National Library of Energy BETA

Sample records for improving production resilience

  1. Mapping a Course to Improved Community Resilience | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mapping a Course to Improved Community Resilience Mapping a Course to Improved Community Resilience June 4, 2015 - 2:16pm Addthis OE interns Jeremy Call and Henry Puppe at last month's first-ever mapathon hosted by the White House OE interns Jeremy Call and Henry Puppe at last month's first-ever mapathon hosted by the White House Denice Ross Denice Ross Last month's first-ever mapathon hosted by the White House brought people together from across the public and private sectors to celebrate and

  2. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Broader source: Energy.gov (indexed) [DOE]

    reliability to reduce customer losses from power disruptions. This report presents findings on smart grid improvements in outage management from OE's Smart Grid Investment ...

  3. Energy Department Announces Funding to Improve Grid Resiliency...

    Office of Environmental Management (EM)

    to advance the Administration's efforts to enhance climate resilience. The Resilient Electricity Delivery Infrastructure FOA, which is available at Grants.gov and ...

  4. Energy Department Announces $8 Million to Improve Resiliency of the Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy $8 Million to Improve Resiliency of the Grid Energy Department Announces $8 Million to Improve Resiliency of the Grid September 8, 2014 - 9:00am Addthis News Media Contact 202-586-4940 Projects in Seven States to Help Communities Become More Adaptive With Microgrids WASHINGTON - In support of President Obama's Climate Action Plan and the Administration's commitment to improve national power grid resiliency, today the Energy Department announced more than $8 million for

  5. Enabling States and Localities to Improve Energy Assurance and Resiliency Planning (September 2010)

    Broader source: Energy.gov [DOE]

    The Energy Assurance Planning (EAP) Initiative for State and Local Governments is a major element of DOE's effort to improve the Nation's energy sector resiliency. The overall goal of the three...

  6. Energy Department Invests Over $10 Million to Improve Grid Reliability and Resiliency

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration’s commitment to a strong and secure power grid, the Energy Department today announced more than $10 million for projects that will improve the reliability and resiliency of the U.S. electric grid and facilitate quick and effective response to grid conditions.

  7. A study of the viability of exploiting memory content similarity to improve resilience to memory errors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levy, Scott; Ferreira, Kurt B.; Bridges, Patrick G.; Thompson, Aidan P.; Trott, Christian

    2014-12-09

    Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on themore » characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.« less

  8. A study of the viability of exploiting memory content similarity to improve resilience to memory errors

    SciTech Connect (OSTI)

    Levy, Scott; Ferreira, Kurt B.; Bridges, Patrick G.; Thompson, Aidan P.; Trott, Christian

    2014-12-09

    Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on the characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.

  9. National Critical Infrastructure Security and Resilience Month: Improving the Security and Resilience of the Nation’s Grid

    Broader source: Energy.gov [DOE]

    November is National Critical Infrastructure Security and Resilience Month, and our Office of Electricity (OE) is hard at work safeguarding the power grid.

  10. Smart Grid Investments Improve Grid reliability, Resilience and...

    Broader source: Energy.gov (indexed) [DOE]

    ... Customers, September 2014 xi. New Forecasting Tool Enhances Wind Energy Integration ... Investment in Smart Grid Technologies Improves Services and Lowers Costs, October 2014

  11. Improving haul truck productivity

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-06-15

    The paper reviews developments in payload management and cycle times. These were discussed at a roundtable held at the Haulage and Loading 2007 conference held in May in Phoenix, AZ, USA. Several original equipment manufacturers (OEMs) explaind what their companies were doing to improve cycle times for trucks, shovels and excavators used in surface coal mining. Quotations are given from Dion Domaschenz of Liebherr and Steve Plott of Cat Global Mining. 4 figs.

  12. Enabling States and Localities to Improve Energy Assurance and Resiliency Planning (September 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    communities depend on a secure, reliable energy infrastructure that is also resilient. At the same time, our Nation's energy infrastructure - a complex network of interconnected producers, pipelines, transmission and distribution lines, electricity substations, operational and business processes and supply chains - may be vulnerable to a variety of hazards. Stretching across jurisdictions and States to national borders, this "system of systems" is subject to a range of disruptions,

  13. Energy Department Announces Funding to Improve Grid Resiliency and Climate Preparedness

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department’s Office of Electricity Delivery and Energy Reliability announced that it is making up to $3.5 million in funding available for communities to deploy smart grid tools and technologies to advance climate preparedness and resiliency of the electricity delivery infrastructure. This Funding Opportunity supports the goals of other initiatives by the Administration to prepare the Nation for the impacts of climate change by providing funding to local and tribal governments.

  14. Energy Department Invests Over $2 Million to Improve Grid Resiliency and Climate Preparedness

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 10, 2015, OE announced up to $2.5 million in funding to help four communities that have suffered a Presidentially Declared Major Disaster over the past 30 years better prepare for the future effects of a changing climate. This investment, funded through the Resilient Electricity Delivery Infrastructure Funding Opportunity Announcement, will allow communities in California, Colorado, Florida, and New York to deploy smart grid tools and technologies that can help prevent power outages, reduce storm impacts, and restore service faster.

  15. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  16. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Broader source: Energy.gov (indexed) [DOE]

    and create U.S. jobs by improving labor productivity in wind turbine blade construction. ... Certain components of wind turbine blades are naturally more suitable to domestic ...

  17. Promising technique improves hydrogen production of affordable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Materialscientist, Wikipedia) (click image to enlarge) Promising technique improves hydrogen production of affordable alternative to platinum By Angela Hardin * October 26, 2015...

  18. Resilience Metrics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Quadrennial Energy Review Technical Workshop on Resilience Metrics for Energy Transmission and Distribution Infrastructure April 28, 2014 Infrastructure Assurance Center ...

  19. Resilience: Theory and Application.

    SciTech Connect (OSTI)

    Carlson, J.L.; Haffenden, R.A.; Bassett, G.W.; Buehring, W.A.; Collins, M.J., III; Folga, S.M.; Petit, F.D.; Phillips, J.A.; Verner, D.R.; Whitfield, R.G.

    2012-02-03

    -level components about which the least is known. Implementation of the strategies outlined here to assess resilience will facilitate the following four objectives: (1) Develop a methodology and supporting products to assess resilience at the asset/facility level, (2) Develop a methodology and supporting products to assess resilience at the critical infrastructure sector level, (3) Provide resilience-related information to critical infrastructure owners/operators to facilitate risk-based resource decision making, and (4) Provide resilience-related information to State and local mission partners to support their risk-based resource decision making.

  20. Utilizing The US Climate Resilience Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Climate Resilience Toolkit provides scientific tools, information, and expertise to help professionals manage their climate-related risks and opportunities, and improve their resilience to extreme events.

  1. Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service reliability to reduce customer losses from power disruptions. This report presents findings on smart grid improvements in outage management from OE's Smart Grid Investment Grant (SGIG) program, based on the recent experiences of three SGIG projects.

  2. Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014)

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new report from OE's Smart Grid Investment Grant (SGIG) program presents findings on smart grid improvements in outage management, based on the recent experiences of three SGIG projects.

  3. Powerplant productivity improvements and regulatory incentives

    SciTech Connect (OSTI)

    Hardy, D; Brown, D

    1980-10-27

    The purpose of this study was to examine the benefits to be gained from increased powerplant productivity and to validate and demonstrate the use of incentives within the regulatory process to promote the improvement of powerplant productivity. The system-wide costs savings to be gained from given productivity improvement scenarios are estimated in both the short and long term. Numerous reports and studies exist which indicate that productivity improvements at the powerplant level are feasible and cost effective. The efforts of this study widen this focus and relate system-wide productivity improvements with system-wide cost savings. The initial thrust of the regulatory section of this study is to validate the existence of reasonable incentive procedures which would enable regulatory agencies to better motivate electric utilities to improve productivity on both the powerplant and system levels. The voluntary incentive format developed in this study was designed to facilitate the link between profit and efficiency which is typically not clear in most regulated market environments. It is concluded that at the present time, many electric utilities in this country could significantly increase the productivity of their base load units, and the adoption of an incentive program of the general type recommended in this study would add to rate of return regulation the needed financial incentives to enable utilities to make such improvements without losing long-run profit. In light of the upcoming oil import target levels and mandatory cutbacks of oil and gas as boiler fuels for electric utilities, the use of incentive programs to encourage more efficient utilization of coal and nuclear base load capacity will become far more inviting over the next two decades.

  4. Partnership for Energy Sector Climate Resilience | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for Energy Sector Climate Resilience Partnership for Energy Sector Climate Resilience The Partnership for Energy Sector Climate Resilience is an initiative to enhance U.S. energy security by improving the resilience of energy infrastructure to extreme weather and climate change impacts. The goal is to accelerate investment in technologies, practices, and policies that will enable a resilient 21st century energy system. Under this Partnership, owners and operators of energy assets

  5. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Office of Environmental Management (EM)

    Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - ...

  6. Compositions and methods for improved protein production (Patent...

    Office of Scientific and Technical Information (OSTI)

    Compositions and methods for improved protein production Title: Compositions and methods for improved protein production The present invention relates to the identification of ...

  7. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  8. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect (OSTI)

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  9. Molten carbonate fuel cell product design improvement

    SciTech Connect (OSTI)

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  10. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  11. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  12. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  13. Joint Electromagnetic Pulse Resilience Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electromagnetic Pulse Resilience Strategy Joint Electromagnetic Pulse Resilience Strategy The Joint Electromagnetic Pulse Resilience Strategy is a collaboration between the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) that enhances coordination and guides future efforts to help meet the growing demands for electromagnetic pulse (EMP) guidance. The Joint Strategy lays out five strategic goals to guide DOE and EPRI to minimize EMP impacts and improve resilience: 1.

  14. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2005-03-01

    water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the program period in the areas of technology, manufacturing processes, cost reduction and balance-of-plant equipment designs is discussed in this report.

  15. Management practices--production analysis and improvement

    SciTech Connect (OSTI)

    Minnucci, C.A.; Hernai, A.S.

    1984-02-01

    In 1978, the U.S. Department of Energy funded a 2-year study to identify and quantify causes of the post-1969 coal mine productivity decline. A large number of factors hypothesized to have affected productivity during this period were analyzed using regression techniques. The results were particularly interesting for two of the factors--mining method and shift scheduling. The study results indicate that the use of longwall mining has an insignificant impact on overall mine productivity, compared to other methods, and mines operating on a two-production shift per day schedule are more productive than mines employing other shift schedules.

  16. Defining resilience within a risk-informed assessment framework

    SciTech Connect (OSTI)

    Coles, Garill A.; Unwin, Stephen D.; Holter, Gregory M.; Bass, Robert B.; Dagle, Jeffery E.

    2011-08-01

    The concept of resilience is the subject of considerable discussion in academic, business, and governmental circles. The United States Department of Homeland Security for one has emphasised the need to consider resilience in safeguarding critical infrastructure and key resources. The concept of resilience is complex, multidimensional, and defined differently by different stakeholders. The authors contend that there is a benefit in moving from discussing resilience as an abstraction to defining resilience as a measurable characteristic of a system. This paper proposes defining resilience measures using elements of a traditional risk assessment framework to help clarify the concept of resilience and as a way to provide non-traditional risk information. The authors show various, diverse dimensions of resilience can be quantitatively defined in a common risk assessment framework based on the concept of loss of service. This allows the comparison of options for improving the resilience of infrastructure and presents a means to perform cost-benefit analysis. This paper discusses definitions and key aspects of resilience, presents equations for the risk of loss of infrastructure function that incorporate four key aspects of resilience that could prevent or mitigate that loss, describes proposed resilience factor definitions based on those risk impacts, and provides an example that illustrates how resilience factors would be calculated using a hypothetical scenario.

  17. Composition and methods for improved fuel production

    DOE Patents [OSTI]

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  18. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2002-02-01

    generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

  19. Improving microbial biogasoline production in Escherichia coli using

    Office of Scientific and Technical Information (OSTI)

    tolerance engineering (Journal Article) | SciTech Connect Improving microbial biogasoline production in Escherichia coli using tolerance engineering Citation Details In-Document Search Title: Improving microbial biogasoline production in Escherichia coli using tolerance engineering Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel

  20. Improved fermentative alcohol production. [Patent application

    DOE Patents [OSTI]

    Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  1. Compositions and methods for improved protein production

    DOE Patents [OSTI]

    Bodie, Elizabeth A.; Kim, Steve Sungjin

    2014-06-03

    The present invention relates to the identification of novel nucleic acid sequences, designated herein as 7p, 8k, 7E, 9G, 8Q and 203, in a host cell which effect protein production. The present invention also provides host cells having a mutation or deletion of part or all of the gene encoding 7p, 8k, 7E, 9G, 8Q and 203, which are presented in FIG. 1, and are SEQ ID NOS.: 1-6, respectively. The present invention also provides host cells further comprising a nucleic acid encoding a desired heterologous protein such as an enzyme.

  2. Compositions and methods for improved protein production

    DOE Patents [OSTI]

    Bodie, Elizabeth A.; Kim, Steve

    2012-07-10

    The present invention relates to the identification of novel nucleic acid sequences, designated herein as 7p, 8k, 7E, 9G, 8Q and 203, in a host cell which effect protein production. The present invention also provides host cells having a mutation or deletion of part or all of the gene encoding 7p, 8k, 7E, 9G, 8Q and 203, which are presented in FIG. 1, and are SEQ ID NOS.: 1-6, respectively. The present invention also provides host cells further comprising a nucleic acid encoding a desired heterologous protein such as an enzyme.

  3. Outage project productivity improvement of TVA fossil

    SciTech Connect (OSTI)

    Picard, H.E.; Seay, C.R. Jr.

    1996-10-01

    Competition in the utility industry forces management to look closely at the cost effectiveness of power plant outage projects. At TVA Fossil and Hydro Power, innovative work measurement is proving effective as a project management tool to do more with less. Labor-hours to complete outage work scopes are reduced by some 20 to 30%, not by working harder or sacrificing safety, or quality, but by working and managing smarter. Fossil power plant outages and shutdowns are costly. They are labor-intensive construction projects, often with expanding work scope, and executed on a fast track. Outage work is inherently complex and dynamic, and often unpredictable. Many activities and tasks must be integrated, coordinated and completed safely and efficiently by multiple crafts and work groups. As a result, numerous productivity factors can influence the cost and schedule of outage completion. This provides owners, contractors and labor with unique opportunities for competitive advantage--by making radical changes in how they manage labor-hours and time.

  4. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    SciTech Connect (OSTI)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  5. Improving microbial biogasoline production in Escherichia coli using tolerance engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Foo, Jee Loon; Jensen, Heather M.; Dahl, Robert H.; George, Kevin; Keasling, Jay D.; Lee, Taek Soon; Leong, Susanna; Mukhopadhyay, Aindrila

    2014-11-04

    Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerancemore » phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production.« less

  6. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  7. Effective Conveyor Belt Inspection for Improved Mining Productivity

    SciTech Connect (OSTI)

    Chris Fromme

    2006-06-01

    This document details progress on the project entitled ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2004 to May 14, 2004. Highlights include fabrication of an improved LED lightbar, fabrication of a line-scan sensor head for the Smart-Camera based prototype, and development of prototype vulcanized splice detection algorithms.

  8. Process for improving metal production in steelmaking processes

    DOE Patents [OSTI]

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  9. Process for improving metal production in steelmaking processes

    DOE Patents [OSTI]

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  10. Solar for Safety, Security, and Resilience Toolkit

    Broader source: Energy.gov [DOE]

    There is a growing interest in using renewable energy options like solar to improve community resiliency. During extreme weather events, solar can help prevent power outages by providing emergency energy to critical facilities and recovery efforts. Solar can provide electricity to remote or less accessible areas, and is flexible enough to be a mobile or temporary power source. In addition to resiliency planning, there are efforts to promote new safety education and guidelines for solar installation, especially related to fire prevention. Also, there is rising interest in how solar can influence homeland security. The Solar for Safety, Security, and Resilience Toolkit demonstrates the different ways of thinking about and incorporating solar energy into ongoing public safety, homeland security, and resiliency initiatives.

  11. Enabling States and Localities to Improve Energy Assurance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling States and Localities to Improve Energy Assurance and Resiliency Planning (September 2010) Enabling States and Localities to Improve Energy Assurance and Resiliency Planning ...

  12. Similarity Engine: Using Content Similarity to Improve Memory...

    Office of Scientific and Technical Information (OSTI)

    Similarity to Improve Memory Resilience. Citation Details In-Document Search Title: Similarity Engine: Using Content Similarity to Improve Memory Resilience. Abstract not provided. ...

  13. Now Available: Smart Grid Investments Improve Grid Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses ...

  14. Measuring the Resilience of Energy Distribution Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides a review of existing resilience metrics for electric, oil, and natural gas distribution systems. The report summarizes the concepts addressed by measures of resilience, describes a framework for organizing alternative metrics used to measure resilience of energy distribution systems, and reviews the state of metrics for resilience of such systems. The framework organized resilience metrics into five categories – system inputs, capacities, capabilities, performance and outcomes – and existing metrics were evaluated within the context of this framework. The report finds more metrics for the electricity system than for oil and gas and that the literature pays greater attention to metrics at the facility level. Also, there were many performance measures identified at the system and regional level and these metrics were determined to be relatively well developed. In comparison, outcome measures were identified at the system, regional and national levels, but they were judged to be relatively less well developed. To improve resilience metrics, the report recommends standardizing data on inputs and capacities at the facility and system levels; developing measures of capabilities at the system and regional levels; and improving understanding of how capabilities and performance translate to regional and national outcomes.

  15. Memorandum of Understanding on Improving the Energy Efficiency of Products

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Buildings between the U.S. Environmental Protection Agency and the U.S. Department of Energy, dated September 30, 2009 | Department of Energy Memorandum of Understanding on Improving the Energy Efficiency of Products and Buildings between the U.S. Environmental Protection Agency and the U.S. Department of Energy, dated September 30, 2009 Memorandum of Understanding on Improving the Energy Efficiency of Products and Buildings between the U.S. Environmental Protection Agency and the U.S.

  16. Effective Conveyor Belt Inspection for Improved Mining Productivity

    SciTech Connect (OSTI)

    David LaRose

    2006-07-01

    This document details progress on the project ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2005 to May 14, 2006. Highlights include significant improvements in the accuracy and reliability of computer-vision based vulcanized splice detection, deployment of the vulcanized splice detection algorithms for daily use in two working mines, and successful demonstration of an early prototype of a Smart-Camera based system for on-site mechanical splice detection in coal mine installations.

  17. Effective Conveyor Belt Inspection for Improved Mining Productivity

    SciTech Connect (OSTI)

    Chris Fromme

    2006-06-01

    This document details progress on the project entitled ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2004 to May 14, 2004. Highlights include fabrication of low-cost prototype hardware, acquisition of infrared thermal data, and initial design of a Smart-Camera based system.

  18. FUPWG Energy Resilience

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUPWG - Energy Resilience Zak Kuznar-May 18th, 2016 2 Preparing Duke Energy for a Clean and Distributed Energy Future Clean Energy Future Solar Combined Heat and Power (CHP) Energy ...

  19. Effective Conveyer Belt Inspection for Improved Mining Productivity

    SciTech Connect (OSTI)

    David LaRose

    2006-11-14

    This document details progress on the project ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from May 15, 2006 to November 14, 2006. Progress during this period includes significant advances in development of a Smart Camera based prototype system for on-site mechanical splice detection, and continued deployment of both the mechanical splice detection system and the vulcanized splice detection system in area coal mines.

  20. Agenda: Enhancing Energy Infrastructure Resiliency and Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities A Public Meeting ...

  1. Microsoft Word - Critical Infrastructure Security and Resilience...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013 - - - - - - - BY THE ...

  2. Optimal recovery sequencing for critical infrastructure resilience assessment.

    SciTech Connect (OSTI)

    Vugrin, Eric D.; Brown, Nathanael J. K.; Turnquist, Mark Alan

    2010-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the identification of optimal recovery strategies that maximize resilience. To this goal, we formulate a bi-level optimization problem for infrastructure network models. In the 'inner' problem, we solve for network flows, and we use the 'outer' problem to identify the optimal recovery modes and sequences. We draw from the literature of multi-mode project scheduling problems to create an effective solution strategy for the resilience optimization model. We demonstrate the application of this approach to a set of network models, including a national railroad model and a supply chain for Army munitions production.

  3. Task Force on Climate Preparedness and Resilience Announces Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience ...

  4. Fisher Pierce products for improving distribution system reliability

    SciTech Connect (OSTI)

    1994-12-31

    The challenges facing the electric power utility today in the 1990s has changed significantly from those of even 10 years ago. The proliferation of automation and the personnel computer have heightened the requirements and demands put on the electric distribution system. Today`s customers, fighting to compete in a world market, demand quality, uninterrupted power service. Privatization and the concept of unregulated competition require utilities to streamline to minimize system support costs and optimize power delivery efficiency. Fisher Pierce, serving the electric utility industry for over 50 years, offers a line of products to assist utilities in meeting these challenges. The Fisher Pierce Family of products provide tools for the electric utility to exceed customer service demands. A full line of fault indicating devices are offered to expedite system power restoration both locally and in conjunction with SCADA systems. Fisher Pierce is the largest supplier of roadway lighting controls, manufacturing on a 6 million dollar automated line assuring the highest quality in the world. The distribution system capacitor control line offers intelligent local or radio linked switching control to maintain system voltage and Var levels for quality and cost efficient power delivery under varying customer loads. Additional products, designed to authenticate revenue metering calibration and verify on sight metering service wiring, help optimize the profitability of the utility assuring continuous system service improvements for their customers.

  5. Evaluating Application Resilience with XRay

    SciTech Connect (OSTI)

    Chen, Sui; Bronevetsky, Greg; Li, Bin; Casas-Guix, Marc; Peng, Lu

    2015-05-07

    The rising count and shrinking feature size of transistors within modern computers is making them increasingly vulnerable to various types of soft faults. This problem is especially acute in high-performance computing (HPC) systems used for scientific computing, because these systems include many thousands of compute cores and nodes, all of which may be utilized in a single large-scale run. The increasing vulnerability of HPC applications to errors induced by soft faults is motivating extensive work on techniques to make these applications more resiilent to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithmspecific error detection and tolerance techniques. Effective use of such techniques requires a detailed understanding of how a given application is affected by soft faults to ensure that (i) efforts to improve application resilience are spent in the code regions most vulnerable to faults and (ii) the appropriate resilience technique is applied to each code region. This paper presents XRay, a tool to view the application vulnerability to soft errors, and illustrates how XRay can be used in the context of a representative application. In addition to providing actionable insights into application behavior XRay automatically selects the number of fault injection experiments required to provide an informative view of application behavior, ensuring that the information is statistically well-grounded without performing unnecessary experiments.

  6. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  7. Resistance and resilience of pond and stream ecosystems to toxicant stress: Project summary

    SciTech Connect (OSTI)

    Boston, H.L.; Stewart, A.J.; Johnson, A.R.; Bartell, S.M.

    1987-01-01

    This project will evaluate hypotheses concerning the resistance and resilience of aquatic ecosystems exposed to toxic chemicals. Our goals are to develop diagnostic criteria for ecosystem classification and to improve existing methods of ecological risk estimation. The development of models that predict ecosystem level effects requires quantifying the relationships between the underlying control structure of ecosystems (patterns of energy and material flux) and the contributions of thos structures to ecosystem resistance and resilience. We address these problems through an integration of manipulative experiments, multidimensional state space analysis, and ecosystem modeling. These studies will quantify the underlying rate structure in pond and stream systems (including, production, herbivory, nutrient uptake and recycling) and will measure changes in their structures in response to perturbations by toxicants.

  8. Metrics for Energy Resilience

    SciTech Connect (OSTI)

    Paul E. Roege; Zachary A. Collier; James Mancillas; John A. McDonagh; Igor Linkov

    2014-09-01

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today?s energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system?s energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth.

  9. NREL: Technology Deployment - Disaster Resilience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resilience NREL works directly with federal agencies, emergency managers, community leaders, and home and business owners to deliver technologies, tools, and long-term energy solutions for each phase of disaster resiliency planning. Our comprehensive energy solutions address the full spectrum of multi-jurisdictional resilience planning-before and after disaster strikes. Natural Disasters, By the Numbers Graphic showing an exclamation mark inside of a triangle, with the number 144 below it. There

  10. Improving Microalgal Oil Production Based on Quantitative, Biochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microalgal Oil Production Based on Quantitative, Biochemical and Genetic Analyses of ... Goal Statement * Maximizing production of oil (triacylglycerols) in the green alga ...

  11. Resilient Infrastructure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On February 13, 2013, the White House released Presidential Policy Directive (PPD) 21 - Critical Infrastructure Security and Resilience. Its objective is to advance "a national ...

  12. M-C Power`s product design and improvement

    SciTech Connect (OSTI)

    Scroppo, J.A.; Laurens, R.M.; Petraglia, V.J.

    1995-12-31

    The sole mission of M-C Power is the development and subsequent commercialization of molten carbonate fuel cell (MCFC) stacks. These MCFC stacks are based on the Internally Manifolded Heat EXchanger plate design developed by the Institute of Gas Technology. Integration of the MCFC stack into a commercially viable power plant is the mission of the IMHEX{sup {reg_sign}} team. The team is composed of leaders in the packaging and design of power generation equipment, including fuel cell technology, and includes Stewart & Stevenson, Bechtel, The Institute of Gas Technology and M-C Power. In an effort to succeed in their respective missions, M-C Power and the IMHEX{sup {reg_sign}} team have developed a commercialization program. At the present time, the team is making the transition from Phase I (Technology Development) to Phase II (Product Design & Improvement) of the program. Phase II`s objective is a commercially viable (cost effective and technologically reliable) MCFC power plant ready for market by the turn of the century.

  13. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    SciTech Connect (OSTI)

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  14. What Does? Scalable Resilience? Look Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models 4 A Runtime System based on Over-decomposition and Migratability can support resilience effetively Runtime Systems can play a role * RTS based solutions to resilience are...

  15. Probabilistic Approaches for Communication Avoidance and Resilience...

    Office of Scientific and Technical Information (OSTI)

    Avoidance and Resilience in Exascale Simulations. Citation Details In-Document Search Title: Probabilistic Approaches for Communication Avoidance and Resilience in Exascale ...

  16. Regional Climate Vulnerabilities and Resilience Solutions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Climate Vulnerabilities and Resilience Solutions Regional Climate Vulnerabilities and Resilience Solutions This interactive map is not viewable in your browser. Please ...

  17. Cybersecurity and Resilience | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybersecurity and Resilience Securing the grid from cyberattacks is more complex than ... That's why NREL established the Cyber-Physical Systems Security and Resilience R&D Center. ...

  18. Resilient Infrastructure Publications | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Interdependencies. An Approach to Critical Infrastructure Resilience Petit, F., Wallace, K., and Phillips, J., January 2014, An Approach to Critical Infrastructure Resilience. ...

  19. CHP: Enabling Resilient Energy Infrastructure - Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    infrastructure resiliency, business continuity, and emergency planning and operations. ... Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in ...

  20. EERE Success Story-BETO Project Improves Production of Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As part of this work, Genomatica developed a "sugar specification," which provides ... scale from conventional sources such as sugar beets or cane sugar, but the improved ...

  1. Altering Reservoir Wettability to Improve Production from Single Wells

    SciTech Connect (OSTI)

    W. W. Weiss

    2006-09-30

    Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texas and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the field

  2. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  3. Improving olefin tolerance and production in E. coli using native...

    Office of Scientific and Technical Information (OSTI)

    Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on ...

  4. Improved Methods for the Production of Polyurethane Foam

    Office of Energy Efficiency and Renewable Energy (EERE)

    Methylene chloride, a toxic chemical that contributes to air pollution, was recently eliminated from use in the U.S. polyurethane industry. This mandated elimination did not permit production of as...

  5. Action Recommendation for Cyber Resilience

    SciTech Connect (OSTI)

    Choudhury, Sutanay; Rodriguez, Luke R.; Curtis, Darren S.; Oler, Kiri J.; Nordquist, Peter L.; Chen, Pin-Yu; Ray, Indrajit

    2015-09-01

    This paper presents an unifying graph-based model for representing the infrastructure, behavior and missions of an enterprise. We describe how the model can be used to achieve resiliency against a wide class of failures and attacks. We introduce an algorithm for recommending resilience establishing actions based on dynamic updates to the models. Without loss of generality, we show the effectiveness of the algorithm for preserving latency based quality of service (QoS). Our models and the recommendation algorithms are implemented in a software framework that we seek to release as an open source framework for simulating resilient cyber systems.

  6. Mozambique-African Climate Change Resilience Alliance | Open...

    Open Energy Info (EERE)

    African Climate Change Resilience Alliance Jump to: navigation, search Logo: Mozambique-African Climate Change Resilience Alliance Name Mozambique-African Climate Change Resilience...

  7. Uganda-African Climate Change Resilience Alliance | Open Energy...

    Open Energy Info (EERE)

    African Climate Change Resilience Alliance Jump to: navigation, search Logo: Uganda-African Climate Change Resilience Alliance Name Uganda-African Climate Change Resilience...

  8. A resilience assessment framework for infrastructure and economic systems : quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane.

    SciTech Connect (OSTI)

    Ehlen, Mark Andrew; Vugrin, Eric D.; Warren, Drake E.

    2010-03-01

    In recent years, the nation has recognized that critical infrastructure protection should consider not only the prevention of disruptive events, but also the processes that infrastructure systems undergo to maintain functionality following disruptions. This more comprehensive approach has been termed critical infrastructure resilience (CIR). Given the occurrence of a particular disruptive event, the resilience of a system to that event is the system's ability to efficiently reduce both the magnitude and duration of the deviation from targeted system performance levels. Sandia National Laboratories (Sandia) has developed a comprehensive resilience assessment framework for evaluating the resilience of infrastructure and economic systems. The framework includes a quantitative methodology that measures resilience costs that result from a disruption to infrastructure function. The framework also includes a qualitative analysis methodology that assesses system characteristics that affect resilience in order to provide insight and direction for potential improvements to resilience. This paper describes the resilience assessment framework. This paper further demonstrates the utility of the assessment framework through application to a hypothetical scenario involving the disruption of a petrochemical supply chain by a hurricane.

  9. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  10. Ethanol Tolerant Yeast for Improved Production of Ethanol from Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol Basics Ethanol is a widely used, domesti- cally produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Fuel ethanol contains the same chemical compound as beverage alcohol, but it is denatured with a small amount of gasoline or other chemicals during the production process, making it unsafe for human consumption. Ethanol's primary market drivers are the Federal Renewable Fuel Standard requiring its use and

  11. Improving rapeseed production practices in the southeastern United States

    SciTech Connect (OSTI)

    Thomas, D.L.; Breve, M.A.; Raymer, P.L.; Minton, N.A.; Sumner, D.R. . Georgia Coastal Plain Experiment Station)

    1990-04-01

    Oilseed rape or rapeseed is a crop which offers a potential for double-cropping in the southeastern United States. This final project report describes the results from a three year study aimed at evaluating the effect of different planting and harvesting practices on establishment and yield of three rape cultivars, and the double cropping potential of rapeseed in the southeastern United States. The project was conducted on two yield sites in Tifton, Georgia during 1986--87, 1987--88 and 1988--89. The general objective of this research is to improve the seed and biomass yield of winter rapeseed in the southeastern United States by developing appropriate agronomic practices for the region. The primary constraint is to grow rapeseed within the allowable period for double cropping with an economically desirable crop, such as peanut or soybean. Planting and harvesting are the most critical steps in this process. Therefore, the specific objectives of this research were: evaluate and improve the emergence of rapeseed by developing planting techniques that enhance the soil, water and seed regimes for winter rapeseed in the southeast, and evaluate and improve the yields of harvested rapeseed by developing techniques for determining the optimum timing of harvest and efficient methods for harvesting winter rapeseed in the southeast. 6 refs., 12 figs., 9 tabs.

  12. Productivity improvement by frontier horizontal drilling in Italy

    SciTech Connect (OSTI)

    Schenato, A.

    1995-12-31

    Italian domestic activity on horizontal wells has been specially addressed to carbonate reservoir and specifically targeted to re-entry in existing wells. The speech will focus on the specific experience matured in frontier applications in Italy, from 1989 with the short radius drain holes in Sicily, throughout world record deep water short radius in the southern part of Adriatic sea and depth world record medium radius in a HP/HT reservoir in the Po Valley. Production results will be reported as well as the achieved technological aspects.

  13. Pathway engineering to improve ethanol production by thermophilic bacteria

    SciTech Connect (OSTI)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  14. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity

    Broader source: Energy.gov [DOE]

    This case study describes how a DOE energy assessment at Kaiser Aluminum's extrusion plant in Sherman, Texas, identified significant potential energy savings in its process heating systems. Employees at the Sherman plant wasted no time moving forward with assessment recommendations. First, they adjusted burner controls on one of the main reverberatory melting furnaces to lower excess oxygen levels. They also made some repairs to the furnace’s door sill and jamb to prevent cold air from seeping into it. By implementing these measures the plant achieved annual energy savings of approximately 45,000 MMBtu and improved the furnace’s energy intensity by 11.1% between 2006 and 2007. With project costs of approximately $28,000 and energy cost savings of $360,000, the simple payback was under 1 month.

  15. Value Modeling for Enterprise Resilience

    SciTech Connect (OSTI)

    Henderson, Dale L.; Lancaster, Mary J.

    2015-10-20

    Abstract. The idea that resilience is a tangible, measureable, and desirable system attribute has grown rapidly over the last decade beyond is origins in explaining ecological, physiological, psychological, and social systems. Operational enterprise resilience requires two types of measurement. First, the system must monitor various operational conditions in order to respond to disruptions. These measurements are part of one or more observation, orientation, decision, and action (OODA) loops The OODA control processes that implement a resilience strategy use these measurements to provide robustness, rapid recovery and reconstitution. In order to assess the effectiveness of the resilience strategy, a different class of measurements is necessary. This second type consists of measurements about how well the OODA processes cover critical enterprise functions and the hazards to which the enterprise is exposed. They allow assessment of how well enterprise management processes anticipate, mitigate, and adapt to a changing environment and the degree to which the system is fault tolerant. This paper nominates a theoretical framework, in the form of definitions, a model, and a syntax, that accounts for this important distinction, and in so doing provides a mechanism for bridging resilience management process models and the many proposed cyber-defense metric enumerations.

  16. Sandia National Laboratories: 100 Resilient Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100 Resilient Cities - Sandia Challenge Facebook Twitter YouTube Flickr RSS 100 Resilient Cities - Sandia Challenge 100 Resilient Cities Helping leaders better assess resilience challenges Picture of global map and transportation Providing technical expertise to help cities better address the shocks & stresses of the 21st Century Solar panels Energy Researcher in lab Water Medical image Medical Red and green peppers Food Picture of globe Economy Map of city Risk Analysis Worker and machine

  17. Enhancing Community Resilience through Energy Efficiency Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Enhancing Community Resilience through Energy Efficiency Webinar Enhancing Community Resilience through Energy Efficiency Webinar August 15, 2016 2:00PM to 3:00PM EDT The Clean Energy States Alliance is giving an overview of American Council for an Energy-Efficient Economy's (ACEEE) work on efficiency as a resiliency measure and its new technical assistance offering to small communities. Clean Energy Group will also discuss how efficiency can complement resilient solar

  18. Coordinating Energy Efficiency with Other Disaster Resiliency...

    Energy Savers [EERE]

    Coordinating Energy Efficiency with Other Disaster Resiliency Services Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Coordinating Energy ...

  19. NGS for the Masses: Empowering Biologists to Improve Bioinformatics Productivity ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Qaadri, Kashef [Biomatters

    2013-03-22

    Kashef Qaadri on "NGS for the Masses: Empowering biologists to improve bioinformatic productivity" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  20. R2R Production of Low-Cost Integrated OLED Substrate with Improved

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparent Conductor and Enhanced Light Outcoupling | Department of Energy R2R Production of Low-Cost Integrated OLED Substrate with Improved Transparent Conductor and Enhanced Light Outcoupling R2R Production of Low-Cost Integrated OLED Substrate with Improved Transparent Conductor and Enhanced Light Outcoupling Lead Performer: MicroContinuum, Inc. - Cambridge, MA DOE Total Funding: $1,149,037 Project Term: April 6, 2015 - April 5, 2017 Funding Opportunity: FY2015 Phase II Release 1 SBIR

  1. EERE Success Story-BETO Project Improves Production of Renewable Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Cellulosic Feedstocks | Department of Energy BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks EERE Success Story-BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 20, 2015 - 11:18am Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's

  2. Cyber Security and Resilient Systems

    SciTech Connect (OSTI)

    Robert S. Anderson

    2009-07-01

    The Department of Energy (DOE) Idaho National Laboratory (INL) has become a center of excellence for critical infrastructure protection, particularly in the field of cyber security. It is one of only a few national laboratories that have enhanced the nation’s cyber security posture by performing industrial control system (ICS) vendor assessments as well as user on-site assessments. Not only are vulnerabilities discovered, but described actions for enhancing security are suggested – both on a system-specific basis and from a general perspective of identifying common weaknesses and their corresponding corrective actions. These cyber security programs have performed over 40 assessments to date which have led to more robust, secure, and resilient monitoring and control systems for the US electrical grid, oil and gas, chemical, transportation, and many other sectors. In addition to cyber assessments themselves, the INL has been engaged in outreach to the ICS community through vendor forums, technical conferences, vendor user groups, and other special engagements as requested. Training programs have been created to help educate all levels of management and worker alike with an emphasis towards real everyday cyber hacking methods and techniques including typical exploits that are used. The asset owner or end user has many products available for its use created from these programs. One outstanding product is the US Department of Homeland Security (DHS) Cyber Security Procurement Language for Control Systems document that provides insight to the user when specifying a new monitoring and control system, particularly concerning security requirements. Employing some of the top cyber researchers in the nation, the INL can leverage this talent towards many applications other than critical infrastructure. Monitoring and control systems are used throughout the world to perform simple tasks such as cooking in a microwave to complex ones such as the monitoring and control of the

  3. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; et al

    2015-08-11

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less

  4. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    SciTech Connect (OSTI)

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J.; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W.; Iorizzo, Massimo; Ismail, Abdelgabi M.; Marshall, Athole; Mayes, Sean; Nguyen, Henry T.; Ogbannaya, Francis C.; Ortiz, Rodomiro; Paterson, Andrew H.; Simon, Philipp W.; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K.; Wullschleger, Stan D.; Yano, Masahiro; Prasad, Manoj

    2015-08-11

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.

  5. Quantitative resilience analysis through control design.

    SciTech Connect (OSTI)

    Sunderland, Daniel; Vugrin, Eric D.; Camphouse, Russell Chris

    2009-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. Few quantitative resilience methods exist, and those existing approaches tend to be rather simplistic and, hence, not capable of sufficiently assessing all aspects of critical infrastructure resilience. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the development of quantitative resilience through application of control design methods. Specifically, we conducted a survey of infrastructure models to assess what types of control design might be applicable for critical infrastructure resilience assessment. As a result of this survey, we developed a decision process that directs the resilience analyst to the control method that is most likely applicable to the system under consideration. Furthermore, we developed optimal control strategies for two sets of representative infrastructure systems to demonstrate how control methods could be used to assess the resilience of the systems to catastrophic disruptions. We present recommendations for future work to continue the development of quantitative resilience analysis methods.

  6. Chapter V: Improving Shared Transport Infrastructures

    Broader source: Energy.gov (indexed) [DOE]

    -38 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 ... coordination will improve energy system efficiency and build resiliency to ...

  7. Restoring Resiliency: Case Studies from Pacific Northwest Estuarine Eelgrass (Zostera marina L.) Ecosystems

    SciTech Connect (OSTI)

    Thom, Ronald M.; Diefenderfer, Heida L.; Vavrinec, John; Borde, Amy B.

    2012-01-01

    The purpose of many ecological restoration projects is to establish an ecosystem with fully developed structure and function that exhibits resistance to and resilience from disturbances. Coastal restoration projects in the Pacific Northwest provide opportunities to understand what is required to restore the resilience of eelgrass (Zostera marina L.) populations. Factors influencing resilience observed in three case studies of eelgrass restoration include minimum viable population, adaptations of transplant populations, and natural and anthropogenic disturbances at restoration sites. The evaluation of resiliency depends on selecting appropriate monitoring metrics and the frequency and duration of monitoring. Eelgrass area, cover and shoot density provide useful and reliable metrics for quantifying resilience of restored meadows. Further, five years of monitoring of these metrics provides data that can reasonably predict the long-term viability of a planted plot. Eelgrass appears to be a resilient ecosystem in general, though one that data suggest may exhibit tipping points brought about by compounded environmental conditions outside of its tolerance ranges. Explicit inclusion of resilience in the planning and practice of habitat restoration may reduce uncertainties and improve the performance of restored systems by increasing buffering capacity, nurturing sources of renewal (e.g., seeds and rhizomes), and managing for habitat forming and maintaining processes (e.g., sediment dynamics) at multiple scales.

  8. Improvement of productivity of sintering plant at Nagoya Works of NSC

    SciTech Connect (OSTI)

    Yoshida, Hitoshi; Iida, Hiroyuki; Kabuto, Shigehisa; Suzuki, Haruhisa

    1996-12-31

    It is well known that in the sintering process generally, the state of charging raw materials into the sintering machine and whether or not its stability is good significantly influence the productivity, quality and cost of this process. At the Nagoya sintering plant, therefore, the peripheral of the slit bar-type segregation charging equipment developed by Nippon Steel were improved in 1994. The main improvements were: the improvement of the raw materials charging control mode, the introduction of fluffer bar to improve permeability and the addition of equipment for removal of lumps from sinter mix. After these measures were taken, the state of segregation of the raw materials and carbon between the upper and lower portions of the sinter bed was improved, the charging stability was also improved and the charging density was decreased, making it possible to achieve productivity improvement and cost reduction as originally intended. This report described the outline and concept of the equipment improvement measures and the operation results of the actual machine.

  9. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect (OSTI)

    Holloran, R.A.

    1995-12-01

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  10. Bridging Resilience Engineering and Human Reliability Analysis

    SciTech Connect (OSTI)

    Ronald L. Boring

    2010-06-01

    There has been strong interest in the new and emerging field called resilience engineering. This field has been quick to align itself with many existing safety disciplines, but it has also distanced itself from the field of human reliability analysis. To date, the discussion has been somewhat one-sided, with much discussion about the new insights afforded by resilience engineering. This paper presents an attempt to address resilience engineering from the perspective of human reliability analysis (HRA). It is argued that HRA shares much in common with resilience engineering and that, in fact, it can help strengthen nascent ideas in resilience engineering. This paper seeks to clarify and ultimately refute the arguments that have served to divide HRA and resilience engineering.

  11. Fuzzy architecture assessment for critical infrastructure resilience

    SciTech Connect (OSTI)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systems architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.

  12. Security and Resilience | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security and Resilience NREL develops tools and solutions to enable a more resilient, reliable, and secure electric grid. Photo of researchers working on a computer setup. The security and resilience of the electric grid is an increasingly high-priority topic in the United States. It's largely driven by the increasing volume of new distributed generation-including renewable energy-and storage coming online at the transmission, distribution, and consumer premises levels. As part of the U.S.

  13. National Critical Infrastructure Security and Resilience Month...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistant Secretary, Office of Electricity Delivery & Energy Reliability November is National Critical Infrastructure Security and Resilience Month, a time during which we ...

  14. Microsoft Word - microgrid_for_resilience .docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has been in operation for five years serving most of the electricity load of the campus. ... approaches to enhancing energy infrastructure resilience and efficiency for our nation

  15. Transformer Resilience and Advanced Components (TRAC) Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OE's Transformer Resilience and Advanced Components (TRAC) program supports modernization ... which are a critical component of the electricity delivery system, are a concern because ...

  16. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Resilience Metrics for Energy Transmission and Distribution Infrastructure Offices of Electricity Delivery and Energy Reliability (OE) and Energy Policy and Systems ...

  17. Climate Resilience Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resilience technical assistance, complete the online technical assistance request form. Read about the impacts of climate change and extreme weather events on tribal infrastructure ...

  18. Safety, Security & Resilience of Energy Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of Energy Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  19. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrennial Energy Review Technical Workshop on Resilience Metrics for Energy Transmission and Distribution Infrastructure April, 29th, 2014 777 North Capitol St NE Ste 300, ...

  20. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge: Food

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge Food Protect supply chains Using simulations & analyses to help cities minimize impacts to food systems Red and green peppers Sandia has comprehensive expertise in improving the resilience of food supply chains for cities, regions, and countries. Sandia uses proprietary modeling and simulation tools to identify and mitigate potential disruptions to a city's food system. These methods were recently used to lessen the negative effects of Superstorm Sandy on New York City's food

  1. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect (OSTI)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  2. Molten carbonate fuel cell product design and improvement. Quarterly report, December 1994--March 1995

    SciTech Connect (OSTI)

    1995-08-01

    Primary objective is to establish the commercial readiness of MW- class IMHEX {reg_sign} MCFC power plants for distributed generation, cogeneration, and compressor station applications. The following tasks are reported: product definition/planning, system design/analysis, manufacturing process development, packaging/assembly, test facilities, and technology development/improvement/verification.

  3. Compressed Air System Retrofitting Project Improves Productivity at a Foundry (Cast Masters, Bowling Green, OH)

    SciTech Connect (OSTI)

    2002-06-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  4. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    SciTech Connect (OSTI)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  5. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM. Citation Details In-Document Search Title: Toward Local Failure Local Recovery (LFLR) Resilience Model ...

  6. System Software Resilience. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    System Software Resilience. Citation Details In-Document Search Title: System Software Resilience. Abstract not provided. Authors: Ferreira, Kurt Brian Publication Date: 2014-05-01 ...

  7. Haiti-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Haiti-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  8. Bangladesh-Pilot Program for Climate Resilience (PPCR) | Open...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Bangladesh-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  9. Grenada-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Grenada-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  10. Samoa-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Samoa-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Samoa-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  11. Tajikistan-Pilot Program for Climate Resilience (PPCR) | Open...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Tajikistan-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  12. Mozambique-Pilot Program for Climate Resilience (PPCR) | Open...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Mozambique-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  13. Tonga-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Tonga-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Tonga-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  14. Cambodia-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Logo: Cambodia-Pilot Program for Climate Resilience (PPCR) Name Cambodia-Pilot Program for Climate...

  15. Dominica-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Dominica-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank,...

  16. Bolivia-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Bolivia-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  17. Saint Lucia-Pilot Program for Climate Resilience (PPCR) | Open...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Saint Lucia-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  18. Niger-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Niger-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  19. Yemen-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Yemen-Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Yemen-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  20. Nepal-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Nepal-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  1. Jamaica-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Jamaica-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  2. Zambia-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Zambia-Pilot Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector...

  3. Making Development Climate Resilient: A World Bank Strategy for...

    Open Energy Info (EERE)

    Development Climate Resilient: A World Bank Strategy for Sub-Saharan Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Development Climate Resilient: A World...

  4. Microsoft PowerPoint - HPC - Resilience-Fault Injection Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This document is approved for public release; further dissemination unlimited Resilience ... FIT 32Gbit High FIT 32Gbit Low FIT Resilience Fault Injection Research ...

  5. White House Climate Resilience Initiatives Bring New Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Resilience Initiatives Bring New Opportunities for Tribes White House Climate Resilience Initiatives Bring New Opportunities for Tribes February 10, 2016 - 3:41pm Addthis ...

  6. The Business Case for Fuel Cells 2013: Reliability, Resiliency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings This report, compiled by Fuel ...

  7. Kenya-Strengthening Adaptation and Resilience to Climate Change...

    Open Energy Info (EERE)

    Kenya-Strengthening Adaptation and Resilience to Climate Change(StARCK) (Redirected from Strengthening Adaptation and Resilience to Climate Change in Kenya (StARCK)) Jump to:...

  8. Risk Analysis, Grid Integration, and Resiliency - State and Federal...

    Broader source: Energy.gov (indexed) [DOE]

    IN ENERGY SYSTEMS RISK AND RESILIENCE Tribal Energy Systems: Climate Preparedness and Resiliency Tribal Leader Forum Series Office of Electricity Delivery and Energy ...

  9. Hurricane Sandy One Year Later: Rebuilding Stronger, More Resilient...

    Office of Environmental Management (EM)

    More Resilient Communities October 29, 2013 - ... Hurricane Sandy. | Photo courtesy of the Energy Department. ... an integrated resilience program that leverages our ...

  10. The Business Case for Fuel Cells 2013: Reliability, Resiliency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Reliability, Resiliency & Savings The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings This report, compiled by Fuel Cells 2000 with support from the Fuel ...

  11. India-Low Carbon and Climate Resilience Development Planning...

    Open Energy Info (EERE)

    India-Low Carbon and Climate Resilience Development Planning Jump to: navigation, search Name CDKN-India-Low Carbon and Climate Resilience Development Planning AgencyCompany...

  12. India-Low Carbon and Climate Resilience Development Planning...

    Open Energy Info (EERE)

    India-Low Carbon and Climate Resilience Development Planning (Redirected from CDKN-India-Low Carbon and Climate Resilience Development Planning) Jump to: navigation, search Name...

  13. Ethiopia-African Climate Change Resilience Alliance | Open Energy...

    Open Energy Info (EERE)

    Ethiopia-African Climate Change Resilience Alliance Jump to: navigation, search Logo: Ethiopia-African Climate Change Resilience Alliance Name Ethiopia-African Climate Change...

  14. Toward Low Carbon and Climate Change Resilient Territories |...

    Open Energy Info (EERE)

    Toward Low Carbon and Climate Change Resilient Territories Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Toward Low Carbon and Climate Change Resilient Territories...

  15. NOAA 2015 Regional Coast Resilience Grant Program

    Broader source: Energy.gov [DOE]

    The National Oceanic and Atmospheric Administration (NOOA) is accepting applications for the Regional Coastal Resilience Grant program to support regional approaches to undertake activities that build resilience of coastal regions, communities, and economic sectors to the negative impacts from extreme weather events, climate hazards, and changing ocean conditions.

  16. Energy flow, nutrient cycling, and ecosystem resilience

    SciTech Connect (OSTI)

    DeAngelis, D.L.

    1980-08-01

    The resilience, defined here as the speed with which a system returns to equilibrium state following a perturbation, is investigated for both food web energy models and nutrient cycling models. Previous simulation studies of food web energy models have shown that resilience increases as the flux of energy through the food web per unit amount of energy in the steady state web increases. Studies of nutrient cycling models have shown that resilience increases as the mean number of cycles that nutrient (or other mineral) atoms make before leaving the system decreases. In the present study these conclusions are verified analytically for general ecosystem models. The behavior of resilience in food web energy models and nutrient cycling models is a reflection of the time that a given unit, whether of energy or matter, spends in the steady state system. The shorter this residence time is, the more resilient the system is.

  17. A model for improving microbial biofuel production using a synthetic feedback loop

    SciTech Connect (OSTI)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  18. RNEDE: Resilient Network Design Environment

    SciTech Connect (OSTI)

    Venkat Venkatasubramanian, Tanu Malik, Arun Giridh; Craig Rieger; Keith Daum; Miles McQueen

    2010-08-01

    Modern living is more and more dependent on the intricate web of critical infrastructure systems. The failure or damage of such systems can cause huge disruptions. Traditional design of this web of critical infrastructure systems was based on the principles of functionality and reliability. However, it is increasingly being realized that such design objectives are not sufficient. Threats, disruptions and faults often compromise the network, taking away the benefits of an efficient and reliable design. Thus, traditional network design parameters must be combined with self-healing mechanisms to obtain a resilient design of the network. In this paper, we present RNEDEa resilient network design environment that that not only optimizes the network for performance but tolerates fluctuations in its structure that result from external threats and disruptions. The environment evaluates a set of remedial actions to bring a compromised network to an optimal level of functionality. The environment includes a visualizer that enables the network administrator to be aware of the current state of the network and the suggested remedial actions at all times.

  19. Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2104B (Engineered Microbe Tolerance) Marketing Summary_2.pdf (194 KB) Technology Marketing Summary Cellulosic biomass accounts for roughly 75% of all plant material, and can be used to produce biofuels. Sources of

  20. Improving Well Productivity Based Modeling with the Incorporation of Geologic Dependencies

    U.S. Energy Information Administration (EIA) Indexed Site

    Improving Well Productivity Based Modeling with the Incorporation of Geologic Dependencies Troy Cook and Dana Van Wagener October 14, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES October 2014 Tony

  1. Defining and enabling resiliency of electric distribution systems with multiple microgrids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chanda, Sayonsom; Srivastava, Anurag K.

    2016-05-02

    This paper presents a method for quantifying and enabling the resiliency of a power distribution system (PDS) using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, develop proactive control actions to avert power systemmore » outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Furthermore, simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids.« less

  2. Improving olefin tolerance and production in E. coli using native and evolved AcrB

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mingardon, Florence; Clement, Camille; Hirano, Kathleen; Nhan, Melissa; Luning, Eric G.; Chanal, Angelique; Mukhopadhyay, Aindrila

    2015-01-20

    Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for productionmore » in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.« less

  3. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  4. Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    A proclamation from President Barack Obama declaring November 2013 Critical Infrastructure Security and Resilience Month.

  5. Preparing Low-emission and Climate-Resilient Development Strategies...

    Open Energy Info (EERE)

    contentundpenhomeourworkenvironmentandenergyfo Cost: Free Language: English Preparing Low-Emission and Climate-Resilient Development Strategies (LECRDS) -...

  6. Basic mechanisms of photosynthesis and applications to improved production and conversion of biomass to fuels and chemical products

    SciTech Connect (OSTI)

    El-Sayed, M.; Greenbaum, E.; Wasielewski, M.

    1996-09-01

    Natural photosynthesis, the result of 3.5 billion years of evolutionary experimentation, is the best proven, functional solar energy conversion technology. It is responsible for filling the vast majority of humanity`s energy, nutritional, and materials needs. Understanding the basic physical chemical principles underlying photosynthesis as a working model system is vital to further exploitation of this natural technology. These principles can be used to improve or modify natural photosynthesis so that it is more efficient or so that it can produce unusual products such as hydrogen, methane, methanol, ethanol, diesel fuel substitutes, biodegradable materials, or other high value chemical products. Principles garnered from the natural process can also be used to design artificial photosynthetic devices that employ analogs of natural antenna and reaction center function, self-assembly and repair concepts, photoinduced charge transfer processes, photoprotection, and dark reactions that facilitate catalytic action to convert light into, useful chemical or electrical energy. The present broad understanding of many structural and functional aspects of photosynthesis has resulted from rapid recent research progress. X-ray structures of several key photosynthetic reaction centers and antenna systems are available, and the overall principles controlling photoinduced energy and electron transfer are being established.

  7. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  8. Watershed Academy Webcast on Climate Resilience

    Office of Energy Efficiency and Renewable Energy (EERE)

    "Climate Resilience: What to Expect, How to Prepare, and  What you can Learn from Others." This webcast will share findings from the most recent National Climate Assessment report concerning...

  9. Technical Workshop: Resilience Metrics for Energy Transmission...

    Broader source: Energy.gov (indexed) [DOE]

    List (55.27 KB) Sandia Report: Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States (14.49 MB) Sandia ...

  10. Improving Performance of Federal Permitting and Review of Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    its ongoing effort to reflect the Obama Administration's commitment to improving the resiliency, reliability, and security of the nation's electricity delivery system by announcing ...

  11. Energy Department Announces Up to $15 Million to Help Improve...

    Office of Environmental Management (EM)

    ... Energy Department Announces Up to 15 Million to Help Improve the Security and Resilience ... Cybersecurity Summit Securing the Electricity Grid: Government and Industry Exercise ...

  12. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOE Patents [OSTI]

    Shelnutt, J.A.

    1984-11-29

    A method is disclosed improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation. The method comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound ..pi..-..pi.. complexes which can develop.

  13. Method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system

    DOE Patents [OSTI]

    Shelnutt, John A.

    1986-01-01

    A method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation which comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a gas hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound .pi.--.pi. complexes which can develop.

  14. Improving Photosynthesis for Hydrogen and Fuels Production - Webinar Q&A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Photosynthesis for Hydrogen and Fuels Production January 24, 2011 Webinar Q&A Q: How do you induce hypoxic photosynthesis? I imagine you N-stress, to accumulate starch first? A: Initially, sulfur deprivation was used as the tool by which to accumulate starch in the cells, and also to bring photosynthesis to a level lower than that of respiration. Since then, a number of labs in different countries have worked to devise genetic methods for achieving the same result without the

  15. Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    On July 16, at the fourth and final meeting of the White House State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience, the Administration announced the new Tribal Climate Resilience Program to help tribes prepare for climate change.

  16. Coming Full Circle in Florida: Improving Electric Grid Reliability and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resiliency | Department of Energy Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - 11:16am Addthis Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. In 2009, at the

  17. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOE Patents [OSTI]

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  18. April 7 Webinar on OE’s Resilient Electricity Delivery Infrastructure Initiative FOA

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 7, Dan Ton, Acting Deputy Assistant Secretary, Dr. Imre Gyuk, Manager of the Energy Storage Program, and Dr. Carol Hawk, Manger of the Cybersecurity for Energy Delivery Systems Program, will be featured speakers during a webinar on OE’s Resilient Electricity Delivery Infrastructure Initiative (REDI) Funding Opportunity Announcement. The Resilient Electricity Delivery Infrastructure Initiative FOA is focused on local and tribal governments that experienced a Presidentially Declared Major Disaster over the past 30 years. The awards will help communities deploy smart grid tools and technologies that will help decision makers and resource managers improve recovery of electricity delivery services in their communities.

  19. Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings

    Broader source: Energy.gov [DOE]

    During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

  20. Human Factors and Data Fusion as Part of Control Systems Resilience

    SciTech Connect (OSTI)

    David I. Gertman

    2009-05-01

    Human performance and human decision making is counted upon as a crucial aspect of overall system resilience. Advanced control systems have the potential to provide operators and asset owners a wide range of data, deployed at different levels that can be used to support operator situation awareness. However, the sheer amount of data available can make it challenging for operators to assimilate information and respond appropriately. This paper reviews some of the challenges and issues associated with providing operators with actionable state awareness and argues for the over arching importance of integrating human factors as part of intelligent control systems design and implementation. It is argued that system resilience is improved by implementing human factors in operations and maintenance. This paper also introduces issues associated with resilience and data fusion and highlights areas in which human factors including field studies hold promise.

  1. Improved NLDAS-2 Noah-simulated Hydrometeorological Products with an Interim Run

    SciTech Connect (OSTI)

    Xia, Youlong; Peter-Lidard, Christa; Huang, Maoyi; Wei, Helin; Ek, Michael

    2015-02-28

    In NLDAS-2 Noah simulation, the NLDAS team introduced an intermediate fix suggested by Slater et al. (2007) and Livneh et al. (2010) to reduce large sublimation. The fix is used to constraint surface exchange coefficient (CH) using CH =CHoriginal x max (1.0-RiB/0.5, 0.05) when atmospheric boundary layer is stable. RiB is Richardson number. In NLDAS-2 Noah version, this fix was used for all stable cases including snow-free grid cells. In this study, we simply applied this fix to the grid cells in which both stable atmospheric boundary layer and snow exist simultaneously excluding the snow-free grid cells as we recognize that the fix constraint in NLDAS-2 is too strong. We make a 31-year (1979-2009) Noah NLDAS-2 interim (NoahI) run. We use observed streamflow, evapotranspiration, land surface temperature, soil temperature, and ground heat flux to evaluate the results simulated from NoahI and make the reasonable comparison with those simulated from NLDAS-2 Noah (Xia et al., 2012). The results show that NoahI has the same performance as Noah does for snow water equivalent simulation. However, NoahI significantly improved the other hydrometeorological products simulation as described above when compared to Noah and the observations. This simple modification is being installed to the next Noah version. The hydrometeorological products simulated from NoahI will be staged on NCEP public server for the public in future.

  2. Tribal Leader Forum on Climate Preparedness and Resiliency to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leader Forum on Climate Preparedness and Resiliency to be Held on March 4; RSVP by Feb. 27 Tribal Leader Forum on Climate Preparedness and Resiliency to be Held on March 4; RSVP by ...

  3. Resilient Design: Transitioning to the New Built Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alex Wilson, Founder, BuildingGreen Inc. and Resilient Design Institute, provides context for why we need to be considering resilience in looking at the built environment during the coming decades.

  4. Kenya-Strengthening Adaptation and Resilience to Climate Change...

    Open Energy Info (EERE)

    Kenya-Strengthening Adaptation and Resilience to Climate Change(StARCK) Jump to: navigation, search Name Strengthening Adaptation and Resilience to Climate Change in Kenya (StARCK)...

  5. Transformer Resilience and Advanced Components (TRAC) Program Materials

    Broader source: Energy.gov [DOE]

    OE’s Transformer Resilience and Advanced Components (TRAC) program supports modernization and resiliency of the grid by addressing the challenges facing large power transformers (LPTs) and other...

  6. Hierarchical resilience with lightweight threads.

    SciTech Connect (OSTI)

    Wheeler, Kyle Bruce

    2011-10-01

    This paper proposes methodology for providing robustness and resilience for a highly threaded distributed- and shared-memory environment based on well-defined inputs and outputs to lightweight tasks. These inputs and outputs form a failure 'barrier', allowing tasks to be restarted or duplicated as necessary. These barriers must be expanded based on task behavior, such as communication between tasks, but do not prohibit any given behavior. One of the trends in high-performance computing codes seems to be a trend toward self-contained functions that mimic functional programming. Software designers are trending toward a model of software design where their core functions are specified in side-effect free or low-side-effect ways, wherein the inputs and outputs of the functions are well-defined. This provides the ability to copy the inputs to wherever they need to be - whether that's the other side of the PCI bus or the other side of the network - do work on that input using local memory, and then copy the outputs back (as needed). This design pattern is popular among new distributed threading environment designs. Such designs include the Barcelona STARS system, distributed OpenMP systems, the Habanero-C and Habanero-Java systems from Vivek Sarkar at Rice University, the HPX/ParalleX model from LSU, as well as our own Scalable Parallel Runtime effort (SPR) and the Trilinos stateless kernels. This design pattern is also shared by CUDA and several OpenMP extensions for GPU-type accelerators (e.g. the PGI OpenMP extensions).

  7. FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS

    SciTech Connect (OSTI)

    Charles M Barnes

    2008-09-01

    A major element of the Advanced Gas Reactor (AGR) program is developing fuel fabrication processes to produce high quality uranium-containing kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the AGR program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test (“AGR-1) consisted of uranium oxycarbide (UCO) microspheres that werre produced by an internal gelation process followed by high temperature steps tot convert the UO3 + C “green” microspheres to first UO2 + C and then UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels for the AGR-1 irradiation experiment, which went into the Advance Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process following AGR-1 kernel production led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led

  8. NOAA Webinar: The U.S. Climate Resilience Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by the National Oceanic and Atmospheric Administration (NOAA), this webinar will demonstrate the U.S. Climate Resilience Toolkit.

  9. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    floods, droughts, and terrorist attacks), vulnerabilities, and consequences, coupled with expertise in critical infrastructure, can significantly enhance a city's resilience. ...

  10. United States Fuel Resiliency: US Fuels Supply Infrastructure | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy United States Fuel Resiliency: US Fuels Supply Infrastructure United States Fuel Resiliency: US Fuels Supply Infrastructure Report: United States Fuel Resiliency - U.S. Fuels Supply Infrastructure Study: (1) Infrastructure Characterization; (II) Vulnerability to Natural and Physical Threats; and (III) Vulnerability and Resilience This report assesses the U.S. fuels supply transportation, storage, and distribution (TS&D) infrastructure, its vulnerabilities (natural and physical

  11. GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Beverly Seyler; John Grube

    2004-12-10

    Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated

  12. Improving process performances in coal gasification for power and synfuel production

    SciTech Connect (OSTI)

    M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana

    2008-11-15

    This paper is aimed at developing process alternatives of conventional coal gasification. A number of possibilities are presented, simulated, and discussed in order to improve the process performances, to avoid the use of pure oxygen, and to reduce the overall CO{sub 2} emissions. The different process configurations considered include both power production, by means of an integrated gasification combined cycle (IGCC) plant, and synfuel production, by means of Fischer-Tropsch (FT) synthesis. The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. As a result, no or little nitrogen is present in the syngas produced by the gasifier; the required heat is transferred by using an inert solid as the carrier, which is circulated between the two modules. First, a thermodynamic study of the dual-bed gasification is carried out. Then a dual-bed gasification process is simulated by Aspen Plus, and the efficiency and overall CO{sub 2} emissions of the process are calculated and compared with a conventional gasification with oxygen. Eventually, the scheme with two reactors (gasifier-combustor) is coupled with an IGCC process. The simulation of this plant is compared with that of a conventional IGCC, where the gasifier is fed by high purity oxygen. According to the newly proposed configuration, the global plant efficiency increases by 27.9% and the CO{sub 2} emissions decrease by 21.8%, with respect to the performances of a conventional IGCC process. 29 refs., 7 figs., 5 tabs.

  13. Quantifying Cyber-Resilience Against Resource-Exhaustion Attacks

    SciTech Connect (OSTI)

    Fink, Glenn A.; Griswold, Richard L.; Beech, Zachary W.

    2014-07-11

    Resilience in the information sciences is notoriously difficult to define much less to measure. But in mechanical engi- neering, the resilience of a substance is mathematically defined as the area under the stress vs. strain curve. We took inspiration from mechanics in an attempt to define resilience precisely for information systems. We first examine the meaning of resilience in language and engineering terms and then translate these definitions to information sciences. Then we tested our definitions of resilience for a very simple problem in networked queuing systems. We discuss lessons learned and make recommendations for using this approach in future work.

  14. Argonne's Resilient Infrastructure Initiative | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Resilient Infrastructure Initiative Share Topic Energy Energy efficiency Building design Security Facility security Browse By - Any - General Argonne Information Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy

  15. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect (OSTI)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  16. Notional Examples and Benchmark Aspects Of a Resilient Control System

    SciTech Connect (OSTI)

    Craig. G. Rieger

    2010-08-01

    Digital control system technology has pervaded most industries, leading to improvements in the efficiency and reliability of the associated operations. However, the ease of distributing and connecting related control systems for the purposes of increasing performance has resulted in interdependencies that can lead to unexpected conditions. Even with less complex designs, operators and engineers alike are often left with competing goals that are difficult to resolve. A fundamental reason for this dichotomy is that responsibilities lie with different disciplines, and operations are hosted on separate control systems. In addition, with the rising awareness of cyber security and diverse human interactions with control systems, an understanding of human actions from a malicious and benevolent standpoint is necessary. Resilience considers the multiple facets of requirements that drive the performance of control systems in a holistic fashion, whether they are security or stability, stability or efficiency, human interactions or complex interdependencies. As will be shown by example, current research philosophies lack the depth or the focus on the control system application to satisfy these requirements, such as graceful degradation of hierarchical control while under cyber attack. A resilient control system promises to purposefully consider these diverse requirements, developing an adaptive capacity to complex events that can lead to failure of traditional control system designs.

  17. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    SciTech Connect (OSTI)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate

  18. Flipping crystals improves solar-cell performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping crystals improves solar-cell performance Flipping crystals improves solar-cell performance Perovskite research team spin-casts crystals for efficient and resilient optoelectronic devices. July 6, 2016 Perovskite research team spin-casts crystals for efficient and resilient optoelectronic devices. Three types of large-area solar cells made out of two-dimensional perovskites. At left, a room-temperature cast film; upper middle is a sample with the problematic band gap, and at right is the

  19. Compressed Air System Optimization Saves Energy and Improves Production at Synthetic Textile Plant (Solutia, Inc. Plant)

    SciTech Connect (OSTI)

    2001-05-01

    BestPractices technical case study gives an overview of a compressed air system improvement in a textile plant in South Carolina.

  20. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures

    SciTech Connect (OSTI)

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galvan, Aurora; Fernandez, Emilio; Gonzalez-Ballester, David

    2015-09-17

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Furthermore, the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process.

  1. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galvan, Aurora; Fernandez, Emilio; Gonzalez-Ballester, David

    2015-09-17

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Furthermore, the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process.

  2. A Resilient Condition Assessment Monitoring System

    SciTech Connect (OSTI)

    Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

    2012-08-01

    An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

  3. Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    SciTech Connect (OSTI)

    Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

    2013-10-29

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  4. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOE Patents [OSTI]

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  5. Resilience of multiphoton entanglement under losses

    SciTech Connect (OSTI)

    Durkin, Gabriel A.; Simon, Christoph; Eisert, Jens; Bouwmeester, Dirk

    2004-12-01

    We analyze the resilience under photon loss of the bipartite entanglement present in multiphoton states produced by parametric down-conversion. The quantification of the entanglement is made possible by a symmetry of the states that persists even under polarization-independent losses. We examine the approach of the states to the set of positive partial transpose states as losses increase, and calculate the relative entropy of entanglement. We find that some bipartite distillable entanglement persists for arbitrarily high losses.

  6. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Akinsho, Hannah; Rydzak, Thomas; Borole, Abhijeet P.; Ragauskas, Arthur; Close, Dan

    2015-09-30

    Bioethanol production output has increased steadily over the last two decades and is now beginning to become competitive with traditional liquid transportation fuels due to advances in engineering, the identification of new production host organisms, and the development of novel biodesign strategies. A significant portion of these efforts has been dedicated to mitigating the toxicological challenges encountered across the bioethanol production process. From the release of potentially cytotoxic or inhibitory compounds from input feedstocks, through the metabolic co-synthesis of ethanol and potentially detrimental byproducts, and to the potential cytotoxicity of ethanol itself, each stage of bioethanol production requires the applicationmore » of genetic or engineering controls that ensure the host organisms remain healthy and productive to meet the necessary economies required for large scale production. In addition, as production levels continue to increase, there is an escalating focus on the detoxification of the resulting waste streams to minimize their environmental impact. Thus, this review will present the major toxicological challenges encountered throughout each stage of the bioethanol production process and the commonly employed strategies for reducing or eliminating potential toxic effects.« less

  7. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance

    SciTech Connect (OSTI)

    Akinsho, Hannah; Rydzak, Thomas; Borole, Abhijeet P.; Ragauskas, Arthur; Close, Dan

    2015-09-30

    Bioethanol production output has increased steadily over the last two decades and is now beginning to become competitive with traditional liquid transportation fuels due to advances in engineering, the identification of new production host organisms, and the development of novel biodesign strategies. A significant portion of these efforts has been dedicated to mitigating the toxicological challenges encountered across the bioethanol production process. From the release of potentially cytotoxic or inhibitory compounds from input feedstocks, through the metabolic co-synthesis of ethanol and potentially detrimental byproducts, and to the potential cytotoxicity of ethanol itself, each stage of bioethanol production requires the application of genetic or engineering controls that ensure the host organisms remain healthy and productive to meet the necessary economies required for large scale production. In addition, as production levels continue to increase, there is an escalating focus on the detoxification of the resulting waste streams to minimize their environmental impact. Thus, this review will present the major toxicological challenges encountered throughout each stage of the bioethanol production process and the commonly employed strategies for reducing or eliminating potential toxic effects.

  8. Improving the Reliability and Resiliency of the US Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid ...

  9. Energy Department Invests Over $2 Million to Improve Grid Resiliency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in California, Colorado, Florida, and New York to deploy smart grid tools and technologies that can help prevent power outages, reduce storm impacts, and restore service faster. ...

  10. Energy Department Announces Funding to Improve the Resiliency...

    Broader source: Energy.gov (indexed) [DOE]

    up to 7 million to advance the design of technologies that will help communities become more adaptive and prepared for power outages caused by severe weather and other events. ...

  11. Versioned distributed arrays for resilience in scientific applications: Global view resilience

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chien, A.; Balaji, P.; Beckman, P.; Dun, N.; Fang, A.; Fujita, H.; Iskra, K.; Rubenstein, Z.; Zheng, Z.; Schreiber, R.; et al

    2015-06-01

    Exascale studies project reliability challenges for future high-performance computing (HPC) systems. We propose the Global View Resilience (GVR) system, a library that enables applications to add resilience in a portable, application-controlled fashion using versioned distributed arrays. We describe GVR’s interfaces to distributed arrays, versioning, and cross-layer error recovery. Using several large applications (OpenMC, the preconditioned conjugate gradient solver PCG, ddcMD, and Chombo), we evaluate the programmer effort to add resilience. The required changes are small (<2% LOC), localized, and machine-independent, requiring no software architecture changes. We also measure the overhead of adding GVR versioning and show that generally overheads <2%more » are achieved. We conclude that GVR’s interfaces and implementation are flexible and portable and create a gentle-slope path to tolerate growing error rates in future systems.« less

  12. Versioned distributed arrays for resilience in scientific applications: Global view resilience

    SciTech Connect (OSTI)

    Chien, A.; Balaji, P.; Beckman, P.; Dun, N.; Fang, A.; Fujita, H.; Iskra, K.; Rubenstein, Z.; Zheng, Z.; Schreiber, R.; Hammond, J.; Dinan, J.; Laguna, I.; Richards, D.; Dubey, A.; van Straalen, B.; Hoemmen, M.; Heroux, M.; Teranishi, K.; Siegel, A.

    2015-06-01

    Exascale studies project reliability challenges for future high-performance computing (HPC) systems. We propose the Global View Resilience (GVR) system, a library that enables applications to add resilience in a portable, application-controlled fashion using versioned distributed arrays. We describe GVR’s interfaces to distributed arrays, versioning, and cross-layer error recovery. Using several large applications (OpenMC, the preconditioned conjugate gradient solver PCG, ddcMD, and Chombo), we evaluate the programmer effort to add resilience. The required changes are small (<2% LOC), localized, and machine-independent, requiring no software architecture changes. We also measure the overhead of adding GVR versioning and show that generally overheads <2% are achieved. We conclude that GVR’s interfaces and implementation are flexible and portable and create a gentle-slope path to tolerate growing error rates in future systems.

  13. Coordinating Energy Efficiency with Other Disaster Resiliency Services |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Efficiency with Other Disaster Resiliency Services Coordinating Energy Efficiency with Other Disaster Resiliency Services Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Coordinating Energy Efficiency with Disaster Resiliency and Response, Call Slides and Discussion Summary, January 9, 2014. Call Slides and Discussion Summary (1.03 MB) More Documents & Publications Incorporating Energy Efficiency into Disaster Recovery

  14. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Challenge Energy Grid resilience Designing innovative systems to sustain critical functions during a disaster Solar panels With engineering expertise in renewable energy systems, power engineering, and risk and resilience analysis, Sandia can help cities determine resilience-enhancing energy system options, based on available resources. Sandia can design innovative systems that, in the event of a disaster, can prioritize which critical functions receive power as it becomes available.

  15. Technical Workshop: Resilience Metrics for Energy Transmission and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Infrastructure | Department of Energy Resilience Metrics for Energy Transmission and Distribution Infrastructure Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure During this workshop, EPSA invited technical experts from industry, national laboratories, academia, and NGOs to discuss the state of play of and need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures. Issues important to

  16. Investigating an API for resilient exascale computing. (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Investigating an API for resilient exascale computing. Citation Details In-Document Search Title: Investigating an API for resilient exascale computing. Increased HPC capability comes with increased complexity, part counts, and fault occurrences. In- creasing the resilience of systems and applications to faults is a critical requirement facing the viability of exascale systems, as the overhead of traditional checkpoint/restart is projected to outweigh its bene ts due to fault

  17. Climate Change Adaptation/Resilience | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Adaptation/Resilience Climate Change Adaptation/Resilience DOE is adapting to climate change by applying a risk-based resiliency approach to identify and minimize climate-related vulnerabilities across all DOE policies, programs and activities.DOE is assessing climate change vulnerabilities, using the best available science, to strengthen the agency's planning, operations, and investment activities and ensure the continuation of its mission. DOE facilities are located in all eight

  18. Climate Preparedness and Resiliency Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Preparedness and Resiliency Forum Climate Preparedness and Resiliency Forum March 4, 2015 Thunder Valley Resort 1200 Athens Ave. Lincoln, CA 95648 The U.S. Department of Energy (DOE) Office of Indian Energy hosted the 10th in a series of planned strategic energy development forums for tribal leaders and interested staff on "Tribal Energy Systems: Climate Preparedness and Resiliency." The forum provided an opportunity for attendees to interact with other Tribes, federal

  19. Compressed Air System Optimization Improves Production and saves energy at a Satellite Manufacturer

    SciTech Connect (OSTI)

    2002-05-01

    In 2001, a compressed air improvement project was implemented following an audit on the compressed air system at Boeing Satellite Systems (formerly Hughes Space & Communications Company) in Los Angeles, California.

  20. Full PWA Report: An Assessment of Energy, Waste, and Productivity Improvements for North Star Steel Iowa

    SciTech Connect (OSTI)

    2010-06-25

    North Star Steel's Wilton, Iowa plant (NSSI) was awarded a subcontract through a competitive process to use Department of Energy/OIT funding to examine potential processes and technologies that could save energy, reduce waste, and increase productivity.

  1. Energy Department Launches Microgrid Competition to Support Resiliency...

    Broader source: Energy.gov (indexed) [DOE]

    586-4940 WASHINGTON - Today, the Energy Department launched the Microgrid 2014 MVP Challenge, a competition to support resiliency and adaptation in communities across America. The...

  2. Conceptual Framework for Developing Resilience Metrics for the...

    Energy Savers [EERE]

    for the Electricity, Oil, and Gas Sectors in the United States (September 2015) Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in ...

  3. Investigating an API for resilient exascale computing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Increased HPC capability comes with increased complexity, part counts, and fault occurrences. In- creasing the resilience of systems and applications to faults is a critical ...

  4. A Holistic Approach to Resiliency Exploiting Applications Structure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anshu Dubey Speaker(s) Title: Argonne National Laboratory - MCS Host: Ian Foster Resilience is a growing concern for large-scale simulations. As failures become more frequent,...

  5. Sandia Energy - Results from the Human Resilience Index and Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results from the Human Resilience Index and Modeling project were reported recently in the National Intelligence Council's Global Trends 2030 Report Home Infrastructure Security...

  6. White House Climate Resilience Initiatives Bring New Opportunities for Tribes

    Office of Energy Efficiency and Renewable Energy (EERE)

    The White House is helping communities tackle climate change challenges by linking two new initiatives: Climate Action Champions and Resilience AmeriCorps.

  7. Resilient Electric Distribution Grid R&D Workshop - June 11,...

    Broader source: Energy.gov (indexed) [DOE]

    2 Report (444.76 KB) More Documents & Publications Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 Assorted OE Articles Microgrid Workshop Report August 2011

  8. A Holistic Approach to Modeling and Simulation for Resilience...

    Office of Scientific and Technical Information (OSTI)

    A Holistic Approach to Modeling and Simulation for Resilience and Power Configuration. Citation Details In-Document Search Title: A Holistic Approach to Modeling and Simulation for...

  9. Request for Information on the Electric Grid Resilience Self...

    Energy Savers [EERE]

    Grid Resilience Self-Assessment Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126 - Jul. 1, 2015 The Department of Energy (DOE) Office of Electricity ...

  10. Microsoft Word - Energy Resilience Report SAND2014-18019.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Jean-Paul Watson, Ross Guttromson, Cesar Silva-Monroy, ...

  11. Final Report and Other Materials from 2014 Resilient Electric...

    Energy Savers [EERE]

    July 11, 2014 - 4:31pm Addthis The Office of Electricity Delivery and Energy Reliability ... to enhancing the resilience of the electric distribution grid to natural disasters. ...

  12. Microsoft Word - QER Resilience April 29 Tech Workshop MTG NOTES...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Chen-Ching Liu (Washington State University) contrasted contingency-based planning for reliability with a different method for planning for resilience in the electricity sector. ...

  13. Microsoft Word - QER Resilience June 10 Tech Workshop MTG NOTES...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Review Technical Workshop on Resilience Metrics for Energy Transmission and Distribution Infrastructure Offices of Electricity Delivery and Energy Reliability (OE) and ...

  14. DOE Launches the "Partnership for Energy Sector Climate Resilience...

    Energy Savers [EERE]

    ... of the Energy Policy and Systems Analysis Office (EPSA), presented information on the recently released QER and on program activities related to electricity sector resilience. ...

  15. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For example, Sandia can help cities implement multiple resilience strategies to achieve ... A city's goal may include converting municipal solid waste to electricity and ...

  16. CHP: Enabling Resilient Energy Infrastructure- Presentations from April 2013 Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation discusses the role for combined heat and power (CHP) systems in critical infrastructure resiliency, business continuity, and emergency planning and operations.

  17. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To understand the current risks and resilience of its transportation infrastructure, a city must consider all aspects of the system (e.g., roads, highways, bridges, rail systems, ...

  18. Consolidated Resilience April Workshop Invitee List_Final for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Principal ICF International Mike Kangior Senior Director for Resilience Policy DHS John Laws DHS Infrastructure Protection Angela Blair Program Manager, DHS Science & ...

  19. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's unique value stems from decades of experience analyzing the nation's critical infrastructure systems' risks and resilience to manmade and natural disasters. Sandia ...

  20. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 Critical infrastructure collectively refers to those assets, systems, and networks that, ...

  1. Formulating Climate Change Scenarios to Inform Climate - Resilient...

    Open Energy Info (EERE)

    Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Formulating Climate Change...

  2. Climate Change: building the resilience of poor rural communities...

    Open Energy Info (EERE)

    of poor rural communities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: building the resilience of poor rural communities AgencyCompany...

  3. Improving olefin tolerance and production in E. coli using native and evolved AcrB

    SciTech Connect (OSTI)

    Mingardon, Florence; Clement, Camille; Hirano, Kathleen; Nhan, Melissa; Luning, Eric G.; Chanal, Angelique; Mukhopadhyay, Aindrila

    2015-01-20

    Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for production in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.

  4. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect (OSTI)

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  5. Ecological function and resilience: Neglected criteria for environmental impact assessment and ecological risk analysis

    SciTech Connect (OSTI)

    Cairns, J. Jr.; Niederlehner, B.R. . Univ. Center for Environmental and Hazardous Materials Studies)

    1993-01-01

    The importance of establishing methods for determining ecological function and resilience transcends scientific interest; these methods are important to sustained societal use of ecosystems and long-term productivity. Essential services that ecosystems provide to human society include water purification, oxygen production, carbon storage, climate regulation, and production of food, wood, and medicinal drugs. Although man is dependent upon these services, human understanding of the dynamics of ecosystem function is limited. Man can detect gross impairment of ecosystem function or resilience after the fact. However, protecting ecosystem health necessitates detecting adverse trends in ecological function, rather than reacting when the system collapses. The information to date is inadequate for predicting subtle changes or incremental trends. Once ecosystems are damaged and therefore providing diminished services, it is important to determine when they will be restored to an approximation of their predisturbance condition. For those ecosystems unlikely to recover on their own, management techniques may enhance recovery processes. Information about response of ecosystem function to human actions and relative resilience of alternative ecosystems can facilitate decision-making under the National Environmental Policy Act (NEPA).

  6. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    SciTech Connect (OSTI)

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  7. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  8. Saint Vincent and the Grenadines-Pilot Program for Climate Resilience...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Name Saint Vincent and the Grenadines-Pilot Program for Climate Resilience (PPCR) AgencyCompany...

  9. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior...

    Energy Savers [EERE]

    Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian ...

  10. Webinar March 26: Energy Storage for a Greener and More Resilient...

    Broader source: Energy.gov (indexed) [DOE]

    collaborations on resilience projects with states such as Vermont, Washington, and Oregon. ... April 7 Webinar on OE's Resilient Electricity Delivery Infrastructure Initiative FOA ...

  11. Hardening and Resiliency: U.S. Energy Industry Response to Recent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane Seasons - August 2010 Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane ...

  12. Overcoming substrate limitations for improved production of ethylene in E. coli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lynch, Sean; Eckert, Carrie; Yu, Jianping; Gill, Ryan; Maness, Pin -Ching

    2016-01-04

    Ethylene is an important industrial compound for the production of a wide variety of plastics and chemicals. At present, ethylene production involves steam cracking of a fossil-based feedstock, representing the highest CO2-emitting process in the chemical industry. Biological ethylene production can be achieved via expression of a single protein, the ethylene-forming enzyme (EFE), found in some bacteria and fungi; it has the potential to provide a sustainable alternative to steam cracking, provided that significant increases in productivity can be achieved. A key barrier is determining factors that influence the availability of substrates for the EFE reaction in potential microbial hosts.more » In the presence of O2, EFE catalyzes ethylene formation from the substrates α-ketoglutarate (AKG) and arginine. The concentrations of AKG, a key TCA cycle intermediate, and arginine are tightly controlled by an intricate regulatory system that coordinates carbon and nitrogen metabolism. Thus, reliably predicting which genetic changes will ultimately lead to increased AKG and arginine availability is challenging.« less

  13. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    DOE Patents [OSTI]

    Caimi, Perry G.; Chou, Yat-Chen; Franden, Mary Ann; Knoke, Kyle; Tao, Luan; Viitanen, Paul V.; Zhang, Min; Zhang, Yuying

    2010-09-28

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in medium comprising xylose and acetate.

  14. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Jiao, Y.; Navid, A.

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  15. Improved oil production using economical biopolymer-surfactant blends for profile modification and mobility control. Final report, November 1998

    SciTech Connect (OSTI)

    Gabitto, J.; Barrufet, M.A.; Burnett, D.B.

    1998-12-01

    In the past, starch hydrocolloids have not been effective alternates to partially hydrolyzed polyacrylamides, copolymers, and xanthan gum polymers as water shutoff agents in fractures and in matrix flow configurations. Poor injectivity and questionable stability have usually prevented their use in profile control applications. However, in recent years, the demands of the oil and gas drilling industry have led to the development of new drilling, drill-in, and completion fluids with improved functionality. New types of modified starches have contributed to these new drill in fluid (DIF) products. It was felt that the properties of the new products would lend themselves to applications in improved recovery. The objective of this project has been to evaluate the use of agricultural starch biopolymers for gelled and polymer applications in oil recovery processes. The authors believe that there is great potential for finding new functional starch products because of their chemical and structural flexibility, low cost, and wide availability. The goals of this project have been, therefore, to systematically investigate how the physical properties and chemical composition of relatively inexpensive agricultural starch products will influence their use as effective selective permeability control agents or as gels for water shut-off.

  16. Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  17. Genetic manipulation of lignin reduces recalcitrance and improves biomass ethanol production from switchgrass

    SciTech Connect (OSTI)

    Hamilton, Choo Yieng; Fu, Chunxiang; Xiao, Xirong; Ge, Yaxin; Chen, Fang; Bouton, Joseph; Foston, Marcus; Dixon, Richard A; Wang, Zeng-Yu; Mielenz, Jonathan R

    2011-01-01

    Switchgrass is a leading dedicated bioenergy feedstock because it is a native, high yielding, perennial prairie grass with broad cultivation range and low agronomic input requirements. Biomass conversion research has developed pilot scale processes for production of ethanol and other alcohols but they remain costly primarily due to the intrinsic recalcitrance of biomass. We show here that switchgrass genetic modification can produce normal plants that have reduced thermochemical and enzymatic recalcitrance. Downregulation of the switchgrass caffeic O-methyltransferase gene decreases lignin content modestly, reduces the syringyl to guaiacyl lignin monomer ratio and increases the ethanol yield by up to a third using conventional biomass fermentation processes. The downregulated lines have wild-type biomass yields but require reduced pretreatment severity and 300-400% lower cellulase dosages for equivalent product yields significantly lowering processing costs. Alternately, our modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions.

  18. Water Network Tool for Resilience v. 1.0

    SciTech Connect (OSTI)

    2015-12-09

    WNTR is a python package designed to simulate and analyze resilience of water distribution networks. The software includes: - Pressure driven and demand driven hydraulic simulation - Water quality simulation to track concentration, trace, and water age - Conditional controls to simulate power outages - Models to simulate pipe breaks - A wide range of resilience metrics - Analysis and visualization tools

  19. Cyberspace Policy Review: Assuring a Trusted and Resilient Information and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communications Infrastructure | Department of Energy Cyberspace Policy Review: Assuring a Trusted and Resilient Information and Communications Infrastructure Cyberspace Policy Review: Assuring a Trusted and Resilient Information and Communications Infrastructure The review team of government cybersecurity experts engaged and received input from a broad cross-section of industry, academia, the civil liberties and privacy communities, State governments, international partners, and the

  20. Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate

    DOE Patents [OSTI]

    Caimi, Perry G.; Chou, Yat-Chen; Franden, Mary Ann; Knoke, Kyle; Tao, Luan; Viitanen, Paul V.; Zhang, Min; Zhang, Yuying

    2011-03-01

    Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas strains further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in mixed-sugars medium comprising xylose, and, in particular, in the presence of acetate.

  1. Method for improving sustained solids-free production from heavy oil reservoirs

    SciTech Connect (OSTI)

    Jennings, A.R.; Smith, R.C.

    1991-08-06

    This patent describes a method for producing viscous substantially solids-free hydrocarbonaceous fluids from an unconsolidated formation or reservoir. It includes drilling into the reservoir first and second spaced apart wells into a lower productive interval of the formation; perforating both wells in the lower productive interval; fracturing hydraulically the wells at the productive interval with a viscous fracturing fluid containing a propant therein so as to prop a created fracture and form a fines screen; injecting a pre-determined volume of steam into the first well in an amount sufficient to soften the viscous fluid and lower the viscosity of the fluid adjacent a fracture face; producing the first well at a rate sufficient to allow formation fines to build up on a fracture face communicating with the first well thereby resulting in a filter screen sufficient to substantially remove formation fines from the hydrocarbonaceous fluids; shutting in the first well while injecting steam in a predetermined amount in the second well; shutting in the second well.

  2. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    SciTech Connect (OSTI)

    Ye, Jingqing; Li, Dong; Sun, Yongming; Wang, Guohui; Yuan, Zhenhong; Zhen, Feng; Wang, Yao

    2013-12-15

    Highlights: Biogas production was enhanced by co-digestion of rice straw with other materials. The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. The maximum biogas yield of 674.4 L/kg VS was obtained. VFA inhibition occurred when kitchen waste content was more than 26%. The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 1 C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.970.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.

  3. Improved production of Br atoms near zero speed by photodissociating laser aligned Br{sub 2} molecules

    SciTech Connect (OSTI)

    Deng, L. Z., E-mail: lzdeng@phy.ecnu.edu.cn; Yin, J. P., E-mail: jpyin@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-10-28

    We theoretically investigated the improvement on the production rate of the decelerated bromine (Br) atoms near zero speed by photodissociating laser aligned Br{sub 2} precursors. Adiabatic alignment of Br{sub 2} precursors exposed to long laser pulses with duration on the order of nanoseconds was investigated by solving the time-dependent Schrdinger equation. The dynamical fragmentation of adiabatically aligned Br{sub 2} precursors was simulated and velocity distribution of the Br atoms produced was analyzed. Our study shows that the larger the degree of the precursor alignment, ?cos{sup 2}???, the higher the production rate of the decelerated Br atoms near zero speed. For Br{sub 2} molecules with an initial rotational temperature of ?1 K, a ?cos{sup 2}??? value of ?0.88 can result in an improvement factor of over ?20 on the production rate of the decelerated Br atoms near zero speed, requiring a laser intensity of only ?1 10{sup 12} W/cm{sup 2} for alignment.

  4. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect (OSTI)

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  5. Clover: Compiler directed lightweight soft error resilience

    SciTech Connect (OSTI)

    Liu, Qingrui; Lee, Dongyoon; Jung, Changhee; Tiwari, Devesh

    2015-05-01

    This paper presents Clover, a compiler directed soft error detection and recovery scheme for lightweight soft error resilience. The compiler carefully generates soft error tolerant code based on idem-potent processing without explicit checkpoint. During program execution, Clover relies on a small number of acoustic wave detectors deployed in the processor to identify soft errors by sensing the wave made by a particle strike. To cope with DUE (detected unrecoverable errors) caused by the sensing latency of error detection, Clover leverages a novel selective instruction duplication technique called tail-DMR (dual modular redundancy). Once a soft error is detected by either the sensor or the tail-DMR, Clover takes care of the error as in the case of exception handling. To recover from the error, Clover simply redirects program control to the beginning of the code region where the error is detected. Lastly, the experiment results demonstrate that the average runtime overhead is only 26%, which is a 75% reduction compared to that of the state-of-the-art soft error resilience technique.

  6. Clover: Compiler directed lightweight soft error resilience

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Qingrui; Lee, Dongyoon; Jung, Changhee; Tiwari, Devesh

    2015-05-01

    This paper presents Clover, a compiler directed soft error detection and recovery scheme for lightweight soft error resilience. The compiler carefully generates soft error tolerant code based on idem-potent processing without explicit checkpoint. During program execution, Clover relies on a small number of acoustic wave detectors deployed in the processor to identify soft errors by sensing the wave made by a particle strike. To cope with DUE (detected unrecoverable errors) caused by the sensing latency of error detection, Clover leverages a novel selective instruction duplication technique called tail-DMR (dual modular redundancy). Once a soft error is detected by either themore » sensor or the tail-DMR, Clover takes care of the error as in the case of exception handling. To recover from the error, Clover simply redirects program control to the beginning of the code region where the error is detected. Lastly, the experiment results demonstrate that the average runtime overhead is only 26%, which is a 75% reduction compared to that of the state-of-the-art soft error resilience technique.« less

  7. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  8. Experimental co-digestion of corn stalk and vermicompost to improve biogas production

    SciTech Connect (OSTI)

    Chen Guangyin; Zheng Zheng; Yang Shiguan; Fang Caixia; Zou Xingxing; Luo Yan

    2010-10-15

    Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 {+-} 13.87 mL/g TS{sub added} was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 {+-} 11.01 mL/g TS{sub added} and methane yield of 259.35 {+-} 13.85 mL/g TS{sub added} were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.

  9. Improving computer simulations of heat transfer for projecting fenestration products: Using radiation view-factor models

    SciTech Connect (OSTI)

    Griffith, B.; Tuerler, D.; Arasteh, D.K.; Curcija, D.

    1998-10-01

    The window well formed by the concave surface on the warm side of skylights and garden windows can cause surface heat-flow rates to be different for these projecting types of fenestration products than for normal planar windows. Current methods of simulating fenestration thermal conductance (U-factor) use constant boundary condition values for overall surface heat transfer. Simulations that account for local variations in surface heat transfer rates (radiation and convection) may be more accurate for rating and labeling window products whose surfaces project outside a building envelope. This paper, which presents simulation and experimental results for one projecting geometry, is the first step in documenting the importance of these local effects. A generic specimen, called the foam garden window, was used in simulations and experiments to investigate heat transfer of projecting surfaces. Experiments focused on a vertical cross section (measurement plane) located at the middle of the window well on the warm side of the specimen. The specimen was placed between laboratory thermal chambers that were operated at American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) winter heating design conditions. Infrared thermography was used to map surface temperatures. Air temperature and velocity were mapped throughout the measurement plane using a mechanical traversing system. Finite-element computer simulations that directly modeled element-to-element radiation were better able to match experimental data than simulations that used fixed coefficients for total surface heat transfer. Air conditions observed in the window well suggest that localized convective effects were the reason for the difference between actual and modeled surface temperatures. U-value simulation results were 5% to 10% lower when radiation was modeled directly.

  10. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Organize and host the 2006 Spring Meeting in State College, PA to review and select projects for SWC co-funding; (2) Participation in the 2006 PA CleanEnergy Expo Energy Theater to air the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) New member additions; (4) Improving communications; and (5) Planning of the fall technology meetings.

  11. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    SciTech Connect (OSTI)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.

  12. High energy product permanent magnet having improved intrinsic coercivity and method of making same

    DOE Patents [OSTI]

    Ramesh, Ramamoorthy; Thomas, Gareth

    1990-01-01

    A high energy rare earth-ferromagnetic metal permanent magnet is disclosed which is characterized by improved intrinsic coercivity and is made by forming a particulate mixture of a permanent magnet alloy comprising one or more rare earth elements and one or more ferromagnetic metals and forming a second particulate mixture of a sintering alloy consisting essentially of 92-98 wt. % of one or more rare earth elements selected from the class consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures of two or more of such rare earth elements, and 2-8 wt. % of one or more alloying metals selected from the class consisting of Al, Nb, Zr, V, Ta, Mo, and mixtures of two or more of such metals. The permanent magnet alloy particles and sintering aid alloy are mixed together and magnetically oriented by immersing the mixture in an axially aligned magnetic field while cold pressing the mixture. The compressed mixture is then sintered at a temperature above the melting point of the sintering aid and below the melting point of the permanent magnet alloy to thereby coat the particle surfaces of the permanent magnetic alloy particles with the sintering aid while inhibiting migration of the rare earth element in the sintering aid into the permanent magnet alloy particles to thereby raise the intrinsic coercivity of the permanent magnet alloy without substantially lowering the high energy of the permanent magnet alloy.

  13. High temperature pre-digestion of corn stover biomass for improved product yields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brunecky, Roman; Hobdey, Sarah E.; Taylor, Larry E.; Tao, Ling; Tucker, Melvin P.; Himmel, Michael E.; Decker, Stephen R.

    2014-12-03

    Introduction: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.more » Results: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. In conclusion, Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.« less

  14. High temperature pre-digestion of corn stover biomass for improved product yields

    SciTech Connect (OSTI)

    Brunecky, Roman; Hobdey, Sarah E.; Taylor, Larry E.; Tao, Ling; Tucker, Melvin P.; Himmel, Michael E.; Decker, Stephen R.

    2014-12-03

    Introduction: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation. Results: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. In conclusion, Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.

  15. Acid-sludge characterization and remediation improve well productivity and save costs in the Permian Basin

    SciTech Connect (OSTI)

    Wong, T.C.; Hwang, R.J.; Beaty, D.W.; Dolan, J.D.; McCarty, R.A.; Franzen, A.L.

    1997-02-01

    Many oil wells in the Permian Basin have reported sludging problems associated with acid stimulations. The acid sludge is similar among wells and was identified as a viscous emulsion stabilized by asphaltene-rich organic solids. The sludging tendency of the oil increased with the concentrations of asphaltenes and resins, base number of the oil, and ferric ion content in the acid. Only three out of nine commercial acid systems tested were effective in preventing acid-sludge formation; they all use the same novel iron control technology, i.e., catalytic reduction of ferric ions. Several commercial and generic solvent systems were effective in dissolving acid sludge, including mixtures of an aromatic solvent (e.g., xylene) with either isopropyl alcohol (2:1 volume ratio), or ethylene glycol-monobutylether (EGMBE) (2:1 to 3:1 volume ratios). Selection of acid formulations and solvent systems was based on cost effectiveness and operation safety. Field implementation proved successful. If the results of this study had been implemented earlier in the lives of some of the Permian Basin properties, the recovery of 574 BOPD of lost or deferred production from 99 wells could have been realized. This would have resulted in an estimated increased revenue of over US $3 million in 1 year.

  16. Evolution and resilience of the nuclear nonproliferation regime

    SciTech Connect (OSTI)

    Pregenzer, Arian L.

    2014-05-09

    This paper introduces the concept of systems resilience as a new framework for thinking about the future of the nonproliferation regime. Resilience refers to the ability of a system to maintain its vital functions in the face of continuous and unpredictable change. First, I make the case that the nonproliferation regime can be viewed as a complex system. Next, I discuss key themes from the literature on systems resilience and apply them to the nonproliferation system: the difference between resilience and stability; the need for evolution to maintain function; the importance of functional diversity; and the concept of the adaptive cycle. I show that most existing nonproliferation strategies are aimed at stability rather than resilience and that the current nonproliferation system may be over-constrained by the cumulative evolution of strategies. According to the literature on systems resilience, this increases its vulnerability to collapse. I argue that the resilience of the nonproliferation system can be enhanced by increasing international participation in setting the nonproliferation agenda, developing general international response capabilities, focusing on non-coercive approaches to decreasing demand, and applying systems thinking more rigorously to nonproliferation.

  17. Influence of mutual coupling between ICRH antenna straps on the load resilience of hybrid couplers

    SciTech Connect (OSTI)

    Lamalle, P. U.; Messiaen, A.

    2007-09-28

    The mutual coupling present between ICRF antenna straps can strongly reduce the performance of quadrature hybrid couplers when used as 'ELM dump' circuits. An analytical study of this effect shows that during resistive ELM-like load perturbations of a matched circuit configuration, the fraction of the reflected power returned to the generator through the hybrid has a lower bound that rapidly increases with the ratio {xi}{approx} (mutual reactance between straps)/(strap input resistance). At very low levels of mutual the reflected power is efficiently diverted to the dummy load. However when {xi} becomes of order 1, which readily occurs at low resistive loading, the load resilience of the quadrature hybrid coupler becomes inhibited. Illustrations based on matching circuit simulations for the JET ITER-like ICRF antenna are presented. The behaviour of the hybrids is found the same with the load resilient 'conjugate T' circuit as in the case of 'classic' tuners. The insertion of decoupling circuits between the tuners and the antenna significantly improves the load resilience.

  18. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucas, Robert F.; Hukerikar, Saurabh

    2016-05-26

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  19. Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities

    Broader source: Energy.gov [DOE]

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session. The meeting will be livestreamed at energy.gov/live

  20. Resilient Core Networks for Energy Distribution

    SciTech Connect (OSTI)

    Kuntze, Nicolai; Rudolph, Carsten; Leivesley, Sally; Manz, David O.; Endicott-Popovsky, Barbara E.

    2014-07-28

    Abstract—Substations and their control are crucial for the availability of electricity in today’s energy distribution. Ad- vanced energy grids with Distributed Energy Resources require higher complexity in substations, distributed functionality and communication between devices inside substations and between substations. Also, substations include more and more intelligent devices and ICT based systems. All these devices are connected to other systems by different types of communication links or are situated in uncontrolled environments. Therefore, the risk of ICT based attacks on energy grids is growing. Consequently, security measures to counter these risks need to be an intrinsic part of energy grids. This paper introduces the concept of a Resilient Core Network to interconnected substations. This core network provides essen- tial security features, enables fast detection of attacks and allows for a distributed and autonomous mitigation of ICT based risks.

  1. Partnering with Vermont for an Innovative Approach to Resilience...

    Broader source: Energy.gov (indexed) [DOE]

    State of Vermont Public Service, Green Mountain Power, and Dynapower on a resilience microgrid that will combine 2.5 MW of solar generation with 4MW of energy storage. Vermont has...

  2. "Grid Resilience to Natural Disasters: Challenges and Opportunities...

    Broader source: Energy.gov (indexed) [DOE]

    Dan Ton, Program Manager of Smart Grid R&D in the Office of Electricity Delivery and Energy Reliability, has co-authored an article entitled "Grid Resilience to Natural Disasters: ...

  3. Workshop Outline Resilient Electric Distribution Grid R&D

    Broader source: Energy.gov (indexed) [DOE]

    R&D Office of Electricity Delivery and Energy Reliability (OE) U.S. Department of Energy (DOE) Purpose To identify key R&D activities for enhancing resilience of electric ...

  4. Hurricane Sandy One Year Later: Rebuilding Stronger, More Resilient Communities

    Broader source: Energy.gov [DOE]

    The Energy Department continues to take actions to protect our energy infrastructure, adapt to climate change and build partnerships to make communities across the country stronger and more resilient.

  5. Partial Differential Equations Solver Resilient to Soft and Hard...

    Office of Scientific and Technical Information (OSTI)

    ... inject faults; 5 briefly describes the test case adopted; in 6 we discuss the ... To test the resiliency of our algorithm to both hard and soft faults, we synthetically ...

  6. Building a Greener, More Resilient Future in Washington State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and solar onto the electric grid. The aim is to support greater deployment of these technologies and build a grid that is more efficient, flexible and resilient to the effects of...

  7. Constructing a resilience index for the Enhanced Critical Infrastructure Protection Program

    SciTech Connect (OSTI)

    Fisher, R. E.; Bassett, G. W.; Buehring, W. A.; Collins, M. J.; Dickinson, D. C.; Eaton, L. K.; Haffenden, R. A.; Hussar, N. E.; Klett, M. S.; Lawlor, M. A.; Millier, D. J.; Petit, F. D.; Peyton, S. M.; Wallace, K. E.; Whitfield, R. G.; Peerenboom, J P

    2010-10-14

    Following recommendations made in Homeland Security Presidential Directive 7, which established a national policy for the identification and increased protection of critical infrastructure and key resources (CIKR) by Federal departments and agencies, the U.S. Department of Homeland Security (DHS) in 2006 developed the Enhanced Critical Infrastructure Protection (ECIP) program. The ECIP program aimed to provide a closer partnership with state, regional, territorial, local, and tribal authorities in fulfilling the national objective to improve CIKR protection. The program was specifically designed to identify protective measures currently in place in CIKR and to inform facility owners/operators of the benefits of new protective measures. The ECIP program also sought to enhance existing relationships between DHS and owners/operators of CIKR and to build relationships where none existed (DHS 2008; DHS 2009). In 2009, DHS and its protective security advisors (PSAs) began assessing CIKR assets using the ECIP program and ultimately produced individual protective measure and vulnerability values through the protective measure and vulnerability indices (PMI/VI). The PMI/VI assess the protective measures posture of individual facilities at their 'weakest link,' allowing for a detailed analysis of the most vulnerable aspects of the facilities (Schneier 2003), while maintaining the ability to produce an overall protective measures picture. The PMI has six main components (physical security, security management, security force, information sharing, protective measures assessments, and dependencies) and focuses on actions taken by a facility to prevent or deter the occurrence of an incident (Argonne National Laboratory 2009). As CIKR continue to be assessed using the PMI/VI and owners/operators better understand how they can prevent or deter incidents, academic research, practitioner emphasis, and public policy formation have increasingly focused on resilience as a necessary

  8. Partnering with Vermont for an Innovative Approach to Resilience |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partnering with Vermont for an Innovative Approach to Resilience Partnering with Vermont for an Innovative Approach to Resilience November 18, 2014 - 3:27pm Addthis Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability How can I participate? Check out our Infographic on Understanding the Grid. Send us your questions about how the grid works using #GridWeek on Facebook, Twitter and Google+. Join the #GridWeek

  9. Experimental Smart Outlet Brings Flexibility, Resiliency to Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Architecture Smart Outlet Brings Flexibility, Resiliency to Grid Architecture - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  10. - Resilient Electric Distribution Grid R&D Workshop Notes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    th - Resilient Electric Distribution Grid R&D Workshop Notes Breakout session: Identification of R&D areas for Design, preparedness, and planning for a resilient electric distribution grid Moderator: Russell Bent, Los Alamos National Laboratory  Segmentation and recombination were considered as the first main area. o One of participants stated it could be in the form of a microgrid  Data sharing and operation is also important especially in real-time o GIS was suggested

  11. Microsoft Word - Critical Infrastructure Security and Resilience Month.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White House Office of the Press Secretary For Immediate Release October 31, 2013 Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013 - - - - - - - BY THE PRESIDENT OF THE UNITED STATES OF AMERICA A PROCLAMATION Over the last few decades, our Nation has grown increasingly dependent on critical infrastructure, the backbone of our national and economic security. America's critical infrastructure is

  12. Climate Action Champions: Resilience and Equity Webinar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Climate Action Champions: Resilience and Equity (July 9, 2015) This webinar was hosted jointly by the Department of Energy and the Department of Housing and Urban Development (HUD). Presenters from the Boston Metropolitan Area Planning Council, PolicyLink, and the National Institute of Environmental Health Sciences discussed issues of climate change resilience and equity, including the impacts of climate change on different regions and socioeconomic groups. In addition, HUD provided

  13. Conceptual Framework for Developing Resilience Metrics for the Electricity,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil, and Gas Sectors in the United States (September 2015) | Department of Energy Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States (September 2015) Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States (September 2015) This report has been written for the Department of Energy's Office of Electricity Delivery and Energy Reliability to support the Office of

  14. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-12-28

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  15. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-12-23

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fifteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  16. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel Morrison; Sharon Elder

    2006-01-24

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  17. Using electronic templates and a centralized document production network to reduce cost and improve consistence between technical reports

    SciTech Connect (OSTI)

    Byrnes, M.E.

    1996-12-31

    In an effort to reduce the cost and improve the accuracy and consistency between technical reports being written by large companies or large Federal installations, SAIC has recently developed the Centralized Document Production Network (CDPN) Software. The CDPN Software is loaded with standardized electronic document templates along with standardized site-specific background text, tables, and figures. While users across the network are able to retrieve electronic templates and site-specific background text to support their report writing activities, modifications to the network text can only be made by designated experts which are assigned individual passwords. At this time, the CDPN software is being Beta Tested by Kaiser-Hill and Rocky Mountain Remediation Services at the US Department of Energy`s Rocky Flats Plant, in addition to multiple private sector corporations.

  18. Systems resilience : a new analytical framework for nuclear nonproliferation.

    SciTech Connect (OSTI)

    Pregenzer, Arian Leigh

    2011-12-01

    This paper introduces the concept of systems resilience as a new framework for thinking about the future of nonproliferation. Resilience refers to the ability of a system to maintain its vital functions in the face of continuous and unpredictable change. The nonproliferation regime can be viewed as a complex system, and key themes from the literature on systems resilience can be applied to the nonproliferation system. Most existing nonproliferation strategies are aimed at stability rather than resilience, and the current nonproliferation system may be over-constrained by the cumulative evolution of strategies, increasing its vulnerability to collapse. The resilience of the nonproliferation system can be enhanced by diversifying nonproliferation strategies to include general international capabilities to respond to proliferation and focusing more attention on reducing the motivation to acquire nuclear weapons in the first place. Ideas for future research, include understanding unintended consequences and feedbacks among nonproliferation strategies, developing methodologies for measuring the resilience of the nonproliferation system, and accounting for interactions of the nonproliferation system with other systems on larger and smaller scales.

  19. Integrating ecological and engineering concepts of resilience in microbial communities

    SciTech Connect (OSTI)

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.

  20. Integrating ecological and engineering concepts of resilience in microbial communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less

  1. MCFC PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    Unknown

    2000-04-30

    The objective of the DOE program is to advance the direct carbonate fuel cell technology to a level suitable for commercial entry. The specific objectives of the DOD's initiative on 2 MW Fuel Cell Fixed Base Power Plant are: (1) To provide a detailed engineering design, development and cost estimate of the 2 MW fuel cell fixed base dual fuel power plant for DOD applications. Installation and operational support systems will also be developed. (2) To construct a full-size MW-class dual fuel power plant simulator. These objectives are planned to be achieved in the program coordinated with the Department of Energy, which has been funding a multiyear natural gas fueled direct fuel cell power plant program (DE-FC21-95MC31184) for civilian applications. Because many DARPA and DOE objectives are similar, the coordinated program activities are considered the most cost-effective for accomplishment of the program objectives. The DARPA/DOE joint program was launched in 1994. The DOE part of the program is expected to continue to Year 2000. The final output of this DOE program is to construct and operate a 2 MW power plant on an East Coast site. The site will be accessible to DOD energy/environmental systems base planners and logistics personnel as well as mission and policy planners to refine deployment configurations of this new power generation system for fixed base applications.

  2. MCFC product design improvement

    SciTech Connect (OSTI)

    Unknown

    1999-05-01

    This contract is supported by DOE and DOD/DARPA funds. The objective of the DOE program is to advance the direct carbonate fuel cell technology to a level suitable for commercial entry. The specific objectives of the DOE's initiative on 2 MW Fuel Cell Fixed Base Power Plant are: (A) To provide a detailed engineering design, development and cost estimate of the 2 MW fuel cell fixed base dual fuel power plant for DOD applications. Installation and operational support systems will also be developed; and (B) To construct a full-size MW-class dual fuel power plant simulator. These objectives are planned to be achieved in the program coordinated with the Department of Energy, which has been funding a multiyear natural gas fueled direct fuel cell power plant program for civilian applications. Because many DARPA and DOE objectives are similar, the coordinated program activities are considered the most cost-effective for accomplishment of the program objectives. The DARPA/DOE joint program was launched in 1994. The DOE part of the program is expected to continue to the year 2000. The final output of this DOE program is to construct and operate a 2 MW power plant on an East Coast site. The site will be accessible to DOD energy/environmental systems base planners and logistics personnel as well as mission and policy planners to refine deployment configurations of this new power generation system for fixed base applications. A dual fuel fixed base design for military fuels operation, as well as support system logistics will be the key deliverables for the DARPA part of the program.

  3. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect (OSTI)

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure

  4. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    SciTech Connect (OSTI)

    Stettler, R.F.; Hinckley, T.M.; Heilman, P.E.; Bradshaw, H.D. Jr.

    1993-04-30

    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  5. The Resilient Economy: Integrating Competitiveness and Security

    SciTech Connect (OSTI)

    Debbie van Opstal

    2009-01-07

    Globalization, technological complexity, interdependence, terrorism, climate and energy volatility, and pandemic potential are increasing the level of risk that societies and organizations now face. Risks also are increasingly interrelated; disruptions in one area can cascade in multiple directions. The ability to manage emerging risks, anticipate the interactions between different types of risk, and bounce back from disruption will be a competitive differentiator for companies and countries alike in the 21st century. What Policymakers Should Know The national objective is not just homeland protection, but economic resilience: the ability to mitigate and recover quickly from disruption. Businesses must root the case for investment in resilience strategies to manage a spectrum of risks, not just catastrophic ones. Making a business case for investment in defenses against low-probability events (even those with high impact) is difficult. However, making a business case for investments that assure business continuity and shareholder value is not a heavy lift. There are an infinite number of disruption scenarios, but only a finite number of outcomes. Leading organizations do not manage specific scenarios, rather they create the agility and flexibility to cope with turbulent situations. The investments and contingency plans these leading companies make to manage a spectrum of risk create a capability to respond to high-impact disasters as well. Government regulations tend to stovepipe different types of risk, which impedes companies abilities to manage risk in an integrated way. Policies to strengthen risk management capabilities would serve both security and competitiveness goals. What CEOs and Boards Should Know Operational risks are growing rapidly and outpacing many companies abilities to manage them. Corporate leadership has historically viewed operational risk management as a back office control function. But managing operational risks increasingly affects real

  6. Investigating an API for resilient exascale computing.

    SciTech Connect (OSTI)

    Stearley, Jon R.; Tomkins, James; VanDyke, John P.; Ferreira, Kurt Brian; Laros, James H.,; Bridges, Patrick

    2013-05-01

    Increased HPC capability comes with increased complexity, part counts, and fault occurrences. In- creasing the resilience of systems and applications to faults is a critical requirement facing the viability of exascale systems, as the overhead of traditional checkpoint/restart is projected to outweigh its bene ts due to fault rates outpacing I/O bandwidths. As faults occur and propagate throughout hardware and software layers, pervasive noti cation and handling mechanisms are necessary. This report describes an initial investigation of fault types and programming interfaces to mitigate them. Proof-of-concept APIs are presented for the frequent and important cases of memory errors and node failures, and a strategy proposed for lesystem failures. These involve changes to the operating system, runtime, I/O library, and application layers. While a single API for fault handling among hardware and OS and application system-wide remains elusive, the e ort increased our understanding of both the mountainous challenges and the promising trailheads. 3

  7. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second topical report. The SWC has grown and diversified its membership during its first 24 months of existence. The Consortium is now focused on building strategic alliances with additional industrial, state, and federal entities to expand further the SWC membership base and transfer technologies as they are developed. In addition, the Consortium has successfully worked to attract state support to co-fund SWC projects. Penn State has entered a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) which has provided $200,000 over the last two years to co-fund stripper well production-orientated projects that have relevance to New York state producers. During this reporting period, the Executive Council approved co-funding for 14 projects that have a total project value of $2,116,897. Since its inception, the SWC has approved cofunding for 27 projects that have a total project value of $3,632,109.84. The SWC has provided $2,242,701 in co-funding for these projects and programmatically maintains a cost share of 39%.

  8. Using Performance Tools to Support Experiments in HPC Resilience

    SciTech Connect (OSTI)

    Naughton, III, Thomas J; Boehm, Swen; Engelmann, Christian; Vallee, Geoffroy R

    2014-01-01

    The high performance computing (HPC) community is working to address fault tolerance and resilience concerns for current and future large scale computing platforms. This is driving enhancements in the programming environ- ments, specifically research on enhancing message passing libraries to support fault tolerant computing capabilities. The community has also recognized that tools for resilience experimentation are greatly lacking. However, we argue that there are several parallels between performance tools and resilience tools . As such, we believe the rich set of HPC performance-focused tools can be extended (repurposed) to benefit the resilience community. In this paper, we describe the initial motivation to leverage standard HPC per- formance analysis techniques to aid in developing diagnostic tools to assist fault tolerance experiments for HPC applications. These diagnosis procedures help to provide context for the system when the errors (failures) occurred. We describe our initial work in leveraging an MPI performance trace tool to assist in provid- ing global context during fault injection experiments. Such tools will assist the HPC resilience community as they extend existing and new application codes to support fault tolerances.

  9. On Undecidability Aspects of Resilient Computations and Implications to Exascale

    SciTech Connect (OSTI)

    Rao, Nageswara S

    2014-01-01

    Future Exascale computing systems with a large number of processors, memory elements and interconnection links, are expected to experience multiple, complex faults, which affect both applications and operating-runtime systems. A variety of algorithms, frameworks and tools are being proposed to realize and/or verify the resilience properties of computations that guarantee correct results on failure-prone computing systems. We analytically show that certain resilient computation problems in presence of general classes of faults are undecidable, that is, no algorithms exist for solving them. We first show that the membership verification in a generic set of resilient computations is undecidable. We describe classes of faults that can create infinite loops or non-halting computations, whose detection in general is undecidable. We then show certain resilient computation problems to be undecidable by using reductions from the loop detection and halting problems under two formulations, namely, an abstract programming language and Turing machines, respectively. These two reductions highlight different failure effects: the former represents program and data corruption, and the latter illustrates incorrect program execution. These results call for broad-based, well-characterized resilience approaches that complement purely computational solutions using methods such as hardware monitors, co-designs, and system- and application-specific diagnosis codes.

  10. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-05-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.

  11. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-08-27

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) release of 2002 SWC request-for-proposal, (2) organized and hosted the Spring SWC meeting in Columbus, Ohio for membership proposal presentations and review; (3) tentatively scheduled the 2002 fall technology transfer meeting sites, and (4) continued to recruit additional Consortium members. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

  12. Process Optimization for Solid Extraction, Flavor Improvement and Fat Removal in the Production of Soymilk From Full Fat Soy Flakes

    SciTech Connect (OSTI)

    Stanley Prawiradjaja

    2003-05-31

    Traditionally soymilk has been made with whole soybeans; however, there are other alternative raw ingredients for making soymilk, such as soy flour or full-fat soy flakes. US markets prefer soymilk with little or no beany flavor. modifying the process or using lipoxygenase-free soybeans can be used to achieve this. Unlike the dairy industry, fat reduction in soymilk has been done through formula modification instead of by conventional fat removal (skimming). This project reports the process optimization for solids and protein extraction, flavor improvement and fat removal in the production of 5, 8 and 12 {sup o}Brix soymilk from full fat soy flakes and whole soybeans using the Takai soymilk machine. Proximate analyses, and color measurement were conducted in 5, 8 and 12 {sup o}Brix soymilk. Descriptive analyses with trained panelists (n = 9) were conducted using 8 and 12 {sup o}Brix lipoxygenase-free and high protein blend soy flake soymilks. Rehydration of soy flakes is necessary to prevent agglomeration during processing and increase extractability. As the rehydration temperature increases from 15 to 50 to 85 C, the hexanal concentration was reduced. Enzyme inactivation in soy flakes milk production (measured by hexanal levels) is similar to previous reports with whole soybeans milk production; however, shorter rehydration times can be achieved with soy flakes (5 to 10 minutes) compared to whole beans (8 to 12 hours). Optimum rehydration conditions for a 5, 8 and 12 {sup o}Brix soymilk are 50 C for 5 minutes, 85 C for 5 minutes and 85 C for 10 minutes, respectively. In the flavor improvement study of soymilk, the hexanal date showed differences between undeodorized HPSF in contrast to triple null soymilk and no differences between deodorized HPSF in contrast to deodorized triple null. The panelists could not differentiate between the beany, cereal, and painty flavors. However, the panelists responded that the overall aroma of deodorized 8 {sup o}Brix triple null

  13. Resilience and inertia in model ecosystems: tests of some hypotheses

    SciTech Connect (OSTI)

    Turner, M.A.; DeAngelis, D.L.

    1982-08-01

    Resilience is defined as the speed with which a system returns to equilibrium following a perturbation, and resistance is defined as a measure of the extent to which a given compartment, or set of compartments, resists change. Resilience and resistance properties were investigated for both food web energy models and nutrient cycling models. Several indices of resilience, including the average transit time through the system, were examined. A hypothesis concerning the relationship between the transit time and the eigenvalues of the perturbation matrix is tested. Transit time is also used to investigate the fate of toxic materials in a system, and to determine peak loads of toxic materials in the compartments of a system.

  14. The resilient hybrid fiber sensor network with self-healing function

    SciTech Connect (OSTI)

    Xu, Shibo Liu, Tiegen; Ge, Chunfeng; Chen, Qinnan; Zhang, Hongxia

    2015-03-15

    This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working in FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.

  15. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  16. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    SciTech Connect (OSTI)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  17. Subsea production systems - trends in the nineties: Minitemplate/cluster wells; towed flowline bundles; multiphase flowmeters, improved gauges - a proven track record

    SciTech Connect (OSTI)

    Jones, J.W.

    1996-04-01

    Subsea production systems have successfully demonstrated their overall reliability, and have established a proven track record over the past 30 years of field experience. Current trends in their configuration from large, heavy, multiwell integrated drilling template and production/injection manifold systems to small, light-weight, {open_quotes}mini template{close_quotes} systems or clustered well manifolds with individual satellite wells-essentially a cost reduction trend-are expected to continue throughout the remainder of the decade. System configuration and equipment technology trends in the 1990s are now improving the profitability and capability of subsea production systems.

  18. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses

  19. Science and Technology at DHS: Resiliency of our Physical and Social Infrastructure

    SciTech Connect (OSTI)

    Erickson, Mitchel

    2012-04-11

    Disasters affect us all. The challenge is to minimize the impact. Resilience has been defined as “Foster individual, community, and system robustness, adaptability, and capacity for rapid recovery.” The Department of Homeland Security’s (DHS) Science and Technology Directorate (S&T) provides new technologies, materials, controls, models, and other tools that promote resilience. More important, science and technology can contribute to shaping our resiliency blueprint by instilling scientific rigor into the processes that will shape our future. This presentation will review resiliency approaches, emerging technologies, and capability gaps for resilient communities and institutions.

  20. Tribal Leader Forum on Climate Preparedness and Resiliency

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting the 10th in a series of planned strategic energy development forums for tribal leaders and interested staff on “Tribal Energy Systems: Climate Preparedness and Resiliency.”

  1. Energy Department Announces Up to $15 Million to Help Improve the Security

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Resilience of the Nation's Power Grid | Department of Energy Up to $15 Million to Help Improve the Security and Resilience of the Nation's Power Grid Energy Department Announces Up to $15 Million to Help Improve the Security and Resilience of the Nation's Power Grid July 12, 2016 - 11:48am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON - As part of the Obama Administration's commitment to protecting America's critical infrastructure, U.S. Deputy Energy Secretary

  2. Transformer Resilience and Advanced Components (TRAC) Program

    Broader source: Energy.gov [DOE]

    To date, much of the “smart grid” transformation has focused on applying advanced digital information and communication technologies to the power grid to improve the system’s reliability,...

  3. The impact of environmental constraints on productivity improvement and energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    Boyd, G.A.; McClelland, J.

    1996-12-31

    This paper presents a methodology and results for assessing the impact of production and energy efficiency, environmental regulation, and abatement capital expenditure constraints (e.g. capital rationing) on the productivity of energy and pollution intensive sectors. Energy is treated like any other production input when examining evidence of inefficiency. We find that capital rationing and environmental regulations do contribute to productivity and energy efficiency losses, but do not explain all of the production and energy inefficiencies observed in the paper industry. A summary of the energy source of production inefficiency found in the paper industry, is presented.. Each source is derived as the incremental contribution., i.e. the first is constraints on capital, the second in environmental regulation not accounted for by the first, and the final component is production inefficiency that is not accounted for my any of the- environmental analysis. While the methods are very data intensive, they reveal much more that analysis of aggregate data, 1835 since the only plant level data can provide the estimates of inefficiency that this methodology employs.

  4. Compressed Air System Optimization Saves Energy and Improves Production at a Textile Manufacturing Mill (Peerless Division, Thomastown Mills, Inc.)

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the textile manufacturing mill project.

  5. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect (OSTI)

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  6. Network resilience; A measure of network fault tolerance

    SciTech Connect (OSTI)

    Najjar, W. . Dept. of Computer Science); Gaudoit, J.L. . Dept. of Electrical Engineering)

    1990-02-01

    The failure of a node in a multicomputer system will not only reduce the computational power but also alter the network's topology. Network fault tolerance is a measure of the number of failures the network can sustain before a disconnection occurs. It is expressed traditionally as the network's node degree. In this paper, the authors propose a probabilistic measure of network fault tolerance expressed as the probability f a disconnection. Qualitative evaluation of this measure is presented. As expected, the single-node disconnection probability is the dominant factor irrespective of the topology under consideration. They derive an analytical approximation of the disconnection probability and verify it with Monte Carlo simulation. Based on this model, the measures of network resilience and relative network resilience are proposed as probabilistic measures of network fault tolerance. These are then used to evaluate the effects of the disconnection probability on the reliability of the system.

  7. Resilient Control Systems Practical Metrics Basis for Defining Mission Impact

    SciTech Connect (OSTI)

    Craig G. Rieger

    2014-08-01

    "Resilience” describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish “proper operation” and “impact.” A notional chemical processing plant is the use case for demonstrating how the system integrity metrics can be applied to establish performance, and

  8. Simultaneous ballistic deficit immunity and resilience to parallel noise sources: A new pulse shaping technique

    SciTech Connect (OSTI)

    Fabris, Lorenzo; Becker, John A.; Goulding, Frederick S.; Madden, Norman W.

    2000-10-11

    A new and different time variant pulse processing system has been developed based on a simple CR-RC filter and two analog switches. The new pulse processing technique combines both ballistic deficit immunity and resilience to parallel noise without a significant compromise to the low energy resolution, generally considered a mutually exclusive requirement. The filter is realized by combining two different pulse-shaping techniques. One of the techniques creates a low rate of curvature at the pulse peak, which reduces ballistic deficit, while the second technique increases the tolerance to low frequency noise by modifying the noise history. Several experimental measurements are presented, including tests on a co-planar grid CdZnTe detector. Improvements on both the resolution and line shape are shown for the 662 keV line of 137Cs.

  9. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1996. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    The main objective of this project is to establish the commercial readiness of a molten carbonate fuel cell power plant for distributed power generation, cogeneration, and compressor station applications. This effort includes marketing, systems design and analysis, packaging and assembly, test facility development, and technology development, improvement, and verification.

  10. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1995. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    The primary objective of this project is to establish, by 1998, the commercial readiness of MW-class molten carbonate fuel cell power plants for distributed power generation, cogeneration, and compressor station applications. Tasks include system design and analysis, manufacturing, packaging and assembly, test facility development, and technology development, improvement, and verification.

  11. Onset of Turbulence and Profile Resilience in the Helimak Configuration

    SciTech Connect (OSTI)

    Rypdal, K.; Ratynskaia, S.

    2005-06-10

    An experimental study of the onset of drift wave and flute interchange instabilities in the Helimak configuration is presented. It is shown that the Helimak offers the opportunity to separate the regions where these instabilities are active and to assess their relative role in cross-field anomalous transport and in the self-organization of exponential plasma density profiles with resilient scale length. Some results indicating a period doubling route to turbulence are also presented.

  12. Energy policies for resilience and national security. Final report

    SciTech Connect (OSTI)

    Lovins, A.B.; Lovins, L.H.

    1981-10-01

    The vulnerabilities of the US energy system to accidental or deliberate disruptions are analyzed generically and specifically and shown to be disturbingly large. Since they arise from reliance on highly centralized technologies, increasing such reliance is likely to increase national energy vulnerability. A more efficient, diverse, dispersed, renewable energy system is shown to be inherently more resilient, to make major failures impossible, and to be compatible with consistent adherence to free-market principles.

  13. Energy policies for resilience and national security. Final report

    SciTech Connect (OSTI)

    Lovins, A.B.; Lovins, L.H.

    1981-10-01

    The vulnerabilities of the U.S. energy system to accidental or deliberate disruptions are analyzed generically and specifically and shown to be disturbingly large. Since they arise from reliance on highly centralized technologies, increasing such reliance is likely to increase national energy vulnerability. A more efficient, diverse, dispersed, renewable energy system is shown to be inherently more resilient, to make major failures impossible, and to be compatible with consistent adherence to free-market principles.

  14. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economy Challenge Economy Sandia's N-ABLE™ This agent-based tool models complex economic & critical infrastructure impacts on local & international scales. Photo of N-Able Sandia has conducted well over 100 detailed economic analyses of manmade and natural disasters. Using best-of-class economic models, Sandia has substantial experience developing infrastructure investment strategies to help jurisdictions maximize their potential for an economically competitive and resilient future.

  15. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Psychological / Cognitive Effects Challenge Psychological / Cognitive Effects Coping with disaster Sandia's Human Resilience Index helps cities identify population groups that are at risk for acute distress following a disaster. Brain monitoring test Sandia's advanced behavioral modeling and simulation tools have been used to predict and mitigate impacts to people after traumatic events. For example, Sandia has developed models that simulate cognitive processes people use to make decisions

  16. Applied Resiliency for More Trustworthy Grid Operation (ARMORE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applied Resiliency for More Trustworthy Grid Operation (ARMORE) Secure communications, inspection, and data analysis platform that enhances the security posture for legacy and modern grid devices Background The electric grid increasingly relies on the secure transfer of real-time data between substations to maintain control of system operations. Traditional cybersecurity practices primarily employ perimeter-level protections, such as firewalls or end-point gateways. Additionally, substation

  17. Climate Action Champions: Resilience and Equity Webinar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy July 9, 2015 This webinar was hosted jointly by the Department of Energy and the Department of Housing and Urban Development (HUD). Presenters from the Boston Metropolitan Area Planning Council, PolicyLink, and the National Institute of Environmental Health Sciences discussed issues of climate change resilience and equity, including the impacts of climate change on different regions and socioeconomic groups. In addition, HUD provided tools and resources to assist with community

  18. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.; Morgan, C.D.

    1996-05-01

    The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then applying an acid-fracture stimulation treatment to the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. The study identified reservoir characteristics of beds that have the greatest long-term production potential.

  19. Resilient Control System Execution Agent (ReCoSEA)

    SciTech Connect (OSTI)

    Craig G. Rieger; Kris Villez

    2012-08-01

    In an increasingly networked world, critical infrastructure systems suffer from two types of vulnerability. The first is the traditionally recognized problem of monitoring the systems for faults and failures, recognizing and analyzing data, and responding with real understanding to the problems of the system. Increasingly complex systems create the opportunity for single points of failure to cascade when inaccurate assessment of system health increases response time or leads to faulty analysis of the problems involved. A second problem involves vulnerability to cyber intrusion, in which bad actors can mask system deterioration or present false data about system status. A resilient system will protect stability, efficiency, and security. To ensure these three states, the system must react to changing conditions within the system with coordination: no one component of the system can be allowed to react to problems without real consideration of the effects of that action on other components within the system. Systems with multi-agent design typically have three layers of action, a management layer, a coordination layer, and an execution layer. A resilient multi-agent system will emphasize functions of the execution layer, which has the responsibility of initiating actions, monitoring, analyzing, and controlling its own processes, while feeding information back to the higher levels of management and coordination. The design concept of a resilient control system execution agent (ReCoSEA) grows out of these underpinnings, and through the use of computational intelligence techniques, this paper suggests an associated design methodology.

  20. Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Plenary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations | Department of Energy Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Plenary Presentations Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Plenary Presentations On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters. The four presentations from the opening plenary session are available for download,

  1. Effects of coupling and asymmetries on load resilience of IC ITER-like structures

    SciTech Connect (OSTI)

    Bosia, G.; Bremond, S.; Colas, L.

    2005-09-26

    ITER-like structures feature an intrinsic resilience to load variations, which is related to the symmetry of the currents in the two branches of the structure. It has been suggested that the effects of coupling between the array elements would significantly impair the load resilience of the structure. In this paper the effect of inter strap coupling and of however induced electrical array asymmetries on the structure load resilience are quantitatively examined.

  2. DOE Assists Quinault Indian Nation with Plans for a Climate-Resilient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community | Department of Energy Assists Quinault Indian Nation with Plans for a Climate-Resilient Community DOE Assists Quinault Indian Nation with Plans for a Climate-Resilient Community June 15, 2016 - 9:27am Addthis After two seawall breaches and associated disaster declarations, the Quinault Indian Nation, located on Washington's Olympic Peninsula, has decided to move two of its villages to safer, more climate-resilient locations. With the help of DOE, the Tribe is working to ensure

  3. Advantages of Enzyme Could Lead to Improved Biofuels Production (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulase C. bescii CelA, a highly active and stable enzyme, exhibits a new cellulose digestion paradigm promoting inter-cellulase synergy. C. bescii CelA, a hydrolytic enzyme with multiple functional domains, may have several advantages over other fungal and bacterial cellulases for use in biofuels production: very high specific activity, stability at elevated tempera- tures, and a novel digestion mechanism. A research team from the U.S. Department of Energy's Bio- Energy Science Center, which

  4. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  5. EAC Recommendations for DOE Action Regarding U.S. Electric Grid Resiliency- March 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    EAC Recommendations for DOE Action Regarding U.S. Electric Grid Resiliency, approved at the March 12-13, 2014 meeting.

  6. Investigating the Interplay between Energy Efficiency and Resilience in High Performance Computing

    SciTech Connect (OSTI)

    Tan, Li; Song, Shuaiwen; Wu, Panruo; Chen, Zizhong; Ge, Rong; Kerbyson, Darren J.

    2015-05-29

    Energy efficiency and resilience are two crucial challenges for HPC systems to reach exascale. While energy efficiency and resilience issues have been extensively studied individually, little has been done to understand the interplay between energy efficiency and resilience for HPC systems. Decreasing the supply voltage associated with a given operating frequency for processors and other CMOS-based components can significantly reduce power consumption. However, this often raises system failure rates and consequently increases application execution time. In this work, we present an energy saving undervolting approach that leverages the mainstream resilience techniques to tolerate the increased failures caused by undervolting.

  7. Energy Department Launches Microgrid Competition to Support Resiliency in Communities Across America

    Broader source: Energy.gov [DOE]

    WASHINGTON – Today, the Energy Department launched the Microgrid 2014 MVP Challenge, a competition to support resiliency and adaptation in communities across America.

  8. A Resiliency Action Plan for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    SciTech Connect (OSTI)

    Vogel, J; Wagner, C.; Renfrow, S.

    2015-09-03

    The second stage in a two-stage project called the National Renewable Energy Laboratory (NREL) Climate Change Resiliency and Preparedness (CCRP) project is summarized in this resiliency action plan. This CCRP pilot project was funded by the U.S. Department of Energy's Sustainability Performance Office and launched in winter 2014. The resiliency action plan begins where the previous stage of the project -- the vulnerability assessment -- ended. This report discusses resiliency options to reduce the risk of the highest risk vulnerabilities that were identified in the NREL vulnerability assessment.

  9. Ergonomic Improvements for Foundries

    SciTech Connect (OSTI)

    Frank Peters; Patrick Patterson

    2002-06-18

    The goal of this project was to make improvements to the production systems of the steel casting industry through ergonomic improvements. Because of the wide variety of products, the wide range of product sizes, and the relatively small quantities of any particular product, manual operations remain a vital part of the production systems of the steel casting companies. Ergonomic improvements will assist the operators to more efficiently and consistently produce quality products.

  10. Design to Achieve Fault Tolerance and Resilience

    SciTech Connect (OSTI)

    Ted Quinn; Richard Bockhorst; Craig Peterson; Gregg Swindlehurst

    2012-09-01

    The purpose of this report is to provide initial scoping for follow on work designed to improve nuclear plant operation. The focus of this report is twofold. Selected trips over the last five years are examined to determine if there are potential opportunities to automate tasks that are currently performed manually. The second area is to evaluate the potential for avoiding reactor trips by reducing power in a controlled manner upon the loss of turbine generator load. Some candidate opportunities to reduce the frequency on reactor trips identified in this report are redundant feedwater controls, automated response to a feedwater or condensate pump trip reducing power vice a reactor trip, and elimination of air operators for the feedwater control valves or providing redundant air supplies.

  11. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    SciTech Connect (OSTI)

    Moss, R. H.; Delgado, A.; Malone, E L.

    2015-08-15

    ; (4) Vulnerability assessments can be connected to efforts to improve facility resilience to motivate participation; and (5) Efficient, scalable methods for vulnerability assessment can be developed, but additional case studies and evaluation are required.

  12. Improving Power Production in Acetate-Fed Microbial Fuel Cells via Enrichment of Exoelectrogenic Organisms in Flow-Through Systems

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A; Leak, David; Andras, Calin

    2009-01-01

    An exoelectrogenic, biofilm-forming microbial consortium was enriched in an acetate-fed microbial fuel cell (MFC) using a flow-through anode coupled to an air-cathode. Multiple parameters known to improve MFC performance were integrated in one design including electrode spacing, specific electrode surface area, flow-through design, minimization of dead volume within anode chamber, and control of external resistance. In addition, continuous feeding of carbon source was employed and the MFC was operated at intermittent high flows to enable removal of non-biofilm forming organisms over a period of six months. The consortium enriched using the modified design and operating conditions resulted in a power density of 345 W m-3 of net anode volume (3650 mW m-2), when coupled to a ferricyanide cathode. The enriched consortium included -, -, -Proteobacteria, Bacteroidetes and Firmicutes. Members of the order Rhodocyclaceae and Burkholderiaceae (Azospira spp. (49%), Acidovorax spp. (11%) and Comamonas spp. (7%)), dominated the microbial consortium. Denaturing gradient gel electrophoresis (DGGE) analysis based on primers selective for Archaea suggested a very low abundance of methanogens. Limiting the delivery of the carbon source via continuous feeding corresponding to the maximum cathodic oxidation rates permitted in the flow-through, air-cathode MFC resulted in coulombic efficiencies reaching 88 5.7%.

  13. Microsoft PowerPoint - Pillon Climate Change and the Need for Energy Resiliency Tribal Energy Systems March 2015.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Need for Energy Resiliency Jeffrey R. Pillon, Director of Energy Assurance National Association of State Energy Officials TRIBAL ENERGY SYSTEMS: CLIMATE PREPAREDNESS AND RESILIENCY March 4, 2015 Lincoln, California + What is Resilience?  Resilience, is defined in Presidential Policy Directive 21, as "the ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions...[it] includes the ability to withstand and recover

  14. Building a Greener, More Resilient Future in Washington State

    Office of Energy Efficiency and Renewable Energy (EERE)

    On July 8, Governor Jay Inslee and the Washington State Department of Commerce announced more than $14 million in smart grid matching grants from the State’s Clean Energy Fund. This funding will help three utilities – Avista Corp., Puget Sound Energy and Snohomish Public Utility District – test and deploy new energy storage technologies designed to help integrate renewable sources of energy such as wind and solar onto the electric grid. The aim is to support greater deployment of these technologies and build a grid that is more efficient, flexible and resilient to the effects of climate change.

  15. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2002-10-21

    The authors have performed a number of imbibition tests with the treated and untreated cores in nC{sub 10}, nC{sub 14}, and nC{sub 16} and a natural gas condensate liquid. Imbibition tests for nC{sub 14} and nC{sub 16} were also carried out at elevated temperatures of 100 C and 140 C. An experimental polymer synthesized for the purpose of this project was used in core treatment. Imbibition results are very promising and imply liquid condensate mobility enhancement in the treated core. They also performed flow tests to quantify the increase in well deliverability and to simulate flow under realistic field conditions. In the past we have performed extensive testing of wettability alteration in intermediate gas wetting for polymer FC759 at temperatures of 24 C and 90 C. The results were promising for the purpose of gas well deliverability improvement in gas condensate wells. We used FC759 to lower the surface energy of various rocks. The model fluids nC{sub 10}, and nC{sub 14} were used to represent condensate liquid, and air was used as the gas phase. A new (L-16349) polymer, which has been recently synthesized for the purpose of the project, was used in the work to be presented here. L-16349 is a water-soluble fluorochemical polymer, with low order, neutral PH and very low volatile organic compound (VOC < 9.1 g/l). It is light yellow in appearance and density in 25% solution is 1.1 g/cc. Polymer L-16349 is very safe from environmental considerations and it is economical for our purpose. In this work, in addition to nC{sub 10}, and nC{sub 14}, we used two other liquids nC{sub 16}, and a liquid condensate in order to study the effect of wettability alteration with a broader range of fluids.

  16. A Framework For Evaluating Comprehensive Fault Resilience Mechanisms In Numerical Programs

    SciTech Connect (OSTI)

    Chen, S.; Peng, L.; Bronevetsky, G.

    2015-01-09

    As HPC systems approach Exascale, their circuit feature will shrink, while their overall size will grow, all at a fixed power limit. These trends imply that soft faults in electronic circuits will become an increasingly significant problem for applications that run on these systems, causing them to occasionally crash or worse, silently return incorrect results. This is motivating extensive work on application resilience to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithm-specific error detection and resilience techniques. Effective use of such techniques requires a detailed understanding of (1) which vulnerable parts of the application are most worth protecting (2) the performance and resilience impact of fault resilience mechanisms on the application. This paper presents FaultTelescope, a tool that combines these two and generates actionable insights by presenting in an intuitive way application vulnerabilities and impact of fault resilience mechanisms on applications.

  17. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  18. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  19. Resilience of nuclear matter in light ion induced reactions

    SciTech Connect (OSTI)

    Colonna, M.; Cugnon, J.; Pollacco, E.C.

    1997-03-01

    Cavitation and heating of the target nucleus in the first instances of {sup 3}He-induced collisions in the GeV/nucleon range are investigated in an intranuclear cascade model for the formation of this structure and a stochastic one-body dynamics calculation to study its evolution. The hard collisions having essentially ceased when the structure is fully developed, the latter model is particularly suited to study the possible breakup of the system. It is shown, however, that the target recovers a spherical shape rather rapidly, and has thus a good chance to decay by standard evaporation, justifying the use of a cascade + evaporation model to analyze the data. It is also shown that the system has to be much more modified to break up into pieces instead of recovering a compact shape: in these reactions, it is thus expected that nuclear matter is resilient to shape deformation and thermal excitation. Arguments are given to explain that expansion of the system, not important in these reactions, is required to overcome this resilience. {copyright} {ital 1997} {ital The American Physical Society}

  20. Resilience of lotic ecosystems to a light-elimination disturbance

    SciTech Connect (OSTI)

    Steinman, A.D.; Mulholland, P.J.; Palumbo, A.V.; Flum, T.F.; DeAngelis, D.L. )

    1991-01-01

    Resilience of eight laboratory stream ecosystems was evaluated following a 92-d light elimination disturbance. Prior to the disturbance, four treatments (snails/once-through flow, snails/recirculated flow, no snails/once-through flow, no snails/recirculated flow) were imposed on the streams, resulting in systems with different biomass levels, nutrient concentrations, and recycling indices. Based on results from models of ecosystem response to disturbance, the authors hypothesized a priori that once-through streams would recover more quickly than recirculated streams within each grazing regime and that grazed streams would recover more quickly than ungrazed streams within each flow regime. Their results indicated that once-through streams did have a higher resilience than recirculated streams when snails were absent, but not when snails were present. Indeed, most parameters recovered faster in streams without snails than those with them, irrespective of flow regime, in contrast to their prediction. Despite the faster initial recovery rates in once-through than recirculated streams without snails, final biomass levels were similar between these streams. Measurements of phosphorus recycling indices suggested that higher rates of nutrient recycling near the end of the experiment in recirculated streams compensated for the lower inputs of new nutrients in the incoming water, allowing biomass to reach levels similar to those in once-through streams.

  1. Experimental Validation of a Resilient Monitoring and Control System

    SciTech Connect (OSTI)

    Wen-Chiao Lin; Kris R. E. Villez; Humberto E. Garcia

    2014-05-01

    Complex, high performance, engineering systems have to be closely monitored and controlled to ensure safe operation and protect public from potential hazards. One of the main challenges in designing monitoring and control algorithms for these systems is that sensors and actuators may be malfunctioning due to malicious or natural causes. To address this challenge, this paper addresses a resilient monitoring and control (ReMAC) system by expanding previously developed resilient condition assessment monitoring systems and Kalman filter-based diagnostic methods and integrating them with a supervisory controller developed here. While the monitoring and diagnostic algorithms assess plant cyber and physical health conditions, the supervisory controller selects, from a set of candidates, the best controller based on the current plant health assessments. To experimentally demonstrate its enhanced performance, the developed ReMAC system is then used for monitoring and control of a chemical reactor with a water cooling system in a hardware-in-the-loop setting, where the reactor is computer simulated and the water cooling system is implemented by a machine condition monitoring testbed at Idaho National Laboratory. Results show that the ReMAC system is able to make correct plant health assessments despite sensor malfunctioning due to cyber attacks and make decisions that achieve best control actions despite possible actuator malfunctioning. Monitoring challenges caused by mismatches between assumed system component models and actual measurements are also identified for future work.

  2. Improving Performance of Federal Permitting and Review of Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Improving Performance of Federal Permitting and Review of Infrastructure Projects Improving Performance of Federal Permitting and Review of Infrastructure Projects The U.S. Department of Energy's (DOE) Office of Electricity and Energy Reliability has built upon its ongoing effort to reflect the Obama Administration's commitment to improving the resiliency, reliability, and security of the nation's electricity delivery system by announcing the upcoming

  3. Improving Radar Antenna Performance with Eigenvalue Processing of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects | Department of Energy Improving Performance of Federal Permitting and Review of Infrastructure Projects Improving Performance of Federal Permitting and Review of Infrastructure Projects The U.S. Department of Energy's (DOE) Office of Electricity and Energy Reliability has built upon its ongoing effort to reflect the Obama Administration's commitment to improving the resiliency, reliability, and security of the nation's electricity delivery system by announcing the upcoming

  4. A Mathematical Framework for the Analysis of Cyber-Resilient Control Systems

    SciTech Connect (OSTI)

    Melin, Alexander M; Ferragut, Erik M; Laska, Jason A; Fugate, David L; Kisner, Roger

    2013-01-01

    The increasingly recognized vulnerability of industrial control systems to cyber-attacks has inspired a considerable amount of research into techniques for cyber-resilient control systems. The majority of this effort involves the application of well known information security (IT) techniques to control system networks. While these efforts are important to protect the control systems that operate critical infrastructure, they are never perfectly effective. Little research has focused on the design of closed-loop dynamics that are resilient to cyber-attack. The majority of control system protection measures are concerned with how to prevent unauthorized access and protect data integrity. We believe that the ability to analyze how an attacker can effect the closed loop dynamics of a control system configuration once they have access is just as important to the overall security of a control system. To begin to analyze this problem, consistent mathematical definitions of concepts within resilient control need to be established so that a mathematical analysis of the vulnerabilities and resiliencies of a particular control system design methodology and configuration can be made. In this paper, we propose rigorous definitions for state awareness, operational normalcy, and resiliency as they relate to control systems. We will also discuss some mathematical consequences that arise from the proposed definitions. The goal is to begin to develop a mathematical framework and testable conditions for resiliency that can be used to build a sound theoretical foundation for resilient control research.

  5. Next-generation Algorithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience

    SciTech Connect (OSTI)

    Burchett, Deon L.; Chen, Richard Li-Yang; Phillips, Cynthia A.; Richard, Jean-Philippe

    2015-05-01

    This report summarizes the work performed under the project project Next-Generation Algo- rithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience. The goal of the project was to improve mathematical programming-based optimization technology for in- frastructure protection. In general, the owner of a network wishes to design a network a network that can perform well when certain transportation channels are inhibited (e.g. destroyed) by an adversary. These are typically bi-level problems where the owner designs a system, an adversary optimally attacks it, and then the owner can recover by optimally using the remaining network. This project funded three years of Deon Burchett's graduate research. Deon's graduate advisor, Professor Jean-Philippe Richard, and his Sandia advisors, Richard Chen and Cynthia Phillips, supported Deon on other funds or volunteer time. This report is, therefore. essentially a replication of the Ph.D. dissertation it funded [12] in a format required for project documentation. The thesis had some general polyhedral research. This is the study of the structure of the feasi- ble region of mathematical programs, such as integer programs. For example, an integer program optimizes a linear objective function subject to linear constraints, and (nonlinear) integrality con- straints on the variables. The feasible region without the integrality constraints is a convex polygon. Careful study of additional valid constraints can significantly improve computational performance. Here is the abstract from the dissertation: We perform a polyhedral study of a multi-commodity generalization of variable upper bound flow models. In particular, we establish some relations between facets of single- and multi- commodity models. We then introduce a new family of inequalities, which generalizes traditional flow cover inequalities to the multi-commodity context. We present encouraging numerical results. We also consider the directed edge

  6. Using Semantic Web Technologies to Develop Intrinsically Resilient Energy Control Systems

    SciTech Connect (OSTI)

    Sheldon, Frederick T; Huang, Jingshan; Fetzer, Daniel T; Morris, Thomas H; Jonathan, Kirsch; Goose, Stuart; Wei, Dong; Dang, Jiangbo; Manz, David

    2012-01-01

    To preserve critical energy control functions while under attack, it is necessary to perform comprehensive analysis on root causes and impacts of cyber intrusions without sacrificing the availability of energy delivery. We propose to design an intrinsically resilient energy control system where we extensively utilize Semantic Web technologies, which play critical roles in knowledge representation and acquisition. While our ultimate goal is to ensure availability/resiliency of energy delivery functions and the capability to assess root causes and impacts of cyber intrusions, the focus of this paper is to demonstrate a proof of concept of how Semantic Web technologies can significantly contribute to resilient energy control systems.

  7. Blue Lake Rancheria-Forging a Path toward Climate Resiliency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Rancheria-Forging a Path toward Climate Resiliency Blue Lake Rancheria-Forging a Path toward Climate Resiliency January 22, 2015 - 4:14pm Addthis Blue Lake Rancheria—Forging a Path toward Climate Resiliency The Blue Lake Rancheria Tribe is one of 16 communities selected as Climate Action Champions by the Obama Administration in December for exceptional work in response to climate change. To date, the Tribe has reduced energy consumption by 35%, completed dozens of energy

  8. "Grid Resilience to Natural Disasters: Challenges and Opportunities Lie

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ahead" Article Now Available | Department of Energy "Grid Resilience to Natural Disasters: Challenges and Opportunities Lie Ahead" Article Now Available "Grid Resilience to Natural Disasters: Challenges and Opportunities Lie Ahead" Article Now Available June 22, 2016 - 12:37pm Addthis Dan Ton, Program Manager of Smart Grid R&D in the Office of Electricity Delivery and Energy Reliability, has co-authored an article entitled "Grid Resilience to Natural

  9. July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Facilities | Department of Energy July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 12, 2013 - 10:40am Addthis On Wednesday, July 17 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar on resilient solar-storage systems for homes and commercial facilities. The webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program

  10. Reduced Lorenz models for anomalous transport and profile resilience

    SciTech Connect (OSTI)

    Rypdal, K.; Garcia, O. E.

    2007-02-15

    The physical basis for the Lorenz equations for convective cells in stratified fluids, and for magnetized plasmas imbedded in curved magnetic fields, are reexamined with emphasis on anomalous transport. It is shown that the Galerkin truncation leading to the Lorenz equations for the closed boundary problem is incompatible with finite fluxes through the system in the limit of vanishing diffusion. An alternative formulation leading to the Lorenz equations is proposed, invoking open boundaries and the notion of convective streamers and their back-reaction on the profile gradient, giving rise to resilience of the profile. Particular emphasis is put on the diffusionless limit, where these equations reduce to a simple dynamical system depending only on one single forcing parameter. This model is studied numerically, stressing experimentally observable signatures, and some of the perils of dimension-reducing approximations are discussed.

  11. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect (OSTI)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  12. Agenda: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities

    Broader source: Energy.gov [DOE]

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session.

  13. Briefing Memo: Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session.

  14. Racial Geography, Economic Growth and Natural Disaster Resilience

    SciTech Connect (OSTI)

    Li, Huiping; Fernandez, Steven J.; Ganguly, Auroop

    2014-03-01

    Recent development of National Response Plans and National Incident Management Plans has emphasized the need for interoperability of plans, systems, technology, and command structures. However, much less emphasis has been placed on equally important elements such as the at-risk populations’ response to those plans, systems, and directions. The community-wide consequences of Hurricane Katrina demonstrated that the protection of communities should no longer be considered only a function of public organizations. Private organizations, nonprofit organizations and individual households have significant roles to play in these plans (Comfort 2006, Salamon 2002). This study is a first attempt to characterize the effect on the resilience (recovery) of metropolitan areas by the presence (or absence) of separate small communities within a larger jurisdiction. These communities can be based on many different social cleavages (ethnic, racial, economic, social, geographic, linguistic, etc.).

  15. Resilient Electric Distribution Grid R&D Workshop- June 11, 2014

    Broader source: Energy.gov [DOE]

    On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters.

  16. National Disaster Resilience Competition Webinar Series- Q&A Session: Review Completeness Requirements

    Broader source: Energy.gov [DOE]

    In light of the recent announcement of the National Disaster Resilience Competition (NDRC), HUD is offering a series of webinars to discuss NDRC NOFA requirements, answer NDRC NOFA questions and...

  17. National Disaster Resilience Competition Webinar Series- Q&A Session: Walk through FAQ's

    Office of Energy Efficiency and Renewable Energy (EERE)

    In light of the recent announcement of the National Disaster Resilience Competition (NDRC), HUD is offering a series of webinars to discuss NDRC NOFA requirements, answer NDRC NOFA questions and...

  18. National Disaster Resilience Competition Webinar Series: Long-Term Commitment Factor

    Office of Energy Efficiency and Renewable Energy (EERE)

    In light of the recent announcement of the National Disaster Resilience Competition (NDRC), HUD is offering a series of webinars to discuss NDRC NOFA requirements, answer NDRC NOFA questions and...

  19. Request for Information on the Electric Grid Resilience Self-Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126 - Jul. 1, 2015 | Department of Energy the Electric Grid Resilience Self-Assessment Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126 - Jul. 1, 2015 Request for Information on the Electric Grid Resilience Self-Assessment Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126 - Jul. 1, 2015 The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability

  20. Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Sessions Notes and Reports | Department of Energy - Breakout Sessions Notes and Reports Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Breakout Sessions Notes and Reports On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters. Notes and presentations from two concurrent breakout sessions are available for download, below. The

  1. Register for the EPRI-Sandia Symposium on Secure and Resilient Microgrids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aug, 29th-31st Register for the EPRI-Sandia Symposium on Secure and Resilient Microgrids Aug, 29th-31st - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  2. Climate Change Vulnerability and Resilience: Current Status and Trends for Mexico

    SciTech Connect (OSTI)

    Ibarraran , Maria E.; Malone, Elizabeth L.; Brenkert, Antoinette L.

    2010-08-25

    Climate change alters different localities on the planet in different ways. The impact on each region depends mainly on the degree of vulnerability that natural ecosystems and human-made infrastructure have to changes in climate and extreme meteorological events, as well as on the coping and adaptation capacity towards new environmental conditions. This study assesses the current resilience of Mexico and Mexican states to such changes, as well as how this resilience will look in the future.

  3. DOE Launches the "Partnership for Energy Sector Climate Resilience"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with 17 Electric Utilities | Department of Energy DOE Launches the "Partnership for Energy Sector Climate Resilience" with 17 Electric Utilities DOE Launches the "Partnership for Energy Sector Climate Resilience" with 17 Electric Utilities June 2, 2015 - 12:00pm Addthis Melanie A. Kenderdine Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis On April 30, Energy Secretary Moniz and Deputy Secretary Elizabeth Sherwood-Randall welcomed senior

  4. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect (OSTI)

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has

  5. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV FOR ELECTRICITY SYSTEM RESILIENCY POLICY AND REGULATORY CONSIDERATIONS ABSTRACT Distributed solar photovoltaic (PV) systems have the potential to supply electricity during grid outages resulting from extreme weather or other emergency situations. As such, distributed PV can signifcantly increase the resiliency of the electricity system. In order to take advantage of this capability, however, the PV systems must be designed with resiliency in mind and combined with other technologies, such as

  6. Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States

    SciTech Connect (OSTI)

    Watson, Jean-Paul; Guttromson, Ross; Silva-Monroy, Cesar; Jeffers, Robert; Jones, Katherine; Ellison, James; Rath, Charles; Gearhart, Jared; Jones, Dean; Corbet, Tom; Hanley, Charles; Walker, La Tonya

    2014-09-01

    This report has been written for the Department of Energy’s Energy Policy and Systems Analysis Office to inform their writing of the Quadrennial Energy Review in the area of energy resilience. The topics of measuring and increasing energy resilience are addressed, including definitions, means of measuring, and analytic methodologies that can be used to make decisions for policy, infrastructure planning, and operations. A risk-based framework is presented which provides a standard definition of a resilience metric. Additionally, a process is identified which explains how the metrics can be applied. Research and development is articulated that will further accelerate the resilience of energy infrastructures.

  7. Uncertainty in Resilience to Climate Change in India and Indian States

    SciTech Connect (OSTI)

    Malone, Elizabeth L.; Brenkert, Antoinette L.

    2008-10-03

    This study builds on an earlier analysis of resilience of India and Indian states to climate change. The previous study (Brenkert and Malone 2005) assessed current resilience; this research uses the Vulnerability-Resilience Indicators Model (VRIM) to project resilience to 2095 and to perform an uncertainty analysis on the deterministic results. Projections utilized two SRES-based scenarios, one with fast-and-high growth, one with delayed growth. A detailed comparison of two states, the Punjab and Orissa, points to the kinds of insights that can be obtained using the VRIM. The scenarios differ most significantly in the timing of the uncertainty in economic prosperity (represented by GDP per capita) as a major factor in explaining the uncertainty in the resilience index. In the fast-and-high growth scenario the states differ most markedly regarding the role of ecosystem sensitivity, land use and water availability. The uncertainty analysis shows, for example, that resilience in the Punjab might be enhanced, especially in the delayed growth scenario, if early attention is paid to the impact of ecosystems sensitivity on environmental well-being of the state. By the same token, later in the century land-use pressures might be avoided if land is managed through intensification rather than extensification of agricultural land. Thus, this methodology illustrates how a policy maker can be informed about where to focus attention on specific issues, by understanding the potential changes at a specific location and time – and, thus, what might yield desired outcomes. Model results can point to further analyses of the potential for resilience-building.

  8. Adaptation policies to increase terrestrial ecosystem resilience. Potential utility of a multicriteria approach

    SciTech Connect (OSTI)

    de Bremond, Ariane; Engle, Nathan L.

    2014-01-30

    Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in the realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.

  9. Climate Change Vulnerability and Resilience: Current Status and Trends for Mexico

    SciTech Connect (OSTI)

    Ibarraran , Maria E.; Malone, Elizabeth L.; Brenkert, Antoinette L.

    2008-12-30

    Climate change alters different localities on the planet in different ways. The impact on each region depends mainly on the degree of vulnerability that natural ecosystems and human-made infrastructure have to changes in climate and extreme meteorological events, as well as on the coping and adaptation capacity towards new environmental conditions. This study assesses the current resilience of Mexico and Mexican states to such changes, as well as how this resilience will look in the future. In recent studies (Moss et al. 2000, Brenkert and Malone 2005, Malone and Brenket 2008, Ibarrarán et al. 2007), the Vulnerability-Resilience Indicators Model (VRIM) is used to integrate a set of proxy variables that determine the resilience of a region to climate change. Resilience, or the ability of a region to respond to climate variations and natural events that result from climate change, is given by its adaptation and coping capacity and its sensitivity. On the one hand, the sensitivity of a region to climate change is assessed, emphasizing its infrastructure, food security, water resources, and the health of the population and regional ecosystems. On the other hand, coping and adaptation capacity is based on the availability of human resources, economic capacity and environmental capacity.

  10. Compressed Air System Optimization Saves Energy and Improves Production at a Synthetic Textile Plant: Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    SciTech Connect (OSTI)

    Wogsland, J.

    2001-05-17

    BestPractices technical case study gives an overview of a compressed air system improvement in a textile plant in South Carolina.

  11. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996, 11th Quarter of the project

    SciTech Connect (OSTI)

    Allison, E.; Morgan, C.D.

    1996-07-30

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  12. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    SciTech Connect (OSTI)

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; Ravichandran, Maruthi T.

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

  13. A critical analysis of hazard resilience measures within sustainability assessment frameworks

    SciTech Connect (OSTI)

    Matthews, Elizabeth C.; Sattler, Meredith; Friedland, Carol J.

    2014-11-15

    Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site, community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs.

  14. Experimental Smart Outlet Brings Flexibility, Resiliency to Grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Geothermal Natural Gas Safety, Security & ... Hydrogen Production Market Transformation Fuel Cells ... Energy Surety, Grid Integration, Microgrid, News, News & ...

  15. General framework for the assessment of dynamic resilience. Part I. Theory

    SciTech Connect (OSTI)

    Morari, M.

    1982-02-01

    With increased process integration it has become very important to evaluate and compare the dynamic operability characteristics (dynamic resilience) of alternate designs. Based on recent results in multivariable frequency response theory a new framework is developed for this purpose. It is shown that dynamic resilience is determined by characteristics inherent in the system and that it is independent of the imposed controller structure and type. This gives the new method considerable intuitive appeal and allows it to avoid the lengthy optimization procedures which are typical for the previously published techniques.

  16. Energy Secretary Ernest Moniz's Remarks on Climate Change and Resiliency at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia University, New York City - As Delivered | Department of Energy Remarks on Climate Change and Resiliency at Columbia University, New York City - As Delivered Energy Secretary Ernest Moniz's Remarks on Climate Change and Resiliency at Columbia University, New York City - As Delivered August 26, 2013 - 1:51pm Addthis So today I'm going to say a few words, starting out with an area in which this region, this institution, and maybe all of you can -- can help provide some -- some

  17. Ensuring the Resiliency of Our Future Water and Energy Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Ensuring the Resiliency of Our Future Water and Energy Systems Ensuring the Resiliency of Our Future Water and Energy Systems June 18, 2014 - 12:00pm Addthis Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Infographic by Sarah Gerrity, Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Learn More Read the full Water-Energy Nexus report. Visit the Water-Energy Tech Team website to learn more about the

  18. Microsoft PowerPoint - HPC - Resilience-Fault Injection Research Penta_Final [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3146 This document is approved for public release; further dissemination unlimited Resilience / Fault Injection Research ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0 10 20 30 40 50 60 70 80 32PB 64PB 96PB 128PB System Memory Capacity Uncorrected Error Rate (Relative to Cielo) ● ● ● ● ● ● 8Gbit / High FIT 8Gbit / Low FIT 16Gbit / High FIT 16Gbit / Low FIT 32Gbit / High FIT 32Gbit / Low FIT Resilience / Fault Injection Research

  19. PV Performance Modeling Collaborative's New and Improved Website Is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Launched Modeling Collaborative's New and Improved Website Is Launched - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear

  20. Effects of nutrient recycling and food-chain length on resilience

    SciTech Connect (OSTI)

    DeAngelis, D.L.; Bartell, S.M. ); Brenkert, A.L. )

    1989-11-01

    The attempt to explain the observed structure of ecological food webs has been one of the recent key issues of theoretical ecology. Unquestionably, many factors are involved in determining food-web structure. The dissipation of available energy from one trophic level to the next has been emphasized by Yodzis as the major factor limiting the length of food chains. However, Pimm and Lawton and Pimm have argued that a decrease in relative stability with increasing food-chain length may also be a factor. By relative stability (more commonly, resilience), we mean the rate at which a stable ecological system returns to a steady state following a perturbation. Resilience can be defined more precisely as the inverse of the return time T{sub R}, the time it takes a systems to return a specified fraction of the way toward a steady state following a perturbation. Besides its possible significance to food-web structure, ecosystem resilience is a factor of practical importance, since it is a measure of the rate at which the ecosystem can recover from disturbances. Our purpose is to investigate resilience in food-chain and food-web models as nutrient input and the trophic structure are varied and to offer explanations of the observed model behaviors. In this paper we present the basic results by first using a simple abstract food-chain model at steady state and then showing that these results hold for a more complex food-web simulation model without a constant steady state solution.

  1. NREL Improves Access to Building Product Energy Data (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Performance Exchange helps move projects to implementation. A new Web-based tool enables users to evaluate the site-specific performance of various building technolo- gies, support more effective financial analyses, and make better-informed procure- ment decisions. By improving stakeholders' confidence in performance, the Technol- ogy Performance Exchange(tm) (TPEx(tm)) is streamlining access to foundational energy performance data and helping many viable energy efficiency projects

  2. Genomics of Climate Resilience (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Bermingham, Eldredge

    2013-03-27

    Eldredge Bermingham of the Smithsonian Tropical Research Institute-Panama on "Genomics of climate resilience" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  3. Final Report and Other Materials from 2014 Resilient Electric Distribution Grid R&D Workshop Now Available

    Broader source: Energy.gov [DOE]

    On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters.

  4. LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

  5. Examining Supply Chain Resilience for the Intermodal Shipment of Spent Nuclear Fuel and High Level Radioactive Materials

    SciTech Connect (OSTI)

    Peterson, Steven K

    2016-01-01

    The U.S. Department of Energy (DOE) has a significant programmatic interest in the safe and secure routing and transportation of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States, including shipments entering the country from locations outside U.S borders. In any shipment of SNF/HLW, there are multiple chains; a jurisdictional chain as the material moves between jurisdictions (state, federal, tribal, administrative), a physical supply chain (which mode), as well as a custody chain (which stakeholder is in charge/possession) of the materials being transported. Given these interconnected networks, there lies vulnerabilities, whether in lack of communication between interested stakeholders or physical vulnerabilities such as interdiction. By identifying key links and nodes as well as administrative weaknesses, decisions can be made to harden the physical network and improve communication between stakeholders. This paper examines the parallel chains of oversight and custody as well as the chain of stakeholder interests for the shipments of SNF/HLW and the potential impacts on systemic resiliency. Using the Crystal River shutdown location as well as a hypothetical international shipment brought into the United States, this paper illustrates the parallel chains and maps them out visually.

  6. Report for the ASC CSSE L2 Milestone (4873) - Demonstration of Local Failure Local Recovery Resilient Programming Model.

    SciTech Connect (OSTI)

    Heroux, Michael A.; Teranishi, Keita

    2014-06-01

    Recovery from process loss during the execution of a distributed memory parallel application is presently achieved by restarting the program, typically from a checkpoint file. Future computer system trends indicate that the size of data to checkpoint, the lack of improvement in parallel file system performance and the increase in process failure rates will lead to situations where checkpoint restart becomes infeasible. In this report we describe and prototype the use of a new application level resilient computing model that manages persistent storage of local state for each process such that, if a process fails, recovery can be performed locally without requiring access to a global checkpoint file. LFLR provides application developers with an ability to recover locally and continue application execution when a process is lost. This report discusses what features are required from the hardware, OS and runtime layers, and what approaches application developers might use in the design of future codes, including a demonstration of LFLR-enabled MiniFE code from the Matenvo mini-application suite.

  7. Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production

    SciTech Connect (OSTI)

    Albright, S.P.; Ackerman, B.; Chamberlin, R.R.; Jordan, J.F. )

    1992-04-01

    This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.

  8. Facile preparation and improved photocatalytic H{sub 2}-production of Pt-decorated CdS/TiO{sub 2} nanorods

    SciTech Connect (OSTI)

    Yu, Qi; Xu, Jie; Wang, Wenzhong; Lu, Chunli

    2014-03-01

    Graphical abstract: - Highlights: Pt-CdS/TiO{sub 2} nanorods were firstly realized by electrospinning. They exhibited high photocatalytic H{sub 2} production activity. The mechanism of the high performance was discussed. - Abstract: Pt-CdS/TiO{sub 2} nanorods with different molar ratios of Cd:Ti were prepared through an electrospinning method followed by sulfidation treatment and photodeposition. The nanorod-like samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence spectra (PL), and UVvis diffuse reflectance spectroscopy (DRS). The results indicated that the as-prepared samples exhibited wider light absorption range and lower recombination rate of photogenerated electronhole pairs after the introduction of Pt and CdS. The photocatalysis experiments showed that Pt-modified CdS/TiO{sub 2} nanorods exhibited much higher activities than pure TiO{sub 2} in the evolution of hydrogen under simulated solar light irradiation.

  9. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; Zhang, Minzhe; Jernstedt, Judith A.; Hou, Dandi; Ramsier, Cliff; Brown, Patrick H.

    2015-01-21

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower (H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualize Zn withinmore » the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO₄ alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.« less

  10. Risk Analysis, Grid Integration, and Resiliency - State and Federal Collaboration and Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A l i c e L i p p e r t S e n i o r Te c h n i c a l Ad v i s o r O f fi c e o f E l e c t r i c i t y D e l i v e r y a n d E n e r g y Re l i a b i l i t y ( O E ) U S D e p a r t m e n t o f E n e r g y M a r c h 4 , 2 01 5 THE ROLE OF ENERGY INFRASTRUCTURE MODELING AND ANALYSIS (EIMA) IN ENERGY SYSTEMS RISK AND RESILIENCE Tribal Energy Systems: Climate Preparedness and Resiliency Tribal Leader Forum Series Office of Electricity Delivery and Energy Reliability BRIEFING TOPICS Overview of

  11. THE RESILIENCE OF UPLAND-OAK FOREST CANOPY TREES TO CHRONIC AND ACUTE PRECIPITATION MANIPULATIONS

    SciTech Connect (OSTI)

    Hanson, Paul J; Tschaplinski, Timothy J; Wullschleger, Stan D; Todd Jr, Donald E; Auge, Robert M.

    2007-01-01

    Implications of chronic ( 33 percent) and acute (-100 percent) precipitation change were evaluated for trees of upland-oak forests of the eastern United States. Chronic manipulations have been conducted since 1993, and acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were initiated in 2003. Through 12 years of chronic manipulations tree growth remained unaffected by natural or induced rainfall deficits even though severe drought conditions dramatically reduced canopy function in some years. The resilience of canopy trees to chronic-change was the result of a disconnect between tree growth phenology and late-season drought occurrence. Acute precipitation exclusion from the largest canopy trees also produced limited growth reductions from 2003 through 2005. Elimination of lateral root water sources for the acute treatment trees, via trenching midway through the 2004 growing-season, forced the conclusion that deep rooting was a key mechanism for large-tree resilience to severe drought.

  12. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; Ravichandran, Maruthi T.

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less

  13. Quadratic partial eigenvalue assignment in large-scale stochastic dynamic systems for resilient and economic design

    SciTech Connect (OSTI)

    Das, Sonjoy; Goswami, Kundan; Datta, Biswa N.

    2014-12-10

    Failure of structural systems under dynamic loading can be prevented via active vibration control which shifts the damped natural frequencies of the systems away from the dominant range of loading spectrum. The damped natural frequencies and the dynamic load typically show significant variations in practice. A computationally efficient methodology based on quadratic partial eigenvalue assignment technique and optimization under uncertainty has been formulated in the present work that will rigorously account for these variations and result in an economic and resilient design of structures. A novel scheme based on hierarchical clustering and importance sampling is also developed in this work for accurate and efficient estimation of probability of failure to guarantee the desired resilience level of the designed system. Numerical examples are presented to illustrate the proposed methodology.

  14. A simulation infrastructure for examining the performance of resilience strategies at scale.

    SciTech Connect (OSTI)

    Ferreira, Kurt Brian; Levy, Scott N.; Bridges, Patrick G.

    2013-04-01

    Fault-tolerance is a major challenge for many current and future extreme-scale systems, with many studies showing it to be the key limiter to application scalability. While there are a number of studies investigating the performance of various resilience mechanisms, these are typically limited to scales orders of magnitude smaller than expected for next-generation systems and simple benchmark problems. In this paper we show how, with very minor changes, a previously published and validated simulation framework for investigating appli- cation performance of OS noise can be used to simulate the overheads of various resilience mechanisms at scale. Using this framework, we compare the failure-free performance of this simulator against an analytic model to validate its performance and demonstrate its ability to simulate the performance of two popular rollback recovery methods on traces from real

  15. Resilience to decoherence of the macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    SciTech Connect (OSTI)

    Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco

    2010-09-15

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  16. Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane Seasons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hardening and Resiliency U.S. Energy Industry Response to Recent Hurricane Seasons Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy August 2010 OE/ISER Final Report 8/16/10 i For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about

  17. Tribal Leaders Provide White House with Input on Bolstering Climate Resilience

    Broader source: Energy.gov [DOE]

    Tribes and Alaska Native Villages feel the brunt of a changing climate in direct and significant ways that undermine their cultures, economies, and the overall general welfare of their citizens. Unfortunately, they are too frequently left out of federal and state climate preparedness and resilience efforts, both in terms of planning and disaster response. And they generally lack sufficient governmental capacity and financial resources to prepare for and respond to major climate-related events on their own.

  18. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the White House Council on Environmental Quality blog: Last Friday I had the pleasure of visiting the Fond du Lac Band of Lake Superior Chippewa Indian Reservation. We toured the reservation and facilities with tribal Chairwoman Karen Diver, a member of the President’s State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience, and the Tribe’s Resource Management Division.

  19. Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience Report Now Available

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released a report that examines the key risks confronting critical energy infrastructure and ways in which the insurance industry can help manage these risks. In most developed countries, insurance is one of the principal risk management instruments for aiding in recovery after a disaster and for encouraging future investments that are more resilient to potential hazards.

  20. The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings

    Broader source: Energy.gov (indexed) [DOE]

    The Business Case for Fuel Cells 2013 Reliability, Resiliency & Savings i Authors and Acknowledgements This report was written and compiled by Sandra Curtin and Jennifer Gangi of Fuel Cells 2000, an activity of the Breakthrough Technologies Institute in Washington, D.C. Special thanks to Peter Callowhill of NetGain Energy Advisors for contributing the PPA section and to Matthew Crescimanno and Eirik Mørk for assisting in research. Support was provided by the U.S. Department of Energy's

  1. United States Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure Vulnerability to Natural and Physical Threats FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. . Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes

  2. United States Fuel Resiliency Volume III U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Volume III U.S. Fuels Supply Infrastructure Vulnerabilities and Resiliency FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes any legal liability or

  3. Chapter II: Increasing the Resilience, Reliability, Safety, and Asset Security of TS&D Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -52 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter II: Increasing the Resilience, Reliability, Safety, and Asset Security of TS&D Infrastructure QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 3-1 Chapter III This chapter examines how the electricity grid of the future can provide affordable and reliable clean electricity, while minimizing further human contributions to climate change. After an

  4. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions October 2015 U.S. Department of Energy Office of Energy Policy and Systems Analysis Acknowledgements This report was produced by the U.S. Department of Energy's Office of Energy Policy and Systems Analysis (DOE-EPSA) under the direction of Craig Zamuda. Matt Antes, C.W. Gillespie, Anna Mosby, and Beth Zotter of Energetics Incorporated provided analysis, drafting support, and technical editing.

  5. The Future of Bioenergy Feedstock Production

    Office of Environmental Management (EM)

    2 Bioenergy Technologies Office background Feedstock assessment, production and logistics Biomass yield improvements Sustainable feedstock production Future...

  6. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    SciTech Connect (OSTI)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  7. Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach

    SciTech Connect (OSTI)

    Rao, Nageswara S; He, Fei; Ma, Chris Y. T.; Yao, David K. Y.; Zhuang, Jun

    2014-01-01

    In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resilience problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.

  8. Production of ⁶¹Cu by the natZn(p,α) reaction: Improved separation and specific activity determination by titration with three chelators

    SciTech Connect (OSTI)

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.

    2015-09-01

    In this study, the cyclotron-based production of position-emitting ⁶¹Cu using the (p,α) reaction at 11.7 MeV was investigated starting from natural-zinc (natZn) and enriched ⁶⁴Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ⁶¹Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ⁶¹Cu determined using ICP-MS analysis ranged from 143.3±14.3(SD) to 506.2±50.6 MBq/μg while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7±0.2 to 412.5±15.3 MBq/μg), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods are significantly affected by the presence of trace-metal contaminants.

  9. Production of ⁶¹Cu by the natZn(p,α) reaction: Improved separation and specific activity determination by titration with three chelators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.

    2015-09-01

    In this study, the cyclotron-based production of position-emitting ⁶¹Cu using the (p,α) reaction at 11.7 MeV was investigated starting from natural-zinc (natZn) and enriched ⁶⁴Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ⁶¹Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ⁶¹Cu determined using ICP-MS analysis ranged from 143.3±14.3(SD) to 506.2±50.6 MBq/μg while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7±0.2 to 412.5±15.3 MBq/μg), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods aremore » significantly affected by the presence of trace-metal contaminants.« less

  10. Production of ?Cu by the natZn(p,?) reaction: Improved separation and specific activity determination by titration with three chelators

    SciTech Connect (OSTI)

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.

    2015-09-01

    In this study, the cyclotron-based production of position-emitting ?Cu using the (p,?) reaction at 11.7 MeV was investigated starting from natural-zinc (natZn) and enriched ??Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ?Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ?Cu determined using ICP-MS analysis ranged from 143.314.3(SD) to 506.250.6 MBq/?g while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.70.2 to 412.515.3 MBq/?g), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods are significantly affected by the presence of trace-metal contaminants.

  11. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps Kaiser Aluminum Save Energy and Improve Productivity Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity This case study describes how a DOE energy ...

  12. Reporting LED Luminaire Product Performance

    SciTech Connect (OSTI)

    2008-12-01

    This brochure on LED product performance is an outcome of a joint DOE-NGLIA effort to assure and improve the quality of SSL products.

  13. Sandia Develops Stochastic Production Cost Model Simulator for Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Stochastic Production Cost Model Simulator for Electric Power Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  14. Novel Nanoparticle Production Method Could Lead to Better Lights, Lenses,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells Nanoparticle Production Method Could Lead to Better Lights, Lenses, Solar Cells - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  15. Improving Meningococcal Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Improving Manufacturing through Technology and Innovation Improving Manufacturing through Technology and Innovation June 20, 2016 - 11:12am Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient and competitive. | Advanced Manufacturing Office video. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy KEY FACTS Since February 2010, the U.S. manufacturing sector has added more than 800,000 jobs.

  16. Improving microbial biogasoline production in Escherichia coli...

    Office of Scientific and Technical Information (OSTI)

    groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). ...

  17. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  18. Improving microbial biogasoline production in Escherichia coli...

    Office of Scientific and Technical Information (OSTI)

    Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of ...

  19. Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid Investment Grant...

  20. Modeling Vulnerability and Resilience to Climate Change: A Case Study of India and Indian States

    SciTech Connect (OSTI)

    Brenkert, Antoinette L.; Malone, Elizabeth L.

    2005-09-01

    The vulnerability of India and Indian states to climate change was assessed using the Vulnerability-Resilience Indicator Prototype (VRIP). The model was adapted from the global/country version to account for Indian dietary practices and data availability with regard to freshwater resources. Results (scaled to world values) show nine Indian states to be moderately resilient to climate change, principally because of low sulfur emissions and a relatively large percentage of unmanaged land. Six states are more vulnerable than India as a whole, attributable largely to sensitivity to sea storm surges. Analyses of results at the state level (Orissa, and comparisons between Maharashtra and Kerala, and Andhra Pradesh and Himachal Pradesh) demonstrate the value of VRIP analyses used in conjunction with other socioeconomic information to address initial questions about the sources of vulnerability in particular places. The modeling framework allows analysts and stakeholders to systematically evaluate individual and sets of indicators and to indicate where the likely vulnerabilities are in the area being assessed.

  1. Resistance and resilience of tundra plant communities to disturbance by winter seismic vehicles

    SciTech Connect (OSTI)

    Felix, N.A.; Raynolds, M.K.; Jorgenson, J.C.; DuBois, K.E. )

    1992-02-01

    Effects of winter seismic exploration on arctic tundra were evaluated on the coastal plain of the Arctic National Wildlife Refuge, four to five growing seasons after disturbance. Plant cover, active layer depths, and track depression were measured at plots representing major tundra plant communities and different levels of initial disturbance. Results are compared with the initial effects reported earlier. Little resilience was seen in any vegetation type, with no clearly decreasing trends in community dissimilarity. Active layer depths remained greater on plots in all nonriparian vegetation types, and most plots still had visible trails. Decreases in plant cover persisted on most plots, although a few species showed recovery or increases in cover above predisturbance level. Moist sedge-shrub tundra and dryas terraces had the largest community dissimilarities initially, showing the least resistance to high levels of winter vehicle disturbance. Community dissimilarity continued to increase for five seasons in moist sedge-shrub tundra, with species composition changing to higher sedge cover and lower shrub cover. The resilience amplitude may have been exceeded on four plots which had significant track depression.

  2. Using simulation to evaluate the performance of resilience strategies and process failures

    SciTech Connect (OSTI)

    Levy, Scott N.; Topp, Bryan Embry; Arnold, Dorian C.; Ferreira, Kurt Brian; Widener, Patrick; Hoefler, Torsten

    2014-01-01

    Fault-tolerance has been identified as a major challenge for future extreme-scale systems. Current predictions suggest that, as systems grow in size, failures will occur more frequently. Because increases in failure frequency reduce the performance and scalability of these systems, significant effort has been devoted to developing and refining resilience mechanisms to mitigate the impact of failures. However, effective evaluation of these mechanisms has been challenging. Current systems are smaller and have significantly different architectural features (e.g., interconnect, persistent storage) than we expect to see in next-generation systems. To overcome these challenges, we propose the use of simulation. Simulation has been shown to be an effective tool for investigating performance characteristics of applications on future systems. In this work, we: identify the set of system characteristics that are necessary for accurate performance prediction of resilience mechanisms for HPC systems and applications; demonstrate how these system characteristics can be incorporated into an existing large-scale simulator; and evaluate the predictive performance of our modified simulator. We also describe how we were able to optimize the simulator for large temporal and spatial scales-allowing the simulator to run 4x faster and use over 100x less memory.

  3. Taxonomy of USA east coast fishing communities in terms of social vulnerability and resilience

    SciTech Connect (OSTI)

    Pollnac, Richard B.; Seara, Tarsila; Colburn, Lisa L.; Jepson, Michael

    2015-11-15

    Increased concern with the impacts that changing coastal environments can have on coastal fishing communities led to a recent effort by NOAA Fisheries social scientists to develop a set of indicators of social vulnerability and resilience for the U.S. Southeast and Northeast coastal communities. A goal of the NOAA Fisheries social vulnerability and resilience indicator program is to support time and cost effective use of readily available data in furtherance of both social impact assessments of proposed changes to fishery management regulations and climate change adaptation planning. The use of the indicators to predict the response to change in coastal communities would be enhanced if community level analyses could be grouped effectively. This study examines the usefulness of combining 1130 communities into 35 relevant subgroups by comparing results of a numerical taxonomy with data collected by interview methods, a process herein referred to as “ground-truthing.” The validation of the taxonomic method by the method of ground-truthing indicates that the clusters are adequate to be used to select communities for in-depth research. - Highlights: • We develop a taxonomy of fishing communities based on vulnerability indicators. • We validate the community clusters through the use of surveys (“ground-truthing”). • Clusters differ along important aspects of fishing community vulnerability. • Clustering communities allows for accurate and timely social impact assessments.

  4. Efficiency Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency improvements Efficiency Improvements New Target Alignment Sensor Installed on NIF For successful ignition experiments, NIF's 192 laser beams and targets must be aligned within a tolerance of about 20 microns-about one-fifth the diameter of an average human hair. Achieving this level of precision requires many fine-tuned calibrations and correlations between the laser beams and the target. Earlier this month a key instrument for achieving this level of precision, a new target alignment

  5. Tribal Leader Forum on Climate Preparedness and Resiliency to be Held on March 4; RSVP by Feb. 27

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting the 10th in a series of planned strategic energy development forums for tribal leaders and interested staff on “Tribal Energy Systems: Climate Preparedness and Resiliency.”

  6. Developing measurement indices to enhance protection and resilience of U.S. critical infrastructure and key resources.

    SciTech Connect (OSTI)

    Fisher, R. E.; Norman, M.

    2010-07-01

    The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities.

  7. World Agroforestry Centre | Open Energy Information

    Open Energy Info (EERE)

    and health, improved productivity with lower environmental and social costs, and resilience in the face of climate change and other external shocks. Headquartered in Nairobi,...

  8. Noise resilience and entanglement evolution in two nonequivalent classes of quantum algorithms

    SciTech Connect (OSTI)

    Di Franco, C.; Paternostro, M.; Kim, M. S.

    2007-05-15

    The speedup provided by quantum algorithms with respect to their classical counterparts is at the origin of scientific interest in quantum computation. However, the fundamental reasons for such a speedup are not yet completely understood and deserve further attention. In this context, the classical simulation of quantum algorithms is a useful tool that can help us in gaining insight. Starting from the study of general conditions for classical simulation, we highlight several important differences between two nonequivalent classes of quantum algorithms. We investigate their performance under realistic conditions by quantitatively studying their resilience with respect to static noise. This latter refers to errors affecting the initial preparation of the register used to run an algorithm. We also compare the evolution of the entanglement involved in the different computational processes.

  9. Resilience and Robustness in Long-Term Planning of the National Energy and Transportation System

    SciTech Connect (OSTI)

    Ibanez, Eduardo; Lavrenz, Steven; Gkritza, Konstantina; Mejia-Giraldo, Diego A.; Krishnan, Venkat; McCalley, James D.; Somani, Arun K.

    2016-01-01

    The most significant energy consuming infrastructures and the greatest contributors to greenhouse gases for any developed nation today are electric and freight/passenger transportation systems. Technological alternatives for producing, transporting and converting energy for electric and transportation systems are numerous. Addressing costs, sustainability and resilience of electric and transportation needs requires long-term assessment since these capital-intensive infrastructures take years to build with lifetimes approaching a century. Yet, the advent of electrically driven transportation, including cars, trucks and trains, creates potential interdependencies between the two infrastructures that may be both problematic and beneficial. We are developing modelling capability to perform long-term electric and transportation infrastructure design at a national level, accounting for their interdependencies. The approach combines network flow modelling with a multi-objective solution method. We describe and compare it to the state of the art in energy planning models. An example is presented to illustrate important features of this new approach.

  10. Increasing the resilience and security of the United States' power infrastructure

    SciTech Connect (OSTI)

    Happenny, Sean F.

    2015-08-01

    The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-world conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.

  11. Estimation of net primary productivity using a process-based...

    Office of Scientific and Technical Information (OSTI)

    Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity ...

  12. Temperature-dependent acetoin production by Pyrococcus furiosus...

    Office of Scientific and Technical Information (OSTI)

    synthase and its deletion improves ethanol production Citation Details In-Document ... synthase and its deletion improves ethanol production Authors: Nguyen, Diep M.N. ; ...

  13. The resilience and functional role of moss in boreal and arctic ecosystems

    SciTech Connect (OSTI)

    Turetsky, Merritt; Bond-Lamberty, Benjamin; Euskirchen, Eugenie S.; Talbot, Julie; Frolking, Steve; McGuire, A. David; Tuittila, Eeva-Stiina

    2012-08-24

    Mosses in boreal and arctic ecosystems are ubiquitous components of plant communities, represent an important component of plant diversity, and strongly influence the cycling of water, nutrients, energy and carbon. Here we use a literature review and synthesis as well as model simulations to explore the role of moss in ecological stability and resilience. Our literature review of moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories in boreal and arctic regions. Our modeling simulations suggest that loss of moss within northern plant communities will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. While two models (HPM and STM-TEM) showed a significant effect of moss removal, results from the Biome-BGC and DVM-TEM models suggest that northern, moss-rich ecosystems would need to experience extreme perturbation before mosses were eliminated. We highlight a number of issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, phenotypical plasticity in traits, and whether the effects of moss on ecosystem processes scale with local abundance. We also suggest that as more models explore issues related to ecological resilience, issues related to both parameter and conceptual uncertainty should be addressed: are the models more limited by uncertainty in the parameterization of the processes included or by what is not represented in the model at all? It seems clear from our review that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species.

  14. Importance of Biomass Production and Supply

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of feedstocks and overall final product cost - Improve quality of feedstocks at the ... especially in feedstock supply and logistics with production and conversion, are ...

  15. Improved Electrical Contact For Dowhhole Drilling Networks

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron

    2005-08-16

    An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

  16. Ethanol production from lignocellulose

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  17. Lightning Arrestor Connectors Production Readiness

    SciTech Connect (OSTI)

    Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

    2008-10-20

    The Lightning Arrestor Connector (LAC), part “M”, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

  18. Improved aethalometer

    DOE Patents [OSTI]

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.

  19. DOE Responses to EAC Work Products - June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2014 DOE Responses to EAC Work Products - June 2014 This memo from Assistant Secretary for Electricity Delivery and Energy Reliability Patricia Hoffman to the Electricity Advisory Committee provides the Department of Energy's response to the EAC's analyses and recommendations made in late 2013. The memo and included documentation address EAC recommendations on the following topics: Recommendations for DOE Action regarding Resiliency, October 2013 Recommendations for DOE Action regard ing

  20. Tax Credits for Home Energy Improvements: If You Buy an Energy-Efficient Product or Renewable Energy System for Your Home, You May be Eligible for a Federal Tax Credit (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This two-page fact sheet provides an overview of 2010 federal tax credits for energy efficient products or renewable energy systems in the home.

  1. Improving information technology to maximize fenestration energyefficiency

    SciTech Connect (OSTI)

    Arasteh, Dariush; Mitchell, Robin; Kohler, Christian; Huizenga,Charlie; Curcija, Dragan

    2001-06-06

    Improving software for the analysis of fenestration product energy efficiency and developing related information technology products that aid in optimizing the use of fenestration products for energy efficiency are essential steps toward ensuring that more efficient products are developed and that existing and emerging products are utilized in the applications where they will produce the greatest energy savings. Given the diversity of building types and designs and the climates in the U.S., no one fenestration product or set of properties is optimal for all applications. Future tools and procedures to analyze fenestration product energy efficiency will need to both accurately analyze fenestration product performance under a specific set of conditions and to look at whole fenestration product energy performance over the course of a yearly cycle and in the context of whole buildings. Several steps have already been taken toward creating fenestration product software that will provide the information necessary to determine which details of a fenestration product's design can be improved to have the greatest impact on energy efficiency, what effects changes in fenestration product design will have on the comfort parameters that are important to consumers, and how specific fenestration product designs will perform in specific applications. Much work remains to be done, but the energy savings potential justifies the effort. Information is relatively cheap compared to manufacturing. Information technology has already been responsible for many improvements in the global economy--it can similarly facilitate many improvements in fenestration product energy efficiency.

  2. Drill string splined resilient tubular telescopic joint for balanced load drilling of deep holes

    SciTech Connect (OSTI)

    Garrett, W.R.

    1981-08-04

    A drill string splined resilient tubular telescopic joint for balanced load deep well drilling comprises a double acting damper having a very low spring rate upon both extension and contraction from the zero deflection condition. Preferably the spring means itself is a double acting compression spring means wherein the same spring means is compressed whether the joint is extended or contracted. The damper has a like low spring rate over a considerable range of deflection, both upon extension and contraction of the joint, but a gradually then rapidly increased spring rate upon approaching the travel limits in each direction. Stacks of spring rings are employed for the spring means, the rings being either shaped elastomer-metal sandwiches or, preferably, roller belleville springs. The spline and spring means are disposed in an annular chamber formed by mandrel and barrel members constituting the telescopic joint. The spring rings make only such line contact with one of the telescoping members as is required for guidance therefrom, and no contact with the other member. The chamber containing the spring means, and also containing the spline means, is filled with lubricant, the chamber being sealed with a pressure seal at its lower end and an inverted floating seal at its upper end. Magnetic and electrical means are provided to check for the presence and condition of the lubricant. To increase load capacity the spring means is made of a number of components acting in parallel.

  3. Drill string splined resilient tubular telescopic joint for balanced load drilling of deep holes

    SciTech Connect (OSTI)

    Garrett, W.R.

    1984-03-06

    A drill string splined resilient tubular telescopic joint for balanced load deep well drilling comprises a double acting damper having a very low spring rate upon both extension and contraction from the zero deflection condition. Stacks of spring rings are employed for the spring means, the rings being either shaped elastomer-metal sandwiches or, preferably, roller Belleville springs. The spline and spring means are disposed in an annular chamber formed by mandrel and barrel members constituting the telescopic joint. The chamber containing the spring means, and also containing the spline means, is filled with lubricant, the chamber being sealed with a pressure seal at its lower end and an inverted floating seal at its upper end. A prototype includes of this a bellows seal instead of the floating seal at the upper end of the tool, and a bellows in the side of the lubricant chamber provides volume compensation. A second lubricant chamber is provided below the pressure seal, the lower end of the second chamber being closed by a bellows seal and a further bellows in the side of the second chamber providing volume compensation. Modifications provide hydraulic jars.

  4. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    SciTech Connect (OSTI)

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL provides a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.

  5. Enabling Efficient, Responsive, and Resilient Buildings: Collaboration Between the United States and India

    SciTech Connect (OSTI)

    Basu, Chandrayee; Ghatikar, Girish

    2013-09-25

    The United States and India have among the largest economies in the world, and they continue to work together to address current and future challenges in reliable electricity supply. The acceleration to efficient, grid-responsive, resilient buildings represents a key energy security objective for federal and state agencies in both countries. The weaknesses in the Indian grid system were manifest in 2012, in the country’s worst blackout, which jeopardized the lives of half of India’s 1.2 billion people. While both countries are investing significantly in power sector reform, India, by virtue of its colossal growth rate in commercial energy intensity and commercial floor space, is better placed than the United States to integrate and test state-of-art Smart Grid technologies in its future grid-responsive commercial buildings. This paper presents a roadmap of technical collaboration between the research organizations, and public-private stakeholders in both countries to accelerate the building-to-grid integration through pilot studies in India.

  6. A Runtime Environment for Supporting Research in Resilient HPC System Software & Tools

    SciTech Connect (OSTI)

    Vallee, Geoffroy R; Naughton, III, Thomas J; Boehm, Swen; Engelmann, Christian

    2013-01-01

    The high-performance computing (HPC) community continues to increase the size and complexity of hardware platforms that support advanced scientific workloads. The runtime environment (RTE) is a crucial layer in the software stack for these large-scale systems. The RTE manages the interface between the operating system and the application running in parallel on the machine. The deployment of applications and tools on large-scale HPC computing systems requires the RTE to manage process creation in a scalable manner, support sparse connectivity, and provide fault tolerance. We have developed a new RTE that provides a basis for building distributed execution environments and developing tools for HPC to aid research in system software and resilience. This paper describes the software architecture of the Scalable runTime Component Infrastructure (STCI), which is intended to provide a complete infrastructure for scalable start-up and management of many processes in large-scale HPC systems. We highlight features of the current implementation, which is provided as a system library that allows developers to easily use and integrate STCI in their tools and/or applications. The motivation for this work has been to support ongoing research activities in fault-tolerance for large-scale systems. We discuss the advantages of the modular framework employed and describe two use cases that demonstrate its capabilities: (i) an alternate runtime for a Message Passing Interface (MPI) stack, and (ii) a distributed control and communication substrate for a fault-injection tool.

  7. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  8. Low oil prices cut less into U.S. oil production

    U.S. Energy Information Administration (EIA) Indexed Site

    Low oil prices cut less into U.S. oil production U.S. crude oil production has been more resilient to lower oil prices since mid-2014 than many had expected. In its new forecast, the U.S. Energy Information Administration estimates domestic oil production averaged 9.6 million barrels per day in May the highest monthly output since 1972 despite a 60% drop in the number of rigs drilling for oil since last October. Output is up because producers are completing wells already drilled and those wells

  9. Keys to improving environmental performance

    SciTech Connect (OSTI)

    Moreau, R.L.; Raught, D.L.

    1996-11-01

    Environmental protection is a mainstream issue in today`s society. Both internal and external drivers motivate the oil and ms industry to continuously improve environmental performance. Companies are integrating environmental considerations into their business plans to a greater extent, and are directing proportionally more resources toward managing these issues. This paper addresses several environmental management focus areas in Exxon`s domestic E&P sector to: (1) manage risks, (2) ensure compliance, (3) improve performance, and (4) assist in the development of balanced legislation and regulations. Specific examples of Production Department programs are discussed, along with keys to success for continued progress in improving performance.

  10. Distributed Monte Carlo production for D0

    SciTech Connect (OSTI)

    Snow, Joel; /Langston U.

    2010-01-01

    The D0 collaboration uses a variety of resources on four continents to pursue a strategy of flexibility and automation in the generation of simulation data. This strategy provides a resilient and opportunistic system which ensures an adequate and timely supply of simulation data to support D0's physics analyses. A mixture of facilities, dedicated and opportunistic, specialized and generic, large and small, grid job enabled and not, are used to provide a production system that has adapted to newly developing technologies. This strategy has increased the event production rate by a factor of seven and the data production rate by a factor of ten in the last three years despite diminishing manpower. Common to all production facilities is the SAM (Sequential Access to Metadata) data-grid. Job submission to the grid uses SAMGrid middleware which may forward jobs to the OSG, the WLCG, or native SAMGrid sites. The distributed computing and data handling system used by D0 will be described and the results of MC production since the deployment of grid technologies will be presented.

  11. Improving Control System Cyber-State Awareness using Known Secure Sensor Measurements

    SciTech Connect (OSTI)

    Ondrej Linda; Milos Manic; Miles McQueen

    2012-09-01

    Abstract—This paper presents design and simulation of a low cost and low false alarm rate method for improved cyber-state awareness of critical control systems - the Known Secure Sensor Measurements (KSSM) method. The KSSM concept relies on physical measurements to detect malicious falsification of the control systems state. The KSSM method can be incrementally integrated with already installed control systems for enhanced resilience. This paper reviews the previously developed theoretical KSSM concept and then describes a simulation of the KSSM system. A simulated control system network is integrated with the KSSM components. The effectiveness of detection of various intrusion scenarios is demonstrated on several control system network topologies.

  12. United States Fuel Resiliency Volume III U.S. Fuels Supply Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    The global and U.S. oil, natural gas, and refined products markets, supply patterns, and .........7 A. Crude Oil ......

  13. Briefing Memo: Petroleum Product Transmission & Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Quadrennial Energy Review: First Installment United States Fuel Resiliency: US Fuels Supply Infrastructure QER Public Meeting in New Orleans, LA: ...

  14. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect (OSTI)

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  15. Product Realization Environment

    Energy Science and Technology Software Center (OSTI)

    1997-06-12

    PRE provides a common framework for information flow and product information management based on Common Object Request Brokering Architecture (CORBA). More specific goals for PRE are using the technologies to improve business practices, to decrease product cycle time, and developing tools to rapidly access specialists (e.g. designers, engineers, scientists) expertise both as preserved knowledge and for real time collaboration. The PRE framework will utilize an object based approach (CORBA) to integrate product development with themore » enterprise by providing software integration for business, engineering, and manufacturing practices across organizational boundaries.« less

  16. OE Announces Funding to Improve the Cybersecurity of the Nation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... by 2020. Since 2010, the Office of Electricity Delivery and Energy Reliability has ... now being used to further advance the resilience of the nation's energy delivery systems. ...

  17. Regulatory Streamlining and Improvement

    SciTech Connect (OSTI)

    Mark A. Carl

    2006-07-11

    The Interstate Oil and Gas Compact Commission (IOGCC) engaged in numerous projects outlined under the scope of work discussed in the United States Department of Energy (DOE) grant number DE-FC26-04NT15456 awarded to the IOGCC. Numerous projects were completed that were extremely valuable to state oil and gas agencies as a result of work performed utilizing resources provided by the grant. There are numerous areas in which state agencies still need assistance. This additional assistance will need to be addressed under future scopes of work submitted annually to DOE's Project Officer for this grant. This report discusses the progress of the projects outlined under the grant scope of work for the 2005-2006 areas of interest, which are as follows: Area of Interest No. 1--Regulatory Streamlining and Improvement: This area of interest continues to support IOGCC's regulatory streamlining efforts that include the identification and elimination of unnecessary duplications of efforts between and among state and federal programs dealing with exploration and production on public lands. Area of Interest No. 2--Technology: This area of interest seeks to improve efficiency in states through the identification of technologies that can reduce costs. Area of Interest No. 3--Training and Education: This area of interest is vital to upgrading the skills of regulators and industry alike. Within the National Energy Policy, there are many appropriate training and education opportunities. Education was strongly endorsed by the President's National Energy Policy Development group. Acting through the governors offices, states are very effective conduits for the dissemination of energy education information. While the IOGCC favors the development of a comprehensive, long-term energy education plan, states are also supportive of immediate action on important concerns, such as energy prices, availability and conservation. Area of Interest No. 4--Resource Assessment and Development: This area

  18. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.

  19. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOE Patents [OSTI]

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  20. Production of anteiso-branched fatty acids in Escherichia coli...

    Office of Scientific and Technical Information (OSTI)

    Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties Citation Details In-Document Search Title: Production of ...

  1. Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production. Annual subcontract report, 1 July 1990--31 December 1991

    SciTech Connect (OSTI)

    Albright, S.P.; Ackerman, B.; Chamberlin, R.R.; Jordan, J.F.

    1992-04-01

    This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.

  2. Breakthrough: Better Fiber for Better Products

    ScienceCinema (OSTI)

    Griffith, George; Garnier, John;

    2013-05-28

    Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products.

  3. Breakthrough: Better Fiber for Better Products

    SciTech Connect (OSTI)

    Griffith, George; Garnier, John;

    2012-01-01

    Researchers at Idaho National Laboratory have developed a cost-effective method for the continuous production of alpha silicon carbide fiber. The exceptionally strong, lightweight fiber could enable significant performance improvements in many everyday products.

  4. Improved catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  5. Modifications improve waterflood performance model

    SciTech Connect (OSTI)

    El-Banbi, A.H.; Abdel Wally, A.; Abd-el Fattah, K.A.; Sayyouh, M.H.

    1996-01-01

    Modifications to the Craig-Geffen-Morse (CGM) waterflooding model improve reservoir performance predictions and allow for the inclusion of pressure drop variations with time. The modified model was validated against numerical simulation results. The paper describes the CGM model, the hypothetical data set, the simulation technique, comparisons between the CGM model and the simulation, and modifications to the CGM model relating to pressure drop variation and water production.

  6. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION; GREENHOUSE GASES The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  7. National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

  8. Efficiency Improvements - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Efficiency Improvements - 2016 June Dual-Purpose Positioner Installed on NIF March A NIF Record: 17 Shots in a Week January Improving Optics Processing Efficiencies

  9. Hydropower Process Improvements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Improvements William J. Palmer Hydropower Program Manager South Atlantic Division 2 April 2015 BUILDING STRONG Focus Areas For Process Improvements InspectionsCondition ...

  10. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect (OSTI)

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  11. Improvements of biomass deconstruction enzymes

    SciTech Connect (OSTI)

    Sale, K. L.

    2012-03-01

    Sandia National Laboratories and DSM Innovation, Inc. collaborated on the investigation of the structure and function of cellulases from thermophilic fungi. Sandia's role was to use its expertise in protein structure determination and X-ray crystallography to solve the structure of these enzymes in their native state and in their substrate and product bound states. Sandia was also tasked to work with DSM to use the newly solved structure to, using computational approaches, analyze enzyme interactions with both bound substrate and bound product; the goal being to develop approaches for rationally designing improved cellulases for biomass deconstruction. We solved the structures of five cellulases from thermophilic fungi. Several of these were also solved with bound substrate/product, which allowed us to predict mutations that might enhance activity and stability.

  12. ITP's Top Low- or No-Cost Improvements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Production schedule changes 3% Rejected after implementation failed 3% Steam LowNo Cost Improvements * Reduce Boiler Pressure * Reduce Combustion Air Flow Rate * Reduce Blowdown ...

  13. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and ...

  14. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  15. IMPROVED BONDING METHOD

    DOE Patents [OSTI]

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  16. Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and ...

  17. Roof bolting improvements

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-11-15

    Suppliers partner with mine operators to offer safer, more productive tools for roof bolting. 4 figs.

  18. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  19. PRODUCTION OF TRIFLUOROACETIC ACID

    DOE Patents [OSTI]

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  20. Impact of Technological Change and Productivity on the Coal Market

    Reports and Publications (EIA)

    2000-01-01

    This paper examines the components of past gains in productivity, including regional shifts, the exit of less productive producers, and technological progress Future prospects for continuing productivity gains at sustained, but lower, rates of improvement are discussed.