent with a model in which the rate of electron transfer is determined by weak mixing of the sigma orbitals of the saturated hydrocarbon spacer with the ..pi.. orbitals of the donor and acceptor. 22 refs., 5 figs.

  20. Charge tuning in [111] grown GaAs droplet quantum dots

    SciTech Connect (OSTI)

    Bouet, L.; Vidal, M.; Marie, X.; Amand, T.; Wang, G.; Urbaszek, B. [INSA-CNRS-UPS, LPCNO, Université de Toulouse, 135 Ave. Rangueil, 31077 Toulouse (France); Mano, T.; Ha, N.; Kuroda, T.; Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Durnev, M. V.; Glazov, M. M.; Ivchenko, E. L. [Ioffe Physical-Technical Institute RAS, 194021 St.-Petersburg (Russian Federation)

    2014-08-25T23:59:59.000Z

    We demonstrate charge tuning in strain free GaAs/AlGaAs quantum dots (QDs) grown by droplet epitaxy on a GaAs(111)A substrate. Application of a bias voltage allows the controlled charging of the QDs from ?3|e| to +2|e|. The resulting changes in QD emission energy and exciton fine-structure are recorded in micro-photoluminescence experiments at T?=?4?K. We uncover the existence of excited valence and conduction states, in addition to the s-shell-like ground state. We record a second series of emission lines about 25?meV above the charged exciton emission coming from excited charged excitons. For these excited interband transitions, a negative diamagnetic shift of large amplitude is uncovered in longitudinal magnetic fields.

  1. Study of electrostatic charge generation and antistatic additive effects in used transformer oil

    E-Print Network [OSTI]

    Rangel Clavijo, Fernando

    1992-01-01T23:59:59.000Z

    STUDY OF ELECTROSTATIC CHARGE GENERATION AND ANTISTATIC ADDITIVE EFFECTS IN USED TRANSFORMER OIL A Thesis by FERNANDO RANGEL CLAVIJO Submitted to the Office of Graduate Studies of Texas A8tM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Safety Engineering STUDY OF ELECTROSTATIC CHARGE GENERATION AND ANTISTATIC ADDITIVE EFFECTS IN USED TRANSFORMER OIL A Thesis by FERNANDO RANGEL CLAVIJO Approved as to style...

  2. Spectroscopy of Charge Carriers and Traps in Field-Doped Organic Semiconductors

    SciTech Connect (OSTI)

    Zhu, Xiaoyang; Frisbie, C Daniel

    2012-08-13T23:59:59.000Z

    This research project aims to achieve quantitative and molecular level understanding of charge carriers and traps in field-doped organic semiconductors via in situ optical absorption spectroscopy, in conjunction with time-resolved electrical measurements. During the funding period, we have made major progress in three general areas: (1) probed charge injection at the interface between a polymeric semiconductor and a polymer electrolyte dielectric and developed a thermodynamic model to quantitatively describe the transition from electrostatic to electrochemical doping; (2) developed vibrational Stark effect to probe electric field at buried organic semiconductor interfaces; (3) used displacement current measurement (DCM) to study charge transport at organic/dielectric interfaces and charge injection at metal/organic interfaces.

  3. Defect-Enhanced Charge Transfer by Ion-Solid Interactions in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transfer effects on recoil atoms. Citation: Gao F, HY Xiao, XT Zu, M Posselt, and WJ Weber.2009."Defect-Enhanced Charge Transfer by Ion-Solid Interactions in SiC using...

  4. Ultrafast Charge Separation and Nongeminate Electron-Hole Recombination in Organic Photovoltaics

    E-Print Network [OSTI]

    Samuel L Smith; Alex W Chin

    2014-06-04T23:59:59.000Z

    The mechanism of electron-hole separation in organic solar cells is currently hotly debated. Recent experimental work suggests that these charges can separate on extremely short timescales (<100 fs). This can be understood in terms of delocalised transport within fullerene aggregates, which is thought to emerge on short timescales before vibronic relaxation induces polaron formation. However, in the optimal heterojunction morphology, electrons and holes will often re-encounter each other before reaching the electrodes. If such charges trap and cannot separate, then device efficiency will suffer. Here we extend the theory of ultrafast charge separation to incorporate polaron formation, and find that the same delocalised transport used to explain ultrafast charge separation can account for the suppression of nongeminate recombination in the best devices.

  5. DETERMINATION OF LOW-Z ELEMENTS IN ATMOSPHERIC AEROSOLS BY CHARGED-PARTICLE-INDUCED NUCLEAR REACTIONS

    E-Print Network [OSTI]

    Clemenson, Mark Steven

    2013-01-01T23:59:59.000Z

    the nuclear reaction N14 (p,a)c 11 with low-energy protonsLOW-Z ELEMENTS IN ATMOSPHERIC AEROSOLS BY CHARGED-PARTICLE-INDUCED NUCLEAR REACTIONS Mark Steven Clemenson Energy

  6. Study of high transverse momentum charged particle suppression in heavy ion collisions at LHC

    E-Print Network [OSTI]

    Yoon, Andre Sungho

    2012-01-01T23:59:59.000Z

    The charged particle spectrum at large transverse momentum (PT), dominated by hadrons originating from parton fragmentation, is an important observable for studying the properties of the hot, dense medium produced in ...

  7. Thermodynamics and fluctuations of conserved charges in Hadron Resonance Gas model in finite volume

    E-Print Network [OSTI]

    Bhattacharyya, Abhijit; Samanta, Subhasis; Sur, Subrata

    2015-01-01T23:59:59.000Z

    The thermodynamics of hot and dense matter created in heavy-ion collision experiments are usually studied as a system of infinite volume. Here we report on possible effects for considering a finite system size for such matter in the framework of the Hadron Resonance Gas model. The bulk thermodynamic variables as well as the fluctuations of conserved charges are considered. We find that the finite size effects are insignificant once the observables are scaled with the respective volumes. The only substantial effect is found in the fluctuations of electric charge which may therefore be used to extract information about the volume of fireball created in heavy-ion collision experiments.

  8. Nuclear critical charge for two-electron ion in Lagrange mesh method

    E-Print Network [OSTI]

    H. Olivares Pilón; A. V. Turbiner

    2014-12-16T23:59:59.000Z

    The Schroedinger equation for two electrons in the field of a charged fixed center $Z$ is solved with the Lagrange mesh method for charges close to the critical charge $Z_{cr}$. We confirm the value of the nuclear critical charge $Z_{cr}$ recently calculated in Estienne et al. {\\em Phys. Rev. Lett. \\bf 112}, 173001 (2014) to 11 decimal digits using an inhomogeneous (non-uniform) three-dimensional lattice of size $70 \\times 70 \\times 20$. We show that the ground state energy for H$^-$ is accurate to 14 decimals on the lattice $50 \\times 50 \\times 40$ in comparison with the highly accurate result by Nakashima-Nakatsuji, {\\it J. Chem. Phys. \\bf 127}, 224104 (2007).

  9. Adiabatic charge pumping in open quantum systems J.E. Avron(a)

    E-Print Network [OSTI]

    Adiabatic charge pumping in open quantum systems J.E. Avron(a) , A. Elgart(b) , G.M. Graf(c) , L for charge transport in quantum pumps connected to a number of external leads. It is proved that under rather the pump is given by a formula of B¨uttiker, Pr^etre, and Thomas, relating it to the frozen S

  10. Shaped-charge tests in support of the coal-gasification program

    SciTech Connect (OSTI)

    Scheloske, R.F.

    1981-12-01T23:59:59.000Z

    The LLNL concept for in-situ coal gasification requires forming horizontal holes in deep coal beds to connect vertical bore shafts. These lateral holes are required to provide a passage for the gases between the vertical shafts. Shaped charges are being considered for producing these horizontal bore holes. This report describes a test method for evaluating new shaped charge designs and presents the results for three designs.

  11. Electron Electric Dipole Moment from CP Violation in the Charged Higgs Sector

    E-Print Network [OSTI]

    David Bowser-Chao; Darwin Chang; Wai-Yee Keung

    1997-12-02T23:59:59.000Z

    The leading contributions to the electron (or muon) electric dipole moment due to CP violation in the charged Higgs sector are at the two-loop level. A careful analysis of the model-independent contribution is provided. We also consider specific scenarios to demonstrate how charged Higgs sector CP violation can naturally give rise to large electric dipole moments. Numerical results show that the electron electric dipole moment in such models can lie at the experimentally accessible level.

  12. Space charge modeling in electron-beam irradiated polyethylene: Fitting model and experiments

    SciTech Connect (OSTI)

    Le Roy, S.; Laurent, C.; Teyssedre, G. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France); Baudoin, F.; Griseri, V. [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)

    2012-07-15T23:59:59.000Z

    A numerical model for describing charge accumulation in electron-beam irradiated low density polyethylene has been put forward recently. It encompasses the generation of positive and negative charges due to impinging electrons and their transport in the insulation. However, the model was not optimized to fit all the data available regarding space charge dynamics obtained using up-to-date pulsed electro-acoustic techniques. In the present approach, model outputs are compared with experimental space charge distribution obtained during irradiation and post-irradiation, the irradiated samples being in short circuit conditions or with the irradiated surface at a floating potential. A unique set of parameters have been used for all the simulations, and it encompasses the transport parameters already optimized for charge transport in polyethylene under an external electric field. The model evolution in itself consists in describing the recombination between positive and negative charges according to the Langevin formula, which is physically more accurate than the previous description and has the advantage of reducing the number of adjustable parameters of the model. This also provides a better description of the experimental behavior underlining the importance of recombination processes in irradiated materials.

  13. Charging Effects in the Inductively Shunted Josephson Junction Jens Koch, V. Manucharyan, M. H. Devoret, and L. I. Glazman

    E-Print Network [OSTI]

    Devoret, Michel H.

    Charging Effects in the Inductively Shunted Josephson Junction Jens Koch, V. Manucharyan, M. H to shunt a Josephson junction determines if the charge transferred through the circuit is quantized by charge noise. DOI: 10.1103/PhysRevLett.103.217004 PACS numbers: 85.25.Cp, 74.50.+r The Josephson junction

  14. System and method for trapping and measuring a charged particle in a liquid

    DOE Patents [OSTI]

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2013-07-23T23:59:59.000Z

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  15. Pion Condensation in a two-flavor NJL model: the role of charge neutrality

    E-Print Network [OSTI]

    Jens O. Andersen; Lars Kyllingstad

    2009-12-02T23:59:59.000Z

    We study pion condensation and the phase structure in a two-flavor Nambu-Jona-Lasinio model in the presence of baryon chemical potential $\\mu$ and isospin chemical potential $\\mu_I$at zero and finite temperature. There is a competition between the chiral condensate and a Bose-Einstein condensate of charged pions. In the chiral limit, the chiral condensate vanishes for any finite value of the isospin chemical potential, while there is a charged pion condensate that depends on the chemical potentials and the temperature. At the physical point, the chiral condensate is always nonzero, while the charged pion condensate depends on $\\mu_I$ and $T$. For $T=\\mu=0$, the critical isospin chemical potential $\\mu_I^c$ for the onset of Bose-Einstein condensation is always equal to the pion mass. For $\\mu=0$, we compare our results with chiral perturbation theory, sigma-model calculations, and lattice simulations. We examine the effects of imposing electric charge neutrality and weak equilibrium on the phase structure of the model. In the chiral limit, there is a window of baryon chemical potential and temperature where the charged pions condense. At the physical point, the charged pions do not condense.

  16. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    E-Print Network [OSTI]

    C. J. Horowitz; Z. Ahmed; C. -M. Jen; A. Rakhman; P. A. Souder; M. M. Dalton; N. Liyanage; K. D. Paschke; K. Saenboonruang; R. Silwal; G. B. Franklin; M. Friend; B. Quinn; K. S. Kumar; J. M. Mammei; D. McNulty; L. Mercado; S. Riordan; J. Wexler; R. W. Michaels; G. M. Urciuoli

    2014-02-13T23:59:59.000Z

    We use distorted wave electron scattering calculations to extract the weak charge form factor F_W(q), the weak charge radius R_W, and the point neutron radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q=0.475 fm$^{-1}$. We find F_W(q) =0.204 \\pm 0.028 (exp) \\pm 0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We find R_W= 5.826 \\pm 0.181 (exp) \\pm 0.027 (model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness \\sigma of the weak charge density. The weak radius is larger than the charge radius, implying a "weak charge skin" where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R_n=5.751 \\pm 0.175 (exp) \\pm 0.026 (model) \\pm 0.005 (strange) fm$, from R_W. Here there is only a very small error (strange) from possible strange quark contributions. We find R_n to be slightly smaller than R_W because of the nucleon's size. Finally, we find a neutron skin thickness of R_n-R_p=0.302\\pm 0.175 (exp) \\pm 0.026 (model) \\pm 0.005 (strange) fm, where R_p is the point proton radius.

  17. A First Look at the Impact of Electric Vehicle Charging on the Electric Grid in the EV Project

    SciTech Connect (OSTI)

    Stephen L. Schey; John G. Smart; Don R. Scoffield

    2012-05-01T23:59:59.000Z

    ECOtality was awarded a grant from the U.S. Department of Energy to lead a large-scale electric vehicle charging infrastructure demonstration, called The EV Project. ECOtality has partnered with Nissan North America, General Motors, the Idaho National Laboratory, and others to deploy and collect data from over 5,000 Nissan LEAFsTM and Chevrolet Volts and over 10,000 charging systems in 18 regions across the United States. This paper summarizes usage of residential charging units in The EV Project, based on data collected through the end of 2011. This information is provided to help analysts assess the impact on the electric grid of early adopter charging of grid-connected electric drive vehicles. A method of data aggregation was developed to summarize charging unit usage by the means of two metrics: charging availability and charging demand. Charging availability is plotted to show the percentage of charging units connected to a vehicle over time. Charging demand is plotted to show charging demand on the electric gird over time. Charging availability for residential charging units is similar in each EV Project region. It is low during the day, steadily increases in evening, and remains high at night. Charging demand, however, varies by region. Two EV Project regions were examined to identify regional differences. In Nashville, where EV Project participants do not have time-of-use electricity rates, demand increases each evening as charging availability increases, starting at about 16:00. Demand peaks in the 20:00 hour on weekdays. In San Francisco, where the majority of EV Project participants have the option of choosing a time-of-use rate plan from their electric utility, demand spikes at 00:00. This coincides with the beginning of the off-peak electricity rate period. Demand peaks at 01:00.

  18. Possible scaling behaviour of the multiplicities ratio in leptoproduction of charged pions in nuclear medium

    E-Print Network [OSTI]

    Akopov, N; Akopov, Z

    2008-01-01T23:59:59.000Z

    In this paper it is demonstrated that based on two-dimensional distributions in semi-inclusive deep inelastic scattering (SIDIS) data, obtained recently by the HERMES experiment at DESY on different nuclei, which contains data for charged pions produced in $z$ slices as a function of $\

  19. Possible scaling behaviour of the multiplicities ratio in leptoproduction of charged pions in nuclear medium

    E-Print Network [OSTI]

    N. Akopov; L. Grigoryan; Z. Akopov

    2008-10-27T23:59:59.000Z

    In this paper it is demonstrated that based on two-dimensional distributions in semi-inclusive deep inelastic scattering (SIDIS) data, obtained recently by the HERMES experiment at DESY on different nuclei, which contains data for charged pions produced in $z$ slices as a function of $\

  20. Exclusion of exotic top-like quarks with -4/3 electric charge using jet-charge tagging in single-lepton ttbar events at CDF

    E-Print Network [OSTI]

    CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; V. Boisvert; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; M. A. Ciocci; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. De Barbaro; L. Demortier; M. Deninno; M. d'Errico; F. Devoto; A. Di Canto; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; R. Eusebi; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; S. Grinstein; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. J. Kim; Y. K. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; A. Lucà; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; P. Marino; M. Martínez; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; K. S. McFarland; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; A. Pranko; F. Prokoshin; F. Ptohos; G. Punzi; N. Ranjan; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; P. Sinervo; K. Sliwa; J. R. Smith; F. D. Snider; H. Song; V. Sorin; M. Stancari; R. St. Denis; B. Stelzer; O. Stelzer-Chilton; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; A. Warburton; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang

    2014-10-09T23:59:59.000Z

    We report on a measurement of the top-quark electric charge in ttbar events in which one W boson originating from the top-quark pair decays into leptons and the other into hadrons. The event sample was collected by the CDF II detector in sqrt(s)=1.96 TeV proton-antiproton collisions and corresponds to 5.6 fb^(-1). We find the data to be consistent with the standard model and exclude the existence of an exotic quark with -4/3 electric charge and mass of the conventional top quark at the 99% confidence level.

  1. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10T23:59:59.000Z

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of charge carriers is known to evolve as the carrier concentration increases, due to the presence of intrinsic disorder in organic semiconductors. Thus, a complementary question is: how does the nature of charge transport change as a function of carrier concentration?

  2. System Benefits Charge

    Broader source: Energy.gov [DOE]

    New York's system benefits charge (SBC), established in 1996 by the New York Public Service Commission (PSC), supports energy efficiency, education and outreach, research and development, and low...

  3. Determination of Grain Boundary Charging in Cu(In,Ga)Se2 Thin Films: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Contreras, M. A.; Repins, I.; Moutinho, H. R.; Noufi, R.; Al-Jassim, M. M.

    2012-06-01T23:59:59.000Z

    Surface potential mapping of Cu(In,Ga)Se2 (CIGS) thin films using scanning Kelvin probe force microscopy (SKPFM) aims to understand the minority-carrier recombination at the grain boundaries (GBs) of this polycrystalline material by examining GB charging, which has resulted in a number of publications. However, the reported results are highly inconsistent. In this paper, we report on the potential mapping by measuring wide-bandgap or high-Ga-content films and by using a complementary atomic force microscopy-based electrical technique of scanning capacitance microscopy (SCM). The results demonstrate consistent, positively charged GBs on our high-quality films with minimal surface defects/charges. The potential image taken on a low-quality film with a 1.2-eV bandgap shows significantly degraded potential contrast on the GBs and degraded potential uniformity on grain surfaces, resulting from the surface defects/charges of the low-quality film. In contrast, the potential image on an improved high-quality film with the same wide bandgap shows significantly improved GB potential contrast and surface potential uniformity, indicating that the effect of surface defects is critical when examining GB charging using surface potential data. In addition, we discuss the effect of the SKPFM setup on the validity of potential measurement, to exclude possible artifacts due to improper SKPFM setups. The SKPFM results were corroborated by using SCM measurements on the films with a CdS buffer layer. The SCM image shows clear GB contrast, indicating different electrical impedance on the GB from the grain surface. Further, we found that the GB contrast disappeared when the CdS window layer was deposited after the CIGS film was exposed extensively to ambient, which was caused by the creation of CIGS surface defects by the ambient exposure.

  4. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    SciTech Connect (OSTI)

    Borja, Juan; Plawsky, Joel L., E-mail: plawsky@rpi.edu; Gill, William N. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lu, T.-M. [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Bakhru, Hassaram [University at Albany's College of Nanoscale Science and Engineering (CNSE), Albany, New York 12203 (United States)

    2014-02-28T23:59:59.000Z

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22?nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k=k{sub 0}?(t+1){sup ??1}, where 0?in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523–5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films.

  5. Correlation between conserved charges in PNJL Model with multi-quark interactions

    E-Print Network [OSTI]

    Abhijit Bhattacharyya; Paramita Deb; Anirban Lahiri; Rajarshi Ray

    2011-01-27T23:59:59.000Z

    We present a study of correlations among conserved charges like baryon number, electric charge and strangeness in the framework of 2+1 flavor Polyakov loop extended Nambu-Jona-Lasinio model at vanishing chemical potentials, up to fourth order. Correlations up to second order have been measured in Lattice QCD which compares well with our estimates given the inherent difference in the pion masses in the two systems. Possible physical implications of these correlations and their importance in understanding the matter obtained in heavy-ion collisions are discussed. We also present comparison of the results with the commonly used unbound effective potential in the quark sector of this model.

  6. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    SciTech Connect (OSTI)

    Anders, Andre

    2011-12-18T23:59:59.000Z

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  7. Electrodynamics of a generalized charged particle in doubly special relativity framework

    SciTech Connect (OSTI)

    Pramanik, Souvik, E-mail: souvick.in@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108 (India); Ghosh, Subir, E-mail: subir_ghosh2@rediffmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108 (India); Pal, Probir, E-mail: probirkumarpal@rediffmail.com [S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700 098 (India)

    2014-07-15T23:59:59.000Z

    In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative ?-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of ?-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac framework of Hamiltonian constraint analysis.

  8. Electric Charge Quantization in SU(3)_C X SU(3)_L X U(1)_X Models

    E-Print Network [OSTI]

    Phung Van Dong; Hoang Ngoc Long

    2005-07-13T23:59:59.000Z

    Basing on the general photon eigenstate and the anomaly cancelation, we have naturally explained the electric charge quantization in two models based on the SU(3)_C X SU(3)_L X U(1)_X gauge group, namely in the minimal model and in the model with right-handed neutrinos. In addition, we have shown that the electric charges of the proton and of the electron are opposite; and the same happens with the neutron and the neutrino. We argue that the electric charge quantization is not dependent on the classical constraints on generating mass to the fermions, but it is related closely with the generation number problem. In fact, both problems are properly solved as the direct consequences of the fermion content under the anomaly free conditions.

  9. Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide

    SciTech Connect (OSTI)

    Alekhina, Tatiana Yu.; Tyukhtin, Andrey V. [Radiophysics Department of St. Petersburg University, 1 Ulyanovskaya, St. Petersburg 198504 (Russian Federation)

    2011-06-15T23:59:59.000Z

    We analyze the electromagnetic field of a charge crossing a boundary between a vacuum and cold plasma in a waveguide. We obtain exact expressions for the field components and the spectral density of the transition radiation. With the steepest descent technique, we investigate the field components. We show that the electromagnetic field has a different structure in a vacuum than in cold plasma. We also develop an algorithm for the computation of the field based on a certain transformation of the integration path. The behavior of the field depending on distance and time and the spectral density depending on frequency are explored for different charge velocities. Some important physical effects are noted. A considerable increase and concentration of the field near the wave front in the plasma is observed for the case of ultrarelativistic particles. In the plasma, the mode envelopes and spectral density show zero points when the charge velocity is within certain limits.

  10. Electric Field-Induced Skyrmion Crystals via Charged Monopoles in Insulating Helimagets

    E-Print Network [OSTI]

    Haruki Watanabe; Ashvin Vishwanath

    2014-10-08T23:59:59.000Z

    Electrons propagating in a magnetically ordered medium experience an additional gauge field associated with the Berry phase of their spin following the local magnetic texture. In contrast to the usual electromagnetic field, this gauge field admits monopole excitations, corresponding to hedgehog defects of the magnetic order. In an insulator, these hedgehogs carry a well-defined electric charge allowing for them to be controlled by electric fields. One particularly robust mechanism that contributes to the charge is the orbital magnetoelectric effect, captured by a $\\theta$ angle, which leads to a charge of $e\\theta/2\\pi$ on hedgehogs. This is a direct consequence of the Witten effect for magnetic monopoles in a $\\theta$ medium. A physical consequence is that external electric fields can induce skyrmion crystal phases in insulating helimagnets.

  11. Numerical studies of emittance exchange in 2-D charged-particle beams

    SciTech Connect (OSTI)

    Guy, F.W.

    1986-01-01T23:59:59.000Z

    We describe results obtained from a two-dimensional particle-following computer code that simulates a continuous, nonrelativistic, elliptical charged-particle beam with linear continuous focusing. Emittances and focusing strengths can be different in the two transverse directions. The results can be applied, for example, for a quadrupole transport system in a smooth approximation to a real beam with unequal emittances in the two planes. The code was used to study emittance changes caused by kinetic-energy exchange between transverse directions and by shifts in charge distributions. Simulation results for space-charge-dominated beams agree well with analytic formulas. From simulation results, an empirical formula was developed for a ''partition parameter'' (the ratio of kinetic energies in the two directions) as a function of initial conditions and beamline length. Quantitative emittance changes for each transverse direction can be predicted by using this parameter. Simulation results also agree with Hofmann's generalized differential equation relating emittance and field energy.

  12. [Photoinduced charge separation in solid-state and molecular systems: Year three progress report

    SciTech Connect (OSTI)

    Bocarsly, A.B.

    1991-12-31T23:59:59.000Z

    Our goal is to understand the role of intrinsic cyanometalate overlayers in modulating interfacial photoinduced charge transfer processes occurring at the cadmium chalconide/aqueous ferri-ferrocyanide interface. To accomplish this goal, detailed structural and charge transfer studies of [CdFe(CN){sub 6}]{sup 2-/1-} overlayers generated either intrinsically via photoelectrochemistry at the illuminated CdX/[Fe(CN){sub 6}]{sup 4-/32} (X=S or Se) interface, or synthesized as chemical modification layers on inert metal electrodes have been undertaken. From these studies, a picture has evolved which directly links charge transfer mediated cation intercalation processes to surface overlayer crystal structure, and overlayer structure to critical charge transfer parameters. We have discovered that a photoelectrochemical cell of composition n-CdSe/(1M) KCN provides a relatively unique environment for testing the dynamic effects of chemisorption processes on heterogeneous charge transfer at the semiconductor-liquid junction. Thus, our retrospective studies have provided for new insight into semiconductor photochemistry. In parallel with our photoelectrochemical projects we have also introduced work on the spatially resolved photodeposition of platinum metal on nonconducting and semiconducting substrates. This chemistry provides new opportunities for the design of semiconductor (or insulator)-metal heterostructures which have applications in solar energy conversion.

  13. (Photoinduced charge separation in solid-state and molecular systems: Year three progress report)

    SciTech Connect (OSTI)

    Bocarsly, A.B.

    1991-01-01T23:59:59.000Z

    Our goal is to understand the role of intrinsic cyanometalate overlayers in modulating interfacial photoinduced charge transfer processes occurring at the cadmium chalconide/aqueous ferri-ferrocyanide interface. To accomplish this goal, detailed structural and charge transfer studies of (CdFe(CN){sub 6}){sup 2-/1-} overlayers generated either intrinsically via photoelectrochemistry at the illuminated CdX/(Fe(CN){sub 6}){sup 4-/32} (X=S or Se) interface, or synthesized as chemical modification layers on inert metal electrodes have been undertaken. From these studies, a picture has evolved which directly links charge transfer mediated cation intercalation processes to surface overlayer crystal structure, and overlayer structure to critical charge transfer parameters. We have discovered that a photoelectrochemical cell of composition n-CdSe/(1M) KCN provides a relatively unique environment for testing the dynamic effects of chemisorption processes on heterogeneous charge transfer at the semiconductor-liquid junction. Thus, our retrospective studies have provided for new insight into semiconductor photochemistry. In parallel with our photoelectrochemical projects we have also introduced work on the spatially resolved photodeposition of platinum metal on nonconducting and semiconducting substrates. This chemistry provides new opportunities for the design of semiconductor (or insulator)-metal heterostructures which have applications in solar energy conversion.

  14. Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture

    SciTech Connect (OSTI)

    Basset, J.; Stockklauser, A.; Jarausch, D.-D.; Frey, T.; Reichl, C.; Wegscheider, W.; Wallraff, A.; Ensslin, K.; Ihn, T. [Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich (Switzerland)

    2014-08-11T23:59:59.000Z

    We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup ?5}?e/?(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup ?6} e{sup 2}/Hz above 1?Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.

  15. Penrose inequalities and a positive mass theorem for charged black holes in higher dimension

    E-Print Network [OSTI]

    Levi Lopes de Lima; Frederico Girão; Weslley Lozório; Juscelino Silva

    2014-01-05T23:59:59.000Z

    We use the inverse mean curvature flow to establish Penrose-type inequalities for time-symmetric Einstein-Maxwell initial data sets which can be suitably embedded as a hypersurface in Euclidean space $\\mathbb R^{n+1}$, $n\\geq 3$. In particular, we prove a positive mass theorem for this class of charged black holes. As an application we show that the conjectured upper bound for the area in terms of the mass and the charge, which in dimension $n=3$ is relevant in connection with the Cosmic Censorship Conjecture, always holds under the natural assumption that the horizon is stable as a minimal hypersurface.

  16. Charge transfer in strongly correlated systems: An exact diagonalization approach to model Hamiltonians

    SciTech Connect (OSTI)

    Schöppach, Andreas; Gnandt, David; Koslowski, Thorsten, E-mail: koslowsk@uni-freiburg.de [Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 23a, D-79104 Freiburg im Breisgau (Germany)] [Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 23a, D-79104 Freiburg im Breisgau (Germany)

    2014-04-07T23:59:59.000Z

    We study charge transfer in bridged di- and triruthenium complexes from a theoretical and computational point of view. Ab initio computations are interpreted from the perspective of a simple empirical Hamiltonian, a chemically specific Mott-Hubbard model of the complexes' ? electron systems. This Hamiltonian is coupled to classical harmonic oscillators mimicking a polarizable dielectric environment. The model can be solved without further approximations in a valence bond picture using the method of exact diagonalization and permits the computation of charge transfer reaction rates in the framework of Marcus' theory. In comparison to the exact solution, the Hartree-Fock mean field theory overestimates both the activation barrier and the magnitude of charge-transfer excitations significantly. For triruthenium complexes, we are able to directly access the interruthenium antiferromagnetic coupling strengths.

  17. Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics

    E-Print Network [OSTI]

    Kálmán, Péter

    2015-01-01T23:59:59.000Z

    The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

  18. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at ?sNN=2.76 TeV

    E-Print Network [OSTI]

    Bauer, Gerry P.

    The anisotropy of the azimuthal distributions of charged particles produced in [? over s[subscript NN

  19. Effect of charged particle's multiplicity fluctuations on flow harmonics in even-by-event hydrodynamics

    E-Print Network [OSTI]

    Chaudhuri, A K

    2012-01-01T23:59:59.000Z

    In nucleon-nucleon collisions, charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collision in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte-Carlo Glauber model of initial condition is generalised to include the fluctuations. Explicit simulations with the generalised Monte-Carlo Glauber model initial conditions indicate that the multiplicity fluctuations do not have large effect on the flow harmonics.

  20. Effect of charged particle's multiplicity fluctuations on flow harmonics in even-by-event hydrodynamics

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2013-03-19T23:59:59.000Z

    In nucleon-nucleon collisions, charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collision in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte-Carlo Glauber model of initial condition is generalised to include the fluctuations. Explicit simulations with the generalised Monte-Carlo Glauber model initial conditions indicate that the multiplicity fluctuations do not have large effect on the flow harmonics.

  1. Attosecond timing the ultrafast charge-transfer process in atomic collisions

    SciTech Connect (OSTI)

    Hu, S. X. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2011-04-15T23:59:59.000Z

    By solving the three-dimensional, time-dependent Schroedinger equation, we have demonstrated that the ultrafast charge-transfer process in ion-atom collisions can be mapped out with attosecond extreme uv (xuv) pulses. During the dynamic-charge transfer from the target atom to the projectile ion, the electron coherently populates the two sites of both nuclei, which can be viewed as a 'short-lived' molecular state. A probing attosecond xuv pulse can instantly unleash the delocalized electron from such a ''transient molecule,'' so that the resulting photoelectron may exhibit a ''double-slit'' interference. On the contrary, either reduced or no photoelectron interference will occur if the attosecond xuv pulse strikes well before or after the collision. Therefore, by monitoring the photoelectron interference visibility, one can precisely time the ultrafast charge-transfer process in atomic collisions with time-delayed attosecond xuv pulses.

  2. Demonstration of Cathode Emittance Dominated High Bunch Charge Beams in a DC gun-based Photoinjector

    E-Print Network [OSTI]

    Gulliford, Colwyn; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-01-01T23:59:59.000Z

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (greater than or equal to 100 pC) beams produced in the DC gun-based Cornell Energy Recovery Linac Photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittance measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs (ERLs) and Free Electron Lasers (FELs).

  3. First principles calculation of polarization induced interfacial charges in GaN/AlN heterostructures

    E-Print Network [OSTI]

    Rohan Mishra; Oscar D. Restrepo; Siddharth Rajan; Wolfgang Windl

    2011-05-17T23:59:59.000Z

    We propose a new method to calculate polarization induced interfacial charges in semiconductor heterostructures using classical electrostatics applied to real-space band diagrams from first principles calculations and apply it to GaN/AlN heterostructures with ultrathin AlN layers (4-6 monolayers). We show that the calculated electric fields and interfacial charges are independent of the exchange-correlation functionals used (local-density approximation and hybrid functionals). We also find the calculated interfacial charge of (6.8 +/- 0.4) x 10^13 cm-2 to be in excellent agreement with experiments and the value of 6.58 x 10^13 cm-2 calculated from bulk polarization constants, validating the use of bulk constants even for very thin films.

  4. Holographic superconductors in the AdS black hole with a magnetic charge

    E-Print Network [OSTI]

    M. R. Setare; D. Momeni; R. Myrzakulov; Muhammad Raza

    2012-11-17T23:59:59.000Z

    In this work we study the analytical properties of a 2+1 dimensional magnetically charged holographic superconductor in $AdS_4$. We obtain the critical chemical potential $\\mu_c$ analytically, using the Sturm-Liouville variational approach. Also, the obtained analytic result can be used to back up the numerical computations in the holographic superconductor in the probe limit.

  5. Energetics of Primary Charge Separation in Bacterial Photosynthetic Reaction Center Mutants: Triplet Decay in Large Magnetic Fields

    E-Print Network [OSTI]

    Boxer, Steven G.

    energy change associated with primary charge separation in wild-type reaction centers. Introduction decay pathway leads to an approach for obtaining information on the relative energies of the radical of the absolute energy of 3 P from its phosphorescence, the energy of the initial charge separation reaction can

  6. Stability of charged thin-shell wormholes in (2 + 1) dimensions

    E-Print Network [OSTI]

    Ayan Banerjee

    2013-10-20T23:59:59.000Z

    In this paper we construct charged thin-shell wormholes in (2+1)-dimensions applying the cut-and -paste technique implemented by Visser, from a BTZ black hole which was discovered by Banados, Teitelboim and Zanelli, and the surface stress are determined using the Darmois-Israel formalism at the wormhole throat. We analyzed the stability of the shell considering phantom-energy or generalised Chaplygin gas equation of state for the exotic matter at the throat. We also discussed the linearized stability of charged thin-shell wormholes around the static solution.

  7. Ion thermal double layers in a pair-ion warm magnetized plasma containing charged dust impurities

    SciTech Connect (OSTI)

    El-Labany, S. K.; El-Shamy, E. F. [Department of Physics, Theoretical Physics Group, Faculty of Science, Mansoura University, Damietta El-Gedida 34517 (Egypt); El-Bedwehy, N. A. [Department of Mathematics, Faculty of Science, Mansoura University, Damietta El-Gedida 34517 (Egypt)

    2009-06-15T23:59:59.000Z

    In this paper the formation and the dynamics of ion thermal double layers (ITDLs) in a magnetized plasma, composed of positive and negative ions as well as a fraction of stationary charged (positive or negative) dust impurities have been studied. Using plasma hydrodynamics and Poisson equations for the two ion species, a modified Zakharov-Kuznetsov equation has been derived. The effects of the external magnetic field, the concentration of charged dust impurities, and the negative to positive ion temperature ratio on the ITDLs structure are investigated.

  8. Impact of quantized vibrations on the efficiency of interfacial charge separation in photovoltaic devices

    E-Print Network [OSTI]

    Soumya Bera; Nicolas Gheeraert; Simone Fratini; Sergio Ciuchi; Serge Florens

    2014-10-02T23:59:59.000Z

    We demonstrate that charge separation at donor-acceptor interfaces is a complex process that is controlled by the combined action of Coulomb binding for electron-hole pairs and partial relaxation due to quantized phonons. A joint electron-vibration quantum dynamical study reveals that high energy vibrations sensitively tune the charge transfer probability as a function of time and injection energy, due to polaron formation. These results have bearings for the optimization of energy transfer both in organic and quantum dot photovoltaics, as well as in biological light harvesting complexes.

  9. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland)] [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico)] [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland) [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15T23:59:59.000Z

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  10. Improving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems

    E-Print Network [OSTI]

    Qiu, Qinru

    University Syracuse, New York, 13244, USA {yzhan158, yage, qiqiu}@syr.edu ABSTRACT In energy harvestingImproving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems Yukan in the electrical energy storage (EES) bank. How much energy can be stored is affected by many factors including

  11. Charge separation in nanoscale photovoltaic materials: recent insights from first-principles electronic structure theory

    E-Print Network [OSTI]

    Wu, Zhigang

    Charge separation in nanoscale photovoltaic materials: recent insights from first-scale photovoltaic materials; in particular recent theoretical/computational work based on first principles electron and hole in so-called excitonic photovoltaic cells. Emphasis is placed on theoretical results

  12. Stability and Migration of Charged Oxygen Interstitials in ThO2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen interstitial mobility in ThO2 than in CeO2. Citation: Xiao HY, Y Zhang, and WJ Weber.2013."Stability and Migration of Charged Oxygen Interstitials in ThO2 and CeO2."Acta...

  13. Charge Collection Measurements in single-type column 3D Sensors

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Charge Collection Measurements in single-type column 3D Sensors M. Scaringella*, A. Polyakov, and H sensors. In particular, 3D detectors with columns of both n-and p-doping are considered to be especially-substrate [5]. The principle of the single-type column 3D sensors is shown in Fig. 1. Their advantages over

  14. SEU critical charge and sensitive area in a submicron CMOS technology

    SciTech Connect (OSTI)

    Detcheverry, C.; Dachs, C.; Lorfevre, E.; Sudre, C.; Bruguier, G.; Palau, J.M.; Gasiot, J. [Univ. Montpellier II (France)] [Univ. Montpellier II (France); Ecoffet, R. [CNES, Toulouse (France)] [CNES, Toulouse (France)

    1997-12-01T23:59:59.000Z

    This work presents SEU phenomena in advanced SRAM memory cells. Using mixed-mode simulation, the effects of scaling on the notions of sensitive area and critical charge is shown. Specifically, the authors quantify the influence of parasitic bipolar action in cells fabricated in a submicron technology.

  15. Point of zero charge determination in soils and minerals via traditional methods and detection

    E-Print Network [OSTI]

    Ma, Lena

    -specific ion adsorption as a function of pH and I (point of zero net charge), and (3) electroacoustic mobility Elsevier Science B.V. All rights reserved. Keywords: Point of zero charge; Point of zero net charge; Point, or positive, or no charge. The pH where the net total particle charge is zero is called the point of zero

  16. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report

    SciTech Connect (OSTI)

    Dutta, Prabir K.

    2001-09-30T23:59:59.000Z

    Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

  17. Parametric excitation and chaos through dust-charge fluctuation in a dusty plasma

    E-Print Network [OSTI]

    Bora, Madhurjya P

    2007-01-01T23:59:59.000Z

    We consider a van der Pol-Mathieu (vdPM) equation with parametric forcing, which arises in a simplified model of dusty plasma with dust-charge fluctuation. We make a detailed numerical investigation and show that the system can be driven to chaos either through a period doubling cascade or though a subcritical pitchfork bifurcation over an wide range of parameter space. We also discuss the frequency entrainment or frequency-locked phase of the dust-charge fluctuation dynamics and show that the system exhibits 2:1 parametric resonance away from the chaotic regime.

  18. Parametric excitation and chaos through dust-charge fluctuation in a dusty plasma

    E-Print Network [OSTI]

    Madhurjya P Bora; Dipak Sarmah

    2007-08-05T23:59:59.000Z

    We consider a van der Pol-Mathieu (vdPM) equation with parametric forcing, which arises in a simplified model of dusty plasma with dust-charge fluctuation. We make a detailed numerical investigation and show that the system can be driven to chaos either through a period doubling cascade or though a subcritical pitchfork bifurcation over an wide range of parameter space. We also discuss the frequency entrainment or frequency-locked phase of the dust-charge fluctuation dynamics and show that the system exhibits 2:1 parametric resonance away from the chaotic regime.

  19. Scaling of Temperature Dependence of Charge Mobility in Molecular Holstein Chains

    E-Print Network [OSTI]

    D. A. Tikhonov; N. S. Fialko; E. V. Sobolev; V. D. Lakhno

    2014-04-08T23:59:59.000Z

    The temperature dependence of a charge mobility in a model DNA based on Holstein Hamiltonian is calculated for 4 types of homogeneous sequences It has turned out that upon rescaling all 4 types are quite similar. Two types of rescaling, i.e. those for low and intermediate temperatures, are found. The curves obtained are approximated on a logarithmic scale by cubic polynomials. We believe that for model homogeneous biopolymers with parameters close to the designed ones, one can assess the value of the charge mobility without carrying out resource-intensive direct simulation, just by using a suitable approximating function.

  20. The Resonance Scattering Phenomenon of Fast Negatively Charged Particles in a Single Crystal

    E-Print Network [OSTI]

    Kovalev, Gennady V

    2015-01-01T23:59:59.000Z

    The energy spectrum of the extended attractive potential of a crystallographic row for negatively charged particles has quasi-bound states. It follows that a negatively charged particle with small transversal momentum component ($p_{\\bot} R <<1$) may undergo resonance scattering. Thus the resonance scattering phenomenon can be observed in a single crystal, when fast electrons move with a small glancing angle ($\\theta_0 << 1/pR$) to a crystallographic axis. The calculated results for the electrons and angular widths of resonance peaks are consistent with experimental data.

  1. Charging Black Saturn?

    E-Print Network [OSTI]

    Brenda Chng; Robert Mann; Eugen Radu; Cristian Stelea

    2008-10-28T23:59:59.000Z

    We construct new charged static solutions of the Einstein-Maxwell field equations in five dimensions via a solution generation technique utilizing the symmetries of the reduced Lagrangian. By applying our method on the multi-Reissner-Nordstrom solution in four dimensions, we generate the multi-Reissner-Nordstrom solution in five dimensions. We focus on the five-dimensional solution describing a pair of charged black objects with general masses and electric charges. This solution includes the double Reissner-Nordstrom solution as well as the charged version of the five-dimensional static black Saturn. However, all the black Saturn configurations that we could find present either a conical singularity or a naked singularity. We also obtain a non-extremal configuration of charged black strings that reduces in the extremal limit to a Majumdar-Papapetrou like solution in five dimensions.

  2. Note: Charge transfer in a hydrated peptide group is determined mainly by its intrinsic hydrogen-bond energetics

    SciTech Connect (OSTI)

    Mirkin, Noemi G.; Krimm, Samuel [LSA Biophysics, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055 (United States)] [LSA Biophysics, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055 (United States)

    2014-01-28T23:59:59.000Z

    Charge transfer in a hydrogen-bonded N-methylacetamide(H{sub 2}O){sub 3} system is obtained from ?B97X-D/6-31++G** and CHelpG atomic charge calculations of individual peptide-water interactions as well as that of the entire complex. In the latter, the electron transfer to water is 0.19 e, influenced primarily by the hydrogen bonds to the C=O group. The values of such charge transfer are paralleled by the corresponding intrinsic hydrogen-bond energies. These results support the desirability of incorporating charge transfer in molecular mechanics energy functions.

  3. Charged spinning fluids with magnetic dipole moment in the Einstein-Cartan theory

    SciTech Connect (OSTI)

    Amorim, R.

    1985-06-15T23:59:59.000Z

    A classical perfect charged spinning fluid with magnetic dipole moment in the Einstein-Cartan theory is described by using an Eulerian Lagrangian formalism. The field equations and equations of motion so obtained generalize those proposed by Ray and Smalley. We also clarify some open questions which appear in the works of Ray and Smalley and of de Ritis et al.

  4. Research at the Universit de Sherbrooke Faculty of Engineering NSERC Industrial Research Chairs Professor in charge

    E-Print Network [OSTI]

    Spino, Claude

    Research at the Université de Sherbrooke Faculty of Engineering NSERC Industrial Research Chairs Professor in charge NSERC Industrial Research Chair in Concrete Structure Analysis (Civil Engineering Materials for Infrastructure (Civil Engineering) Brahim Benmokrane NSERC Industrial Research Chair on High

  5. Spacecraft charging and ion wake formation in the near-Sun environment R. E. Ergun,1

    E-Print Network [OSTI]

    California at Berkeley, University of

    electrons. Electric field measurements are somewhat more difficult in the solar wind since a negativeSpacecraft charging and ion wake formation in the near-Sun environment R. E. Ergun,1 D. M be amplified by an ion wake. The negative potential of the ion wake prevents secondary electrons from escaping

  6. 'Taking Charge': Kansans Save $2.3M in Challenge to Change Their Energy Behavior

    Broader source: Energy.gov [DOE]

    How did the Climate and Energy Project (CEP), a small environmental organization that has received Recovery Act funding, achieve $2.3 million in savings annually for Kansans? Learn more about the Take Charge Challenge, a 9-month competition in which residents across 16 communities competed against each other to save the most energy and money.

  7. Cell Equalization In Battery Stacks Through State Of Charge Estimation Polling

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    stack storage capacity, shortening the battery lifetime and, eventually, permanently damaging the cellsCell Equalization In Battery Stacks Through State Of Charge Estimation Polling Carmelo Speltino but it reduces the computational load of multiple EKF for every cell in the stack. Keywords: Battery Equalization

  8. Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge

    E-Print Network [OSTI]

    Suo, Zhigang

    Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

  9. Radiation induced by charged particles in optical fibers Xavier Artru and Cedric Ray

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiation induced by charged particles in optical fibers Xavier Artru and C´edric Ray Universit, 4, 5]. Let us mention two other uses of optical fibers as particle detectors : (i) as dosimeters, through the effect of darkening by irradiation [6]; (ii) in scintillating glass fibers for particle

  10. Charged-particle spectroscopy for diagnosing shock R and strength in NIF implosions

    E-Print Network [OSTI]

    Charged-particle spectroscopy for diagnosing shock R and strength in NIF implosions A. B. Zylstra shock R and strength in NIF implosionsa) A. B. Zylstra,1,b) J. A. Frenje,1 F. H. Séguin,1 M. J to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum

  11. Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems

    E-Print Network [OSTI]

    Pedram, Massoud

    Charge Migration Efficiency Optimization in Hybrid Electrical Energy Storage (HEES) Systems the excessive electric energy in the electrical energy storage (EES) rather than converting into a different) are typically not balanced with each other. Storage of excessive en- ergy and compensation of the energy

  12. Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical Transformation

    E-Print Network [OSTI]

    Meyer, Karsten

    coordination and organometallic chemistry.1-3 The covalency in uranium ligand bonds is weaker thanCharge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and ChemicalVersity of California, San Diego, Department of Chemistry, 9500 Gilman DriVe, La Jolla, California 92093, and Uni

  13. Image Charge Differential

    E-Print Network [OSTI]

    Weston, Ken

    Image Charge Differential Amplifier FT 0 Crude Oil Time (s) 543210 Frequency (kHz) m/z m q B f Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) uses the frequency of cyclotron motion of the ions in a static magnetic field to determine the mass-to-charge ratio, which is then used

  14. Characterization and correction of charge-induced pixel shifts in DECam

    E-Print Network [OSTI]

    Gruen, Daniel; Jarvis, Mike; Rowe, Barnaby; Vikram, Vinu; Plazas, Andrés A; Seitz, Stella

    2015-01-01T23:59:59.000Z

    Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field noise correlations. The latter fall off approximately as a power-law r^-2.5 with pixel separation r, are isotropic except for an asymmetry in the direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the fl...

  15. Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows

    E-Print Network [OSTI]

    Maharbiz, Michel

    Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows Ruba T storage capacitor by 2­5 V. We provide estimates of power density, energy density, and scavenging. When the gas phase around the plant is at a lower water potential than the saturated soil, water

  16. Studies of charging stream trajectories and burden distribution in the blast furnace

    SciTech Connect (OSTI)

    McCarthy, M.J.; Mayfield, P.L.; Zulli, P.; Rex, A.J.; Tanzil, W.B.U.

    1993-01-01T23:59:59.000Z

    This work discusses the sensitivity of key blast furnace performance parameters to different gas flow distributions achieved by altering the burden distribution. The changes in burden distribution are brought about by different charging stream trajectories, and methods developed and evaluated for measuring the trajectories both on and off line are described.

  17. Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics

    E-Print Network [OSTI]

    Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics of frequency), termed electric field induced second harmonic-generation (EFISH), has been studied for a long Wei Ding, Liangcheng Zhou, and Stephen Y. Chou* NanoStructure Laboratory, Department of Electrical

  18. Beam halo formation from space-charge dominated beams in uniform focusing channels

    SciTech Connect (OSTI)

    O'Connell, J.S. (Booz, Allen and Hamilton, Inc., Arlington, VA (United States)); Wangler, T.P.; Mills, R.S. (Los Alamos National Lab., NM (United States)); Crandall, K.R. (AccSys Technology, Inc., Pleasanton, CA (United States))

    1993-01-01T23:59:59.000Z

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators.

  19. Beam halo formation from space-charge dominated beams in uniform focusing channels

    SciTech Connect (OSTI)

    O`Connell, J.S. [Booz, Allen and Hamilton, Inc., Arlington, VA (United States); Wangler, T.P.; Mills, R.S. [Los Alamos National Lab., NM (United States); Crandall, K.R. [AccSys Technology, Inc., Pleasanton, CA (United States)

    1993-06-01T23:59:59.000Z

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators.

  20. Charge Collection in the MERIT Diamond Detectors Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    , Princeton University, Princeton, NJ 08544 (February 18, 2010) The polycrystalline diamond detectors usedCharge Collection in the MERIT Diamond Detectors Kirk T. McDonald Joseph Henry Laboratories detectors used a bias field of 1 V/m, i.e., 500 V.1 The capacitance of the diamond detector itself was about

  1. CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS

    E-Print Network [OSTI]

    CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS Yongling Ren, Natalita M Nursam, Da Wang and Klaus J Weber Centre for Sustainable Energy Systems, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 0200, Australia ABSTRACT

  2. Polymer Preprints 2004, 45(2), CHARGE DENSITY EFFECTS IN SALT -FREE

    E-Print Network [OSTI]

    Colby, Ralph H.

    -methyl-2-vinyl pyridinium chloride (PMVP-Cl) with various charge density and uncharged neutral parent poly of the random copolymers of 2-vinyl pyridine and N- methyl-2-vinyl pyridinium chloride. First, the parent dry P2 by serial dilution. Polymer concentration is reported in moles of monomers (vinyl pyridine or vinyl

  3. Photochemical Charge Separation in Poly(3-hexylthiophene) (P3HT) Films Observed with Surface Photovoltage Spectroscopy

    E-Print Network [OSTI]

    Osterloh, Frank

    of Chemical Engineering and Materials Science, University of California, Davis, California 95616, United of excitation energy. Both positive and negative photovoltage signals were observed under sub-band-gap ( the identification of interface, charge transfer (CT), and band-gap states in the amorphous and crystalline regions

  4. Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films

    E-Print Network [OSTI]

    Freger, Viatcheslav "Slava"

    Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films INTRODUCTION Interfacial polymerization (IP) as a method of prepa- ration of thin film composite (TFC, and waste treatment. IP is also highly suitable for manufacturing polymeric films, such as polyamides

  5. Fitness facilities, facilities for extracurricular activities and other purposes Facility Location Department in charge

    E-Print Network [OSTI]

    Banbara, Mutsunori

    Facility Location Department in charge Student Hall (1) Common Facility 1 for Extracurricular Activities (2 tennis courts, Swimming pool (25 m, not officially approved) Rokkodai Area (Tsurukabuto 2 Campus) Martial art training facility, Japanese archery training facility, Playground, 4 tennis courts, Swimming pool

  6. SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage

    E-Print Network [OSTI]

    Shenoy, Prashant

    SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

  7. Entropy bound of a charged object and electrostatic self-energy in black holes

    E-Print Network [OSTI]

    B. Linet

    1999-11-30T23:59:59.000Z

    Without pretending to any rigour, we find a general expression of the electrostatic self-energy in static black holes with spherical symmetry. We determine the entropy bound of a charged object by assuming the existence of thermodynamics for these black holes. By combining these two results, we show that the entropy bound does not depend on the considered black hole.

  8. Real-Time PEV Charging/Discharging Coordination in Smart Distribution Systems

    E-Print Network [OSTI]

    Zhuang, Weihua

    motivated by the recent growth of renewable energy sources and the almost universal availability of electric--Distribution systems, energy management, elec- tric vehicle, smart parking lot, M/G/ queue. I. INTRODUCTION ECONOMIC are operating in many countries around the world. It has been shown that the PEV charging process

  9. Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage Systems*

    E-Print Network [OSTI]

    Pedram, Massoud

    Multiple-Source and Multiple-Destination Charge Migration in Hybrid Electrical Energy Storage massimo.poncino@polito.it Abstract-- Hybrid electrical energy storage (HEES) systems consist of multiple banks of heterogeneous electrical energy storage (EES) elements that are connected to each other through

  10. Principles and Efficient Implementation of Charge Replacement in Hybrid Electrical Energy Storage

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Principles and Efficient Implementation of Charge Replacement in Hybrid Electrical Energy Storage--Hybrid electrical energy storage systems (HEES) are comprised of multiple banks of inhomogeneous EES elements storage device, i.e., high energy capacity, high output power level, low self-discharge, low cost

  11. Charge states rather than propensity for -structure determine enhanced fibrillogenesis in wild-type

    E-Print Network [OSTI]

    Straub, John E.

    Charge states rather than propensity for -structure determine enhanced fibrillogenesis in wild -peptide relative to that of the wild-type peptide has been observed. The increased activity has been; Watson et al. 1999; Esler et al. 2000a). Two particular natu- rally occurring mutant forms of the wild

  12. SEARCH FOR CHARGED -PARTICLE d -d FUSION PRODUCTS IN AN ENCAPSULATED Pd THIN FILM

    E-Print Network [OSTI]

    Neuhauser, Barbara

    SEARCH FOR CHARGED - PARTICLE d - d FUSION PRODUCTS IN AN ENCAPSULATED Pd THIN FILM E. López, B the possibility of deuteron-deuteron (d-d) fusion at room temperature within the bulk palladium electrode / Pd ratio exceeding 100 %. The palladium film was encapsulated with a thin layer of silicon nitride

  13. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect (OSTI)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)] [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15T23:59:59.000Z

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup ?4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (?pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  14. Thin-shell wormholes from charged black holes in generalized dilaton-axion gravity

    E-Print Network [OSTI]

    A. A. Usmani; F. Rahaman; Saibal Ray; Sk. A. Rakib; Z. Hasan; Peter K. F. Kuhfittig

    2010-06-05T23:59:59.000Z

    This paper discusses a new type of thin-shell wormhole constructed by applying the cut-and-paste technique to two copies of a charged black hole in generalized dilaton-axion gravity, which was inspired by low-energy string theory. After analyzing various aspects of this thin-shell wormhole, we discuss its stability to linearized spherically symmetric perturbations.

  15. Charge transport through split photoelectrodes in dye-sensitized solar cells

    SciTech Connect (OSTI)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan, E-mail: rjose@ump.edu.my [Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300 (Malaysia); Khalidin, Zulkeflee [Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Kuantan 26600 (Malaysia)

    2014-04-28T23:59:59.000Z

    Charge transport and recombination are relatively ignored parameters while upscaling dye-sensitized solar cells (DSCs). Enhanced photovoltaic parameters are anticipated by merely widening the devices physical dimensions, viz., thickness and area as evident from the device design adopted in reported large area DSCs. These strip designs lead to ?50% loss in photocurrent compared to the high efficiency lab scale devices. Herein, we report that the key to achieving higher current density (J{sub SC}) is optimized diffusion volume rather than the increased photoelectrode area because kinetics of the devices is strongly influenced by the varied choices of diffusion pathways upon increasing the electrode area. For a given electrode area and thickness, we altered the photoelectrode design by splitting the electrode into multiple fractions to restrict the electron diffusion pathways. We observed a correlation between the device physical dimensions and its charge collection efficiency via current-voltage and impedance spectroscopy measurements. The modified electrode designs showed >50% increased J{sub SC} due to shorter transport time, higher recombination resistance and enhanced charge collection efficiency compared to the conventional ones despite their similar active volume (?3.36?×?10{sup ?4}?cm{sup 3}). A detailed charge transport characteristic of the split devices and their comparison with single electrode configuration is described in this article.

  16. Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media

    E-Print Network [OSTI]

    Markus Schmuck; Martin Z. Bazant

    2014-07-14T23:59:59.000Z

    Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media under periodic fluid flow by an asymptotic multi-scale expansion with drift. The microscopic setting is a two-component periodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Four new features arise in the upscaled equations: (i) the effective ionic diffusivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye screening length to the macroscopic length of the porous medium; (iii) the microscopic fluidic convection is replaced by a diffusion-dispersion correction in the effective diffusion tensor; and (iv) the surface charge per volume appears as a continuous "background charge density", as in classical membrane models. The coefficient tensors in the upscaled PNP equations can be calculated from periodic reference cell problems. For an insulating solid matrix, all gradients are corrected by the same tensor, and the Einstein relation holds at the macroscopic scale, which is not generally the case for a polarizable matrix, unless the permittivity and electric field are suitably defined. In the limit of thin double layers, Poisson's equation is replaced by macroscopic electroneutrality (balancing ionic and surface charges). The general form of the macroscopic PNP equations may also hold for concentrated solution theories, based on the local-density and mean-field approximations. These results have broad applicability to ion transport in porous electrodes, separators, membranes, ion-exchange resins, soils, porous rocks, and biological tissues.

  17. Charge storage mechanism in nanoporous carbons and its consequence...

    Office of Scientific and Technical Information (OSTI)

    has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion...

  18. Diffuse charge and Faradaic reactions in porous electrodes

    E-Print Network [OSTI]

    Biesheuvel, P. M.

    Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage

  19. Transverse energy and charged particle production in heavy-ion collisions: From RHIC to LHC

    E-Print Network [OSTI]

    Raghunath Sahoo; Aditya Nath Mishra

    2014-04-30T23:59:59.000Z

    We study the charged particle and transverse energy production mechanism from AGS, SPS, RHIC to LHC energies in the framework of nucleon and quark participants. At RHIC and LHC energies, the number of nucleons-normalized charged particle and transverse energy density in pseudorapidity, which shows a monotonic rise with centrality, turns out to be an almost centrality independent scaling behaviour when normalized to the number of participant quarks. A universal function which is a combination of logarithmic and power-law, describes well the charged particle and transverse energy production both at nucleon and quark participant level for the whole range of collision energies. Energy dependent production mechanisms are discussed both for nucleonic and partonic level. Predictions are made for the pseudorapidity densities of transverse energy, charged particle multiplicity and their ratio (the barometric observable, $\\frac{dE_{\\rm{T}}/d\\eta}{dN_{\\rm{ch}}/d\\eta} ~\\equiv \\frac{E_{\\rm{T}}}{N_{\\rm{ch}}}$) at mid-rapidity for Pb+Pb collisions at $\\sqrt{s_{\\rm{NN}}}=5.5$ TeV. A comparison with models based on gluon saturation and statistical hadron gas is made for the energy dependence of $\\frac{E_{\\rm{T}}}{N_{\\rm{ch}}}$.

  20. Charge Transport Properties in TiO2 Network with Different Particle Sizes for Dye Sensitized Solar Cells

    E-Print Network [OSTI]

    Cao, Guozhong

    the large improvement in performance of dye sensitized solar cells (DSCs) achieved in 1991, mesoporousCharge Transport Properties in TiO2 Network with Different Particle Sizes for Dye Sensitized Solar sensitized solar cells, nanoparticle size, impedance, charge transport properties INTRODUCTION Since

  1. Plug-In Demo Charges up Clean Cities Coalitions

    Broader source: Energy.gov [DOE]

    Clean Cities Coordinators across the country highlight the benefits of plug-in hybrids and help collect valuable usage data as part of a demonstration project for the upcoming plug-in hybrid model of the Toyota Prius.

  2. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  3. Residual dust charges in discharge afterglow L. Couedel,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force

  4. Charge neutrality in heavily doped emitters Jesus A. del Alamo

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    of a typical solar-cell emitter, being particularly excellent in the heavily doped regions beneath the surface

  5. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

  6. Charge Transfer and Support Effects in Heterogeneous Catalysis

    E-Print Network [OSTI]

    Hervier, Antoine

    2012-01-01T23:59:59.000Z

    Titanium  Oxide  as  an  Electronically  Active  Support  for  Platinum in the Catalytic Oxidation of Carbon Monoxide.  .  .  .  .  .  .  .  .  .  .  .  .  carbon  monoxide  oxidation  on  platinum  nanoparticles  supported  on  stoichiometric  titanium Titanium Oxide as an Electronically Active  Support for Platinum in  the Catalytic Oxidation of Carbon  Monoxide   

  7. NUT-Charged Black Holes in Gauss-Bonnet Gravity

    E-Print Network [OSTI]

    M. H. Dehghani; R. B. Mann

    2005-11-30T23:59:59.000Z

    We investigate the existence of Taub-NUT/bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in $d$ dimensions. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at $r=N$, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter $\\alpha$ goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield non-extremal NUT solutions to Einstein gravity having a curvature singularity at $r=N$ in the limit $% \\alpha \\to 0$. Indeed, we have non-extreme NUT solutions in $2+2k$ dimensions with non-trivial fibration only when the $2k$-dimensional base space is chosen to be $\\mathbb{CP}^{2k}$. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at $r=N$. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.

  8. Static charged perfect fluid spheres in general relativity

    E-Print Network [OSTI]

    B. V. Ivanov

    2002-03-21T23:59:59.000Z

    Interior perfect fluid solutions for the Reissner-Nordstrom metric are studied on the basis of a new classification scheme. General formulas are found in many cases. Explicit new global solutions are given as illustrations. Known solutions are briefly reviewed.

  9. Inverse problems in elliptic charged-particle beams

    E-Print Network [OSTI]

    Bhatt, Ronak Jayant

    2006-01-01T23:59:59.000Z

    The advantages of elliptic (or sheet) beams have been known for many years, but their inherent three-dimensional nature presents significant theoretical, design, and experimental challenges in the development of elliptic ...

  10. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    E-Print Network [OSTI]

    P. Thuiner; R. Hall-Wilton; R. B. Jackman; H. Müller; T. T. Nguyen; E. Oliveri; D. Pfeiffer; F. Resnati; L. Ropelewski; J. A. Smith; M. van Stenis; R. Veenhof

    2015-03-23T23:59:59.000Z

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  11. Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles

    E-Print Network [OSTI]

    Carter, Sue

    Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and interpenetrating polymer networks6 can substantially im- prove the photoconductivity, and thus quantum efficiency and layered titanium dioxide (TiO2) nanoparticles on charge transfer processes in conjugated polymer

  12. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system

    SciTech Connect (OSTI)

    Bilici, Mihai A.; Toth, Joseph R.; Sankaran, R. Mohan; Lacks, Daniel J. [Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217 (United States)

    2014-10-15T23:59:59.000Z

    Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jet of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain.

  13. Charging and Heating Dynamics of Nanoparticles in Nonthermal Plasmas

    SciTech Connect (OSTI)

    Kortshagen, Uwe R.

    2014-08-15T23:59:59.000Z

    The focus of this award was to understand the interactions of nanometer-sized particles with ionized gases, also called plasmas. Plasmas are widely used in the fabrication of electronic circuits such as microprocessors and memory devices, in plasma display panels, as well as in medical applications. Recently, these ionized gases are finding applications in the synthesis of advanced nanomaterials with novel properties, which are based on nanometer-sized particulate (nanoparticles) building blocks. As these nanoparticles grow in the plasma environment, they interact with the plasmas species such as electrons and ions which critically determines the nanoparticle properties. The University of Minnesota researchers conducting this project performed numerical simulations and developed analytical models that described the interaction of plasma-bound nanoparticles with the plasma ions. The plasma ions bombard the nanoparticle surface with substantial energy, which can result in the rearrangement of the nanoparticles’ atoms, giving them often desirable structures at the atomic scale. Being able to tune the ion energies allows to control the properties of nanoparticles produced in order to tailor their attributes for certain applications. For instance, when used in high efficiency light emitting devices, nanoparticles produced under high fluxes of highly energetic ions may show superior light emission to particles produced under low fluxes of less energetic ions. The analytical models developed by the University of Minnesota researchers enable the research community to easily determine the energy of ions bombarding the nanoparticles. The researchers extensively tested the validity of the analytical models by comparing them to sophisticated computer simulations based on stochastic particle modeling, also called Monte Carlo modeling, which simulated the motion of hundreds of thousands of ions and their interaction with the nanoparticle surfaces. Beyond the scientific intellectual merits, this award had significant broader impacts. Two graduate students received their doctoral degrees and both have joined a U.S. manufacturer of plasma-based semiconductor processing equipment. Four undergraduate students participated in research conducted under this grant and gained valuable hands-on laboratory experience. A middle school science teacher observed research conducted under this grant and developed three new course modules that introduce middle school students to the concepts of nanometer scale, the atomic structure of matter, and the composition of matter of different chemical elements.

  14. Charge induced coherence between intersubband plasmons in a quantum structure

    E-Print Network [OSTI]

    Aymeric Delteil; Angela Vasanelli; Yanko Todorov; Cheryl Feuillet-Palma; Margaux Renaudat St-Jean; Grégoire Beaudoin; Isabelle Sagnes; Carlo Sirtori

    2012-12-18T23:59:59.000Z

    In this work we investigate a low dimensional semiconductor system, in which the light-matter interaction is enhanced by the cooperative behavior of a large number of dipolar oscillators, at different frequencies, mutually phase locked by Coulomb interaction. We experimentally and theoretically demonstrate that, owing to this phenomenon, the optical response of a semiconductor quantum well with several occupied subbands is a single sharp resonance, associated to the excitation of a bright multisubband plasmon. This effect illustrates how the whole oscillator strength of a two-dimensional system can be concentrated into a single resonance independently from the shape of the confining potential. When this cooperative excitation is tuned in resonance with a cavity mode, their coupling strength can be increased monotonically with the electronic density, allowing the achievement of the ultra-strong coupling regime up to room temperature.

  15. Optimization to reduce fuel consumption in charge depleting mode

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26T23:59:59.000Z

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  16. Conserved charges in timelike Warped-AdS$_3$ spaces

    E-Print Network [OSTI]

    Donnay, L; Giribet, G; Goya, A; Lavia, E

    2015-01-01T23:59:59.000Z

    We consider the timelike version of Warped Anti-de Sitter space (WAdS), which corresponds to the three-dimensional section of the G\\"{o}del solution of four-dimensional cosmological Einstein equations. This geometry presents closed timelike curves (CTCs), which are inherited from its four-dimensional embedding. In three dimensions, this type of solutions can be supported without matter provided the graviton acquires mass. Here, among the different ways to consistenly give mass to the graviton in three dimensions, we consider the parity-even model known as New Massive Gravity (NMG). In the bulk of timelike WAdS$_{3}$ space, we introduce defects that, from the three-dimensional point of view, represent spinning massive particle-like objects. For this type of sources, we investigate the definition of quasi-local gravitational energy as seen from infinity, far beyond the region where the CTCs appear. We also consider the covariant formalism applied to NMG to compute the mass and the angular momentum of spinning p...

  17. Trapping and Measuring Charged Particles in Liquids - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTYTransportationEffects for Heavy

  18. Charge exchange and ionization cross sections of H{sup +}+H collision in dense quantum plasmas

    SciTech Connect (OSTI)

    Zhang, Ling-yu; Qi, Xin; Zhao, Xiao-ying; Meng, Dong-yuan; Xiao, Guo-qing [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China and University of Chinese Academy of Sciences, Beijing 100049 (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China and University of Chinese Academy of Sciences, Beijing 100049 (China); Duan, Wen-shan [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, Gansu 730070 (China)] [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, Gansu 730070 (China); Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China and University of Chinese Academy of Sciences, Beijing 100049 (China) [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China and University of Chinese Academy of Sciences, Beijing 100049 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2013-11-15T23:59:59.000Z

    The plasma screening effects of dense quantum plasmas on H{sup +}+H charge exchange and ionization cross sections are calculated by the classical trajectory Monte Carlo method. For charge exchange cross sections, it is found that the screening effects reduce cross sections slightly in weak screening conditions. However, cross sections are reduced substantially in strong screening conditions. For ionization cross sections, with the increase of screening effects, cross sections for low energies increase more rapidly than those for high energies. When the screening effects are strong enough, it is found that ionization cross sections decrease with the increase of incident H{sup +} energy. In addition, the cross sections have been compared with those in weakly coupled plasmas. It is found that in weak screening conditions, plasma screening effects in the two plasmas are approximately the same, while in strong screening conditions, screening effects of dense quantum plasmas are stronger than those of weakly coupled plasmas.

  19. Tools for charged Higgs bosons

    E-Print Network [OSTI]

    Oscar Stål

    2010-12-13T23:59:59.000Z

    We review the status of publicly available software tools applicable to charged Higgs physics. A selection of codes are highlighted in more detail, focusing on new developments that have taken place since the previous charged Higgs workshop in 2008. We conclude that phenomenologists now have the tools ready to face the LHC data. A new webpage collecting charged Higgs resources is presented.

  20. Holography, charge and baryon asymmetry

    E-Print Network [OSTI]

    T. R. Mongan

    2012-02-08T23:59:59.000Z

    The reason for baryon asymmetry in our universe has been a pertinent question for many years. The holographic principle suggests a charged preon model underlies the Standard Model of particle physics and any such charged preon model requires baryon asymmetry. This note estimates the baryon asymmetry predicted by charged preon models in closed inflationary Friedmann universes.

  1. Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Steiner, Ullrich

    Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells and Storage; Energy and Charge Transport The dye-sensitized solar cell (DSC) has attracted wide- spread. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom *S Supporting Information ABSTRACT: Solid-state dye-sensitized

  2. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 2, MARCH 2007 209 Stability Analysis in Homogeneous Charge

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    in Homogeneous Charge Compression Ignition (HCCI) Engines With High Dilution Chia-Jui Chiang and Anna G of homogeneous charge compression ignition (HCCI) en- gines with exhaust dilution. We find conditions under which into account the internal feedback structure of the thermal dynamics. Specifically, HCCI combustion timing

  3. Measurement of the Inclusive Leptonic Asymmetry in Top-Quark Pairs that Decay to Two Charged Leptons at CDF

    SciTech Connect (OSTI)

    Aaltonen, Timo Antero; et al.,

    2014-07-23T23:59:59.000Z

    We measure the inclusive forward-backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton-antiproton collisions, and decaying to final states that contain two charged leptons (electrons or muons), using data collected with the Collider Detector at Fermilab.

  4. Mass Transport Investigated with the Electrochemical and Electrogravimetric Impedance Techniques. 3. Complex Charge Transport in PPy/PSS Films

    E-Print Network [OSTI]

    Kwak, Juhyoun

    Mass Transport Investigated with the Electrochemical and Electrogravimetric Impedance Techniques. 3. Complex Charge Transport in PPy/PSS Films Haesik Yang and Juhyoun Kwak* Department of Chemistry, Korea AdVember 24, 1997 For the first time, the complex charge transport mechanism for polypyrrole

  5. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01T23:59:59.000Z

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  6. Charge Density Waves in Exfoliated Films of van der Waals Materials: Evolution of Raman Spectrum in TiSe2

    E-Print Network [OSTI]

    Charge Density Waves in Exfoliated Films of van der Waals Materials: Evolution of Raman Spectrum graphene-like mechanical exfoliation of TiSe2 crystals to prepare a set of films with different thicknesses

  7. Charge asymmetry in the differential cross section of high-energy bremsstrahlung in the field of a heavy atom

    E-Print Network [OSTI]

    Krachkov, P A

    2015-01-01T23:59:59.000Z

    The distinction between the charged particle and antiparticle differential cross sections of high-energy bremsstrahlung in the electric field of a heavy atom is investigated. The consideration is based on the quasiclassical approximation to the wave functions in the external field. The charge asymmetry (the ratio of the antisymmetric and symmetric parts of the differential cross section) arises due to the account for the first quasiclassical correction to the differential cross section. All evaluations are performed with the exact account of the atomic field. We consider in detail the charge asymmetry for electrons and muons. For electrons, the nuclear size effect is not important while for muons this effect should be taken into account. For the longitudinal polarization of the initial charged particle, the account for the first quasiclassical correction to the differential cross section leads to the asymmetry in the cross section with respect to the replacement $\\varphi\\rightarrow-\\varphi$, where $\\varphi$ i...

  8. First Use of High Charge States for Mass Measurements of Short-lived Nuclides in a Penning Trap

    E-Print Network [OSTI]

    S. Ettenauer; M. C. Simon; A. T. Gallant; T. Brunner; U. Chowdhury; V. V. Simon; M. Brodeur; A. Chaudhuri; E. Mané; C. Andreoiu; G. Audi; J. R. Crespo López-Urrutia; P. Delheij; G. Gwinner; A. Lapierre; D. Lunney; M. R. Pearson; R. Ringle; J. Ullrich; J. Dilling

    2011-09-15T23:59:59.000Z

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly-charged ions (HCI), using the TITAN facility at TRIUMF. Compared to singly-charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb-isotopes have been charge bred in an electron beam ion trap to q = 8 - 12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly-charged ions at a radioactive beam facility opens the door to unrivalled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {\\beta} emitter 74Rb (T1/2 = 65 ms). The determination of its atomic mass and an improved QEC-value are presented.

  9. Combined gravitational and electromagnetic self-force on charged particles in electrovac spacetimes

    E-Print Network [OSTI]

    Thomas M. Linz; John L. Friedman; Alan G. Wiseman

    2014-06-19T23:59:59.000Z

    We consider the self-force on a charged particle moving in a curved spacetime with a background electromagnetic field, extending previous studies to situations in which gravitational and electromagnetic perturbations are comparable. The formal expression $f^{ret}_\\alpha$ for the self-force on a particle, written in terms of the retarded perturbed fields, is divergent, and a renormalization is needed to find the particle's acceleration at linear order in its mass $m$ and charge $e$. We assume that, as in previous work in a Lorenz gauge, the renormalization for accelerated motion comprises an angle average and mass renormalization. Using the short distance expansion of the perturbed electromagnetic and gravitational fields, we show that the renormalization is equivalent to that obtained from a mode sum regularization in which one subtracts from the expression for the self-force in terms of the retarded fields a singular part field comprising only the leading and subleading terms in the mode sum. The most striking part of our result, arising from a remarkable cancellation, is that the renormalization involves no mixing of electromagnetic and gravitational fields. In particular, the renormalized mass is obtained by subtracting (1) the purely electromagnetic contribution from a point charge moving along an accelerated trajectory and (2) the purely gravitational contribution from a point mass moving along the same trajectory. In a mode-sum regularization, the same cancellation implies that the required regularization parameters are sums of their purely electromagnetic and gravitational values.

  10. Battery and charge controller evaluations in small stand-alone PV systems

    SciTech Connect (OSTI)

    Woodworth, J.R.; Thomas, M.G.; Stevens, J.W. [Sandia National Labs., Albuquerque, NM (United States); Dunlop, J.L.; Swamy, M.R.; Demetrius, L. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Harrington, S.R. [K-Tech Corp., Albuquerque, NM (United States)

    1994-07-01T23:59:59.000Z

    We report the results of to separate long-term tests of batteries and charge controllers in small stand-alone PV systems. In these experiments, seven complete systems were tested for two years at each of two locations: Sandia National Laboratories in Albuquerque and the Florida Solar Energy Center in Cape Canaveral, Florida. Each system contained a PV array, flooded-lead-acid battery, a charge controller and a resistive load. Performance of the systems was strongly influenced by the difference in solar irradiance at the two sites, with some batteries at Sandia exceeding manufacturer`s predictions for cycle life. System performance was strongly correlated with regulation reconnect voltage (R{sup 2} correlation coefficient = 0.95) but only weakly correlated with regulation voltage. We will also discuss details of system performance, battery lifetime and battery water consumption.

  11. Mode-selective vibrational control of charge transport in $?$-conjugated molecular materials

    E-Print Network [OSTI]

    Artem A. Bakulin; Robert Lovrin?i?; Yu Xi; Oleg Selig; Huib J. Bakker; Yves L. A. Rezus; Pabitra K. Nayak; Alexandr Fonari; Veaceslav Coropceanu; Jean-Luc Brédas; David Cahen

    2015-03-02T23:59:59.000Z

    The soft character of organic materials leads to strong coupling between molecular nuclear and electronic dynamics. This coupling opens the way to control charge transport in organic electronic devices by inducing molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such control has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be controlled by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1500-1700 cm$^{-1}$ region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. Vibrational control thus presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.

  12. Efficient readout of a single spin state in diamond via spin-to-charge conversion

    E-Print Network [OSTI]

    B. J. Shields; Q. P. Unterreithmeier; N. P. de Leon; H. Park; M. D. Lukin

    2014-10-01T23:59:59.000Z

    Efficient readout of individual electronic spins associated with atom-like impurities in the solid state is essential for applications in quantum information processing and quantum metrology. We demonstrate a new method for efficient spin readout of nitrogen-vacancy (NV) centers in diamond. The method is based on conversion of the electronic spin state of the NV to a charge state distribution, followed by single-shot readout of the charge state. Conversion is achieved through a spin-dependent photoionization process in diamond at room temperature. Using NVs in nanofabricated diamond beams, we demonstrate that the resulting spin readout noise is within a factor of three of the spin projection noise level. Applications of this technique for nanoscale magnetic sensing are discussed.

  13. Non-relativistic Geodesic Behaviors for a Massive Charged Particle Falling in de Sitter Spacetime

    E-Print Network [OSTI]

    Farrin Payandeh; Mohsen Fathi

    2012-10-10T23:59:59.000Z

    In this article, continuing the work done in the previous paper (M. Fathi 2012), we apply a Lagrangian formalism to demonstrate the shape of the geodesic motion for a massive charged particle which is falling freely in a de Sitter spacetime. We will show that a spiral shape of the trajectory is available, due to the logarithmic behavior of time, with respect to the proper time.

  14. Quantum mechanics of a charged particle in a background magnetic field interacting with linearized gravitational waves

    E-Print Network [OSTI]

    Sunandan Gangopadhyay; Anirban Saha

    2012-04-02T23:59:59.000Z

    We consider the dynamics of a charged particle interacting with background electromagnetic field under the influence of linearized gravitational waves in the long wave-length and low-velocity limit. Following the prescription in \\cite{speli}, the system is quantized and the Hamiltonian is then solved by using standard algebraic iterative methods. The solution is in conformity with the classical analysis and shows the possibility of tuning the frequency by changing the magnetic field to set up resonance.

  15. Fast and stable manipulation of a charged particle in a Penning trap

    E-Print Network [OSTI]

    A. Kiely; J. P. L. McGuinness; J. G. Muga; A. Ruschhaupt

    2014-12-16T23:59:59.000Z

    We propose shortcuts to adiabaticity which achieve fast and stable control of the state of a charged particle in an electromagnetic field. In particular we design a non-adiabatic change of the magnetic field strength in a Penning trap which changes the radial spread without final excitations. We apply a streamlined version of the fast-forward formalism as well as an invariant based inverse engineering approach. We compare both methods and examine their stability.

  16. Optical generation of free charge carriers in thin films of tin oxide

    SciTech Connect (OSTI)

    Zhurbina, I. A., E-mail: zhurbina@vega.phys.msu.ru; Tsetlin, O. I.; Timoshenko, V. Yu. [Moscow State University (Russian Federation)

    2011-02-15T23:59:59.000Z

    The methods of infrared absorption spectroscopy and Raman spectroscopy are used to study nanocrystalline SnO{sub x} films (1 {<=} x {<=} 2) prepared by thermal oxidation of metallic tin layers. A monotonic decrease in the transmittance of films in the infrared region has been observed as a result of exposure of the films to light with the wavelength of 380 nm at room temperature. The effect is at a maximum for the samples with x Almost-Equal-To 2 and is observed for {approx}10 min after switching off of illumination. The mentioned variations in optical properties, similarly to those observed in the case of heating of the samples in the dark, are accounted for by an increase in the concentration of free charge carriers (electrons) in nanocrystals of tin dioxide. The data of infrared spectroscopy and the Drude model are used to calculate the concentrations of photogenerated charge carriers ({approx}10{sup 19} cm{sup -3}); variations in these concentrations in the course of illumination and after switching off of illumination are determined. Mechanisms of observed photogeneration of charge carriers in SnO{sub x} films and possible applications of this effect to gas sensors are discussed.

  17. Non-perturbative analysis of space charge limited electron flow in critical regimes

    SciTech Connect (OSTI)

    Rokhlenko, A.; Lebowitz, J. L. [Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)

    2014-08-07T23:59:59.000Z

    The combined Eulerian-Lagrangian formalism, developed in our previous work for studying the turn on regime of a one-dimensional diode, is extended for wider versatility and better precision in the study of the time dependent space charge limited electron flow with fixed injected current. An analytical analysis is supplemented with an approximate numerical scheme which appears to be sufficiently accurate to calculate the flow evolution until the process approaches stabilization or becomes unstable. This can be compared with properties of stationary flows and showed to be in a good agreement with them. When the stabilization is impossible, the ratio of anode to cathode currents is decreasing and thus the space charge is accumulated in the diode. We discuss the limitations of our approach and give some qualitative estimates for the flow parameters when stabilization is impossible.

  18. Charge-to-mass-ratio-dependent ion heating during magnetic reconnection in the MST RFP

    SciTech Connect (OSTI)

    Kumar, S. T. A.; Almagri, A. F.; Den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Terry, P. W. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States) [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Craig, D. [Wheaton College, Wheaton, Illinois 60187 (United States)] [Wheaton College, Wheaton, Illinois 60187 (United States)

    2013-05-15T23:59:59.000Z

    Temperature evolution during magnetic reconnection has been spectroscopically measured for various ion species in a toroidal magnetized plasma. Measurements are made predominantly in the direction parallel to the equilibrium magnetic field. It is found that the increase in parallel ion temperature during magnetic reconnection events increases with the charge-to-mass ratio of the ion species. This trend can be understood if the heating mechanism is anisotropic, favoring heating in the perpendicular degree of freedom, with collisional relaxation of multiple ion species. The charge-to-mass ratio trend for the parallel temperature derives from collisional isotropization. This result emphasizes that collisional isotropization and energy transfer must be carefully modeled when analyzing ion heating measurements and comparing to theoretical predictions.

  19. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates

    E-Print Network [OSTI]

    Conte, S Dal; Golež, D; Mierzejewski, M; Soavi, G; Peli, S; Banfi, F; Ferrini, G; Comin, R; Ludbrook, B M; Chauviere, L; Zhigadlo, N D; Eisaki, H; Greven, M; Lupi, S; Damascelli, A; Brida, D; Capone, M; Bon?a, J; Cerullo, G; Giannetti, C

    2015-01-01T23:59:59.000Z

    One of the pivotal questions in the physics of high-temperature superconductors is whether the low-energy dynamics of the charge carriers is mediated by bosons with a characteristic timescale. This issue has remained elusive since electronic correlations are expected to dramatically speed up the electron-boson scattering processes, confining them to the very femtosecond timescale that is hard to access even with state-of-the-art ultrafast techniques. Here we simultaneously push the time resolution and the frequency range of transient reflectivity measurements up to an unprecedented level that enables us to directly observe the 16 fs build-up of the effective electron-boson interaction in hole-doped copper oxides. This extremely fast timescale is in agreement with numerical calculations based on the t-J model and the repulsive Hubbard model, in which the relaxation of the photo-excited charges is achieved via inelastic scattering with short-range antiferromagnetic excitations.

  20. A stepped leader model for lightning including charge distribution in branched channels

    SciTech Connect (OSTI)

    Shi, Wei; Zhang, Li [School of Electrical Engineering, Shandong University, Jinan 250061 (China); Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn [Beijing Key Lab of HV and EMC, North China Electric Power University, Beijing 102206 (China); State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206 (China)

    2014-09-14T23:59:59.000Z

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  1. A Stable Massive Charged Particle

    E-Print Network [OSTI]

    G. Rajasekaran

    2011-06-08T23:59:59.000Z

    We consider the possibility of the existence of a stable massive charged particle by a minimal extension of the standard model particle content. Absolute stability in the case of singly charged particle is not possible if the usual doublet Higgs exists, unless a discrete symmetry is imposed.But a doubly charged particle is absolutely stable.

  2. On the space-charge formation in a collisional magnetized electronegative plasma

    SciTech Connect (OSTI)

    Yasserian, Kiomars [Department of Physics, Karaj Branch, Islamic Azad University, Karaj (Iran, Islamic Republic of); Aslaninejad, Morteza [Plasma Physics Research Centre, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of)

    2012-07-15T23:59:59.000Z

    The plasma sheath formation in the vicinity of a surrounding wall of magnetized plasma is studied in the presence of the electronegative ions and the positive ion-neutral background collisions. Fluid equations are used to treat the plasma particles species. By using the Sagdeev potential, the influence of the collisions and the magnetic field on the Bohm criterion are investigated. The space-charge profiles are obtained in the presence of a magnetic field in different collision frequencies as well as electronegative ions concentration. It is shown that the collision and the magnetic field raise a space-charge peak, while the presence of the electronegative ions results in damping the peaks. Moreover, it is observed that in the case of high magnetic field, some fluctuations emerge in the space-charge profiles. The influences of the magnetic field and electronegative ion concentration as well as negative ion temperature on the positive ion kinetic energy reaching the plasma surrounding wall and positive ion velocity perpendicular to the sheath axis are investigated. Finally, the net current through the sheath region is obtained for different collisionality and magnetic field values in both electropositive and electronegative plasmas.

  3. Nuclear Effects in Deep Inelastic Scattering of Charged-Current Neutrino off Nuclear

    E-Print Network [OSTI]

    Duan ChunGui; Li GuangLie; Shen PengNian

    2006-04-18T23:59:59.000Z

    Nuclear effect in the neutrino-nucleus charged-Current inelastic scattering process is studied by analyzing the CCFR and NuTeV data. Structure functions $F_2(x,Q^2)$ and $xF_3(x,Q^2)$ as well as differential cross sections are calculated by using CTEQ parton distribution functions and EKRS and HKN nuclear parton distribution functions, and compared with the CCFR and NuTeV data. It is found that the corrections of nuclear effect to the differential cross section for the charged-current anti-neutrino scattering on nucleus are negligible, the EMC effect exists in the neutrino structure function $F_2(x,Q^2)$ in the large $x$ region, the shadowing and anti-shadowing effect occurs in the distribution functions of valence quarks in the small and medium $x$ region,respectively. It is also found that shadowing effects on $F_2(x,Q^2)$ in the small $x$ region in the neutrino-nucleus and the charged-lepton-nucleus deep inelastic scattering processes are different. It is clear that the neutrino-nucleus deep inelastic scattering data should further be employed in restricting nuclear parton distributions.

  4. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    E-Print Network [OSTI]

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01T23:59:59.000Z

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  5. Chiral vortical wave and induced flavor charge transport in a rotating quark-gluon plasma

    E-Print Network [OSTI]

    Jiang, Yin; Liao, Jinfeng

    2015-01-01T23:59:59.000Z

    We show the existence of a new gapless collective excitation in a rotating fluid system with chiral fermions, named as the Chiral Vortical Wave (CVW). The CVW has its microscopic origin at the quantum anomaly and macroscopically arises from interplay between vector and axial charge fluctuations induced by vortical effects. The wave equation is obtained both from hydrodynamic current equations and from chiral kinetic theory and its solutions show nontrivial CVW-induced charge transport from different initial conditions. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Lambda baryons that may be experimentally measured.

  6. Quantized Hamiltonian dynamics captures the low-temperature regime of charge transport in molecular crystals

    SciTech Connect (OSTI)

    Wang, Linjun, E-mail: linjun.wang@rochester.edu, E-mail: oleg.prezhdo@rochester.edu; Chen, Liping; Prezhdo, Oleg V., E-mail: linjun.wang@rochester.edu, E-mail: oleg.prezhdo@rochester.edu [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States); Akimov, Alexey V. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States) [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States); Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2013-11-07T23:59:59.000Z

    The quantized Hamiltonian dynamics (QHD) theory provides a hierarchy of approximations to quantum dynamics in the Heisenberg representation. We apply the first-order QHD to study charge transport in molecular crystals and find that the obtained equations of motion coincide with the Ehrenfest theory, which is the most widely used mixed quantum-classical approach. Quantum initial conditions required for the QHD variables make the dynamics surpass Ehrenfest. Most importantly, the first-order QHD already captures the low-temperature regime of charge transport, as observed experimentally. We expect that simple extensions to higher-order QHDs can efficiently represent other quantum effects, such as phonon zero-point energy and loss of coherence in the electronic subsystem caused by phonons.

  7. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    E-Print Network [OSTI]

    Dymov, S; Bagdasarian, Z; Barsov, S; Carbonell, J; Chiladze, D; Engels, R; Gebel, R; Grigoryev, K; Hartmann, M; Kacharava, A; Khoukaz, A; Komarov, V; Kulessa, P; Kulikov, A; Kurbatov, V; Lomidze, N; Lorentz, B; Macharashvili, G; Mchedlishvili, D; Merzliakov, S; Mielke, M; Mikirtychyants, M; Mikirtychyants, S; Nioradze, M; Ohm, H; Prasuhn, D; Rathmann, F; Serdyuk, V; Seyfarth, H; Shmakova, V; Ströher, H; Tabidze, M; Trusov, S; Tsirkov, D; Uzikov, Yu; Valdau, Yu; Weidemann, C; Wilkin, C

    2015-01-01T23:59:59.000Z

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.

  8. Measurement of the Electric Charge of the Top Quark in $\\boldsymbol{t\\bar{t}}$ Events

    E-Print Network [OSTI]

    D0 Collaboration

    2014-09-25T23:59:59.000Z

    We present a measurement of the electric charge of top quarks using $t\\bar{t}$ events produced in $p\\bar{p}$ collisions at the Tevatron. The analysis is based on fully reconstructed $t\\bar{t}$ pairs in lepton+jets final states. Using data corresponding to 5.3 $\\rm fb^{-1}$ of integrated luminosity, we exclude the hypothesis that the top quark has a charge of $Q=-4/3\\,e$ at a significance greater than 5 standard deviations. We also place an upper limit of 0.46 on the fraction of such quarks that can be present in an admixture with the standard model top quarks ($Q=+2/3\\,e$) at a 95\\% confidence level.

  9. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    E-Print Network [OSTI]

    S. Dymov; T. Azaryan; Z. Bagdasarian; S. Barsov; J. Carbonell; D. Chiladze; R. Engels; R. Gebel; K. Grigoryev; M. Hartmann; A. Kacharava; A. Khoukaz; V. Komarov; P. Kulessa; A. Kulikov; V. Kurbatov; N. Lomidze; B. Lorentz; G. Macharashvili; D. Mchedlishvili; S. Merzliakov; M. Mielke; M. Mikirtychyants; S. Mikirtychyants; M. Nioradze; H. Ohm; D. Prasuhn; F. Rathmann; V. Serdyuk; H. Seyfarth; V. Shmakova; H. Ströher; M. Tabidze; S. Trusov; D. Tsirkov; Yu. Uzikov; Yu. Valdau; C. Weidemann; C. Wilkin

    2015-03-02T23:59:59.000Z

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy E_{pp}, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ~ 1/2 Td =363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both E_{pp} and the momentum transfer. This lends broad support to the current neutron-proton partial-wave solution that was used in the estimation.

  10. Binding energy of singlet excitons and charge transfer complexes in MDMO-PPV:PCBM solar cells

    E-Print Network [OSTI]

    Kern, Julia; Deibel, Carsten; Dyakonov, Vladimir

    2011-01-01T23:59:59.000Z

    The influence of an external electric field on the photoluminescence intensity of singlet excitons and charge transfer complexes is investigated for a poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) diode and a bulk heterojunction of the PPV in combination with [6,6]-phenyl-C61 butyric acid methylester (PCBM), respectively. The experimental data is related to the dissociation probability derived from the Onsager-Braun model. In this way, a lower limit for the singlet exciton binding energy of MDMO-PPV is determined as (327 +- 30) meV, whereas a significantly lower value of (203 +- 18) meV is extracted for the charge transfer complex in a MDMO-PPV:PCBM blend.

  11. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    SciTech Connect (OSTI)

    McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory

    2012-09-10T23:59:59.000Z

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  12. Effect of energetic electrons on dust charging in hot cathode filament discharge

    SciTech Connect (OSTI)

    Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2011-03-15T23:59:59.000Z

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  13. On compensating tune spread induced by space charge in bunched beams

    SciTech Connect (OSTI)

    Litvinenko, V. N.; Wang, G.

    2014-05-09T23:59:59.000Z

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator, or, in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. Using a proper transverse profile of the electron beam (or plasma column) for a coasting beam would compensate both the tune shift and the tune spread in the hadron beam. But all of these methods do not address the issue of tune spread compensation of a bunched hadron beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with miss-matched longitudinal velocity to compensate the space charge induced tune-shift and tune spread. We present a number of practical examples of such system.

  14. Charging of dust grains in a nonequilibrium plasma of a stratified glow discharge

    SciTech Connect (OSTI)

    Sukhinin, G. I.; Fedoseev, A. V. [Russian Academy of Sciences, Kutateladze Institute of Thermophysics, Siberian Branch (Russian Federation)

    2007-12-15T23:59:59.000Z

    A theoretical model is presented that describes the charging of dust grains in the positive plasma column of a stratified glow dc discharge in argon. A one-dimensional self-consistent model is used to obtain axial profiles of the electric field, as well as the electron energy distribution function along the axis of the discharge tube. Radial profiles of the electric field are determined in the ambipolar diffusion approximation. It is assumed that, in the radial direction, the electron distribution function depends only on the total electron energy. Two-dimensional distributions of the discharge plasma parameters are calculated and used to determine the potential and charge of a test dust grain at a certain point within the discharge and the electrostatic forces acting on it. It is shown that the grain charge distribution depends strongly on the nonequilibrium electron distribution function and on the nonuniform distribution of the electric field in a stratified glow discharge. A discussion is presented on the suspension of dust grains, the separation of grains by size in the discharge striations, and a possible mechanism for the onset of vortex dust motion at the edge of a dust cloud.

  15. Characterization of In-Use Medium Duty Electric Vehicle Driving and Charging Behavior: Preprint

    SciTech Connect (OSTI)

    Duran, A.; Ragatz, A.; Prohaska, R.; Kelly, K.; Walkowicz, K.

    2014-11-01T23:59:59.000Z

    The U.S. Department of Energy's American Recovery and Reinvestment Act (ARRA) deployment and demonstration projects are helping to commercialize technologies for all-electric vehicles (EVs). Under the ARRA program, data from Smith Electric and Navistar medium duty EVs have been collected, compiled, and analyzed in an effort to quantify the impacts of these new technologies. Over a period of three years, the National Renewable Energy Laboratory (NREL) has compiled data from over 250 Smith Newton EVs for a total of over 100,000 days of in-use operation. Similarly, data have been collected from over 100 Navistar eStar vehicles, with over 15,000 operating days having been analyzed. NREL has analyzed a combined total of over 4 million kilometers of driving and 1 million hours of charging data for commercial operating medium duty EVs. In this paper, the authors present an overview of medium duty EV operating and charging behavior based on in-use data collected from both Smith and Navistar vehicles operating in the United States. Specifically, this paper provides an introduction to the specifications and configurations of the vehicles examined; discusses the approach and methodology of data collection and analysis, and presents detailed results regarding daily driving and charging behavior. In addition, trends observed over the course of multiple years of data collection are examined, and conclusions are drawn about early deployment behavior and ongoing adjustments due to new and improving technology. Results and metrics such as average daily driving distance, route aggressiveness, charging frequency, and liter per kilometer diesel equivalent fuel consumption are documented and discussed.

  16. pH-dependent charge trapping by quinones electrostatically bound in an electrode confined benzylviologen polymer

    SciTech Connect (OSTI)

    Not Available

    1989-02-23T23:59:59.000Z

    Anthraquinone-2,6-disulfonate, 2,6-AQ, and anthraquinone-2-sulfonate, 2-AQ, have been electrostatically bound in an electrode-confined N,N{prime}-bis(p-(trimethoxysilyl)benzyl)-4,4{prime}-bipyridinium-based polymer, (BPQ{sup 2+/+}){sub n}. Under all conditions in aqueous electrolyte it appears that charge transport via the quinone redox system, AQ/AQH{sub 2}, is too slow to allow direct access to all quinone centers in the polymer. Generally, all quinone centers are electrode accessible only via the BPQ{sup 2+/+} redox mediator. At pH 6.5 the electrochemistry of ((BPQ{sup 2+}){sub n}{center dot}(AQ){sub m}){sub surf} is approximately the superposition of the AQ solution electrochemistry and the electrochemistry of surface-confined (BPQ{sup 2+/+}){sub n} examined separately. At pH 1.0 the reduction potential of AQ shifts positive and (BPQ{sup 2+/+}){sub n} can only mediate the reduction of AQ to the 2e{sup {minus}}/2H{sup +} reduced form, AQH{sub 2}, since the oxidation of AQH{sub 2} by BPQ{sup 2+} is thermodynamically uphill. Therefore, the charge associated with the reduced quinone, AQH{sub 2}, remains trapped in analogy to previous reports of charge trapping in bilayer systems. The trapped charge is released from the ((BPQ{sup 2+}){sub n}{center dot}(AQ){sub m}){sub surf} system by a sudden increase in pH which changes the thermodynamics to allow oxidation of the AQH{sub 2} by the BPQ{sup 2+}.

  17. Full electrical control of Charge and Spin conductance through Interferometry of Edge States in Topological Insulators

    E-Print Network [OSTI]

    Fabrizio Dolcini

    2011-05-13T23:59:59.000Z

    We investigate electron interferometry of edge states in Topological Insulators. We show that, when inter-boundary coupling is induced at two quantum point contacts of a four terminal setup, both Fabry-P\\'erot-like and Aharonov-Bohm-like loop processes arise. These underlying interference effects lead to a full electrically controllable system, where the magnitude of charge and spin linear conductances can be tuned by gate voltages, without applying magnetic fields. In particular we find that, under appropriate conditions, inter-boundary coupling can lead to negative values of the conductance. Furthermore, the setup also allows to selectively generate pure charge or pure spin currents, by choosing the voltage bias configuration.

  18. Thermal effects and space-charge limited transition in crossed-field devices

    SciTech Connect (OSTI)

    Marini, Samuel; Rizzato, Felipe B.; Pakter, Renato [Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil)

    2014-08-15T23:59:59.000Z

    A fully kinetic model for the electron flow in a crossed field device is derived and used to determine the system stationary states. It is found that for low injection temperatures, there is a simultaneous presence of distinct stationary solutions and an abrupt transition between accelerating and space-charge limited regimes. On the other hand, for high injection temperatures, there is only a single stationary solution branch and the change between the regimes becomes continuous. For intermediate temperatures, it is then identified a critical point that separates the abrupt and continuous behaviors. It is also investigated how intrinsic space-charge oscillations may drive stationary states unstable in certain parameter regimes. The results are verified with N-particle self-consistent simulations.

  19. Charge density dependent nongeminate recombination in organic bulk heterojunction solar cells

    E-Print Network [OSTI]

    D. Rauh; C. Deibel; V. Dyakonov

    2012-03-27T23:59:59.000Z

    Apparent recombination orders exceeding the value of two expected for bimolecular recombination have been reported for organic solar cells in various publications. Two prominent explanations are bimolecular losses with a carrier concentration dependent prefactor due to a trapping limited mobility, and protection of trapped charge carriers from recombination by a donor--acceptor phase separation until reemission from these deep states. In order to clarify which mechanism is dominant we performed temperature and illumination dependent charge extraction measurements under open circuit as well as short circuit conditions at poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C$_{61}$butyric acid methyl ester (P3HT:PC$_{61}$BM) and PTB7:PC$_{71}$BM (Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  20. Societal Benefits Charge

    Broader source: Energy.gov [DOE]

    New Jersey's 1999 electric-utility restructuring legislation created a "societal benefits charge" (SBC) to support investments in energy efficiency and "Class I" renewable energy. The SBC funds New...

  1. Abstract adiabatic charge pumping

    E-Print Network [OSTI]

    A. Joye; V. Brosco; F. Hekking

    2010-02-05T23:59:59.000Z

    This paper is devoted to the analysis of an abstract formula describing quantum adiabatic charge pumping in a general context. We consider closed systems characterized by a slowly varying time-dependent Hamiltonian depending on an external parameter $\\alpha$. The current operator, defined as the derivative of the Hamiltonian with respect to $\\alpha$, once integrated over some time interval, gives rise to a charge pumped through the system over that time span. We determine the first two leading terms in the adiabatic parameter of this pumped charge under the usual gap hypothesis. In particular, in case the Hamiltonian is time periodic and has discrete non-degenerate spectrum, the charge pumped over a period is given to leading order by the derivative with respect to $\\alpha$ of the corresponding dynamical and geometric phases.

  2. Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics

    E-Print Network [OSTI]

    Péter Kálmán; Tamás Keszthelyi

    2015-02-05T23:59:59.000Z

    The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted reactions. The electron assisted neutron exchange processes in pure $Ni$ and $Li-Ni$ composite systems (in the Rossi-type E-Cat) are analyzed and it is concluded that these reactions may be responsible for recent experimental observations.

  3. A generalized multi-dimensional mathematical model for charging and discharging processes in a supercapacitor

    SciTech Connect (OSTI)

    Allu, Srikanth [ORNL] [ORNL; Velamur Asokan, Badri [Exxon Mobil Research and Engineering] [Exxon Mobil Research and Engineering; Shelton, William A [Louisiana State University] [Louisiana State University; Philip, Bobby [ORNL] [ORNL; Pannala, Sreekanth [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A generalized three dimensional computational model based on unied formulation of electrode- electrolyte-electrode system of a electric double layer supercapacitor has been developed. The model accounts for charge transport across the solid-liquid system. This formulation based on volume averaging process is a widely used concept for the multiphase ow equations ([28] [36]) and is analogous to porous media theory typically employed for electrochemical systems [22] [39] [12]. This formulation is extended to the electrochemical equations for a supercapacitor in a consistent fashion, which allows for a single-domain approach with no need for explicit interfacial boundary conditions as previously employed ([38]). In this model it is easy to introduce the spatio-temporal variations, anisotropies of physical properties and it is also conducive for introducing any upscaled parameters from lower length{scale simulations and experiments. Due to the irregular geometric congurations including porous electrode, the charge transport and subsequent performance characteristics of the super-capacitor can be easily captured in higher dimensions. A generalized model of this nature also provides insight into the applicability of 1D models ([38]) and where multidimensional eects need to be considered. In addition, simple sensitivity analysis on key input parameters is performed in order to ascertain the dependence of the charge and discharge processes on these parameters. Finally, we demonstarted how this new formulation can be applied to non-planar supercapacitors

  4. Effect of vacuum polarization of charged massive fermions in an Aharonov--Bohm field

    E-Print Network [OSTI]

    V. R. Khalilov

    2014-07-16T23:59:59.000Z

    The effect of vacuum polarization of charged massive fermions in an Aharonov-Bohm (AB) potential in 2+1 dimensions is investigated. The causal Green's function of the Dirac equation with the AB potential is represented via the regular and irregular solutions of the two-dimensional radial Dirac equation. It is shown that the vacuum current density contains the contribution from free filled states of the negative energy continuum as well as that from a bound unfilled state, which can emerge in the above background due to the interaction of the fermion spin magnetic moment with the AB magnetic field while the induced charge density contains only the contribution from the bound state. The expressions for the vacuum charge and induced current densities are obtained (recovered for massless fermions) for the graphene in the field of infinitesimally thin solenoid perpendicular to the plane of a sample. We also find the bound state energy as a function of magnetic flux, fermion spin and the radius of solenoid as well as discuss the role of the so-called self-adjoint extension parameter and determine it in terms of the physics of the problem.

  5. Pure-state dynamics of a pair of charge qubits in a random environment

    SciTech Connect (OSTI)

    Buric, Nikola [Department of Physics and Mathematics, Faculty of Pharmacy, University of Beograd, Vojvode Stepe 450, Belgrade (Serbia and Montenegro)

    2005-10-15T23:59:59.000Z

    A pair of charge qubits in a random electromagnetic environment is studied, using the description of the random dynamics of its pure-state vector as given by quantum-state diffusion theory. It is shown by numerical computations that the pure-state dynamics provides a more detailed description than the density-matrix picture of the main effects such as phase dumping and depolarization.

  6. Nearest-neighbor distributions of free radicals produced within charged-particle tracks in liquid water

    E-Print Network [OSTI]

    Smith, Miles Clay

    2012-06-07T23:59:59.000Z

    radicals, and hydrated electrons was tabulated in order to develop a radiochemical description of the charged-particle tracks. These radicals are of biological importance since they can damage deoxyribonucleic acid (DNA) through chemical action. For low... t2 s. . . . . . . . . . . . 12 Nearest like-neighbor distributions for hydrated electrons at 10 s . . 13 Nearest like-neighbor distributions for OH radicals at 10-6 s . . 14 Nearest like-neighbor distributions for H radicals at 10-s s...

  7. The transverse space-charge force in tri-gaussian distribution

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2005-12-01T23:59:59.000Z

    In tracking, the transverse space-charge force can be represented by changes in the horizontal and vertical divergences, {Delta}x{prime} and {Delta}y{prime} at many locations around the accelerator ring. In this note, they are going to list some formulas for {Delta}x{prime} and {delta}y{prime} arising from space-charge kicks when the beam is tri-Gaussian distributed. They will discuss separately a flat beam and a round beam. they are not interested in the situation when the emittance growth arising from space charge becomes too large and the shape of the beam becomes weird. For this reason, they can assume the bunch still retains its tri-Gaussian distribution, with its rms sizes {sigma}{sub x}, {sigma}{sub y}, and {sigma}{sub z} increasing by certain factors. Thus after each turn, {sigma}{sub x}, {sigma}{sub y}, and {sigma}{sub z} can be re-calculated.

  8. Charge transport properties in microcrystalline KDyFe(China){sub 6}

    SciTech Connect (OSTI)

    Aubert, P.H. [Laboratoire de Physico-Chimie des Polymeres et des Interfaces (LPPI), Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise 95031, Cergy-Pontoise Cedex (France); Goubard, F. [Laboratoire de Physico-Chimie des Polymeres et des Interfaces (LPPI), Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise 95031, Cergy-Pontoise Cedex (France)], E-mail: fabrice.goubard@u-cergy.fr; Chevrot, C. [Laboratoire de Physico-Chimie des Polymeres et des Interfaces (LPPI), Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise 95031, Cergy-Pontoise Cedex (France); Tabuteau, A. [Laboratoire de Physico-Chimie des Polymeres et des Interfaces (LPPI), Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise 95031, Cergy-Pontoise Cedex (France)

    2007-02-15T23:59:59.000Z

    Microcrystalline solid dysprosium(III) hexacyanoferrate(II) was synthesized by co-precipitation in aqueous solution. The resulting solid has been studied by Fourier transform infrared spectroscopy, X-ray analysis and solid state electrochemistry. The use of a cavity microelectrode was necessary to explore a wide range of time scale and minimize the (undesired) capacitive currents. Cyclic voltametric experiments were very helpful to understand the kinetic of charge transfer in such microstructure. A structure-properties relationship has been established from the crystallographic and the electrochemical properties. A square-scheme is presented to explain the unique electrochemical behavior of hexacyanoferrate containing dysprosium since this compound exhibits a second redox system. The solid presents an open channel-like morphology in which the motion of charged species occurs during the redox processes. Precisely, the electronic transfer is accompanied by a cation diffusion inside the microcrystalline structure. The size of these channels strongly suggests that the kinetic of charge transfer is limited by the cation transport into these structures. - Graphical abstract: Dy and Fe polyhedra packing in the cell of KDyFe(China){sub 6}.3.5H{sub 2}O shows occluded water molecules and potassium ions forming a pseudohexagonal 2D sub-lattice connected to each other by diffusion channels.

  9. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01T23:59:59.000Z

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  10. Measuring momentum for charged particle tomography

    DOE Patents [OSTI]

    Morris, Christopher (Los Alamos, NM); Fraser, Andrew Mcleod (Los Alamos, NM); Schultz, Larry Joe (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Klimenko, Alexei Vasilievich (Maynard, MA); Sossong, Michael James (Los Alamos, NM); Blanpied, Gary (Lexington, SC)

    2010-11-23T23:59:59.000Z

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  11. Study of charge symmetry breaking in dd collisions with WASA-at-COSY

    SciTech Connect (OSTI)

    Wronska, Aleksandra [Institute of Physics, Jagiellonian University, Cracow, Reymonta 4, 30-059 Cracow (Poland)

    2011-10-24T23:59:59.000Z

    Charge symmetry is an approximate symmetry of the strong interaction. Studies of its breaking can yield information on the u and d quark mass difference. A theoretical collaboration is currently working on the description of charge symmetry breaking mechanisms for dd{yields}{alpha}{pi}{sup 0} and np{yields}d{pi}{sup 0} within Chiral Perturbation Theory, using the data from TRI-UMF and IUCF. One of the items in the program of the WASA-at-COSY collaboration is to extend the data base for the dd{yields}{alpha}{pi}{sup 0} reaction to higher energies, which would allow the extraction of the information on the p-wave. Status of the analysis of experimental data along with the preliminary results from the pilot run will be presented here.

  12. Studies on hydrogen plasma and dust charging in low-pressure filament discharge

    SciTech Connect (OSTI)

    Kakati, B., E-mail: bharatkakati15@gmail.com; Kalita, D.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-08-15T23:59:59.000Z

    The effect of working gas pressure and dust charging on electron energy probability function has been studied for hydrogen plasma in a multi-dipole dusty plasma device. A cylindrical Langmuir probe is used to evaluate the plasma parameters and electron energy probability function (EEPF) for different working pressures. For lower energy range (below 10?eV), the EEPF follows a bi-Maxwellian shape at very low pressure (6 × 10{sup ?5}?mbar), while elevating the working pressure up to ?2 × 10{sup ?3} mbar, the shape of the EEPF transforms into a single Maxwellian. Some dip structures are observed at high energy range (??>?10?eV) in the EEPF of hydrogen plasma at all the working conditions. In presence of dust particles, it is observed that the shape of the EEPF changes due to the redistribution of the high and low-energy electron populations. Finally, the effect of working pressure on charge accumulation on dust particles is studied with the help of a Faraday cup and electrometer. From the observations, a strong influence of working pressure on plasma parameters, EEPF and dust charging is observed.

  13. 3/4/13 FBI --Eighteen People Charged in International $200 Million Credit Card Fraud Scam www.fbi.gov/newark/press-releases/2013/eighteen-people-charged-in-international-200-million-credit-card-fraud-scam 1/3

    E-Print Network [OSTI]

    Sandhu, Ravi

    3/4/13 FBI -- Eighteen People Charged in International $200 Million Credit Card Fraud Scam www.fbi $200 million in confirmed losses. This morning, hundreds of law enforcement officers from the FBI

  14. Hawking radiation as tunneling from charged black holes in 0A string theory

    E-Print Network [OSTI]

    Hongbin Kim

    2011-07-22T23:59:59.000Z

    There has been much work on explaining Hawking radiation as a quantum tunneling process through horizons. Basically, this intuitive picture requires the calculation of the imaginary part of the action for outgoing particle. And two ways are known for achieving this goal: the null-geodesic method and the Hamilton-Jacobi method. We apply these methods to the charged black holes in 2D dilaton gravity which is originated from the low energy effective theory of type 0A string theory. We derive the correct Hawking temperature of the black holes including the effect of the back reaction of the radiation, and obtain the entropy by using the 1st law of black hole thermodynamics. For fixed-charge ensemble, the 0A black holes are free of phase transition and thermodynamically stable regardless of mass-charge ratio. We show this by interpreting the back reaction term as the inverse of the heat capacity of the black holes. Finally, the possibility of the phase transition in the fixed-potential ensemble is discussed.

  15. Unfolding of event-by-event net-charge distributions in heavy-ion collision

    E-Print Network [OSTI]

    P. Garg; D. K. Mishra; P. K. Netrakanti; A. K. Mohanty; B. Mohanty

    2013-02-05T23:59:59.000Z

    We discuss a method to obtain the true event-by-event net-charge multiplicity distributions from a corresponding measured distribution which is subjected to detector effects such as finite particle counting efficiency. The approach is based on the Bayes method for unfolding of distributions. We are able to faithfully unfold back the measured distributions to match with their corresponding true distributions obtained for a widely varying underlying particle production mechanism, beam energy and collision centrality. Particularly the mean, variance, skewness, kurtosis, their products and ratios of net-charge distributions from the event generators are shown to be successfully unfolded from the measured distributions constructed to mimic a real experimental distribution. We demonstrate the necessity to account for detector effects before associating the higher moments of net-charge distributions with physical quantities or phenomena. The advantage of this approach being that one need not construct new observable to cancel out detector effects which loose their ability to be connected to physical quantities calculable in standard theories.

  16. Analysis of combustion in a small homogeneous charge compression assisted ignition engine

    E-Print Network [OSTI]

    characteristics to homogeneous charge compression ignition (HCCI) engines. Difficulties such as unknown ignition.raine@auckland.ac.nz geneous charge compression ignition (HCCI) engines. JER03805 © IMechE 2006 Int. J. Engine Res. Vol. 7 #12

  17. Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED

    SciTech Connect (OSTI)

    Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.; Rothberg, Lewis J. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

    2014-03-21T23:59:59.000Z

    Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4?-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. We discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.

  18. Double spin asymmetry AL?T? in charged pion production from deep inelastic scattering on a transversely polarized ³He target

    E-Print Network [OSTI]

    Huang, Jin, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    In this thesis I discuss the first measurement of the beam-target double-spin asymmetry ALT for charged pion electroproduction in deep inelastic electron scattering on a transversely polarized 3He target. These data were ...

  19. High-resolution studies of charge exchange in supernova remnants with Magellan, XMM-Newton, and Micro-X

    E-Print Network [OSTI]

    Heine, Sarah Nicole Trowbridge

    2014-01-01T23:59:59.000Z

    Charge exchange, the semi-resonant transfer of an electron from a neutral atom to an excited state in an energetic ion, can occur in plasmas where energetic ions are incident on a cold, at least partially neutral gas. ...

  20. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22T23:59:59.000Z

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  1. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect (OSTI)

    Dong, Jing [ORNL; Lin, Zhenhong [ORNL

    2012-01-01T23:59:59.000Z

    This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

  2. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    SciTech Connect (OSTI)

    Yang, Zhanfeng; Liu, Guozhi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049 (China) [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049 (China); Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024 (China); Shao, Hao; Chen, Changhua; Sun, Jun [Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024 (China)] [Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024 (China)

    2013-10-15T23:59:59.000Z

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies.

  3. Gravitational waves interacting with a spinning charged particle in the presence of a uniform magnetic field

    E-Print Network [OSTI]

    D. B. Papadopoulos

    2003-12-23T23:59:59.000Z

    The equations which determine the response of a spinning charged particle moving in a uniform magnetic field to an incident gravitational wave are derived in the linearized approximation to general relativity. We verify that 1) the components of the 4-momentum, 4-velocity and the components of the spinning tensor, both electric and magnetic moments, exhibit resonances and 2) the co-existence of the uniform magnetic field and the GW are responsible for the resonances appearing in our equations. In the absence of the GW, the magnetic field and the components of the spin tensor decouple and the magnetic resonances disappear.

  4. Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets

    E-Print Network [OSTI]

    Martin, Jean Mario Nations

    2012-01-01T23:59:59.000Z

    As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

  5. A unified phase transition picture of the charged topological black hole in Horava-Lifshitz gravity

    E-Print Network [OSTI]

    Jie-Xiong Mo; Xiao-Xiong Zeng; Gu-Qiang Li; Xin Jiang; Wen-Biao Liu

    2014-04-09T23:59:59.000Z

    Aiming at a unified phase transition picture of the charged topological black hole in Ho\\v{r}ava-Lifshitz gravity, we investigate this issue not only in canonical ensemble with the fixed charge case but also in grand-canonical ensemble with the fixed potential case. We firstly perform the standard analysis of the specific heat, the free energy and the Gibbs potential, and then study its geometrothermodynamics. It is shown that the local phase transition points not only witness the divergence of the specific heat, but also witness the minimum temperature and the maximum free energy or Gibbs potential. They also witness the divergence of the corresponding thermodynamic scalar curvature. No matter which ensemble is chosen, the metric constructed can successfully produce the behavior of the thermodynamic interaction and phase transition structure while other metrics failed to predict the phase transition point of the charged topological black hole in former literature. In grand-canonical ensemble, we have discovered the phase transition which has not been reported before. It is similar to the canonical ensemble in which the phase transition only takes place when $k=-1$. But it also has its unique characteristics that the location of the phase transition point depends on the value of potential, which is different from the canonical ensemble where the phase transition point is independent of the parameters. After an analytical check of Ehrenfest scheme, we find that the new phase transition is a second order one. It is also found that the thermodynamics of the black hole in Horava-Lifshitz gravity is quite different from that in Einstein gravity.

  6. Limits on tau lepton flavor violating decays in three charged leptons

    SciTech Connect (OSTI)

    Cervelli, Alberto

    2010-04-29T23:59:59.000Z

    A search for the neutrinoless, lepton-flavor violating decay of the {tau} lepton into three charged leptons has been performed using an integrated luminosity of 468 fb{sup -1} collected with the BABAR detector at the PEP-II collider. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1.8-3.3) x 10{sup -8} at 90% confidence level.

  7. Charged-Particle Decay from Giant Monopole Resonance in Si-28

    E-Print Network [OSTI]

    Toba, Y.; Lui, YW; Youngblood, David H.; Garg, U.; Grabmayr, P.; Knopfle, K. T.; Riedesel, H.; Wagner, G. J.

    1990-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 41, NUMBER 4 APRIL 1990 Charged particle decay from giant monopole resonance in Si Y. Toba, Y.-W. Lui, and D. H. Youngblood Cyclotron Institute, Texas A&M University, College Station, Texas 77843 U. Garg Physics... elusive with only a few percent of the sum rule located in most nuclei. Lui et al. reported the identification of 66/o of the EO EWSR with a width of 4.8 MeV centered at 17.9 MeV in Si. Si was also investigated by Kailas et al. , using 115 MeV proton...

  8. Final Report - Interaction of radiation and charged particles in miniature plasma structures

    SciTech Connect (OSTI)

    Antonsen, Thomas M.

    2014-07-16T23:59:59.000Z

    The extension of our program to the development of theories and models capable of describing the interactions of intense laser pulses and charged particles in miniature plasma channels is reported. These channels, which have recently been created in the laboratory, have unique dispersion properties that make them interesting for a variety of applications including particle acceleration, high harmonic generation, and THz generation. Our program systematically explored the properties of these channels, including dispersion, losses, and coupling. A particular application that was pursued is the generation of intense pulses of THz radiation by short laser pulses propagating these channels. We also explored the nonlinear dynamics of laser pulses propagating in these channels.

  9. Exciton harvesting, charge transfer, and charge-carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells

    E-Print Network [OSTI]

    McGehee, Michael

    report on the device physics of nanostructured amorphous-silicon a-Si:H /polymer hybrid solar cells and nanostructured a-Si:H/polymer systems. We find that strong energy transfer occurs in the a-Si:H/MEH-PPV system. However, inefficient hole transfer from the a-Si:H to the polymers renders negligible photocurrent

  10. Two-loop corrections to the potential of a pointlike charge in a superstrong magnetic field

    SciTech Connect (OSTI)

    Godunov, S. I., E-mail: sgodunov@itep.ru [All-Russia Research Institute of Automatics (RRIA) (Russian Federation)

    2013-07-15T23:59:59.000Z

    The potential of the pointlike charge in a superstrong homogeneous magnetic field B Much-Greater-Than m{sub e}{sup 2}/e{sup 3} Almost-Equal-To 6 Multiplication-Sign 10{sup 15} G is considered. It is well known that Coulomb potential is significantly modified by taking into account vacuum polarization (calculated in one loop approximation). We consider electron selfenergy and correction to the vertex function at one loop, and show that these diagrams are not enhanced by magnetic field like eB.We calculate two-loop corrections to the vacuum polarization and find that these contributions are small.

  11. Fast time resolution charge-exchange measurements during the fishbone instability in the poloidal divertor experiment

    SciTech Connect (OSTI)

    Beiersdorfer, P.; Kaita, R.; Goldston, R.J.

    1984-01-01T23:59:59.000Z

    Measurements of fast ion losses due to the fishbone instability during high ..beta../sub T/q neutral beam heated discharges in the Poloidal Divertor Experiment have been made using two new vertical-viewing charge-exchange analyzers. The measurements show that the instability has an n=1 toroidal mode number, and that it ejects beam ions in a toroidally rotating beacon directed outward along a major radius. Observations of ejected ions with energies up to twice the beam injection energy at R approx. = R/sub 0/ + a indicate the presence of a non-..mu..-conserving acceleration mechanism.

  12. Space-charged-induced emittance growth in the transport of high-brightness electron beams

    SciTech Connect (OSTI)

    Jones, M.E.; Carlsten, B.E.

    1987-03-01T23:59:59.000Z

    The emittance induced by space charge in a drifting beam of finite length has been investigated, and a scaling law has been obtained from simple considerations of the different rates of expansion of different portions of the beam. The scaling law predicts the initial rate of emittance growth, before the beam shape has distorted significantly, and thus represents an upper bound on the rate of emittance increase. This scaling law has been substantiated by particle-in-cell simulation and the dependence on geometric factors evaluated for specific choices of the beam profile. For long, axially nonuniform beams, the geometric factors have been evaluated explicitly for Gaussian profiles, and other shapes.

  13. Potential of Thin Films for use in Charged Particle Tracking Detectors

    E-Print Network [OSTI]

    J. Metcalfe; I. Mejia; J. Murphy; M. Quevedo; L. Smith; J. Alvarado; B. Gnade; H. Takai

    2014-11-06T23:59:59.000Z

    Thin Film technology has widespread applications in everyday electronics, notably Liquid Crystal Display screens, solar cells, and organic light emitting diodes. We explore the potential of this technology as charged particle radiation tracking detectors for use in High Energy Physics experiments such as those at the Large Hadron Collider or the Relativistic Heavy Ion Collider. Through modern fabrication techniques, a host of semiconductor materials are available to construct thin, flexible detectors with integrated electronics with pixel sizes on the order of a few microns. We review the material properties of promising candidates, discuss the potential benefits and challenges associated with this technology, and review previously demonstrated applicability as a neutron detector.

  14. Potential of Thin Films for use in Charged Particle Tracking Detectors

    E-Print Network [OSTI]

    Metcalfe, J; Murphy, J; Quevedo, M; Smith, L; Alvarado, J; Gnade, B; Takai, H

    2014-01-01T23:59:59.000Z

    Thin Film technology has widespread applications in everyday electronics, notably Liquid Crystal Display screens, solar cells, and organic light emitting diodes. We explore the potential of this technology as charged particle radiation tracking detectors for use in High Energy Physics experiments such as those at the Large Hadron Collider or the Relativistic Heavy Ion Collider. Through modern fabrication techniques, a host of semiconductor materials are available to construct thin, flexible detectors with integrated electronics with pixel sizes on the order of a few microns. We review the material properties of promising candidates, discuss the potential benefits and challenges associated with this technology, and review previously demonstrated applicability as a neutron detector.

  15. Charged pion production in C+C and Ar+KCl collisions measured with HADES

    E-Print Network [OSTI]

    The HADES Collaboration; P. Tlusty; G. Agakishiev; A. Balanda; G. Bellia; D. Belver; A. Belyaev; A. Blanco; M. Boehmer; J. L. Boyard; P. Braun-Munzinger; P. Cabanelas; E. Castro; S. Chernenko; T. Christ; M. Destefanis; J. Diaz; F. Dohrmann; A. Dybczak; L. Fabbietti; O. Fateev; P. Finocchiaro; P. Fonte; J. Friese; I. Froehlich; T. Galatyuk; J. A. Garzon; R. Gernhaeuser; A. Gil; C. Gilardi; M. Golubeva; D. Gonzalez-Diaz; E. Grosse; F. Guber; M. Heilmann; T. Hennino; R. Holzmann; A. Ierusalimov; I. Iori; A. Ivashkin; M. Jurkovic; B. Kaempfer; K. Kanaki; T. Karavicheva; D. Kirschner; I. Koenig; W. Koenig; B. W. Kolb; R. Kotte; A. Kozuch; A. Krasa; F. Krizek; R. Kruecken; W. Kuehn; A. Kugler; A. Kurepin; J. Lamas-Valverde; S. Lang; J. S. Lange; K. Lapidus; T. Liu; L. Lopes; M. Lorenz; L. Maier; A. Mangiarotti; J. Marin; J. Markert; V. Metag; B. Michalska; J. Michel; D. Mishra; E. Moriniere; J. Mousa; C. Muentz; L. Naumann; R. Novotny; J. Otwinowski; Y. C. Pachmayer; M. Palka; Y. Parpottas; V. Pechenov; O. Pechenova; T. Perez Cavalcanti; J. Pietraszko; W. Przygoda; B. Ramstein; A. Reshetin; A. Rustamov; A. Sadovsky; P. Salabura; A. Schmah; R. Simon; Yu. G. Sobolev; S. Spataro; B. Spruck; H. Stroebele; J. Stroth; C. Sturm; M. Sudol; A. Tarantola; K. Teilab; M. Traxler; R. Trebacz; H. Tsertos; I. Veretenkin; V. Wagner; M. Weber; M. Wisniowski; J. Wuestenfeld; S. Yurevich; Y. Zanevsky; P. Zhou; P. Zumbruch

    2009-06-12T23:59:59.000Z

    Results of a study of charged pion production in 12C+12C collisions at incident beam energies of 1A GeV and 2A GeV, and 40Ar+natKCl at 1.76AGeV, using the spectrometer HADES at GSI, are presented. We have performed a measurement of the transverse momentum distributions of pi+- mesons covering a fairly large rapidity interval, in case of the C+C collision system for the first time. The yields, transverse mass and angular distributions are compared with a transport model as well as with existing data from other experiments.

  16. Charged pion production in C+C and Ar+KCl collisions measured with HADES

    E-Print Network [OSTI]

    Tlustý, P; Balanda, A; Bellia, G; Belver, D; Belyaev, A; Blanco, A; Boehmer, M; Boyard, J L; Braun-Munzinger, P; Cabanelas, P; Castro, E; Chernenko, S; Christ, T; Destefanis, M; Díaz, J; Dohrmann, F; Dybczak, A; Fabbietti, L; Fateev, O; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Gil, A; Gilardi, C; Golubeva, M; Gonzalez-Diaz, D; Grosse, E; Guber, F; Heilmann, M; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Kirschner, D; König, I; König, W; Kolb, B W; Kotte, R; Kozuch, A; Krasa, A; Krizek, F; Krücken, R; Kühn, W; Kugler, A; Kurepin, A; Lamas-Valverde, J; Lang, S; Lange, J S; Lapidus, K; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Marin, J; Markert, J; Metag, V; Michalska, B; Michel, J; Mishra, D; Moriniere, E; Mousa, J; Müntz, C; Naumann, L; Novotny, R; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Cavalcanti, T Perez; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Rustamov, A; Sadovskii, A; Salabura, P; Schmah, A; Simon, R; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Sudol, M; Tarantola, A; Teilab, K; Traxler, M; Trebacz, R; Tsertos, H; Veretenkin, I; Wagner, V; Weber, M; Wisniowski, M; Wüstenfeld, J; Yurevich, S; Zanevsky, Y; Zhou, P; Zumbruch, P

    2009-01-01T23:59:59.000Z

    Results of a study of charged pion production in 12C+12C collisions at incident beam energies of 1A GeV and 2A GeV, and 40Ar+natKCl at 1.76AGeV, using the spectrometer HADES at GSI, are presented. We have performed a measurement of the transverse momentum distributions of pi+- mesons covering a fairly large rapidity interval, in case of the C+C collision system for the first time. The yields, transverse mass and angular distributions are compared with a transport model as well as with existing data from other experiments.

  17. Charged Higgs and Neutral Higgs pair production of weak gauge bosons fusion process in e+ e- collision

    E-Print Network [OSTI]

    Takuya Morozumi; Kotaro Tamai

    2014-03-31T23:59:59.000Z

    In this paper, we study the pair production and their decays of the Higges in the neutrinophilic Higgs two doublet model. The pair production occurs through W and Z gauge bosons fusion process. In the neutrinophilic model, the vacuum expectation value (VEV) of the second Higgs doublet is small and is proportional to the neutrino mass. The smallness of VEV is associated with the approximate global U(1) symmetry which is slightly broken. Therefore, there is a suppression factor for the U(1) charge breaking process. The second Higgs doublet has U(1) charge and its single production from the gauge boson fusion violates the U(1) charge conservation and is suppressed strongly to occur. In contrast to the single production, the pair production of the Higgses conserves U(1) charge and the approximate symmetry does not forbid it. To search for the pair productions in collider experiment,we study the production cross section of a pair of the charged Higgs and neutral Higgs bosons in e+ e- collision with center of energy from 600 (GeV) to 2000 (GeV). The total cross section varies from 10^{-4}(fb) to 10^{-3}(fb) for degenerate (200 GeV) charged and neutral Higgses mass case. The background process to the signal is gauge bosons pair W + Z production and their decays. We show the signal over background ratio is about 2% ~ 3% by combining the cross section ratio with ratios of branching fractions.

  18. Baryon Number and Electric Charge Fluctuations in Pb+Pb Collisions at SPS energies

    E-Print Network [OSTI]

    V. P. Konchakovski; M. I. Gorenstein; E. L. Bratkovskaya; H. Stocker

    2006-10-31T23:59:59.000Z

    Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at SPS energies within the HSD transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric charge in central Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV are in a good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma. This demonstrate that the distortions of the initial fluctuations by the hadronization phase and, in particular, by the final resonance decays dominate the observable fluctuations.

  19. Fast Neutral Generation by Charge Exchange Reaction and Its Effect on Neutron Production Rate in Inertial Electrostatic Confinement Fusion Systems

    SciTech Connect (OSTI)

    Yoshinaga, S.; Matsuura, H.; Nakao, Y.; Kudo, K. [Kyushu University (Japan)

    2005-05-15T23:59:59.000Z

    Fast neutral generation by charge exchange reaction in inertial electrostatic confinement plasmas is studied by solving the Poisson equation and the Boltzmann equation for fast neutrals. Fusion reactions carried by the charge exchange fast neutrals become appreciable compared with ion-background fusion reaction. It is shown that the fusion reaction between fast neutral and background gas is sensitively affected by experimental parameters (grid voltage, background gas pressure) and ion distribution function.

  20. Charge transport in silver chalcogenides in the region of phase transition

    SciTech Connect (OSTI)

    Aliev, S. A.; Agaev, Z. F., E-mail: agayevz@rambler.ru; Zul'figarov, E. I. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

    2007-09-15T23:59:59.000Z

    Data on the {sigma}(T), R(T), and U(T) dependences in Ag{sub 2}Te, Ag{sub 2}Se, and Ag{sub 2}S in the region of the phase transition are analyzed. It is found that the phase transition in Ag{sub 2}Te is accompanied by a decrease in the electron concentration and this transition in Ag{sub 2}Se is accompanied by an increase in this concentration. The concentration of intrinsic charge carriers in Ag{sub 2}Te decreases by a factor of 4 as a result of the phase transition and increases by a factor of 2 in Ag{sub 2}Se. The effect of variation in the energy-band parameters in the region of phase transition on the electron mobility is considered. It is established that, in Ag{sub 2}Te and Ag{sub 2}S, electrons are scattered by optical phonons in the region of the phase transition, while electrons are scattered by acoustic phonons in the {alpha} and {beta} phases. It is assumed that the anomalously large increase in {sigma} and U in Ag{sub 2}S as a result of the phase transition is caused by an increase in the concentration n and a simultaneous decrease in {sigma}{sub g} and m{sub n}{sup *} by a factor of about 2.

  1. Renormalized energy equidistribution and local charge balance in 2D Coulomb systems

    E-Print Network [OSTI]

    Simona Rota Nodari; Sylvia Serfaty

    2014-02-12T23:59:59.000Z

    We consider two related problems: the first is the minimization of the "Coulomb renormalized energy" of Sandier-Serfaty, which corresponds to the total Coulomb interaction of point charges in a uniform neutralizing background (or rather variants of it). The second corresponds to the minimization of the Hamiltonian of a two-dimensional "Coulomb gas" or "one-component plasma", a system of n point charges with Coulomb pair interaction, in a confining potential (minimizers of this energy also correspond to "weighted Fekete sets"). In both cases we investigate the microscopic structure of minimizers, i.e. at the scale corresponding to the interparticle distance. We show that in any large enough microscopic set, the value of the energy and the number of points are "rigid" and completely determined by the macroscopic density of points. In other words, points and energy are "equidistributed" in space (modulo appropriate scalings). The number of points in a ball is in particular known up to an error proportional to the radius of the ball. We also prove a result on the maximal and minimal distances between points. Our approach involves fully exploiting the minimality by reducing to minimization problems with fixed boundary conditions posed on smaller subsets.

  2. Higher moments of the net-charge multiplicity distributions at RHIC energies in STAR

    E-Print Network [OSTI]

    Nihar Ranjan Sahoo; for the STAR Collaboration

    2012-12-17T23:59:59.000Z

    We report the higher order moments of the net-charge multiplicity distributions for the Au+Au collisions at \\sNN = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV in the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The energy and centrality dependence of higher moments and their products (such as $\\sigma^2/M$, $S\\sigma$ and $\\kappa\\sigma^{2}$) are presented. The data are also compared to Poisson expectations and Hadron Resonance Gas model calculations.

  3. Charged and neutral pion production in the S-matrix approach

    E-Print Network [OSTI]

    Malafaia, V; Jr, Ch. Elster andJ. Adam

    2006-01-01T23:59:59.000Z

    The S-matrix approach is used to calculate charged as well as neutral pion production reactions from NN scattering, with the same set of underlying processes and interactions. The chiral perturbation theory piN scattering amplitude is used. For the nucleon-nucleon distortions a newly developed realistic potential within the Bonn family of potentials, valid well above the pion production threshold, is considered. In the pi+ production case, the NN potential, the piN relative p-waves and the treatment of the exchanged pion energy build up the observed cross-section strength.

  4. Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

  5. On the nature of charge carrier scattering in Ag{sub 2}Se at low temperatures

    SciTech Connect (OSTI)

    Jafarov, M. B., E-mail: cmentiq@box.az [Azerbaijan State Agrarian University (Azerbaijan)

    2010-10-15T23:59:59.000Z

    The electric and thermoelectric properties of silver selenide in the temperature range of 4.2-300 K have been studied. The data obtained are interpreted within the theory of one-type carriers and Kane dispersion relation, with allowance for the character of electron-electron interaction. It is established that, for the concentrations n {<=} 7.8 x 10{sup 18} cm{sup -3}, charge carriers are scattered by impurity ions at T {<=} 30 K and by acoustic and optical phonons and point defects at T {>=} 30 K. Electron-electron interactions are found to be elastic at T < 30 K.

  6. Like-sign dimuon charge asymmetry in the Randall-Sundrum model

    SciTech Connect (OSTI)

    Datta, Alakabha; Duraisamy, Murugeswaran; Khalil, Shaaban [Department of Physics and Astronomy, 108 Lewis Hall, University of Mississippi, Oxford, Mississippi 38677-1848 (United States); Center for Theoretical Physics at the British University in Egypt, Sherouk City, Cairo 11837 (Egypt) and Department of Mathematics, Ain Shams University, Faculty of Science, Cairo, 11566 (Egypt)

    2011-05-01T23:59:59.000Z

    We confirm that in order to account for the recent D0 result of large like-sign dimuon charge asymmetry, a considerable large new physics effect in {Gamma}{sub 12}{sup s} is required in addition to a large CP violating phase in B{sub s}-B{sub s} mixing. In the Randall-Sundrum model of warped geometry, where the fermion fields reside in the bulk, new sources of flavor and CP violation are obtained. We analyze the like-sign dimuon asymmetry in this class of model as an example of the desired new physics. We show that the wrong-charge asymmetry, a{sub sl}{sup s}, which is related to the dimuon asymmetry, is significantly altered compared to the standard model value. However, experimental limits from {Delta}M{sub s}, {Delta}{Gamma}{sub s} as well as K mixing and electroweak corrections constrain it to be greater than a {sigma} away from its experimental average value. This model cannot fully account for the D0 anomaly due to its inability to generate a sufficient new contribution to the width difference {Gamma}{sub 12}{sup s}, even though the model can generate large contribution to the mass difference M{sub 12}{sup s}.

  7. Regular electrically charged structures in Nonlinear Electrodynamics coupled to General Relativity

    E-Print Network [OSTI]

    Irina Dymnikova

    2004-08-19T23:59:59.000Z

    We address the question of existence of regular spherically symmetric electrically charged solutions in Nonlinear Electrodynamics coupled to General Relativity. Stress-energy tensor of the electromagnetic field has the algebraic structure $T_0^0=T_1^1$. In this case the Weak Energy Condition leads to the de Sitter asymptotic at approaching a regular center. In de Sitter center of an electrically charged NED structure, electric field, geometry and stress-energy tensor are regular without Maxwell limit which is replaced by de Sitter limit: energy density of a field is maximal and gives an effective cut-off on self-energy density, produced by NED coupled to gravity and related to cosmological constant $\\Lambda$. Regular electric solutions satisfying WEC, suffer from one cusp in the Lagrangian ${\\cal L}(F)$, which creates the problem in an effective geometry whose geodesics are world lines of NED photons. We investigate propagation of photons and show that their world lines never terminate which suggests absence of singularities in the effective geometry. To illustrate these results we present the new exact analytic spherically symmetric electric solution with the de Sitter center.

  8. Topological charged BPS vortices in Lorentz-violating Maxwell-Higgs electrodynamics

    E-Print Network [OSTI]

    R. Casana; G. Lazar

    2014-10-23T23:59:59.000Z

    We have performed a complete study of BPS vortex solutions in the Abelian sector of the standard model extension (SME). Specifically, we have coupled the SME electromagnetism with a Higgs field which is supplemented with a Lorentz-violating CPT-even term. We have verified that Lorentz violation (LV) belonging to the Higgs sector allows to interpolate between some well known models like, Maxwell-Higgs, Chern-Simons-Higgs and Maxwell-Chern-Simons-Higgs. We can also observed that the electrical charged density distribution is nonnull in both CPT-even and CPT-odd models; however, the total electric charge in the CPT-even case is null, whereas in the CPT-odd one it is proportional to the quantized magnetic flux. The following general results can be established in relation to the LV introduced in the Higgs sector: it changes the vortex ansatz and the gauge field boundary conditions. A direct consequence is that the magnetic flux, besides being proportional to the winding number, also depends explicitly on the Lorentz-violation belonging to the Higgs sector.

  9. Tunability of the terahertz space-charge modulation in a vacuum microdiode

    SciTech Connect (OSTI)

    Jonsson, P.; Ilkov, Marjan; Manolescu, A.; Valfells, A. [School of Science and Engineering, Reykjavik University, 101 Reykjavik (Iceland); Pedersen, A. [Science Institute, University of Iceland, 101 Reykjavik (Iceland)

    2013-02-15T23:59:59.000Z

    Under certain conditions, space-charge limited emission in vacuum microdiodes manifests as clearly defined bunches of charge with a regular size and interval. The frequency corresponding to this interval is in the terahertz range. In this computational study, it is demonstrated that, for a range of parameters, conducive to generating THz frequency oscillations, the frequency is dependant only on the cold cathode electric field and on the emitter area. For a planar micro-diode of given dimension, the modulation frequency can be easily tuned simply by varying the applied potential. Simulations of the microdiode are done for 84 different combinations of emitter area, applied voltage, and gap spacing, using a molecular dynamics based code with exact Coulomb interaction between all electrons in the vacuum gap, which is of the order 100. It is found, for a fixed emitter area, that the frequency of the pulse train is solely dependant on the vacuum electric field in the diode, described by a simple power law. It is also found that, for a fixed value of the electric field, the frequency increases with diminishing size of the emitting spot on the cathode. Some observations are made on the spectral quality, and how it is affected by the gap spacing in the diode and the initial velocity of the electrons.

  10. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect (OSTI)

    Deca, J.; Lapenta, G. [Centre for Mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium)] [Centre for Mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium); Marchand, R. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)] [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Markidis, S. [High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization Department, KTH Royal Institute of Technology, Stockholm (Sweden)

    2013-10-15T23:59:59.000Z

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  11. On the ambiguities in the tri-bimaximal mixing matrix and corresponding charged lepton corrections

    E-Print Network [OSTI]

    Duarah, Chandan

    2015-01-01T23:59:59.000Z

    Two negative signs naturally appear in the $U_{\\mu 1}$ and $U_{\\tau 2}$ elements of the Tri-bimaximal (TBM) matrix for positive values of the mixing angles $\\theta_{12}$ and $\\theta_{23}$. Apart from this, in other TBM matrices negative signs are shifted to other elements in each case. They account for positive as well as negative values of $\\theta_{12}$ and $\\theta_{23}$. We discuss the sign ambiguity in the TBM matrix and find that the TBM matrices, in fact, can be divided into two groups under certain circumstances. Interestingly, this classification of TBM matrices is accompanied by two different $\\mu-\\tau$ symmetric mass matrices which can separately be related to the groups. To accommodate non-zero value of $\\theta_{13}$ and deviate $\\theta_{23}$ towards first octant, we then perturb the TBM mixing ansatz with the help of charged lepton correction. The diagonalizing matrices for charged lepton mass matrices also possess sign ambiguity and respect the grouping of TBM matrices. They are parametrized in te...

  12. Two-dimensional relativistic space charge limited current flow in the drift space

    SciTech Connect (OSTI)

    Liu, Y. L.; Chen, S. H., E-mail: chensh@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore)] [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Ang, L. K. [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)] [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-04-15T23:59:59.000Z

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  13. Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field Liu UCD Phy1B 2012 #12;I Basic ConceptsI. Basic Concepts Static electricity: charges at rest Electric charge Like charges repel Unlike charges attract Liu UCD Phy1B 2012 #12;Electric ChargeElectric Charge Electron charge: -eElectron charge

  14. Generalized spherically symmetric gravitational model: Hamiltonian dynamics in extended phase space and BRST charge

    E-Print Network [OSTI]

    T. P. Shestakova

    2014-06-12T23:59:59.000Z

    We construct Hamiltonian dynamics of the generalized spherically symmetric gravitational model in extended phase space. We start from the Faddeev - Popov effective action with gauge-fixing and ghost terms, making use of gauge conditions in differential form. It enables us to introduce missing velocities into the Lagrangian and then construct a Hamiltonian function according a usual rule which is applied for systems without constraints. The main feature of Hamiltonian dynamics in extended phase space is that it can be proved to be completely equivalent to Lagrangian dynamics derived from the effective action. We find a BRST invariant form of the effective action by adding terms not affecting Lagrangian equations. After all, we construct the BRST charge according to the Noether theorem. Our algorithm differs from that by Batalin, Fradkin and Vilkovisky, but the resulting BRST charge generates correct transformations for all gravitational degrees of freedom including gauge ones. Generalized spherically symmetric model imitates the full gravitational theory much better then models with finite number of degrees of freedom, so that one can expect appropriate results in the case of the full theory.

  15. High dynamic range charge measurements

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2012-09-04T23:59:59.000Z

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  16. New results on direct CP violation in charged kaon decays by NA48/2

    E-Print Network [OSTI]

    G. Lamanna

    2006-05-15T23:59:59.000Z

    The NA48/2 result, based on the data collected during the 2003 run, on direct CP violation in $K^{\\pm}\\to\\pi^{\\pm}\\pi^0\\pi^0$ decay is presented. The main goal of the experiment is to reach a sensitivity at level of $10^{-4}$ in the measurement of the charge asymmetry parameter $A_g=(g^+-g^-)/(g^++g^-)$, where $g$ is the \\emph{linear slope} of the Dalitz plot in the $K\\to 3\\pi$ decay. Thanks to the simultaneous collection of the two kaon charges and to the high resolution of the main sub-detectors, the systematics uncertainties are kept under the statistical error level. The experimental procedure, the analysis technique and the main systematics are discussed to present the final result $$ A_g=(1.8\\pm2.6)\\times 10^{-4} $$ This result based on more than $45\\cdot10^6$ events, correspondig to one half of the whole two year data taking, is about an order of magnitude more precise with respect to the previous measurement.

  17. CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES

    SciTech Connect (OSTI)

    Hudson, H. S. [SSL, UC Berkeley, CA 94720 (United States); Fletcher, L.; MacKinnon, A. L. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Woods, T. N., E-mail: hhudson@ssl.berkeley.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Dr., Boulder, CO 80303 (United States)

    2012-06-20T23:59:59.000Z

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

  18. A search for charge 1/3 third generation leptoquarks in muon channels

    SciTech Connect (OSTI)

    Uzunyan, Sergey A.; /Northern Illinois U.

    2006-08-01T23:59:59.000Z

    Leptoquarks are exotic particles that have color, electric charge, and lepton number and appear in extended gauge theories and composite models. Current theory suggests that leptoquarks would come in three different generations corresponding to the three quark and lepton generations. We are searching for charge 1/3 third generation leptoquarks produced in p{bar p} collisions at {radical}s = 1.96 TeV using data collected by the D0 detector. Such leptoquarks would decay into either a tau-neutrino plus a b-quark or, if heavy enough, to a tau-lepton plus a t-quark. We present preliminary results on an analysis where both leptoquarks decay into neutrinos giving a final state with missing energy and two b-quarks using 367 pb{sup -1} of Run II D0 data taken between August 2002 and September 2004. We place upper limits on {sigma}(p{bar p} {yields} LQ{ovr LQ})B{sup 2} as a function of the leptoquark mass M{sub LQ}. Assuming B = 1, we exclude at the 95% confidence level third generation leptoquarks with M{sub LQ} < 197 GeV/c{sup 2}.

  19. Quick charge battery

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  20. HIGH CHARGE EFFECTS IN SILICON DRIFT DETECTORS WITH LATERAL CONFINEMENT OF ELECTRONS.

    SciTech Connect (OSTI)

    CASTOLDI,A.; REHAK,P.

    1995-10-21T23:59:59.000Z

    A new drift detector prototype which provides suppression of the lateral diffusion of electrons has been tested as a function of the signal charge up to high charge levels, when electrostatic repulsion is not negligible. The lateral diffusion of the electron cloud has been measured for injected charges up to 2 {center_dot} 10{sup 5} electrons. The maximum number of electrons for which the suppression of the lateral spread is effective is obtained.

  1. The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems

    E-Print Network [OSTI]

    Cristiano F. Woellner; Leonardo D. Machado; Pedro A. S. Autreto; Jose A. Freire; Douglas S. Galvao

    2015-01-07T23:59:59.000Z

    In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous- crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.

  2. Atomistic Insight on the Charging Energetics in Sub-nanometer Pore Supercacitors

    SciTech Connect (OSTI)

    Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Feng, Guang [Clemson University

    2010-01-01T23:59:59.000Z

    Electrodes featuring sub-nanometer pores can significantly enhance the capacitance and energy density of supercapacitors. However, ions must pay an energy penalty to enter sub-nanometer pores as they have to shed part of their solvation shell. The magnitude of such energy penalty plays a key role in determining the accessibility and charging/discharging of these sub-nanometer pores. Here we report on the atomistic simulation of Na+ and Cl ions entering a polarizable slit pore with a width of 0.82 nm. We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na+ and Cl ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ion and pore walls, the image charge effects, the moderate (19-26%) de-hydration of the ions inside the pore, and the strengthened interactions between ions and their hydration water molecules in the sub-nanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring sub- nanometer pores.

  3. Branching fraction and charge asymmetry measurements in B{yields}J/{psi}{pi}{pi} decays

    SciTech Connect (OSTI)

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A. [Laboratoire de Physique des Particules, IN2P3/CNRS et Universite de Savoie, F-74941 Annecy-Le-Vieux (France); Garra Tico, J.; Grauges, E. [Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona (Spain); Lopez, L.; Palano, A. [Universita di Bari, Dipartimento di Fisica and INFN, I-70126 Bari (Italy); Eigen, G.; Ofte, I.; Stugu, B.; Sun, L. [University of Bergen, Institute of Physics, N-5007 Bergen (Norway); Abrams, G. S.; Battaglia, M.; Brown, D. N. [Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720 (United States)] (and others)

    2007-08-01T23:59:59.000Z

    We study the decays B{sup 0}{yields}J/{psi}{pi}{sup +}{pi}{sup -} and B{sup +}{yields}J/{psi}{pi}{sup +}{pi}{sup 0}, including intermediate resonances, using a sample of 382x10{sup 6} BB pairs recorded by the BABAR detector at the PEP-II e{sup +}e{sup -} B factory. We measure the branching fractions B(B{sup 0}{yields}J/{psi}{rho}{sup 0})=(2.7{+-}0.3{+-}0.2)x10{sup -5} and B(B{sup +}{yields}J/{psi}{rho}{sup +})=(5.0{+-}0.7{+-}0.3)x10{sup -5}. We also set the following upper limits at the 90% confidence level: B(B{sup 0}{yields}J/{psi}{pi}{sup +}{pi}{sup -} nonresonant)<1.2x10{sup -5}, B(B{sup 0}{yields}J/{psi}f{sub 2})<4.6x10{sup -6}, and B(B{sup +}{yields}J/{psi}{pi}{sup +}{pi}{sup 0} nonresonant)<7.3x10{sup -6}. We measure the charge asymmetry in charged B decays to J/{psi}{rho} to be -0.11{+-}0.12{+-}0.08.

  4. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21T23:59:59.000Z

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  5. Relativistic heat flux for a single component charged fluid in the presence of an electromagnetic field

    E-Print Network [OSTI]

    Garcia-Perciante, A L; Brun-Battistini, D

    2015-01-01T23:59:59.000Z

    Transport properties in gases are significantly affected by temperature. In previous works it has been shown that when the thermal agitation in a gas is high enough, such that relativistic effects become relevant, heat dissipation is driven not solely by a temperature gradient but also by other vector forces. In the case of relativistic charged fluids, a heat flux is driven by an electrostatic field even in the single species case. The present work generalizes such result by considering also a magnetic field in an arbitrary inertial reference frame. The corresponding constitutive equation is explicitly obtained showing that both electric and magnetic forces contribute to thermal dissipation. This result may lead to relevant effects in plasma dynamics.

  6. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    SciTech Connect (OSTI)

    Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk [Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Poon, C.S.; Wong, Agnes; Yip, Robin; Jaillon, Lara [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.

  7. Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes

    SciTech Connect (OSTI)

    Bagheri, Mehran, E-mail: mh-bagheri@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19835-63113 (Iran, Islamic Republic of)] [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19835-63113 (Iran, Islamic Republic of); Abdikian, Alireza, E-mail: abdykian@gmail.com [Department of Physics, Malayer University, Malayer 65719-95863 (Iran, Islamic Republic of)] [Department of Physics, Malayer University, Malayer 65719-95863 (Iran, Islamic Republic of)

    2014-04-15T23:59:59.000Z

    We study the dispersion relation of electrostatic waves propagating in a column of quantum magnetized collisional plasma embraced completely by a metallic single-walled carbon nanotubes. The analysis is based on the quantum linearized hydrodynamic formalism of collective excitations within the quasi-static approximation. It is shown when the electronic de Broglie's wavelength of the plasma is comparable in the order of magnitude to the radius of the nanotube, the quantum effects are quite meaningful and our model anticipates one acoustical and two optical space-charge waves which are positioned into three propagating bands. With increasing the nanotube radius, the features of the acoustical branch remain unchanged, yet two distinct optical branches are degenerated and the classical behavior is recovered. This study might provide a platform to create new finite transverse cross section quantum magnetized plasmas and to devise nanometer dusty plasmas based on the metallic carbon nanotubes in the absence of either a drift or a thermal electronic velocity and their existence could be experimentally examined.

  8. The exact forces on classical nuclei in non-adiabatic charge transfer

    E-Print Network [OSTI]

    Federica Agostini; Ali Abedi; Yasumitsu Suzuki; Seung Kyu Min; Neepa T. Maitra; E. K. U. Gross

    2015-01-31T23:59:59.000Z

    The decomposition of electronic and nuclear motion presented in~[A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces, and analyze their structure. Lastly, an analysis of the exact potentials in the context of trajectory surface hopping procedure is presented, including preliminary investigations of velocity-adjustment, and the force-induced decoherence effect.

  9. Electric-field correlations in quantum charged fluids coupled to the radiation field

    E-Print Network [OSTI]

    B. Jancovici

    2006-11-23T23:59:59.000Z

    In a recent paper [S.El Boustani, P.R.Buenzli, and Ph.A.Martin, Phys.Rev. E 73, 036113 (2006) cond-mat/0511537], about quantum charges in equilibrium with radiation, among other things the asymptotic form of the electric-field correlation has been obtained by a microscopic calculation. It has been found that this correlation has a long-range algebraic decay (except in the classical limit). The macroscopic approach, in the Course of Theoretical Physics of Landau and Lifshitz, gives no such long-range algebraic decay. In this Brief Report, we revisit and complete the macroscopic approach of Landau and Lifshitz, we confirm their result, and suggest that, perhaps, the use of a classical electromagnetic field by El Boustani et al. was not justified.

  10. Identifying the Charge Carriers of the Quark-Gluon Plasma

    E-Print Network [OSTI]

    Scott Pratt

    2012-03-20T23:59:59.000Z

    Charge correlations in lattice gauge calculations suggest that up, down and strange charges move independently in the QGP (quark-gluon plasma), and that the density of such charges is similar to what is expected from simple thermal arguments. Here, we show how specific elements of the charge-charge correlation matrix in the QGP survive hadronization and become manifest in final-state charge-charge correlation measurements.

  11. Study on space charge effect in an electrostatic ion analyzer applied to measure laser produced ions

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China) [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Sha, S.; Zhang, J. J.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-03-15T23:59:59.000Z

    The abundance of different ions produced by laser ion sources is usually analyzed by an electrostatic ion analyzer (EIA). Ion current intensities in the range of several mA/cm{sup 2} at the position of the EIA have been achieved from the laser ion source developed by the Institute of Modern Physics; this indicates that a noticeable influence of space charge effect during the ion transmission will occur. Hence, while the parameters of the EIA or the beams are changed, such as ion species, current intensity, the ions’ transmission efficiency through the EIA is different, which will result in an uncertainty in the estimation of the ions’ yields. Special attention is focused on this issue in this paper. Ion's transmissions through the EIA under different circumstances are studied with simulations and experiments, the results of which are consistent with each other.

  12. The Radiation Reaction Effects in the BMT Model of Spinning Charge and the Radiation Polarization Phenomenon

    E-Print Network [OSTI]

    S. L. Lebedev

    2005-12-19T23:59:59.000Z

    The effect of radiation polarization attended with the motion of spinning charge in the magnetic field could be viewed through the classical theory of self-interaction. The quantum expression for the polarization time follows from the semiclassical relation $T_{QED}\\sim \\hbar c^{3}/\\mu_{B}^2\\omega_{c}^3$, and needs quantum explanation neither for the orbit nor for the spin motion. In our approach the polarization emerges as a result of natural selection in the ensenmble of elastically scattered electrons among which the group of particles that bear their spins in the 'right' directions has the smaller probability of radiation. The evidence of non-complete polarization degree is also obtained.

  13. Effects of charge inhomogeneities on elementary excitations in La2-xSrxCuO?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, S. R.; Hamann, A.; Pintschovius, L.; Lamago, D.; Khaliullin, G.; Fujita, M.; Yamada, K.; Gu, G. D.; Tranquada, J. M.; Reznik, D.

    2011-12-01T23:59:59.000Z

    Purely local experimental probes of many copper oxide superconductors show that their electronic states are inhomogeneous in real space. For example, scanning tunneling spectroscopic imaging shows strong variations in real space, and according to nuclear quadrupole resonance (NQR) studies, the charge distribution in the bulk varies on the nanoscale. However, the analysis of the experimental results utilizing spatially averaged probes often ignores this fact. We have performed a detailed investigation of the doping dependence of the energy and linewidth of the zone-boundary Cu-O bond-stretching vibration in La2-xSrxCuO? by inelastic neutron scattering. Both our results as well as previously reported angle-dependent momentum widths of the electronic spectral function detected by angle-resolved photoemission can be reproduced by including the same distribution of local environments extracted from the NQR analysis.

  14. Metastable and charged particle decay in neon afterglow studied by the breakdown time delay measurements

    SciTech Connect (OSTI)

    Markovic, V. Lj.; Gocic, S. R.; Stamenkovic, S. N.; Petrovic, Z. Lj. [Department of Physics, University of Nis, P.O. Box 224, 18001 Nis (Serbia); Institute of Physics, P.O. Box 68, 11000 Belgrade (Serbia and Montenegro)

    2007-10-15T23:59:59.000Z

    Memory effect--the long time variation of the electrical breakdown time delay on the relaxation time t{sub d}({tau}) in neon--was explained by the Ne({sup 3}P{sub 2}) (1s{sub 5}) metastable state remaining from the preceding glow [Dj. A. Bosan, M. K. Radovic, and Dj. M. Krmpotic, J. Phys. D 19, 2343 (1986)]. However, the authors neglected the quenching processes that reduce the effective lifetime of metastable states several orders of magnitude below that of the memory effect observations. In this paper the time delay measurements were carried out in neon at the pressure of 6.6 mbar in a gas tube with gold-plated copper cathode, and the approximate and exact numerical models are developed in order to study the metastable and charged particle decay in afterglow. It was found that the metastable hypothesis completely failed to explain the afterglow kinetics, which is governed by the decay of molecular neon ions and molecular nitrogen ions produced in Ne{sub 2}{sup +} collisions with nitrogen impurities; i.e., Ne{sub 2}{sup +}+N{sub 2}{yields}N{sub 2}{sup +}+2Ne. Charged particle decay is followed up to hundreds of milliseconds in afterglow, from ambipolar to the free diffusion limit. After that, the late afterglow kinetics in neon can be explained by the nitrogen atoms recombining on the cathode surface and providing secondary electrons that determine the breakdown time delay down to the cosmic rays and natural radioactivity level.

  15. Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

    E-Print Network [OSTI]

    The STAR Collaboration; B. I. Abelev

    2009-12-09T23:59:59.000Z

    Charged-particle spectra associated with direct photon ($\\gamma_{dir} $) and $\\pi^0$ are measured in $p$+$p$ and Au+Au collisions at center-of-mass energy $\\sqrt{s_{_{NN}}}=200$ GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between $\\gamma_{dir}$ and $\\pi^0$. Assuming no associated charged particles in the $\\gamma_{dir}$ direction (near side) and small contribution from fragmentation photons ($\\gamma_{frag}$), the associated charged-particle yields opposite to $\\gamma_{dir}$ (away side) are extracted. At mid-rapidity ($|\\eta|<0.9$) in central Au+Au collisions, charged-particle yields associated with $\\gamma_{dir}$ and $\\pi^0$ at high transverse momentum ($8< p_{T}^{trig}<16$ GeV/$c$) are suppressed by a factor of 3-5 compared with $p$ + $p$ collisions. The observed suppression of the associated charged particles, in the kinematic range $|\\eta|<1$ and $3< p_{T}^{assoc} < 16$ GeV/$c$, is similar for $\\gamma_{dir}$ and $\\pi^0$, and independent of the $\\gamma_{dir}$ energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.

  16. The role of BRST charge as a generator of gauge transformations in quantization of gauge theories and Gravity

    E-Print Network [OSTI]

    T. P. Shestakova

    2014-10-16T23:59:59.000Z

    In the Batalin - Fradkin - Vilkovisky approach to quantization of gauge theories a principal role is given to the BRST charge which can be constructed as a series in Grassmannian (ghost) variables with coefficients given by generalized structure functions of constraints algebra. Alternatively, the BRST charge can be derived making use of the Noether theorem and global BRST invariance of the effective action. In the case of Yang - Mills fields the both methods lead to the same expression for the BRST charge, but it is not valid in the case of General Relativity. It is illustrated by examples of an isotropic cosmological model as well as by spherically-symmetric gravitational model which imitates the full theory of gravity much better. The consideration is based on Hamiltonian formulation of General Relativity in extended phase space. At the quantum level the structure of the BRST charge is of great importance since BRST invariant quantum states are believed to be physical states. Thus, the definition of the BRST charge at the classical level is inseparably related to our attempts to find a true way to quantize Gravity.

  17. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr.; Charles L. (Alcoa, TN); Buckner, Mark A. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Bryan, William L. (Knoxville, TN)

    2011-04-26T23:59:59.000Z

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  18. Conversion of pure spin current to charge current in amorphous bismuth

    SciTech Connect (OSTI)

    Emoto, H.; Ando, Y.; Shinjo, T.; Shiraishi, M., E-mail: shiraishi@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Shikoh, E. [Graduate School of Engineering, Osaka City University, Osaka 558-8585 (Japan); Fuseya, Y. [Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo 182-8585 (Japan)

    2014-05-07T23:59:59.000Z

    Spin Hall angle and spin diffusion length in amorphous bismuth (Bi) are investigated by using conversion of a pure spin current to a charge current in a spin pumping technique. In Bi/Ni{sub 80}Fe{sub 20}/Si(100) sample, a clear direct current (DC) electromotive force due to the inverse spin Hall effect of the Bi layer is observed at room temperature under a ferromagnetic resonance condition of the Ni{sub 80}Fe{sub 20} layer. From the Bi thickness dependence of the DC electromotive force, the spin Hall angle and the spin diffusion length of the amorphous Bi film are estimated to be 0.02 and 8?nm, respectively.

  19. Interaction of a circularly polarised gravitational wave with a charged particle in a static magnetic background

    E-Print Network [OSTI]

    Sunandan Gangopadhyay; Anirban Saha; Swarup Saha

    2014-12-24T23:59:59.000Z

    Interaction of a charged particle in a static magnetic background, i.e., a Landau system with circularly polarised gravitational wave (GW) is studied quantum mechanically in the long wavelength and low velocity limit. We quantize the classical Hamiltonian following \\cite{speli}. The rotating polarization vectors of the circularly polarized GW are employed to form a unique directional triad which served as the coordinate axes. The Schrodinger equations for the system are cast in the form of a set of coupled linear differential equations. This system is solved by iterative technique. We compute the time-evolution of the position and momentum expectation values of the particle. The results show that the resonance behaviour obtained earlier\\cite{emgw_classical} by classical treatements of the system has a quantum analogue not only for the linearly polarized GW \\cite{emgw_1_lin}, but for circularly polarized GW as well.

  20. Low temperature dielectric relaxation and charged defects in ferroelectric thin films

    SciTech Connect (OSTI)

    Artemenko, A.; Payan, S.; Rousseau, A.; Arveux, E.; Maglione, M. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Levasseur, D. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); STMicroelectronics, 16 Rue Pierre et Marie Curie 37071 Tours France (France); Guegan, G. [STMicroelectronics, 16 Rue Pierre et Marie Curie 37071 Tours France (France)

    2013-04-15T23:59:59.000Z

    We report a dielectric relaxation in BaTiO{sub 3}-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron) and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K) for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR) investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti{sup 3+}-V(O) charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

  1. Suspending Effect on Low-Frequency Charge Noise in Graphene Quantum Dot

    E-Print Network [OSTI]

    Xiang-Xiang Song; Hai-Ou Li; Jie You; Tian-Yi Han; Gang Cao; Tao Tu; Ming Xiao; Guang-Can Guo; Hong-Wen Jiang; Guo-Ping Guo

    2014-06-16T23:59:59.000Z

    Charge noise is critical in the performance of gate-controlled quantum dots (QDs). Here we show the 1/f noise for a microscopic graphene QD is substantially larger than that for a macroscopic graphene field-effect transistor (FET), increasing linearly with temperature. To understand its origin, we suspended the graphene QD above the substrate. In contrast to large area graphene FETs, we find that a suspended graphene QD has an almost-identical noise level as an unsuspended one. Tracking noise levels around the Coulomb blockade peak as a function of gate voltage yields potential fluctuations of order 1 "{\\mu}eV", almost one order larger than in GaAs/GaAlAs QDs. Edge states rather than substrate-induced disorders, appear to dominate the 1/f noise, thus affecting the coherency of graphene nano-devices.

  2. Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

    E-Print Network [OSTI]

    Abelev, B I

    2009-01-01T23:59:59.000Z

    Charged-particle spectra associated with direct photon ($\\gamma_{dir} $) and $\\pi^0$ are measured in $p$+$p$ and Au+Au collisions at center-of-mass energy $\\sqrt{s_{_{NN}}}=200$ GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between $\\gamma_{dir}$ and $\\pi^0$. Assuming no associated charged particles in the $\\gamma_{dir}$ direction (near side) and small contribution from fragmentation photons ($\\gamma_{frag}$), the associated charged-particle yields opposite to $\\gamma_{dir}$ (away side) are extracted. At mid-rapidity ($|\\eta|<0.9$) in central Au+Au collisions, charged-particle yields associated with $\\gamma_{dir}$ and $\\pi^0$ at high transverse momentum ($8< p_{T}^{trig}<16$ GeV/$c$) are suppressed by a factor of 3-5 compared with $p$ + $p$ collisions. The observed suppression of the associated charged particles, in the kinematic range $|\\eta|<1$ and $3< p_{T}^{assoc} < 16$ GeV/$c$, is similar for $\\gamma_{dir}$ and $\\pi^0$, and independent of t...

  3. K(alpha) X-ray Emission Spectra from Highly Charged Fe Ions in EBIT

    SciTech Connect (OSTI)

    Jacobs, V; Beiersdorfer, P

    2007-03-29T23:59:59.000Z

    A detailed spectral model has been developed for the computer simulation of the 2p {yields} 1s K{alpha} X-ray emission from highly charged Fe ions in the Electron Beam Ion Trap (EBIT). The spectral features of interest occur in the range from 1.84 {angstrom} to 1.94 {angstrom}. The fundamental radiative emission processes associated with radiationless electron capture or dielectronic recombination, inner-shell electron collisional excitation, and inner-shell electron collisional ionization are taken in account. For comparison, spectral observations and simulations for high-temperature magnetic-fusion (Tokamak) plasmas are reviewed. In these plasmas, small departures from steady-state corona-model charge-state distributions can occur due to ion transport processes, while the assumption of equilibrium (Maxwellian) electron energy distributions is expected to be valid. Our investigations for EBIT have been directed at the identification of spectral features that can serve as diagnostics of extreme non-equilibrium or transient-ionization conditions, and allowance has been made for general (non-Maxwellian) electron energy distributions. For the precise interpretation of the high-resolution X-ray observations, which may involve the analysis of blended spectral features composed of many lines, it has been necessary to take into account the multitude of individual fine-structure components of the K{alpha} radiative transitions in the ions from Fe XVIII to Fe XXV. At electron densities higher than the validity range of the corona-model approximation, collisionally induced transitions among low-lying excited states can play an important role. It is found that inner-shell electron excitation and ionization processes involving the complex intermediate ions from Fe XVIII to Fe XXI produce spectral features, in the wavelength range from 1.89 {angstrom} to 1.94 {angstrom}, which are particularly sensitive to density variations and transient ionization conditions.

  4. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr., Charles L. (Alcoa, TN); Buckner, Mark A. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Bryan, William L. (Knoxville, TN)

    2011-05-03T23:59:59.000Z

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  5. Charge transfer in graphene oxide-dye system for photonic applications

    SciTech Connect (OSTI)

    Bongu, Sudhakara Reddy, E-mail: bisht@iitm.ac.in; Bisht, Prem B., E-mail: bisht@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 (India); Thu, Tran V.; Sandhu, Adarsh [EIIRIS, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi 441-8580 (Japan)

    2014-02-20T23:59:59.000Z

    The fluorescence of a standard dye Rhodamine 6G (R6G) in solution decreases on addition of reduced graphene oxide (rGO). The absorption spectra and lifetime measurements confirm that no excited-state but a ground-state complex formation is responsible for this effect. For silver decorated rGO (Ag-rGO), the quenching efficiency and ground state complex formation process is small. Z-scan measurements have been done to study the optical nonlinearity at 532 nm under ps time scale. Remarkable reduction in the saturable absorption (SA) effect of R6G indicates no nonlinear contribution from the ground state complex. The results have been explained with varying charge transfer rates and non-fluorescence nature of the complex.

  6. Evidence for charge Kondo effect in superconducting Tl-doped PbTe

    SciTech Connect (OSTI)

    Fisher, I

    2010-01-11T23:59:59.000Z

    We report results of low-temperature thermodynamic and transport measurements of Pb{sub 1-x}Tl{sub x}Te single crystals for Tl concentrations up to the solubility limit of approximately x = 1.5%. For all doped samples, we observe a low-temperature resistivity upturn that scales in magnitude with the Tl concentration. The temperature and field dependence of this upturn are consistent with a charge Kondo effect involving degenerate Tl valence states differing by two electrons, with a characteristic Kondo temperature T{sub K} {approx} 6 K. The observation of such an effect supports an electronic pairing mechanism for superconductivity in this material and may account for the anomalously high T{sub c} values.

  7. Factorization of Short- and Long-range Interactions in Charged Meson Production

    E-Print Network [OSTI]

    T. Horn

    2009-11-18T23:59:59.000Z

    Meson production data play an important role in our understanding of nucleon structure. The combination of reaction channels is sensitive to gluon and charge and flavor non-singlet quark densities and has the potential to provide detailed images of the QCD quark structure of the nucleon. Quark imaging requires a good understanding of the reaction mechanism, and in particular rigorous tests of factorization of long- and short-distance physics. The higher energies after the Jefferson Lab 12 GeV upgrade provide ideal conditions for such studies, which are an essential prerequisite for studies of valence quark distributions. An electron-ion collider would allow to extend these studies to detailed imaging of sea quarks and gluons.

  8. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    E-Print Network [OSTI]

    Talman, Richard; Stulle, Frank

    2009-01-01T23:59:59.000Z

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004); N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using trafic4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)] and elegant [M. Borland, Argonne National Laboratory...

  9. Charged Particle and Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    E-Print Network [OSTI]

    Sahoo, Raghunath; Behera, Nirbhay K; Nandi, Basanta K

    2014-01-01T23:59:59.000Z

    We review the charged particle and photon multiplicity, and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like...

  10. Liquid crystal-enabled electroosmosis through spatial charge separation in distorted regions as a novel mechanism of electrokinetics

    E-Print Network [OSTI]

    Israel Lazo; Chenhui Peng; Jie Xiang; Sergij V. Shiyanovskii; Oleg D. Lavrentovich

    2014-08-11T23:59:59.000Z

    Electrically-controlled dynamics of fluids and particles at microscales is a fascinating area of research with applications ranging from microfluidics and sensing to sorting of biomolecules. The driving mechanisms are electric forces acting on spatially separated charges in an isotropic medium such as water. Here we demonstrate that anisotropic conductivity of liquid crystals enables new mechanism of highly efficient electro-osmosis rooted in space charging of regions with distorted orientation. The electric field acts on these distortion-separated charges to induce liquid crystal-enabled electro-osmosis (LCEO). LCEO velocities grow with the square of the field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Ionic currents in liquid crystals that have been traditionally considered as an undesirable feature in displays, offer a broad platform for versatile applications such as liquid crystal enabled electrokinetics, micropumping and mixing.

  11. The Complex Core Level Spectra of CeO2: An Analysis in Terms of Atomic and Charge Transfer Effects

    SciTech Connect (OSTI)

    Bagus, Paul S.; Nelin, Constance J.; Ilton, Eugene S.; Baron, Martin; Abbott, Heather; Primorac, Elena; Kuhlenbeck, Helmut; Shaikhutdinov, Shamil; Freund, Hans-Joachim

    2010-03-05T23:59:59.000Z

    We present a rigorous parameter-free theoretical treatment of the Ce 4s and 5s photoelectron spectra of CeO2. In the currently accepted model the satellite structure in the photoelectron spectra is explained in terms of a mixed valence (Ce 4f0 O 2p6, Ce 4f1 O 2p5, and Ce 4f2 O 2p4) con?guration. We show that charge transfer (CT) into Ce 5d as well as con?gurations involving intra-atomic movement of charge must be considered in addition and compute their contributions to the spectra.

  12. Efficient terahertz-wave generation and its ultrafast optical modulation in charge ordered organic ferroelectrics

    SciTech Connect (OSTI)

    Itoh, Hirotake, E-mail: hiroitoh@m.tohoku.ac.jp; Iwai, Shinichiro, E-mail: s-iwai@m.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); JST, CREST, Sendai 980-8578 (Japan); Itoh, Keisuke; Goto, Kazuki [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Yamamoto, Kaoru [Department of Applied Physics, Okayama University of Science, Okayama 700-0005 (Japan); Yakushi, Kyuya [Toyota Physical and Chemical Research Institute, Nagakute 480-1192 (Japan)

    2014-04-28T23:59:59.000Z

    Efficient terahertz (THz) wave generation in strongly correlated organic compounds ?-(ET){sub 2}I{sub 3} and ??-(ET){sub 2}IBr{sub 2} (ET:bis(ethylenedithio)-tetrathiafulvalene) was demonstrated. The spontaneous polarization induced by charge ordering or electronic ferroelectricity was revealed to trigger the THz-wave generation via optical rectification; the estimated 2nd-order nonlinear optical susceptibility for ?-(ET){sub 2}I{sub 3} is over 70 times larger than that for prototypical THz-source ZnTe. Ultrafast (<1 ps) and sensitive (?40%) photoresponse of the THz wave was observed for ?-(ET){sub 2}I{sub 3}, which is attributable to photoinduced quenching of the polarization accompanied by insulator(ferroelectric)-to-metal transition. Modulation of the THz wave was observed for ??-(ET){sub 2}IBr{sub 2} upon the poling procedure, indicating the alignment of polar domains.

  13. Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Ivanilov, A; Jackson, H E; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Muccifora, V; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Yu, W; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P

    2013-01-01T23:59:59.000Z

    Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle $\\psi$ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum relative to the direction of the incident beam, and the Feynman variable $x_F$. The $\\sin(\\psi)$ amplitudes are positive for positive pions and kaons, slightly negative for negative pions and consistent with zero for negative kaons, with particular transverse-momentum but weak $x_F$ dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

  14. Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

    E-Print Network [OSTI]

    The HERMES Collaboration; A. Airapetian; N. Akopov; Z. Akopov; E. C. Aschenauer; W. Augustyniak; R. Avakian; A. Avetissian; E. Avetisyan; S. Belostotski; N. Bianchi; H. P. Blok; A. Borissov; J. Bowles; V. Bryzgalov; J. Burns; M. Capiluppi; G. P. Capitani; E. Cisbani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; L. De Nardo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Düren; M. Ehrenfried; G. Elbakian; F. Ellinghaus; R. Fabbri; A. Fantoni; L. Felawka; S. Frullani; D. Gabbert; G. Gapienko; V. Gapienko; G. Gavrilov; V. Gharibyan; F. Giordano; S. Gliske; M. Golembiovskaya; C. Hadjidakis; M. Hartig; D. Hasch; A. Hillenbrand; M. Hoek; Y. Holler; I. Hristova; A. Ivanilov; H. E. Jackson; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; V. Korotkov; V. Kozlov; P. Kravchenko; V. G. Krivokhijine; L. Lagamba; L. Lapikás; I. Lehmann; P. Lenisa; A. López Ruiz; W. Lorenzon; B. -Q. Ma; D. Mahon; N. C. R. Makins; S. I. Manaenkov; Y. Mao; B. Marianski; A. Martinez de la Ossa; H. Marukyan; C. A. Miller; Y. Miyachi; A. Movsisyan; V. Muccifora; M. Murray; A. Mussgiller; E. Nappi; Y. Naryshkin; A. Nass; M. Negodaev; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; A. Petrosyan; M. Raithel; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; G. Rosner; A. Rostomyan; J. Rubin; D. Ryckbosch; Y. Salomatin; F. Sanftl; A. Schäfer; G. Schnell; B. Seitz; T. -A. Shibata; V. Shutov; M. Stancari; M. Statera; E. Steffens; J. J. M. Steijger; J. Stewart; F. Stinzing; S. Taroian; A. Terkulov; R. Truty; A. Trzcinski; M. Tytgat; Y. Van Haarlem; C. Van Hulse; D. Veretennikov; V. Vikhrov; I. Vilardi; S. Wang; S. Yaschenko; Z. Ye; S. Yen; W. Yu; V. Zagrebelnyy; D. Zeiler; B. Zihlmann; P. Zupranski

    2013-10-18T23:59:59.000Z

    Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle $\\psi$ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum relative to the direction of the incident beam, and the Feynman variable $x_F$. The $\\sin(\\psi)$ amplitudes are positive for positive pions and kaons, slightly negative for negative pions and consistent with zero for negative kaons, with particular transverse-momentum but weak $x_F$ dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

  15. Charge transfer in Fe-doped GaN: The role of the donor

    SciTech Connect (OSTI)

    Sunay, Ustun; Dashdorj, J.; Zvanut, M. E.; Harrison, J. G. [Department of Physics, University of Alabama at Birmingham, 1300 University Blvd., CH 310, Birmingham, Alabama 35294-1170 (United States); Leach, J. H.; Udwary, K. [Kyma Technologies, 8829 Midway West Rd., Raleigh, North Carolina 27617 (United States)

    2014-02-21T23:59:59.000Z

    Several nitride-based device structures would benefit from the availability of high quality, large-area, freestanding semi-insulating GaN substrates. Due to the intrinsic n-type nature of GaN, however, the incorporation of compensating centers such as Fe is necessary to achieve the high resistivity required. We are using electron paramagnetic resonance (EPR) to explore charge transfer in 450 um thick GaN:Fe plates to understand the basic mechanisms related to compensation so that the material may be optimized for device applications. The results suggest that the simple model based on one shallow donor and a single Fe level is insufficient to describe compensation. Rather, the observation of the neutral donor and Fe3+ indicates that either the two species are spatially segregated or additional compensating and donor defects must be present.

  16. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect (OSTI)

    Huang, Jingsong [ORNL; Feng, Guang [Clemson University; Sumpter, Bobby G [ORNL; Qiao, Rui [ORNL; Meunier, Vincent [ORNL

    2011-01-01T23:59:59.000Z

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero to 50% although the dielectric constant of bulk ACN is more than two times higher than that of neat [BMIM][BF4]; (2) the capacitance of EDLs near negative electrodes (with BMIM+ ion as the counter-ion) is smaller than that near positive electrodes (with BF4as counter-ion) although the closest approaches of both ions to the electrode surface are nearly identical.

  17. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; S. Dhamija; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; E. Finch; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; P. R. Pujahari; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; Y. Zawisza; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-07-15T23:59:59.000Z

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  18. Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper

    SciTech Connect (OSTI)

    Anders, Andre; Horwat, David; Anders, Andre

    2008-05-10T23:59:59.000Z

    The spatial distribution of copper ions and atoms in high power impulse magnetron sputtering (HIPIMS) discharges was determined by (i) measuring the ion current to electrostatic probes and (ii) measuring the film thickness by profilometry. A set of electrostatic and collection probes were placed at different angular positions and distances from the target surface. The angular distribution of the deposition rate and the average charge state of the copper species (including ions and neutrals) were deduced.The discharge showed a distinct transition to a high current mode dominated by copper self-sputtering when the applied voltage exceeded the threshold of 535 V. For a lower voltage, the deposition rate was very low and the average charge state was found to be less than 0.4. For higher voltage (and average power), the absolute deposition rates were much higher, but they were smaller than the corresponding direct current (DC) rates if normalized to the same average power. At the high voltage level, the spatial distribution of the average charge state showed some similarities with the distribution of the magnetic field, suggesting that the generation and motion of copper ions is affected by magnetized electrons. At higher voltage, the average charge state increases with the distance from the target and locally may exceed unity, indicating the presence of significant amounts of doubly charged copper ions.

  19. Piston-assisted charge pumping

    E-Print Network [OSTI]

    Kaur, D; Mourokh, L

    2015-01-01T23:59:59.000Z

    We examine charge transport through a system of three sites connected in series in the situation when an oscillating charged piston modulates the energy of the middle site. We show that with an appropriate set of parameters, charge can be transferred against an applied voltage. In this scenario, when the oscillating piston shifts away from the middle site, the energy of the site decreases and it is populated by a charge transferred from the lower energy site. On the other hand, when the piston returns to close proximity, the energy of the middle site increases and it is depopulated by the higher energy site. Thus through this process, the charge is pumped against the potential gradient. Our results can explain the process of proton pumping in one of the mitochondrial enzymes, Complex I. Moreover, this mechanism can be used for electron pumping in semiconductor nanostructures.

  20. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    SciTech Connect (OSTI)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shanxi 710049 (China)] [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Shanxi 710049 (China)

    2014-03-15T23:59:59.000Z

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model.

  1. Classical Tests of General Relativity: Probing Topologically Charged Black Holes on Brane Worlds in f(R) Bulk

    E-Print Network [OSTI]

    Roldao da Rocha; A. M. Kuerten

    2014-07-08T23:59:59.000Z

    The perihelion precession, the deflection of light, and the radar echo delay are classical tests of General Relativity here used to probe brane world topologically charged black holes in a f(R) bulk and to constrain the parameter that arises from the Shiromizu-Maeda-Sasaki procedure applied to a f(R) bulk as well. The existing Solar system observational data constrain the possible values of the tidal charge parameter and the effective cosmological constant including f(R) brane world effects. We show that the observational/experimental data for both perihelion precession and radar echo delay make the black hole space of parameters to be more strict than the ones for the Dadhich, Maartens, Papadopoulos and Rezania (DMPR) black hole geometry. Furthermore, the deflection of light constrains the tidal charge parameter similarly as the DMPR black holes due to a peculiarity in the equation of motion.

  2. Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains

    SciTech Connect (OSTI)

    Sharma, Suresh C.; Walia, Ritu [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110 086 (India); Sharma, Kavita [Department of Physics, Bhagwan Parshuram Institute of Technology, Sector-17, Rohini, New Delhi 110 089 (India)

    2012-07-15T23:59:59.000Z

    An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

  3. Finding the charge of the top quark in the dilepton channel

    SciTech Connect (OSTI)

    Beretvas, A.; Antos, J.; Chen, Y.C.; Gunay, Z.; Sorin, V.; Tollefson, K.; Bednar, P.; Tokar, S.; Boisvert, V.; Hopkins, W.; McFarland, K.; /Fermilab /Kosice, IEF /Taiwan,

    2006-08-01T23:59:59.000Z

    There is a question about the identity of the top quark. Is it the top quark of the Standard Model (SM) with electric charge 2/3 or is it an exotic quark with charge -4/3? An exotic quark has been proposed by D. Chang et al. [1]. This analysis will use the standard CDF run II dilepton sample. The key ingredients of this analysis are the correct pairing of the lepton and b-jet, the determination of the charge of the b-jet. The analysis proceeds by using a binomial distribution and is formulated so that rejecting one hypothesis means support for the other hypothesis.

  4. R-charge Kills Monopoles

    E-Print Network [OSTI]

    Borut Bajc; Antonio Riotto; Goran Senjanovic

    1998-03-24T23:59:59.000Z

    Large charge density, unlike high temperature, may lead to nonrestoration of global and gauge symmetries. Supersymmetric GUTs with the appealing scenario of unification scale being generated dynamically naturally contain global continuous $R$ symmetries. We point out that the presence of a large $R$ charge in the early Universe can lead to GUT symmetry nonrestoration. This provides a simple way out of the monopole problem.

  5. Energy loss rate of a charged particle in HgTe/(HgTe, CdTe) quantum wells

    SciTech Connect (OSTI)

    Chen, Qinjun; Sin Ang, Yee [School of Physics, University of Wollongong, New South Wales 2522 (Australia)] [School of Physics, University of Wollongong, New South Wales 2522 (Australia); Wang, Xiaolin [Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522 (Australia)] [Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522 (Australia); Lewis, R. A.; Zhang, Chao [School of Physics, University of Wollongong, New South Wales 2522 (Australia) [School of Physics, University of Wollongong, New South Wales 2522 (Australia); Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522 (Australia)

    2013-11-04T23:59:59.000Z

    The energy loss rate (ELR) of a charged particle in a HgTe/(HgTe, CdTe) quantum well is investigated. We consider scattering of a charged particle by the bulk insulating states in this type of topological insulator. It is found that the ELR characteristics due to the intraband excitation have a linear energy dependence while those due to interband excitation depend on the energy exponentially. An interesting quantitative result is that for a large range of the incident energy, the mean inelastic scattering rate is around a few terahertz.

  6. Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model

    E-Print Network [OSTI]

    E. O. Iltan

    2005-09-24T23:59:59.000Z

    We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is at the order of the magnitude of $10^{-22} (e-cm)$ ($10^{-20} (e-cm)$) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment.

  7. The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics/Molecular Mechanics Simulations

    E-Print Network [OSTI]

    Gerwert, Klaus

    The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics, People's Republic of China ABSTRACT The coordination of the magnesium ion in proteins by triphosphates conversion. For example, in Ras the magnesium ion contributes to the catalysis of GTP hydrolysis

  8. Explorations of Space-Charge Limits in Parallel-Plate Diodes and Associated Techniques for Automation

    E-Print Network [OSTI]

    Ragan-Kelley, Benjamin

    2013-01-01T23:59:59.000Z

    satisfying PCE emission scheme. . . . . . . . . . . . . . .charge weighted to nodes with PCE for linear Q(x). . . . .4.1 DCE and PCE emission on the Yee mesh, showing the di?

  9. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    E-Print Network [OSTI]

    Conrad, Janet

    We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction ...

  10. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOE Patents [OSTI]

    DeGeronimo, Gianluigi

    2006-02-14T23:59:59.000Z

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  11. Charge transfer kinetics at the solid–solid interface in porous electrodes

    E-Print Network [OSTI]

    Bai, Peng

    Interfacial charge transfer is widely assumed to obey the Butler–Volmer kinetics. For certain liquid–solid interfaces, the Marcus–Hush–Chidsey theory is more accurate and predictive, but it has not been applied to porous ...

  12. Measurement of the charge asymmetry in top-antitop quark production with the CDF II experiment

    SciTech Connect (OSTI)

    Weinelt, Julia; /Karlsruhe U., EKP

    2006-12-01T23:59:59.000Z

    The Fermi National Laboratory (Fermilab) operates the Tevatron proton-antiproton collider at a center-of-mass energy of {radical}s = 1.96 TeV, the is therefore the only collider which is today able to produce the heaviest known particle, the top quark. The top quark was discovered at the Tevatron by the CDF and D0 collaborations in 1995. At the Tevatron, most top quarks are produced via the strong interaction, whereby quark-antiquark annihilation dominates with 85%, and gluon fusion contributes with 15%. Considering next-to-leading order (NLO) contributions in the cross section of top-antitop quark production, leads to a slight positive asymmetry in the differential distribution of the production angle {alpha} of the top quarks. This asymmetry is due to the interference of certain NLO contributions. The charge asymmetry A in the cosine of {alpha} is predicted [14] to amount to 4-6%. Information about the partonic rest frame, necessary for a measurement of A in the observable cos {alpha}, is not accessible in the experiment. Thus, they use the rapidity difference of the top and the antitop quark as sensitive variable. This quantity offers the advantage of Lorentz invariance and is uniquely correlated with the cosine of {alpha}, justifying the choice of the rapidity difference to describe the behavior of cos {alpha}. In preparation for a measurement of the charge asymmetry, they conduct several Monte Carlo based studies concerning the effect of different event selection criteria on the asymmetry in the selected event samples. They observe a strong dependence of the measured asymmetry on the number of required jets in the particular event sample. This motivates further studies to understand the influence of additional gluon radiation, which leads to more than four observed jets in an event, on the rapidity distribution of the produced top quarks. They find, that events containing hard gluon radiation are correlated with a strong negative shift of the rapidity distribution of the top quarks. This leads to large negative values of the charge asymmetry in event samples that contain only events with exactly five, six or more jets. This finding requires a modification of the original analysis strategy, since an asymmetry measured in an inclusive sample will be a composition of the asymmetry in the four-jets and five-jets sub-samples. Therefore, they perform for the first time a measurement of the asymmetry separately in the exclusive four- and five-jets sub-samples to separate the contribution of hard gluon radiation to the asymmetry. They analyze a data sample, collected by the CDF II detector in the years 2002-2006, that corresponds to an integrated luminosity of about 955 pb{sup -1}.

  13. Laser Measurements of the Density Shifts of Resonance Lines in Antiprotonic Helium Atoms and Stringent Constraint on the Antiproton Charge and Mass

    E-Print Network [OSTI]

    Torii, H A; Hori, Masaki; Ishikawa, T; Morita, N; Kumakura, M; Sugai, I; Yamazaki, T; Ketzer, B; Hartmann, F J; Von Egidy, T; Pohl, R; Maierl, C; Horváth, D; Eades, John; Widmann, E

    1998-01-01T23:59:59.000Z

    Laser Measurements of the Density Shifts of Resonance Lines in Antiprotonic Helium Atoms and Stringent Constraint on the Antiproton Charge and Mass

  14. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  15. Multiplicity of Charged and Neutral Pions in Deep-Inelastic Scattering of 27.5 GeV Positrons on Hydrogen

    E-Print Network [OSTI]

    Airapetian, A; Amarian, M; Arrington, J; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brauksiepe, S; Braun, B; Brückner, W; Brüll, A; Budz, P; Bulten, H J; Capitani, G P; Carter, P; Chumney, P; Cisbani, E; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Dvoredsky, A P; Elbakian, G M; Ely, J; Fantoni, A; Feshchenko, A; Ferro-Luzzi, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hoffmann-Rothe, P; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Hoprich, W; Iarygin, G; Ihssen, H; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Lindemann, T; Lorenzon, W; Makins, N C R; Martin, J W; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; McKeown, R D; Meissner, F; Menden, F; Metz, A; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Nowak, Wolf-Dieter; O'Neill, T G; Openshaw, R; Ouyang, J; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Rakness, G; Redwine, R P; Reggiani, D; Reolon, A R; Ristinen, R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sato, F; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schmitt, M; Schnell, G; Schüler, K P; Schwind, A; Seibert, J; Shibata, T A; Shin, T; Shutov, V B; Simani, M C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Sutter, M F; Tallini, H A; Taroian, S P; Terkulov, A R; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Volk, E; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Woller, K; Yoneyama, S; Zohrabyan, H G

    2001-01-01T23:59:59.000Z

    Multiplicity of Charged and Neutral Pions in Deep-Inelastic Scattering of 27.5 GeV Positrons on Hydrogen

  16. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect (OSTI)

    Sharma, Suresh C. [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi-42 (India); Kaur, Daljeet [Department of Physics, Guru Teg Bahadur Institute of Technology, Rajouri Garden, New Delhi (India); Gahlot, Ajay [Department of Physics, Maharaja Surajmal Institute of Technology, Janakpuri, New Delhi (India); Sharma, Jyotsna [Department of Physics, KIIT College of Engineering, Bhondsi Gurgaon 122102 (India)

    2014-10-15T23:59:59.000Z

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  17. Search for CP-violating charge asymmetry in B{sup {+-}}{yields}J/{psi}K{sup {+-}} decays

    SciTech Connect (OSTI)

    Sakai, K.; Kawasaki, T.; Miyata, H.; Watanabe, M. [Niigata University, Niigata (Japan); Aihara, H. [Department of Physics, University of Tokyo, Tokyo (Japan); Arinstein, K.; Bondar, A.; Eidelman, S.; Kuzmin, A.; Shwartz, B.; Zyukova, O. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Aushev, T. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bakich, A. M.; McOnie, S.; Varvell, K. E. [School of Physics, University of Sydney, NSW 2006 (Australia); Balagura, V.; Liventsev, D.; Pakhlova, G.; Solovieva, E.; Uglov, T. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2010-11-01T23:59:59.000Z

    We present the result of a search for charge asymmetry in B{sup {+-}}{yields}J/{psi}K{sup {+-}} decays using 772x10{sup 6} BB pairs collected at the {Upsilon}(4S) resonance by the Belle detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider. The CP-violating charge asymmetry is measured to be A{sub CP}(B{sup +}{yields}J/{psi}K{sup +})=[-0.76{+-}0.50 (stat){+-}0.22 (syst)]%.

  18. Self-organized arrays of graphene and few-layer graphene quantum dots in fluorographene matrix: Charge transient spectroscopy

    SciTech Connect (OSTI)

    Antonova, Irina V., E-mail: antonova@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, SB RAS, Lavrentiev Avenue 13, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogov st. 2, Novosibirsk 630090 (Russian Federation); Nebogatikova, Nadezhda A.; Prinz, Victor Ya. [Rzhanov Institute of Semiconductor Physics, SB RAS, Lavrentiev Avenue 13, Novosibirsk 630090 (Russian Federation)

    2014-05-12T23:59:59.000Z

    Arrays of graphene or few-layer graphene quantum dots (QDs) embedded in a partially fluorinated graphene matrix were created by chemical functionalization of layers. Charge transient spectroscopy employed for investigation of obtained QD systems (size 20–70 nm) has allowed us to examine the QD energy spectra and the time of carrier emission (or charge relaxation) from QDs as a function of film thickness. It was found that the characteristic time of carrier emission from QDs decreased markedly (by about four orders of magnitude) on increasing the QD thickness from one graphene monolayer to 3 nm. Daylight-assisted measurements also demonstrate a strong decrease of the carrier emission time.

  19. Charge Separation Kinetics in Intact Photosystem II Core Particles Is Trap-Limited. A Picosecond Fluorescence Study

    E-Print Network [OSTI]

    Roegner, Matthias

    -induced charge separation across the membrane occurs. Eventually the oxygen-evolving complex is oxidized centers. At least two new lifetime components of 2 and 9 ps have been resolved in the kinetics by global of the equilibrated excited reaction center in intact photosystem II and have found two early radical pairs before

  20. Time-Domain ab Initio Study of Charge Relaxation and Recombination in Dye-Sensitized TiO2

    E-Print Network [OSTI]

    with surface hopping in the Kohn-Sham basis. Representing the dye-sensitized semiconductor Gra¨tzel cellTime-Domain ab Initio Study of Charge Relaxation and Recombination in Dye-Sensitized TiO2 Walter R understanding of these processes is crucial for improving solar cell design and optimizing photovoltaic current