National Library of Energy BETA

Sample records for improving atmospheric models

  1. IMPROVED QUASISTEADYSTATEAPPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION #

    E-Print Network [OSTI]

    Jay, Laurent O.

    IMPROVED QUASI­STEADY­STATE­APPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION # L. O. JAY QSSA are presented. Key words. atmospheric chemistry, sti# ordinary di#erential equations, quasi PII. S1064827595283033 1. Introduction. As our scientific understanding of atmospheric chemistry

  2. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  3. Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model

    SciTech Connect (OSTI)

    Zhang, Guang J [Scripps Institution of Oceanography

    2013-07-29

    Highlight of Accomplishments: We made significant contribution to the ASR program in this funding cycle by better representing convective processes in GCMs based on knowledge gained from analysis of ARM/ASR observations. In addition, our work led to a much improved understanding of the interaction among aerosol, convection, clouds and climate in GCMs.

  4. Improving parameterization of scalar transport through vegetation in a coupled ecosystem-atmosphere model

    E-Print Network [OSTI]

    Link, Percy Anne

    2008-01-01

    Several regional-scale ecosystem models currently parameterize subcanopy scalar transport using a rough-wall boundary eddy diffusivity formulation. This formulation predicts unreasonably high soil evaporation beneath tall, ...

  5. Improved detection of atmospheric turbulence with SLODAR

    E-Print Network [OSTI]

    Michael Goodwin; Charles Jenkins; Andrew Lambert

    2007-06-19

    We discuss several improvements in the detection of atmospheric turbulence using SLOpe Detection And Ranging (SLODAR). Frequently, SLODAR observations have shown strong ground-layer turbulence, which is beneficial to adaptive optics. We show that current methods which neglect atmospheric propagation effects can underestimate the strength of high altitude turbulence by up to ~ 30%. We show that mirror and dome seeing turbulence can be a significant fraction of measured ground-layer turbulence, some cases up to ~ 50%. We also demonstrate a novel technique to improve the nominal height resolution, by a factor of 3, called Generalized SLODAR. This can be applied when sampling high-altitude turbulence, where the nominal height resolution is the poorest, or for resolving details in the important ground-layer.

  6. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01

    groundwater, land-surface, and mesoscale atmospheric model-and modification of mesoscale circulations. , Mon. Wea.J. Davis, The effects of mesoscale surface heterogeneity on

  7. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect (OSTI)

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  8. A Grid of 3D Stellar Atmosphere Models of Solar Metallicity: I. General Properties, Granulation and Atmospheric Expansion

    E-Print Network [OSTI]

    Trampedach, Regner; Collet, Remo; Nordlund, Ĺke; Stein, Robert F

    2013-01-01

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations, and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late type stars. We present a grid of improved and more reliable stellar atmosphere models of late type stars, based on deep, 3D, convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations, and improve stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters, covering most of stellar evolution with convection at the surface. We emphasize use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, asymptotic adiabat, as function of atmospheric parameters. These and other re...

  9. IMPROVED QUASI-STEADY-STATE-APPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION

    E-Print Network [OSTI]

    Jay, Laurent O.

    IMPROVED QUASI-STEADY-STATE-APPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION L. O. JAY are presented. Key words. atmospheric chemistry, stiff ordinary differential equations, quasi PII. S1064827595283033 1. Introduction. As our scientific understanding of atmospheric chemistry

  10. Modeling of Alpine Atmospheric Dynamics II

    E-Print Network [OSTI]

    Gohm, Alexander

    Modeling of Alpine Atmospheric Dynamics II 707.424, VU 2, SS2005 Unit 7: Model code structure: mesoscale convective system 17-18 April 2004: Sierra hydraulic jump case 21 January 2005: the "Universiade) Introduction (brief description of the phenomenon and a description of the model and of the measurements

  11. Improvement of Offshore Wind Resource Modeling in the Mid-

    E-Print Network [OSTI]

    Firestone, Jeremy

    Improvement of Offshore Wind Resource Modeling in the Mid- Atlantic Bight Wind Energy Symposium Sienkiewicz , Chris Hughes 26 February 2013 #12;Improving Atmospheric Models for Offshore Wind Resource Interaction Tower ­ 23 m NOAA Buzzard's Bay Tower ­ 25 m Cape Wind Tower (60 m from 2003-2011; just platform

  12. Improved steamflood analytical model 

    E-Print Network [OSTI]

    Chandra, Suandy

    2006-10-30

    The Jeff Jones steamflood model incorporates oil displacement by steam as described by Myhill and Stegemeier, and a three-component capture factor based on empirical correlations. The main drawback of the model however is the unsatisfactory...

  13. Improving the Models, SACOG Perspectives

    E-Print Network [OSTI]

    California at Davis, University of

    forecasting, Vehicle emissions, Health outcomes, RHNA allocations. #12;What is the state of the models? · Tour-based models implemented in larger MPOs are a significant improvement. · Trip-based models still used in other of models and data in the SCS process is not sufficient. · Transportation has early costs and later benefits

  14. Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    SciTech Connect (OSTI)

    Latour, M.; Fontaine, G.; Brassard, P.; Green, E. M.; Chayer, P.

    2014-06-10

    As part of a multifaceted effort to better exploit the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high signal-to-noise ratio time-averaged optical spectra of varying spectral resolutions from 1.0 Ĺ to 8.7 Ĺ, and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are: T {sub eff} = 29,850 ± 60 K, log g = 5.46 ± 0.01, and log N(He)/N(H) = –2.88 ± 0.02. We also modeled, for the first time, the He II line at 1640 Ĺ from the STIS archive spectrum of the star, and with this line we found an effective temperature and a surface gravity that match well with the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain, we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.

  15. Atmospheric transmittance model for photosynthetically active radiation

    SciTech Connect (OSTI)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ĺngström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  16. Discrete Packet Analysis for Improved Atmospheric Rejection on Modulated Laser Signals

    SciTech Connect (OSTI)

    O'Neill, M., McKenna, I., DiBenedetto, J., Capelle, G., Trainham, R.

    2012-07-19

    This slide-show discusses how the method of discrete packet analysis improves atmospheric compensation for quasi-CW fluorescence detection methods. This is key to improving remote sensing capabilities.

  17. Improved Geothermometry Through Multivariate Reaction Path Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Geothermometry Through Multivariate Reaction Path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators Improved Geothermometry...

  18. Computing Limb Darkening Coefficients from Stellar Atmosphere Models

    E-Print Network [OSTI]

    David Heyrovsky

    2006-10-24

    We explore the sensitivity of limb darkening coefficients computed from stellar atmosphere models to different least-squares fitting methods. We demonstrate that conventional methods are strongly biased to fitting the stellar limb. Our suggested method of fitting by minimizing the radially integrated squared residual yields improved fits with better flux conservation. The differences of the obtained coefficients from commonly used values are observationally significant. We show that the new values are in better agreement with solar limb darkening measurements as well as with coefficients reported from analyses of eclipsing binary light curves.

  19. IMPROVING AND EXPANDING PRECISION ORBIT DERIVED ATMOSPHERIC DENSITIES

    E-Print Network [OSTI]

    Mysore Krishna, Dhaval

    2012-05-31

    gamma, 10 -9 Telsa a Semi-major axis km draga Acceleration vector due to atmospheric drag m/s 2 ap Geomagnetic 3-hourly planetary amplitude gamma, 10 -9 Telsa apex Satellite apex position deg B B? Estimated ballistic coefficient correction ~ BC... gamma, 10 -9 Telsa a Semi-major axis km draga Acceleration vector due to atmospheric drag m/s 2 ap Geomagnetic 3-hourly planetary amplitude gamma, 10 -9 Telsa apex Satellite apex position deg B B? Estimated ballistic coefficient correction ~ BC...

  20. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore »of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  1. Coupling Terrestrial and Atmospheric Water Dynamics to Improve Prediction in a Changing Environment

    E-Print Network [OSTI]

    Lyon, Steve W.; Dominguez, Francina; Gochis, David J.; Brunsell, Nathaniel A.; Castro, Christopher; Chow, Fotini K.; Fan, Ying; Fuka, Daniel; Hong, Yang; Kucera, Paul A.; Nesbitt, Stephen W.; Salzmann, Nadine; Schmidli, Juerg; Snyder, Peter K.; Teuling, Adriaam J.; Twine, Tracy E.; Levis, Samuel; Lundquist, Jessica D.; Salvucci, Guido D.; Sealy, Andrea M.; Walter, M. Todd

    2008-09-01

    Fluxes across the land surface directly influence predictions of ecological processes, atmospheric dynamics, and terrestrial hydrology. However, many simplifications are made in numerical models when considering ...

  2. Application of Improved Radiation Modeling to General Circulation Models

    SciTech Connect (OSTI)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  3. Laboratory measurements and modeling of trace atmospheric species

    E-Print Network [OSTI]

    Sheehy, Philip M. (Philip Michael)

    2005-01-01

    Trace species play a major role in many physical and chemical processes in the atmosphere. Improving our understanding of the impact of each species requires a combination of laboratory exper- imentation, field measurements, ...

  4. Fingering convection and cloudless models for cool brown dwarf atmospheres

    E-Print Network [OSTI]

    Tremblin, P; Mourier, P; Baraffe, I; Chabrier, G; Drummond, B; Homeier, D; Venot, O

    2015-01-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless mode...

  5. Chapter 8: Modelling Sediment Records of Atmospherically Deposited Contaminants

    E-Print Network [OSTI]

    Short, Daniel

    73 Chapter 8: Modelling Sediment Records of Atmospherically Deposited Contaminants 8.1. Catchment the Water Column...............................................79 8.3 Water Column to Bottom Sediment Transfer......................................80 #12;Chapter 8: Modelling Sediment Records... 74 8

  6. Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury

    E-Print Network [OSTI]

    activities that release mercury to the atmosphere include coal burning, industrial processes, waste incine and climate projections; critically and quantitatively analyze environmental management and policy proposals mercury research. Global Budget of Mercury Prior to the onset of human industrial activities, the amount

  7. On Adaptive Mesh Refinement for Atmospheric Pollution Models

    E-Print Network [OSTI]

    Sandu, Adrian

    On Adaptive Mesh Refinement for Atmospheric Pollution Models Emil M. Constantinescu and Adrian res- olution system for modeling regional air pollution based on the chemical transport model STEM. Keywords: Air Pollution Modeling, Adaptive Mesh Refinement. 1 Introduction Inadequate grid resolution can

  8. Computer support to run models of the atmosphere. Final report

    SciTech Connect (OSTI)

    Fung, I.

    1996-08-30

    This research is focused on a better quantification of the variations in CO{sub 2} exchanges between the atmosphere and biosphere and the factors responsible for these exchangers. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO{sub 2} distribution. The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO{sub 2} in the atmosphere. The tracer model the authors used was developed at the Goddard institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model.

  9. Atmospheric Tides in the Latest Generation of Climate Models

    E-Print Network [OSTI]

    Covey, Curt

    For atmospheric tides driven by solar heating, the database of climate model output used in the most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC) confirms and extends the authors’ earlier ...

  10. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect (OSTI)

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  11. Improving recognition performance by modelling pronunciation variation. 

    E-Print Network [OSTI]

    Kessens, Judith M; Wester, Mirjam

    1997-01-01

    This paper describes a method for improving the performance of a continuous speech recognizer by modelling pronunciation variation. Although the improvements obtained with this method are small, they are in line with those ...

  12. Evaluation of the Atmospheric Transport Model in the MACCS2 Code...

    Office of Environmental Management (EM)

    Terrain effects (CALPUFF) Gaussian Plume Model Lagrangian Puff Model Turbulence Characterization - Atmospheric Stability Classical GP models use a classification...

  13. Goddard technologists are working on laser instrumentation that will characterize the Martian atmosphere and improve

    E-Print Network [OSTI]

    Christian, Eric

    , detectors, and other components needed to build a completesystem. Laser/Lidar Technologies for Exploration atmosphere and improve landing safety on Mars and other solar system bodies. First Nano Device to Fly Systems Research and Technology Funds Two Goddard researchers have received funding from

  14. Models of neutron star atmospheres enriched with nuclear burning ashes

    E-Print Network [OSTI]

    Nättilä, Joonas; Kajava, Jari J E; Poutanen, Juri

    2015-01-01

    Low-mass X-ray binaries hosting neutron stars (NS) exhibit thermonuclear (type-I) X-ray bursts, which are powered by unstable nuclear burning of helium and/or hydrogen into heavier elements deep in the NS "ocean". In some cases the burning ashes may rise from the burning depths up to the NS photosphere by convection, leading to the appearance of the metal absorption edges in the spectra, which then force the emergent X-ray burst spectra to shift toward lower energies. These effects may have a substantial impact on the color correction factor $f_c$ and the dilution factor $w$, the parameters of the diluted blackbody model $F_E \\approx w B_E(f_c T_{eff})$ that is commonly used to describe the emergent spectra from NSs. The aim of this paper is to quantify how much the metal enrichment can change these factors. We have developed a new NS atmosphere modeling code, which has a few important improvements compared to our previous code required by inclusion of the metals. The opacities and the internal partition func...

  15. Adaptive Grids for Atmospheric General Circulation Models

    E-Print Network [OSTI]

    Jablonowski, Christiane

    the wind speed OMEGA model Courtesy of A. Sarma (SAIC, NC, USA) #12;Two Adaptive Shallow Water Models AMR the vertical resolutions adds another factor of 2 We need to increase our computational power by a factor

  16. Improving understanding, modelImproving understanding, model simulations, and prediction of thesimulations, and prediction of the

    E-Print Network [OSTI]

    Wood, Robert

    GMAO Clouds in Global Models Annual mean Control run Atmospheric models #12;CGCM Problems: NOAA CFS Model CFS Errors SST Prec CLD · The CFS model has significant errors in the SEP · There is a meridional) · These errors adversely affect the skill of CFS climate forecasts (ENSO). What model developments are required

  17. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect (OSTI)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  18. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect (OSTI)

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  19. Graduate Opportunities in Atmospheric Modeling to Understand Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Lin, John Chun-Han

    Graduate Opportunities in Atmospheric Modeling to Understand Greenhouse Gas Emissions University://www.atmos.utah.edu/) seeks multiple graduate students to study greenhouse gas emissions associated with urban development greenhouse gas emissions. Samples of guiding questions as part of the projects include: · What can explain

  20. Adjoint modeling for atmospheric pollution process sensitivity at regional scale

    E-Print Network [OSTI]

    Menut, Laurent

    , a strong pollution event was documented over Paris as part of the Etude et Simulation de la Qualite´ de l'airAdjoint modeling for atmospheric pollution process sensitivity at regional scale Laurent Menut 1998 the pollution event changes from a well-marked ozone plume issued from Paris to a more general

  1. Modeling and Improving an Industrial Software Process

    E-Print Network [OSTI]

    Picco, Gian Pietro

    possible levels of maturity for a software process. At the first level, software production activities continuous improvement. It is the basis of the Japanese approach to industrial production and is applied1 Modeling and Improving an Industrial Software Process Sergio Bandinelli, Alfonso Fuggetta, Member

  2. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect (OSTI)

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  3. Using Ecosystem Experiments to Improve Vegetation Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; Walker, Anthony P.; Dietze, Michael; Hanson, Paul J.; Hickler, Thomas; Jain, Atul; Luo, Yiqi; Parton, William; et al

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced amore »clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.« less

  4. Atmospheric component of the MPI-M Earth System Model: Bjorn Stevens,1

    E-Print Network [OSTI]

    Reichler, Thomas

    Atmospheric component of the MPI-M Earth System Model: ECHAM6 Bjorn Stevens,1 Marco Giorgetta,1: Stevens, B., et al. (2013), Atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model as the atmospheric component of a coupled modeling system. The present version of the coupled system, the MPI Earth

  5. Ph.D. DISSERTATION MODELING PLANT-SOIL-ATMOSPHERE CARBON DIOXIDE EXCHANGE

    E-Print Network [OSTI]

    Tu, Kevin

    Ph.D. DISSERTATION MODELING PLANT-SOIL-ATMOSPHERE CARBON DIOXIDE EXCHANGE USING OPTIMALITY...............................................................................................1 I. A REVIEW OF REMOTE SENSING MODELS........................................................7...............................................................7 Remote Sensing Models

  6. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.

  7. A multiple-scale simulation of variations in atmospheric carbon dioxide using a coupled biosphere-atmospheric model

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    A multiple-scale simulation of variations in atmospheric carbon dioxide using a coupled biosphere, carbon dioxide, biosphere, regional-scale modeling, missing sink, carbon dioxide fluxes Citation), A multiple-scale simulation of variations in atmospheric carbon dioxide using a coupled biosphere

  8. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    SciTech Connect (OSTI)

    Warneford, Emma S. Dellar, Paul J.

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune explains the transition from a prograde to a retrograde equatorial jet, while the broader jets are due to the deformation radius being a larger fraction of the planetary radius.

  9. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  10. Toward a Fully Lagrangian Atmospheric Modeling System JAHRUL M. ALAM AND JOHN C. LIN

    E-Print Network [OSTI]

    Lin, John Chun-Han

    is essential for atmospheric transport and chemistry models. Eule- rian treatments are generally plagued- proving atmospheric transport and chemistry models (Rood 1987; Wang and Hutter 2001). The growing interestToward a Fully Lagrangian Atmospheric Modeling System JAHRUL M. ALAM AND JOHN C. LIN Department

  11. Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM...

    Office of Environmental Management (EM)

    Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results This presentation by...

  12. Autonomie Modeling Tool Improves Vehicle Design and Testing,...

    Office of Environmental Management (EM)

    Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel...

  13. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    SciTech Connect (OSTI)

    Sugiyama, Gayle [Lawrence Livermore National Laboratory; Nasstrom, John [Lawrence Livermore National Laboratory; Pobanz, Brenda [Lawrence Livermore National Laboratory; Foster, Kevin [Lawrence Livermore National Laboratory; Simpson, Matthew [Lawrence Livermore National Laboratory; Vogt, Phil [Lawrence Livermore National Laboratory; Aluzzi, Fernando [Lawrence Livermore National Laboratory; Homann, Steve [Lawrence Livermore National Laboratory

    2012-05-01

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  14. Improved atmosphere-ocean coupled modeling in the tropics for...

    Office of Scientific and Technical Information (OSTI)

    by the responses of surface winds to SST bias and the thermocline structure to surface wind curls. We also showed that the warming biases in surface solar radiation and latent...

  15. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  16. Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature

    E-Print Network [OSTI]

    Kurapov, Alexander

    Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region-Atmosphere Mesoscale Prediction System (COAMPS) atmospheric models. The SST-induced wind response is assessed from

  17. A discrete forward-modeling method for characterizing occultation lightcurves of tenuous planetary atmospheres

    E-Print Network [OSTI]

    Siu, Ho Chit

    2015-01-01

    We present a discrete numerical approach for forward-modeling lightcurves from stellar occultations by planetary atmospheres. Our discrete approach provides a way to arbitrarily set atmospheric properties at any radius ...

  18. Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been

  19. An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry models

    E-Print Network [OSTI]

    Santillana, Mauricio

    An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry: Atmospheric chemistry Multi-scale analysis Time-scale separation Reduction of chemical kinetics a b s t r a c of the concentrations of chemical species in global 3-D models of atmospheric chemistry. Our strategy consists

  20. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG�s advanced dynamics core with the �physics� of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  1. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect (OSTI)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  2. A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results

    E-Print Network [OSTI]

    Spiga, Aymeric

    A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation) Mesoscale Model is a new versatile simulator of the Martian atmosphere and environment at horizontal scales, and photochemistry cycles. Since LMD-GCM large-scale simulations are also used to drive the mesoscale model

  3. A PHYSICALLY-BASED SCHEME FOR THE URBAN ENERGY BUDGET IN ATMOSPHERIC MODELS

    E-Print Network [OSTI]

    winds. The two model types presented above are used in urban climatology in order to comprehend townA PHYSICALLY-BASED SCHEME FOR THE URBAN ENERGY BUDGET IN ATMOSPHERIC MODELS VALÉRY MASSON Centre) Abstract. An urban surface scheme for atmospheric mesoscale models is presented. A generaliz- ation

  4. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect (OSTI)

    Gharagozloo, Patricia E.; Drewry, Jessica L.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  5. IPA: improved phone modelling with recurrent neural networks 

    E-Print Network [OSTI]

    Robinson, Tony; Hochberg, Mike; Renals, Steve

    This paper describes phone modelling improvements to the hybrid connectionist-hidden Markov model speech recognition system developed at Cambridge University. These improvements are applied to phone recognition from the ...

  6. Efficiency and Sensitivity Analysis of Observation Networks for Atmospheric Inverse Modelling with Emissions

    E-Print Network [OSTI]

    Wu, Xueran; Jacob, Birgit

    2015-01-01

    The controllability of advection-diffusion systems, subject to uncertain initial values and emission rates, is estimated, given sparse and error affected observations of prognostic state variables. In predictive geophysical model systems, like atmospheric chemistry simulations, different parameter families influence the temporal evolution of the system.This renders initial-value-only optimisation by traditional data assimilation methods as insufficient. In this paper, a quantitative assessment method on validation of measurement configurations to optimize initial values and emission rates, and how to balance them, is introduced. In this theoretical approach, Kalman filter and smoother and their ensemble based versions are combined with a singular value decomposition, to evaluate the potential improvement associated with specific observational network configurations. Further, with the same singular vector analysis for the efficiency of observations, their sensitivity to model control can be identified by deter...

  7. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

  8. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  9. Energy considerations in the Community Atmosphere Model (CAM)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore »state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less

  10. Three Dimensional Adaptive Mesh Refinement on a Spherical Shell for Atmospheric Models with Lagrangian Coordinates

    E-Print Network [OSTI]

    Jablonowski, Christiane

    Three Dimensional Adaptive Mesh Refinement on a Spherical Shell for Atmospheric Models for Atmospheric Research 1. Introduction One of the most important advances needed in global climate models of this project is a parallel adaptive grid library, which is currently under development at the University

  11. Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature Perturbations

    E-Print Network [OSTI]

    Kurapov, Alexander

    Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature received 25 October 2013, in final form 24 July 2014) ABSTRACT The wind speed response to mesoscale SST Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean­Atmosphere Mesoscale Prediction System

  12. The Tropospheric Jet Response to Prescribed Zonal Forcing in an Idealized Atmospheric Model

    E-Print Network [OSTI]

    Chen, Gang

    The Tropospheric Jet Response to Prescribed Zonal Forcing in an Idealized Atmospheric Model GANG 2007, in final form 19 November 2007) ABSTRACT This paper explores the tropospheric jet shift to a prescribed zonal torque in an idealized dry atmospheric model with high stratospheric resolution. The jet

  13. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; et al

    2015-07-28

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate modelmore »simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m?˛ yr?˛, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation productivity and soil respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These advances will require collection of new field data on vegetation and soil dynamics, the development of benchmarking data sets from measurements and remote-sensing observations, and investments in future model development and intercomparison studies.« less

  14. On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and Giant Planets

    E-Print Network [OSTI]

    Marley, Mark S

    2014-01-01

    The atmosphere of a brown dwarf or extrasolar giant planet controls the spectrum of radiation emitted by the object and regulates its cooling over time. While the study of these atmospheres has been informed by decades of experience modeling stellar and planetary atmospheres, the distinctive characteristics of these objects present unique challenges to forward modeling. In particular, complex chemistry arising from molecule-rich atmospheres, molecular opacity line lists (sometimes running to 10 billion absorption lines or more) multiple cloud-forming condensates, and disequilibrium chemical processes all combine to create a challenging task for any modeling effort. This review describes the process of incorporating these complexities into one-dimensional radiative-convective equilibrium models of sub-stellar objects. We discuss the underlying mathematics as well as the techniques used to model the physics, chemistry, radiative transfer, and other processes relevant to understanding these atmospheres. The revi...

  15. A scalable high-order discontinuous Galerkin method for global atmospheric modeling Hae-Won Choia

    E-Print Network [OSTI]

    Nair, Ramachandran D.

    system model will require a highly scalable and accurate flux-form formulation of atmospheric dynamics supercomputers. 1. INTRODUCTION The future evolution of the Community Climate System Model (CCSM) into an Earth

  16. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    E-Print Network [OSTI]

    Hu, Renyu

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all ...

  17. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    E-Print Network [OSTI]

    2013-01-01

    hindcasts of atmospheric chemistry: the role of meteorology,J. : Introduction to atmospheric chemistry, Princeton Uni-and Zeng, G. : The Atmospheric Chemistry and Climate Model

  18. Improving complex enterprises with system models

    E-Print Network [OSTI]

    Hemann, Justin M. (Justin Matthew)

    2005-01-01

    Air Force sustainment operations are the focus of an intensive internal effort to improve performance and reduce costs. Past improvement initiatives have often failed to produce the intended results, and have caused ...

  19. Non-LTE model atmosphere analysis of the early ultraviolet spectra of nova OS Andromedae 1986

    E-Print Network [OSTI]

    Greg Schwarz; Peter H. Hauschildt; Sumner Starrfield; Eddie Baron; France Allard; Steve Shore; George Sonneborn

    1996-08-29

    We have analyzed the early optically thick ultraviolet spectra of Nova OS And 1986 using a grid of spherically symmetric, non-LTE, line-blanketed, expanding model atmospheres and synthetic spectra with the following set of parameters: $5,000\\le$ T$_{model}$ $\\le 60,000$K, solar abundances, $\\rho \\propto r^{-3}$, $\\v_{max} = 2000\\kms$, $L=6 \\times 10^{4}\\Lsun$, and a statistical or microturbulent velocity of 50 $\\kms$. We used the synthetic spectra to estimate the model parameters corresponding to the observed {\\it IUE} spectra. The fits to the observations were then iteratively improved by changing the parameters of the model atmospheres, in particular T$_{model}$ and the abundances, to arrive at the best fits to the optically thick pseudo-continuum and the features found in the {\\it IUE} spectra. The {\\it IUE} spectra show two different optically thick subphases. The earliest spectra, taken a few days after maximum optical light, show a pseudo-continuum created by overlapping absorption lines. The later observations, taken approximately 3 weeks after maximum light, show the simultaneous presence of allowed, semi-forbidden, and forbidden lines in the observed spectra. Analysis of these phases indicate that OS And 86 had solar metallicities except for Mg which showed evidence of being underabundant by as much as a factor of 10. We determine a distance of 5.1 kpc to OS And 86 and derive a peak bolometric luminosity of $\\sim$ 5 $\\times$ 10$^4$ L$_{\\odot}$. The computed nova parameters provide insights into the physics of the early outburst and explain the spectra seen by {\\it IUE}. Lastly, we find evidence in the later observations for large non-LTE effects of Fe{\\sc ii} which, when included, lead to much better agreement with the observations.

  20. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    SciTech Connect (OSTI)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  1. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E; Mahowald, Natalie; Bonan, Gordon; Running, Steven; Fung, Inez

    2009-01-01

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.

  2. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics, (2) a nonlinear perspective on the dynamics of the Madden-Julian Oscillation, (3) numerical realism of thermal co

  3. Improvement of snowpack simulations in a regional climate model

    SciTech Connect (OSTI)

    Jin, J.; Miller, N.L.

    2011-01-10

    To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the longer snow duration.

  4. Impact of emissions, chemistry, and climate on atmospheric carbon monoxide : 100-year predictions from a global chemistry-climate model

    E-Print Network [OSTI]

    Wang, Chien.; Prinn, Ronald G.

    The possible trends for atmospheric carbon monoxide in the next 100 yr have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. ...

  5. Measurement and Modeling of Shortwave Irradiance Components in Cloud-Free Atmospheres

    E-Print Network [OSTI]

    Measurement and Modeling of Shortwave Irradiance Components in Cloud-Free Atmospheres Rangasayi to classify the earth-atmospheric solar radiation into several components - direct solar surface irradiance (Edirect), diffuse-sky downward surface irradiance (Ediffuse), total surface irradiance, and upwelling flux

  6. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect (OSTI)

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption signatures.

  7. ATMOSPHERIC TURBULENCE MODELING AND IMPLICATIONS FOR WIND ENERGY

    E-Print Network [OSTI]

    Chow, Fotini Katopodes

    @berkeley.edu Abstract The near-surface structure of atmospheric turbu- lence affects the design and operation of wind may pro- vide untapped resources for wind power extraction. This study uses large-eddy simulation (LES- ameters of 80-120 m. Current operational practices for wind farm operation and siting rely on power law

  8. Lesson Summary Students will use models of Earth's atmosphere

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    to Do Scientific Inquiry Physical Science Transfer of Energy Earth and Space Science Structure the greenhouse from the captured solar energy. Certain gases in Earth's atmosphere ­ especially water vapor by storing and releasing energy from the sun. Materials: Large pickle jars, smaller jelly jar, laboratory

  9. Improved computer models support genetics research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February Simple computer models unravel genetic stress reactions in cells Simple computer models unravel genetic stress reactions in cells Integrated biological and...

  10. Improved computer models support genetics research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simple computer models unravel genetic stress reactions in cells Simple computer models unravel genetic stress reactions in cells Integrated biological and computational methods...

  11. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points intomore »a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.« less

  12. The Surface-Pressure Signature of Atmospheric Tides in Modern Climate Models

    E-Print Network [OSTI]

    Covey, Curt

    Although atmospheric tides driven by solar heating are readily detectable at the earth’s surface as variations in air pressure, their simulations in current coupled global climate models have not been fully examined. This ...

  13. Accelerated Iterative Method for Solving Steady Solutions of Linearized Atmospheric Models

    E-Print Network [OSTI]

    Watanabe, Masahiro

    Accelerated Iterative Method for Solving Steady Solutions of Linearized Atmospheric Models Masahiro approach, referred to as the accelerated iterative method (AIM), is developed for solving steady state, respectively. For ensuring the accelerated asymptotic convergence of iterative procedure

  14. HIGH-ORDER FINITE VOLUME SCHEMES FOR LAYERED ATMOSPHERIC MODELS

    E-Print Network [OSTI]

    of use of layered models are: air pollution models (see for example the early study in [1]), moisture

  15. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    Air Conditioners. Arthur D. Little, Cambridge, Mass. No.Model User’s Guide. Arthur D. Little, Cambridge, Mass. DE-described in the Arthur D. Little model will serve as the

  16. Simple improvements to classical bubble nucleation models

    E-Print Network [OSTI]

    Tanaka, Kyoko K; Angélil, Raymond; Diemand, Jürg

    2015-01-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a new prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by T...

  17. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore »microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  18. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points intomore »a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  19. Improving the homogeneity of alternating current-drive atmospheric pressure dielectric barrier discharges in helium with an additional low-amplitude radio frequency power source: A numerical study

    SciTech Connect (OSTI)

    Wang Qi [Dalian Institute of Semiconductor Technology, School of Electronics Science and Technology, Dalian University of Technology, Dalian 116023 (China); Sun Jizhong; Zhang Jianhong; Wang Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Liu Liying [Department of Electrical Engineering, Shenyang Institute of Engineering, Shenyang 110136 (China)

    2013-04-15

    It was proposed in this paper that the homogeneity of the atmospheric pressure discharge driven by an ac power source could be improved by applying an auxiliary low-amplitude rf power source. To verify the idea, a two-dimensional fluid model then was applied to study the atmospheric discharges in helium driven by ac power, low-amplitude rf power, and combined ac and low-amplitude rf power, respectively. Simulation results confirmed that an auxiliary rf power could improve the homogeneity of a discharge driven by an ac power source. It was further found that there existed a threshold voltage of the rf power source leading to the transition from inhomogeneous to homogeneous discharge. As the frequency of the rf power source increased from 2 to 22 MHz, the magnitude of the threshold voltage dropped first rapidly and then to a constant value. When the frequency was over 13.56 MHz, the magnitude of the threshold voltage was smaller than one-sixth of the ac voltage amplitude under the simulated discharge parameters.

  20. A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres

    E-Print Network [OSTI]

    Ch. Helling; A. Ackerman; F. Allard; M. Dehn; P. Hauschildt; D. Homeier; K. Lodders; M. Marley; F. Rietmeijer; T. Tsuji; P. Woitke

    2008-09-24

    The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these `dust' clouds strongly affects both the atmospheric temperature-pressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the diversity of cloud models in atmospheric simulations is large and it is not always clear how the underlying physics of the various models compare. Likewise the observational consequences of different modeling approaches can be masked by other model differences, making objective comparisons challenging. In order to clarify the current state of the modeling approaches, this paper compares five different cloud models in two sets of tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and T-dwarf atmospheric (temperature T, pressure p, convective velocity vconv)-structures. Test case 2 compares complete model atmosphere results for given (effective temperature Teff, surface gravity log g). All models agree on the global cloud structure but differ in opacity-relevant details like grain size, amount of dust, dust and gas-phase composition. Comparisons of synthetic photometric fluxes translate into an modelling uncertainty in apparent magnitudes for our L-dwarf (T-dwarf) test case of 0.25 < \\Delta m < 0.875 (0.1 < \\Delta m M 1.375) taking into account the 2MASS, the UKIRT WFCAM, the Spitzer IRAC, and VLT VISIR filters with UKIRT WFCAM being the most challenging for the models. (abr.)

  1. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    with studies of solar water heaters. Another area withto model hybrid water heaters or solar thermal systems. Theof a Gas Tankless Water Heater. ” In SOLAR 2008 San Diego,

  2. Simulation Models for Improved Water Heating Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    E. Inc. 1990. “Residential Water Heating Study: TechnicalScott. 2007. “HWSIM Hot Water Distribution Model Validationand Simulation of a Smart Water Heater. ” In Workshop in

  3. NOAA's Office of Oceanic and Atmospheric Research Roundtable: Earth System Modeling

    E-Print Network [OSTI]

    Summary NOAA's Office of Oceanic and Atmospheric Research Roundtable: Earth System Modeling in Environmental Sciences at the University of Colorado, centered on Earth System Modeling and OAR's role develop and/or can use accurate and timely predictions of the Earth system that come from modeling. The 18

  4. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere P. J circulation models used for climate simulation and weather fore- casting require the fluxes of radiation, heat incorporate bio- geochemical and ecological knowledge and, when coupled with advanced climate and ocean models

  5. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    SciTech Connect (OSTI)

    Hu Renyu; Seager, Sara; Bains, William

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark atmospheres for quickly assessing the lifetime of trace gases in reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets for the exploration of possible biosignature gases.

  6. Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake

    E-Print Network [OSTI]

    Jacob, Daniel J.

    Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications of atmospheric carbonyl sulfide (COS) to interpret observations at a network of surface sites. We aim to identify, and D. J. Jacob (2008), Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide

  7. Accounting for species taxonomy improves distribution models Aidin Niamir a

    E-Print Network [OSTI]

    models, multispecies models, species distribution models Abstract: The use of species atlas data of species distribution models. Using atlas data, two taxonomically enhanced datasets were created for 356. Enhancement of atlas data by excluding irrelevant absences based on species taxonomy significantly improved

  8. Improved Crosstalk Modeling with Applications to Noise Constrained Interconnect Optimization

    E-Print Network [OSTI]

    Pan, David Z.

    Improved Crosstalk Modeling with Applications to Noise Constrained Interconnect Optimization This paper presents a highly accurate yet efficient crosstalk noise model, the 2-˘ model, and applies to be noise immune, ac- curate yet efficient noise models are needed to guide interconnect optimizations

  9. HIDDENARTICULATOR MARKOV MODELS: PERFORMANCE IMPROVEMENTS AND ROBUSTNESS TO NOISE

    E-Print Network [OSTI]

    Noble, William Stafford

    HIDDEN­ARTICULATOR MARKOV MODELS: PERFORMANCE IMPROVEMENTS AND ROBUSTNESS TO NOISE Matt Richardson@cs}.washington.edu ABSTRACT A Hidden­Articulator Markov Model (HAMM) is a Hidden Markov Model (HMM) in which each state], we extended the articulatory­feature model introduced by Erler [7] by using diphone units and a new

  10. Transformer Thermal Modeling: Improving Reliability Using Data Quality Control

    E-Print Network [OSTI]

    1 Transformer Thermal Modeling: Improving Reliability Using Data Quality Control Daniel J. Tylavsky--Eventually all large transformers will be dynamically loaded using models updated regularly from field measured data. Models obtained from measured data give more accurate results than models based on transformer

  11. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  12. Simple improvements to classical bubble nucleation models

    E-Print Network [OSTI]

    Kyoko K. Tanaka; Hidekazu Tanaka; Raymond Angélil; Jürg Diemand

    2015-07-13

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a new prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is $\\simeq 0.3 \\sigma$ independently of the temperature for argon bubble nucleation, where $\\sigma$ is the unit length of the Lenard-Jones potential. With this Tolman correction and our new prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  13. MARCS-Model Stellar Atmospheres, and Their Application to the Photometric Calibration of the Spitzer-IRS

    E-Print Network [OSTI]

    L. Decin; P. W. Morris; P. N. Appleton; V. Charmandaris; L. Armus; J. R. Houck

    2004-06-03

    We describe state-of-the-art MARCS-code model atmospheres generated for a group of A dwarf, G dwarf, and late-G to mid-K giant standard stars, selected to photometrically calibrate the Spitzer-IRS, and compare the synthetic spectra to observations of HR 6688, HR 6705, and HR 7891. The general calibration processes and uncertainties are briefly described, and the differences between various templated composite spectra of the standards are addressed. In particular, a contrast between up-to-date model atmospheres and previously published composite and synthetic spectra is illustrated for wavelength ranges around 8um (where the SiO Delta(v) = 1 band occurs for the cooler standards) and lambda greater than 20um, where the use of the Engelke function will lead to increasingly large discrepancies due to the neglect of gravity in cool stars. At this point, radiometric requirements are being met, absolute flux calibration uncertainties (1-sigma) are ~20% in the SH and LH, and ~15% in the SL and LL data, and order-to-order flux uncertainties are ~10% or less. Iteration between the MARCS model atmosphere inputs and the data processing will improve the S/N ratios and calibration accuracies.

  14. An improved model for multiple effect distillation

    E-Print Network [OSTI]

    Mistry, Karan H.

    Increasing global demand for fresh water is driving research and development of advanced desalination technologies. As a result, a detailed model of multiple effect distillation (MED) is developed that is flexible, simple ...

  15. ESA White paper: Atmospheric modeling: Setting Biomarkers in context

    E-Print Network [OSTI]

    L. Kaltenegger; F. Selsis

    2008-09-23

    Motivation: ESAs goal to detect biomarkers in Earth-like exoplanets in the Habitable Zone requires theoretical groundwork that needs to be done to model the influence of different parameters on the detectable biomarkers. We need to model a wide parameter space (chemical composition, pressure, evolution, interior structure and outgassing, clouds) to generate a grid of models that inform our detection strategy as well as can help characterize the spectra of the small rocky planets detected.

  16. Fuel Cell System Improvement for Model-Based Diagnosis Analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fuel Cell System Improvement for Model-Based Diagnosis Analysis Philippe Fiani & Michel Batteux of a model of a fuel cell system, in order to make it usable for model- based diagnosis methods. A fuel cell for the fuel cell stack but also for the system environment. In this paper, we present an adapted library which

  17. Investigation of the Summer Climate of the Contiguous United States and Mexico Using the Regional Atmospheric Modeling System (RAMS).

    E-Print Network [OSTI]

    Castro, Christopher L.

    to observations. The Great Plains low-level jet (LLJ) is also well represented in both RAMS and NARR, but the Baja Atmospheric Modeling System (RAMS). Part I: Model Climatology (1950­2002) CHRISTOPHER L. CASTRO* Department downscaled using the Regional Atmospheric Modeling System (RAMS) to generate a regional climate model (RCM

  18. An Improved MUSIC Model for Gibbsite Surfaces

    SciTech Connect (OSTI)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  19. MEASUREMENT AND MODELLING OF AMMONIA EMISSIONS AT WASTE TREATMENT LAGOON-ATMOSPHERIC INTERFACE

    E-Print Network [OSTI]

    Aneja, Viney P.

    . Keywords: ammonia, emission, mass transfer, modelling, swine waste storage and treatment system 1MEASUREMENT AND MODELLING OF AMMONIA EMISSIONS AT WASTE TREATMENT LAGOON-ATMOSPHERIC INTERFACE of ammonia are approximately 75 Tg N/yr (1 Tg = 1012g). The major global source is excreta from domestic

  20. Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model

    E-Print Network [OSTI]

    Liou, K. N.

    Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model of California, Los Angeles, Los Angeles, California B. H. KAHN Jet Propulsion Laboratory, California Institute radiative transfer model has been developed for application to cloudy satellite data assimilation

  1. Multiscale models of atmospheric mercury: bromine chemistry, air-sea exchange, and global transport

    E-Print Network [OSTI]

    Holmes, Christopher D.

    by atomic bromine (Br) in the tropo- sphere by combining kinetic data for the Hg-Br system with modeledMultiscale models of atmospheric mercury: bromine chemistry, air-sea exchange, and global transport rights reserved. #12;iii Dissertation Advisor Author Professor Daniel J. Jacob Christopher D. Holmes

  2. A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

    E-Print Network [OSTI]

    Michalak, Anna M.

    A Data System for Visualizing 4-D Atmospheric CO2 Models and Data Tyler A. Erickson Michigan Tech CO2 Models and Data Abstract This paper describes a geospatial data system that produces KML.michalak@umich.edu John C. Lin Department of Earth and Environmental Sciences University of Waterloo 200 University Avenue

  3. Proceedings of the 51st Anniversary Conference of KSME PHYSICAL MODELING OF ATMOSPHERIC FLOW

    E-Print Network [OSTI]

    White, Bruce

    a model house in a small wind tunnel to measure wind pressure against the model. Since then, many attempts over tall buildings. The temperature differences within the atmospheric boundary layer affect both wind is discussed with special emphasis on wind-tunnel simulation techniques. The governing equations of motion

  4. Construction Logistics Improvements using the SCOR model Tornet Case

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Construction Logistics Improvements using the SCOR model ­Tornet Case Fredrik Persson1 , Jonas are emerging that leads to cost reductions in construction. In this strive towards improvement, logistics on cost savings from the logistics perspective in different areas of the logistic system. Keywords

  5. Software Maintainability Improvement: Integrating Standards and Models William C. Chu,

    E-Print Network [OSTI]

    Chung, Yeh-Ching

    Software Maintainability Improvement: Integrating Standards and Models William C. Chu, Dpt Science and Engineering, Southeast University, China National Key Laboratory of Software Engineering, Wuhan University, China Abstract Software standards are highly recommended because they promise faster

  6. Improved lumped parameter thermal modelling of synchronous generators 

    E-Print Network [OSTI]

    Mejuto, Carlos

    2010-01-01

    Within the existing available mix of numerical and analytical thermal analysis options, lumped parameter thermal modelling is selected as the operational backbone to develop an improved novel synchronous generator thermal ...

  7. Some improvements to the spherical collapse model

    E-Print Network [OSTI]

    Antonino Del Popolo

    2008-01-07

    I study the joint effect of dynamical friction, tidal torques and cosmological constant on clusters of galaxies formation I show that within high-density environments, such as rich clusters of galaxies, both dynamical friction and tidal torques slows down the collapse of low-? peaks producing an observable variation in the time of collapse of the perturbation and, as a consequence, a reduction in the mass bound to the collapsed perturbation Moreover, the delay of the collapse produces a tendency for less dense regions to accrete less mass, with respect to a classical spherical model, inducing a biasing of over-dense regions toward higher mass I show how the threshold of collapse is modified if dynamical friction, tidal torques and a non-zero cosmological constant are taken into account and I use the Extended Press Schecter (EPS) approach to calculate the effects on the mass function Then, I compare the numerical mass function given in Reed et al (2003) with the theoretical mass function obtained in the present paper I show that the barrier obtained in the present paper gives rise to a better description of the mass function evolution with respect to other previous models (Sheth & Tormen 1999, MNRAS, 308, 119 (hereafter ST); Sheth & Tormen 2002, MNRAS, 329, 61 (hereafter ST1))

  8. Land Surface Model Data Assimilation for Atmospheric Prediction

    E-Print Network [OSTI]

    Walker, Jeff

    predictions from different models even when using the same parameters, inputs, and initial conditions (Houser remote sensing studies, using visible, thermal infrared (surface temperature) and microwave (passive and active) electromagnetic radiation. Of these, passive microwave soil moisture measurement has been

  9. Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem

    E-Print Network [OSTI]

    Kochanski, Adam K; Mandel, Jan; Clements, Craig B

    2013-01-01

    Atmospheric pollution regulations have emerged as a dominant obstacle to prescribed burns. Thus, forecasting the pollution caused by wildland fires has acquired high importance. WRF and SFIRE model wildland fire spread in a two-way interaction with the atmosphere. The surface heat flux from the fire causes strong updrafts, which in turn change the winds and affect the fire spread. Fire emissions, estimated from the burning organic matter, are inserted in every time step into WRF-Chem tracers at the lowest atmospheric layer. The buoyancy caused by the fire then naturally simulates plume dynamics, and the chemical transport in WRF-Chem provides a forecast of the pollution spread. We discuss the choice of wood burning models and compatible chemical transport models in WRF-Chem, and demonstrate the results on case studies.

  10. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments

    SciTech Connect (OSTI)

    Neale, Richard; Richter, Jadwiga; Park, Sungsu; Lauritzen, P. H.; Vavrus, Steven J.; Rasch, Philip J.; Zhang, Minghua

    2013-07-15

    The Community Atmosphere Model, version 4 (CAM4) was released as the atmosphere component of the Community Climate System Model, version 4 (CCSM4) and is described. The finite volume dynamical core available in CAM3 is now the default due to its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of a formulation for Convective Momentum Transport (CMT). For the cloud fraction an additional calculation is performed following macrophysical state updates that provides improved thermodynamic condistancy. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments, such as arctic Winter, where cloud fractionand cloud water estimates were often inconsistant in CAM3. In CAM4 the finite volume dynamical core leads to a degradation in the excessive trade-wind simulation, but with an accompanying reduction in zonal stresses at higher latitudes. Plume dilution leads to a moister deep tropics alleviating much of the mid-tropospheric dry biases and reduces the persistant precipitation biases over the Arabian peninsular and the southern Indian ocean during the Indian Monsoon. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. The freeze drying modification alleviates much of the high latitude, winter-time excessive cloud bias and improves the associated surface cloud-related energy budget, but the updated cloud macrophysical calculation generally leads to reduced cloud fraction and cloud forcing away from high latitudes. Although there are marginal improvements in time-averaged, large-scale hydrology there are signficant improvements in regional climate features such as the generation of tropical and propagation of stationary waves from the Pacific into mid-latitudes and in the seasonal frequency of Northern Hemisphere blocking events. A 1? versus 2? horizontal resolution of the finite volume 24 dynamical core exhibits signficiant improvements in model climate. Improvements in the fully coupled mean climate between CAM3 and CAM4 are also much more signficant than in forced Sea Surface Temperature (SST) simulations. Furthermore, improvements in the transient characteristics ofthe model climate, documented elsewhere, are substantial.

  11. Atmospheric Test Models and Numerical Experiments for the Simulation of the Global Distributions of Weather Data Transponders III. Horizontal Distributions

    SciTech Connect (OSTI)

    Molenkamp, C.R.; Grossman, A.

    1999-12-20

    A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show that reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.

  12. MODELING ATMOSPHERIC RELEASES OF TRITIUM FROM NUCLEAR INSTALLATIONS

    SciTech Connect (OSTI)

    Okula, K

    2007-01-17

    Tritium source term analysis and the subsequent dispersion and consequence analyses supporting the safety documentation of Department of Energy nuclear facilities are especially sensitive to the applied software analysis methodology, input data and user assumptions. Three sequential areas in tritium accident analysis are examined in this study to illustrate where the analyst should exercise caution. Included are: (1) the development of a tritium oxide source term; (2) use of a full tritium dispersion model based on site-specific information to determine an appropriate deposition scaling factor for use in more simplified, broader modeling, and (3) derivation of a special tritium compound (STC) dose conversion factor for consequence analysis, consistent with the nature of the originating source material. It is recommended that unless supporting, defensible evidence is available to the contrary, the tritium release analyses should assume tritium oxide as the species released (or chemically transformed under accident's environment). Important exceptions include STC situations and laboratory-scale releases of hydrogen gas. In the modeling of the environmental transport, a full phenomenology model suggests that a deposition velocity of 0.5 cm/s is an appropriate value for environmental features of the Savannah River Site. This value is bounding for certain situations but non-conservative compared to the full model in others. Care should be exercised in choosing other factors such as the exposure time and the resuspension factor.

  13. A Flexible Atmospheric Modeling Framework for the CESM

    SciTech Connect (OSTI)

    Randall, David; Heikes, Ross; Konor, Celal

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  14. A grid of synthetic ionizing spectra for very hot compact stars from NLTE model atmospheres

    E-Print Network [OSTI]

    Thomas Rauch

    2003-03-20

    The precise analysis of properties of planetary nebulae is strongly dependent on good models for the stellar ionizing spectrum. Observations in the UV - X-ray wavelength range as well as NLTE model atmosphere calculations of spectra of their exciting stars have shown that neither blackbody fluxes nor "standard" NLTE atmosphere models which are composed out of hydrogen and helium only are good approximations. Strong differences between synthetic spectra from these compared to observed spectra at energies higher than 54 eV (He II ground state) can be ascribed to the neglect of metal-line blanketing. Realistic modeling of the emergent fluxes of hot stars in the UV - X-ray wavelength range requires metal-line blanketed NLTE model atmospheres which include all elements from hydrogen up to the iron-group. For this purpose, we present a grid (solar and halo abundance ratios) of metal-line blanketed NLTE model atmosphere fluxes which covers the parameter range of central stars of planetary nebulae.

  15. Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources

    E-Print Network [OSTI]

    Friedman, Carey

    We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model’s ability to simulate PAHs with different volatilities, ...

  16. Improved Power Modeling of DDR SDRAMs Karthik Chandrasekar

    E-Print Network [OSTI]

    Improved Power Modeling of DDR SDRAMs Karthik Chandrasekar Computer Engineering TU Delft one of the most defining aspects in designing modern embedded systems. In this context, DDR SDRAM model on power and energy for DDR3-800. We show differences of up to 60% in energy

  17. RESEARCH ARTICLE A model for improving microbial biofuel production using

    E-Print Network [OSTI]

    Dunlop, Mary

    RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production

  18. ATMOSPHERIC MODELING IN SUPPORT OF A ROADWAY ACCIDENT

    SciTech Connect (OSTI)

    Buckley, R.; Hunter, C.

    2010-10-21

    The United States Forest Service-Savannah River (USFS) routinely performs prescribed fires at the Savannah River Site (SRS), a Department of Energy (DOE) facility located in southwest South Carolina. This facility covers {approx}800 square kilometers and is mainly wooded except for scattered industrial areas containing facilities used in managing nuclear materials for national defense and waste processing. Prescribed fires of forest undergrowth are necessary to reduce the risk of inadvertent wild fires which have the potential to destroy large areas and threaten nuclear facility operations. This paper discusses meteorological observations and numerical model simulations from a period in early 2002 of an incident involving an early-morning multicar accident caused by poor visibility along a major roadway on the northern border of the SRS. At the time of the accident, it was not clear if the limited visibility was due solely to fog or whether smoke from a prescribed burn conducted the previous day just to the northwest of the crash site had contributed to the visibility. Through use of available meteorological information and detailed modeling, it was determined that the primary reason for the low visibility on this night was fog induced by meteorological conditions.

  19. Radio frequency induced ionized collisional flow model for application at atmospheric pressures

    E-Print Network [OSTI]

    Roy, Subrata

    Radio frequency induced ionized collisional flow model for application at atmospheric pressures and radio frequency (rf) induced plasma-sheath dynamics, using multifluid equations. For the former, argon inherent in nonequilibrium discharges such as obtained through radio frequency (rf) or microwave excitation

  20. Observations and modelling of the global distribution and long-term trend of atmospheric 14

    E-Print Network [OSTI]

    (IWR), University of Heidelberg, INF 368, D-69120 Heidelberg, Germany, now at Electrical Engineering for Australian Weather and Climate Research / CSIRO Marine and Atmospheric Research (CMAR), Private Bag No. 1 and sinks, using the coarse-grid carbon cycle model GRACE. Dedicated simulations of global trends and inter

  1. Atmospheric Environment 39 (2005) 13731382 A hierarchical Bayesian model to estimate and forecast ozone

    E-Print Network [OSTI]

    Irwin, Mark E.

    2005-01-01

    conditional on observed (or forecasted) meteorology including temperature, humidity, pressure, and wind speed, defining the spatial­temporal extent of episodes of dangerous air quality, forecasting urban and areaAtmospheric Environment 39 (2005) 1373­1382 A hierarchical Bayesian model to estimate and forecast

  2. Modeling atmospheric effects of the September 1859 solar flare B. C. Thomas,1

    E-Print Network [OSTI]

    Jackman, Charles H.

    Modeling atmospheric effects of the September 1859 solar flare B. C. Thomas,1 C. H. Jackman,2 and A. Melott(2007),ModelingatmosphericeffectsoftheSeptember1859 solar flare, Geophys. Res. Lett., 34, L06810 of the work in this area. [3] The solar flare of 1 September 1859 was one of the most intense white

  3. Measurements and Modeling of Atmospheric Pollution over the Paris Area: An Overview of the ESQUIF Project

    E-Print Network [OSTI]

    Menut, Laurent

    project As in many big cities throughout the world, pollution levels in the Paris area due to concentratedMeasurements and Modeling of Atmospheric Pollution over the Paris Area: An Overview of the ESQUIF) project is the first integrated project dedicated to the study of the processes leading to air pollution

  4. MODELLING MODIFIED ATMOSPHERE PACKAGING FOR FRUITS AND VEGETABLES USING MEMBRANE SYSTEMS

    E-Print Network [OSTI]

    Hinze, Thomas

    of polymeric film in or- der to modify the O2 and CO2 concentrations inside the package, reducing metabolic are not fully under- stood. As examples we can refer to the little knowl- edge about the effect of CO2MODELLING MODIFIED ATMOSPHERE PACKAGING FOR FRUITS AND VEGETABLES USING MEMBRANE SYSTEMS Gabi

  5. Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane

    E-Print Network [OSTI]

    Jacobson, Mark

    of the world econ- omy and demand for aviation and its emissions are expected to increase in the future from aviation (mainly carbon dioxide (CO2), water vapor (H2O), nitrogen oxides (NOx = NO + NO2), VOCsComparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane

  6. Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements 

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01

    Traditional representation of improved end-use efficiency in the manufacturing sector has tended to assume “a net cost” perspective. In other words, the assumption for many models is that any change within the energy end-use patterns must imply a...

  7. Atmospheric Modelling for Neptune's Methane D/H Ratio - Preliminary Results

    E-Print Network [OSTI]

    Cotton, Daniel V; Bott, Kimberly; Bailey, Jeremy

    2015-01-01

    The ratio of deuterium to hydrogen (D/H ratio) of Solar System bodies is an important clue to their formation histories. Here we fit a Neptunian atmospheric model to Gemini Near Infrared Spectrograph (GNIRS) high spectral resolution observations and determine the D/H ratio in methane absorption in the infrared H-band ($\\sim$ 1.6 {\\mu}m). The model was derived using our radiative transfer software VSTAR (Versatile Software for the Transfer of Atmospheric Radiation) and atmospheric fitting software ATMOF (ATMOspheric Fitting). The methane line list used for this work has only become available in the last few years, enabling a refinement of earlier estimates. We identify a bright region on the planetary disc and find it to correspond to an optically thick lower cloud. Our preliminary determination of CH$_{\\rm 3}$D/CH$_{\\rm 4}$ is 3.0$\\times10^{-4}$, which is in line with the recent determination of Irwin et al. (2014) of 3.0$^{+1.0}_{-0.9}\\sim\\times10^{-4}$, made using the same model parameters and line list but...

  8. Evaluation of dynamical parameters with a three-dimensional mechanistic model of the middle atmosphere

    SciTech Connect (OSTI)

    Kouker, W. [Institut fuer Meteorologie und Klimaforschung, Karlsruhe (Germany)

    1993-12-01

    A three-dimensional model of the middle atmosphere is introduced. The model is based on the full set of the primitive equations. It is designed to simulate a yearly cycle of the middle atmosphere. Results are presented for the solstice and equinox conditions. The model reproduces the main observed features of the middle atmospheric circulation: the stratospheric-mesospheric jet streams and the cold summer mesopause region at solstice with reversed zonal wind especially in the summer mesosphere, and the weak westerly circulation at equinox. The parameterized effects of breaking gravity waves in the mesosphere drive the atmosphere out of radiative balance. They lead to a meridional circulation with a one-cell structure at solstice with upward (downward) motion over the summer (winter) pole and a meridional flow towards the winter hemisphere and a two-cell structure at equinox with upward motion over the tropics and downward motion over the polar regions. Potential fields are presented for horizontal vector fields. They suggest that the stratospheric circulation can is dominated by horizontally nondivergent flow. This is modified by the results of a more quantitative view at the interaction of planetary waves on the zonal mean flow, which clearly identifies the essential role of horizontal divergence on the stratospheric circulation.

  9. Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model

    E-Print Network [OSTI]

    Lascaux, Franck; Fini, Luca

    2015-01-01

    This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model p...

  10. Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model

    E-Print Network [OSTI]

    Wegner, T.

    We evaluate the simulation of polar stratospheric clouds (PSCs) in the Specified Dynamics version of the Whole Atmosphere Community Climate Model for the Antarctic winter 2005. In this model, PSCs are assumed to form ...

  11. Weakly screened thermonuclear reactions in astrophysical plasmas: Improving Salpeter's model

    E-Print Network [OSTI]

    Theodore E. Liolios

    2003-06-23

    This paper presents a detailed study of the electron degeneracy and nonlinear screening effects which play a crucial role in the validity of Salpeter's weak-screening model. The limitations of that model are investigated and an improved one is proposed which can take into account nonlinear screening effects. Its application to the solar pp reaction derives an accurate screening enhancement factor and provides a very reliable estimation of the associated neutrino flux uncertanties.

  12. THE GREAT OXIDATION OF EARTH'S ATMOSPHERE: CONTESTING THE YOYO MODEL VIA TRANSITION STABILITY ANALYSIS

    SciTech Connect (OSTI)

    Cuntz, M.; Roy, D.; Musielak, Z. E., E-mail: cuntz@uta.ed, E-mail: dipanjan.roy@etumel.univmed.f, E-mail: zmusielak@uta.ed [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2009-11-20

    A significant controversy regarding the climate history of the Earth and its relationship to the development of complex life forms concerns the rise of oxygen in the early Earth's atmosphere. Geological records show that this rise occurred about 2.4 Gyr ago, when the atmospheric oxygen increased from less than 10{sup -5} present atmospheric level (PAL) to more than 0.01 PAL and possibly above 0.1 PAL. However, there is a debate whether this rise happened relatively smoothly or with well-pronounced ups and downs (the Yoyo model). In our study, we explore a simplified atmospheric chemical system consisting of oxygen, methane, and carbon that is driven by the sudden decline of the net input of reductants to the surface as previously considered by Goldblatt et al. Based on the transition stability analysis for the system equations, constituting a set of non-autonomous and non-linear differential equations, as well as the inspection of the Lyapunov exponents, it is found that the equations do not exhibit chaotic behavior. In addition, the rise of oxygen occurs relative smoothly, possibly with minor bumps (within a factor of 1.2), but without major jumps. This result clearly argues against the Yoyo model in agreement with recent geological findings.

  13. Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction

    E-Print Network [OSTI]

    McGovern, Amy

    Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1 dis- covery methods for use on mesoscale weather data. Severe weather phenomena such as tornados, thun, current techniques for predicting severe weather are tied to specific characteristics of the radar systems

  14. Atmosphere Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47 Industrial1 -AtDust as

  15. DOE Workshop; Pan-Gass Conference on the Representation of Atmospheric Processes in Weather and Climate Models

    SciTech Connect (OSTI)

    Morrison, PI Hugh

    2012-09-21

    This is the first meeting of the whole new GEWEX (Global Energy and Water Cycle Experiment) Atmospheric System Study (GASS) project that has been formed from the merger of the GEWEX Cloud System Study (GCSS) Project and the GEWEX Atmospheric Boundary Layer Studies (GABLS). As such, this meeting will play a major role in energizing GEWEX work in the area of atmospheric parameterizations of clouds, convection, stable boundary layers, and aerosol-cloud interactions for the numerical models used for weather and climate projections at both global and regional scales. The representation of these processes in models is crucial to GEWEX goals of improved prediction of the energy and water cycles at both weather and climate timescales. This proposal seeks funds to be used to cover incidental and travel expenses for U.S.-based graduate students and early career scientists (i.e., within 5 years of receiving their highest degree). We anticipate using DOE funding to support 5-10 people. We will advertise the availability of these funds by providing a box to check for interested participants on the online workshop registration form. We will also send a note to our participants' mailing lists reminding them that the funds are available and asking senior scientists to encourage their more junior colleagues to participate. All meeting participants are encouraged to submit abstracts for oral or poster presentations. The science organizing committee (see below) will base funding decisions on the relevance and quality of these abstracts, with preference given to under-represented populations (especially women and minorities) and to early career scientists being actively mentored at the meeting (e.g. students or postdocs attending the meeting with their advisor).

  16. Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land-atmosphere fluxes

    E-Print Network [OSTI]

    Levis, S.

    2014-01-01

    will likely improve earth system model simulations withABSTRACT The Community Earth System Model, version 1 (CESM1)in the Community Earth System Model (CESM1): Seasonal

  17. What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres

    E-Print Network [OSTI]

    Arroyo-Torres, B; Chiavassa, A; Scholz, M; Freytag, B; Marcaide, J M; Hauschildt, P H; Wood, P R; Abellan, F J

    2015-01-01

    We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict ...

  18. Estimating Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics

    SciTech Connect (OSTI)

    Burrows, Susannah M.; Rayner, Perter; Butler, T.; Lawrence, M.

    2013-06-04

    Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, by using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Simulated particle concentrations in the tropopause region and at high latitudes, as well as transport of particles to tundra and land ice regions are shown to be highly sensitive to scavenging in mixed-phase clouds, which is poorly characterized in most global climate models. This may be a critical uncertainty in correctly simulating the transport of aerosol particles to the Arctic. Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the partitioning of uncertainties in the global mean emissions that are attributable to particle size, CCN activity, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. Uncertainty due to CCN activity or to a 1 um error in particle size is typically between 10% and 40% of the uncertainty due to data uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mized-phase clouds is as high as 10% to 20% of the data uncertainty. Taken together, the four model 20 parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the measurements. This was a surprisingly large contribution from model uncertainty in light of the substantial data uncertainty, which ranges from 81% to 870% for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and systematically in both forward and inverse modelling studies.

  19. 3D cut-cell modelling for high-resolution atmospheric simulations

    E-Print Network [OSTI]

    Yamazaki, H; Nikiforakis, N

    2015-01-01

    With the recent, rapid development of computer technology, the resolution of atmospheric numerical models has increased substantially. As a result, steep gradients in mountainous terrain are now being resolved in high-resolution models. This results in large truncation errors in those models using terrain-following coordinates. In this study, a new 3D Cartesian coordinate non-hydrostatic atmospheric model is developed. A cut-cell representation of topography based on finite-volume discretization is combined with a cell-merging approach, in which small cut-cells are merged with neighboring cells either vertically or horizontally. In addition, a block-structured mesh-refinement technique achieves a variable resolution on the model grid with the finest resolution occurring close to the terrain surface. The model successfully reproduces a flow over a 3D bell-shaped hill that shows a good agreement with the flow predicted by the linear theory. The ability of the model to simulate flows over steep terrain is demons...

  20. Short ensembles: An Efficient Method for Discerning Climate-relevant Sensitivities in Atmospheric General Circulation Models

    SciTech Connect (OSTI)

    Wan, Hui; Rasch, Philip J.; Zhang, Kai; Qian, Yun; Yan, Huiping; Zhao, Chun

    2014-09-08

    This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.

  1. A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thatcher, D. R.; Jablonowski, C.

    2015-09-29

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on a flat Earth and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the non-linear dynamics-physics moisture feedbacks without the complexity of full physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary layer mixing, and the exchange ofmore »latent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of NCAR's Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics-dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.« less

  2. Hubble Space Telescope Observations of SV Cam: II. First Derivative Lightcurve Modelling using PHOENIX and ATLAS Model Atmospheres

    E-Print Network [OSTI]

    S. V. Jeffers; J. P. Aufdenberg; G. A. J. Hussain; A. Collier Cameron; V. R. Holzwarth

    2006-02-02

    The variation of the specific intensity across the stellar disc is essential input parameter in surface brightness reconstruction techniques such as Doppler imaging, where the relative intensity contributions of different surface elements are important in detecting starspots. We use PHOENIX and ATLAS model atmospheres to model lightcurves derived from high precision (S/N ~ 5000) HST data of the eclipsing binary SV Cam (F9V + K4V), where the variation of specific intensity across the stellar disc will determine the contact points of the binary system lightcurve. For the first time we use chi^2 comparison fits to the first derivative profiles to determine the best-fitting model atmosphere. We show the wavelength dependence of the limb darkening and that the first derivative profile is sensitive to the limb-darkening profile very close to the limb of the primary star. It is concluded that there is only a marginal difference (< 1sigma) between the chi^2 comparison fits of the two model atmospheres to the HST lightcurve at all wavelengths. The usefulness of the second derivative of the light-curve for measuring the sharpness of the primary's limb is investigated, but we find that the data are too noisy to permit a quantitative analysis.

  3. Modeling Stellar Atmospheres with a Spherically Symmetric Version of the Atlas Code: Testing the Code by Comparisons to Interferometric Observations and PHOENIX Models

    E-Print Network [OSTI]

    Hilding R. Neilson; John B. Lester

    2008-09-01

    One of the current opportunities for stellar atmospheric modeling is the interpretation of optical interferometric data of stars. Starting from the robust, open source ATLAS atmospheric code (Kurucz, 1979), we have developed a spherically symmetric code, SATLAS, as a new option for modeling stellar atmospheres of low gravity stars. The SATLAS code is tested against both interferometric observations of M giants by Wittkowski and collaborators, and spherically symmetric M giant NextGen models from the PHOENIX code. The SATLAS models predict interferometric visibilities that agree with the observed visibilities and with predicted visibilities, and the SATLAS atmospheric structures also agree with those from spherical PHOENIX models, with just small differences in temperature and pressure at large depths in the atmospheres.

  4. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more »By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm?3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  5. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.

    2014-07-02

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore »in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m?2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m?2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, ?0.05 and ?0.17 W m?2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  6. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore »in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm?˛ for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm?˛) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm?˛, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  7. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    SciTech Connect (OSTI)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral components in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm?˛ for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm?˛) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm?˛, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.

  8. A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies

    E-Print Network [OSTI]

    Dutkiewicz, Stephanie.

    We describe the coupling of a three-dimensional ocean circulation model, with explicit thermodynamic seaice and ocean carbon cycle representations, to a two-dimensional atmospheric/land model. This coupled system has been ...

  9. Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection

    SciTech Connect (OSTI)

    Niyogi, Devdutta S.

    2013-06-07

    The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

  10. Forests, Water, and the Atmosphere in Northern California: Insights from Sap-Flow Data Analysis and Numerical Atmospheric Model Simulations

    E-Print Network [OSTI]

    Link, Percy

    2015-01-01

    4 Sensitivity of wind forecasts to regional soil moisture: A4 Sensitivity of wind forecasts to regional soil moisture: Ainformation can improve wind forecasts. This study serves as

  11. Mathematical model of influence of topography on the large atmospheric vortex motion

    E-Print Network [OSTI]

    Rozanova, Olga; Hu, Chin-Kun

    2015-01-01

    We show that the complex behavior of the tropical cyclone approaching the land can be explained in the frame of two dimensional barotropic model obtained by averaging over the height of the primitive system of equations of the atmosphere dynamics. In particular, this behavior includes a significant track deflection, sudden decay and intensification. In contrast to other models, where first the additional physically reasonable simplifications are made, we deal with special classes of solutions to the full system. This allows us not to lose the symmetries of the model and to catch the complicated features of the full model. Our theoretical considerations are in a good compliance with the experimental data. In particular, our method is able to explain the phenomenon of attraction of the cyclone to the land and interaction of the cyclone with an island.

  12. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    Thornton, P. E.; Doney, S. C.; Lindsay, Keith; Moore, J. K.; Mahowald, N. M.; Randerson, J. T.; Fung, I.; Lamarque, J. F.; Feddema, Johannes J.

    2009-01-01

    Abstract. Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated ...

  13. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    SciTech Connect (OSTI)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  14. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    SciTech Connect (OSTI)

    Lamarque, J.-F.; Shindell, Drew; Josse, B.; Young, P. J.; Cionni, I.; Eyring, Veronika; Bergmann, D.; Cameron-Smith, Philip; Collins, W. J.; Doherty, R.; Dalsoren, S.; Faluvegi, G.; Folberth, G.; Ghan, Steven J.; Horowitz, L.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; Naik, Vaishali; Plummer, David; Righi, M.; Rumbold, S.; Schulz, M.; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Sudo, K.; Szopa, S.; Voulgarakis, A.; Zeng, G.

    2013-02-07

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.

  15. Recovery Boiler Modeling: An Improved Char Burning Model Including Sulfate Reduction and Carbon Removal 

    E-Print Network [OSTI]

    Grace, T. M.; Wag, K. J.; Horton, R. R.; Frederick, W. J.

    1994-01-01

    This paper describes an improved model of char burning during black liquor combustion that is capable of predicting net rates of sulfate reduction to sulfide as well as carbon burnup rates. Enhancements include a proper ...

  16. Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Read, Randy J. [University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Brunger, Axel T. [Stanford University, 318 Campus Drive West, Stanford, CA 94305-5432 (United States); Afonine, Pavel V.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-07-01

    A density-based procedure is described for improving a homology model that is locally accurate but differs globally. The model is deformed to match the map and refined, yielding an improved starting point for density modification and further model-building. An approach is presented for addressing the challenge of model rebuilding after molecular replacement in cases where the placed template is very different from the structure to be determined. The approach takes advantage of the observation that a template and target structure may have local structures that can be superimposed much more closely than can their complete structures. A density-guided procedure for deformation of a properly placed template is introduced. A shift in the coordinates of each residue in the structure is calculated based on optimizing the match of model density within a 6 Ĺ radius of the center of that residue with a prime-and-switch electron-density map. The shifts are smoothed and applied to the atoms in each residue, leading to local deformation of the template that improves the match of map and model. The model is then refined to improve the geometry and the fit of model to the structure-factor data. A new map is then calculated and the process is repeated until convergence. The procedure can extend the routine applicability of automated molecular replacement, model building and refinement to search models with over 2 Ĺ r.m.s.d. representing 65–100% of the structure.

  17. 3D Model Atmospheres for Extremely Low-Mass White Dwarfs

    E-Print Network [OSTI]

    Tremblay, P -E; Kilic, M; Ludwig, H -G; Steffen, M; Freytag, B; Hermes, J J

    2015-01-01

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering Teff = 6000-11,500 K and logg = 5-6.5 (cgs units) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., logg = 5-9). For low-mass WDs, the correction in temperature is relatively small (a few per cent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + milli-second pulsar binary systems. We also use the 3D cor...

  18. Results of an emergency response atmospheric dispersion model comparison using a state accepted statistical protocol

    SciTech Connect (OSTI)

    Ciolek, J.T. Jr.

    1993-10-01

    The Rocky Flats Plant, located approximately 26 km northwest of downtown Denver, Colorado, has developed an emergency response atmospheric dispersion model for complex terrain applications. Plant personnel would use the model, known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985) to project plume impacts and provide off-site protective action recommendations to the State of Colorado should a hazardous material release occur from the facility. The Colorado Department of Health (CDH) entered into an interagency agreement with the Rocky Flats Plant prime contractor, EG&G Rocky Flats, and the US Department of Energy to evaluate TRAC as an acceptable emergency response tool. After exhaustive research of similar evaluation processes from other emergency response and regulatory organizations, the interagency committee devised a formal acceptance process. The process contains an evaluation protocol (Hodgin and Smith 1992), descriptions of responsibilities, an identified experimental data set to use in the evaluation, and judgment criteria for model acceptance. The evaluation protocol is general enough to allow for different implementations. This paper explains one implementation, shows protocol results for a test case, and presents results of a comparison between versions of TRAC with different wind Field codes: a two dimensional mass consistent code called WINDS (Fosberg et al. 1976) that has been extended to three dimensions, and a fully 3 dimensional mass conserving code called NUATMOS (Ross and Smith 1987, Ross et al. 1988).

  19. An Improved Procedure for Developing Calibrated Hourly Simulation Models 

    E-Print Network [OSTI]

    Bou-Saada, T. E.; Haberl, J. S.

    1995-01-01

    . REFERENCES Abbas, M. 1993. Development of graphical indices for building energy data, M.S. Thesis, Energy Systems Rpt No. ESL-TH-93/12-02, Texas A&M University, College Station, TX. ASHRAE. 1991. ASHRAE handbook: 1991 HVAC applications volume. American... Support Office, University of Illinois Urbana-Champaign. Bou-Saada, T.E. 1994a. An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building, M.S. Thesis, Energy Systems Rpt No. ESL- TH...

  20. Flooding Experiments and Modeling for Improved Reactor Safety

    SciTech Connect (OSTI)

    Solmos, M., Hogan, K.J., VIerow, K.

    2008-09-14

    Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.

  1. IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans-Peter Waldl(1)(2), Rebecca Barthelmie(3), Algert Gil Guerrero(1)(4), Detlev Heinemann(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans of atmospheric stability. Model results have been compared with measurements from the Danish offshore wind farm offshore wind farms, modelling of wake losses is an important part of the production estimation

  2. IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans-Peter Waldl(1)(2), Rebecca Barthelmie(3), Algert Gil Guerrero(1)(4), Detlev Heinemann(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans of atmospheric stability. Model results have been compared with measurements from the Danish offshore wind farm of large offshore wind farms, modelling of wake losses is an important part of the production estimation

  3. Towards Direct Simulation of Future Tropical Cyclone Statistics in a High-Resolution Global Atmospheric Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wehner, Michael F.; Bala, G.; Duffy, Phillip; Mirin, Arthur A.; Romano, Raquel

    2010-01-01

    We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore »this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less

  4. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    SciTech Connect (OSTI)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  5. IMPROVED NUMERICAL METHODS FOR MODELING RIVER-AQUIFER INTERACTION.

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Sue Tillery; Phillip King

    2008-09-01

    A new option for Local Time-Stepping (LTS) was developed to use in conjunction with the multiple-refined-area grid capability of the U.S. Geological Survey's (USGS) groundwater modeling program, MODFLOW-LGR (MF-LGR). The LTS option allows each local, refined-area grid to simulate multiple stress periods within each stress period of a coarser, regional grid. This option is an alternative to the current method of MF-LGR whereby the refined grids are required to have the same stress period and time-step structure as the coarse grid. The MF-LGR method for simulating multiple-refined grids essentially defines each grid as a complete model, then for each coarse grid time-step, iteratively runs each model until the head and flux changes at the interfacing boundaries of the models are less than some specified tolerances. Use of the LTS option is illustrated in two hypothetical test cases consisting of a dual well pumping system and a hydraulically connected stream-aquifer system, and one field application. Each of the hypothetical test cases was simulated with multiple scenarios including an LTS scenario, which combined a monthly stress period for a coarse grid model with a daily stress period for a refined grid model. The other scenarios simulated various combinations of grid spacing and temporal refinement using standard MODFLOW model constructs. The field application simulated an irrigated corridor along the Lower Rio Grande River in New Mexico, with refinement of a small agricultural area in the irrigated corridor.The results from the LTS scenarios for the hypothetical test cases closely replicated the results from the true scenarios in the refined areas of interest. The head errors of the LTS scenarios were much smaller than from the other scenarios in relation to the true solution, and the run times for the LTS models were three to six times faster than the true models for the dual well and stream-aquifer test cases, respectively. The results of the field application show that better estimates of daily stream leakage can be made with the LTS simulation, thereby improving the efficiency of daily operations for an agricultural irrigation system. ACKNOWLEDGEMENTSThe authors appreciatively acknowledge support for Sue Tillery provided by Sandia National Laboratories' through a Campus Executive Laboratory Directed Research and Development (LDRD) research project.Funding for this study was provided by Directed Research and Development (LDRD) research project.

  6. Risk mitigation of pipeline assets through improved corrosion modeling

    E-Print Network [OSTI]

    Mullen, Richard A. (Richard Almond)

    2015-01-01

    Infrastructure has to weather the elements and still function. Gas transmission and distribution piping at a utility are no exception. Atmospheric corrosion deteriorates the integrity of the natural gas system, and utilities ...

  7. Adjusting to policy expectations in climate change modeling : an interdiciplinary study of flux adjustments in coupled atmosphere-ocean general circulation models

    E-Print Network [OSTI]

    Shackley, Simon.; Risbey, James; Stone, Peter H.; Wynne, Brian

    This paper surveys and interprets the attitudes of scientists to the use of flux adjustments in climate projections with coupled Atmosphere Ocean General Circulation Models. The survey is based largely on the responses of ...

  8. Microbial dormancy improves development and experimental validation of ecosystem model

    SciTech Connect (OSTI)

    Wang, Gangsheng; Jagadamma, Sindhu; Mayes, Melanie; Schadt, Christopher Warren; Steinweg, Jessica M; Gu, Lianhong; Post, Wilfred M

    2015-01-01

    Climate feedbacks from soils can result from environmental change followed by response of plant and microbial communities, and/or associated changes in nutrient cycling. Explicit consideration of microbial life history traits and functions may be necessary to predict climate feedbacks due to changes in the physiology and community composition of microbes and their associated effect on carbon cycling. Here, we enhanced the Microbial-Enzyme-mediated Decomposition (MEND) model by incorporating microbial dormancy and the ability to track multiple isotopes of carbon. We tested two versions of MEND, i.e., MEND with dormancy and MEND without dormancy, against long-term (270 d) lab incubations of four soils with isotopically-labeled substrates. MEND without dormancy adequately fitted multiple observations (total and 14C respiration, and dissolved organic carbon), but at the cost of significantly underestimating the total microbial biomass. The MEND with dormancy improved estimates of microbial biomass by 20 71% over the MEND without dormancy. We observed large differences for two fitted model parameters, the specific maintenance and growth rates for active microbes, depending on whether dormancy was considered. Together our model extrapolations of the incubation study show that long-term soil incubations with observations in multiple carbon pools are necessary to estimate both decomposition and microbial parameters. These efforts should provide essential support to future field- and global-scale simulations and enable more confident predictions of feedbacks between environmental change and carbon cycling.

  9. HGSYSTEMUF6. Model for Simulating Dispersion due to Atmospheric Release of UF6

    SciTech Connect (OSTI)

    Hanna, G; Chang, J.C.; Zhang, J.X.; Bloom, S.G.; Goode, W.D. Jr; Lombardi, D.A.; Yambert, M.W.

    1998-08-01

    HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF6) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry and wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF6, (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant.

  10. Thermospheric tides simulated by the national center for atmospheric research thermosphere-ionosphere general circulation model at equinox

    SciTech Connect (OSTI)

    Fesen, C.G. (Dartmouth College, Hanover, NH (United States)); Roble, R.G.; Ridley, E.C. (National Center for Atmospheric Research, Boulder, CO (United States))

    1993-05-01

    The authors use the National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM) to model tides and dynamics in the thermosphere. This model incorporates the latest advances in the thermosphere general circulation model. Model results emphasized the 70[degree] W longitude region to overlap a series of incoherent radar scatter installations. Data and the model are available on data bases. The results of this theoretical modeling are compared with available data, and with prediction of more empirical models. In general there is broad agreement within the comparisons.

  11. Climate Sensitivity of the Community Climate System Model, Version 4 Atmospheric Sciences, University of Washington, Seattle, Washington

    E-Print Network [OSTI]

    Reif, Rafael

    Climate Sensitivity of the Community Climate System Model, Version 4 C. M. BITZ Atmospheric climate sensitivity of the Community Climate System Model, version 4 (CCSM4) is 3.208C for 18 horizontal). The transient climate sensitivity of CCSM4 at 18 resolution is 1.728C, which is about 0.28C higher than in CCSM3

  12. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    SciTech Connect (OSTI)

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  13. A hydrodynamic model for asymmetric explosions of rapidly rotating collapsing supernovae with a toroidal atmosphere

    E-Print Network [OSTI]

    V. S. Imshennik; K. V. Manukovskii

    2004-11-16

    We numerically solved the two-dimensional axisymmetric hydrodynamic problem of the explosion of a low-mass neutron star in a circular orbit. In the initial conditions, we assumed a nonuniform density distribution in the space surrounding the collapsed iron core in the form of a stationary toroidal atmosphere that was previously predicted analytically and computed numerically. The con?guration of the exploded neutron star itself was modeled by a torus with a circular cross section whose central line almost coincided with its circular orbit. Using an equation of state for the stellar matter and the toroidal atmosphere in which the nuclear statistical equilibrium conditions were satisfied, we performed a series of numerical calculations that showed the propagation of a strong divergent shock wave with a total energy of 0.2x10^51 erg at initial explosion energy release of 1.0x10^51 erg. In our calculations, we rigorously took into account the gravitational interaction, including the attraction from a higher-mass (1.9M_solar) neutron star located at the coordinate origin, in accordance with the rotational explosion mechanism for collapsing supernovae.W e compared in detail our results with previous similar results of asymmetric supernova explosion simulations and concluded that we found a lower limit for the total explosion energy.

  14. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Z.; Day, D. A.; Ortega, A. M.; Palm, B. B.; Hu, W. W.; Stark, H.; Li, R.; Tsigaridis, K.; Brune, W. H.; Jimenez, J. L.

    2015-09-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via boxmore »modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and by humidification. SOA photolysis is shown to be insignificant for most functional groups, except for nitrates and especially aromatics, which may be photolyzed at high UV flux settings. Our work further establishes the OFR's usefulness as a tool to study atmospheric chemistry and enables better experiment design and interpretation, as well as improved future reactor design.« less

  15. Development of the first nonhydrostatic nested-grid grid-point global atmospheric modeling system on parallel machines

    SciTech Connect (OSTI)

    Kao, C.Y.J.; Langley, D.L.; Reisner, J.M.; Smith, W.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Evaluating the importance of global and regional climate response to increasing atmospheric concentrations of greenhouse gases requires a comprehensive global atmospheric modeling system (GAMS) capable of simulations over a wide range of atmospheric circulations, from complex terrain to continental scales, on high-performance computers. Unfortunately, all of the existing global circulation models (GCMs) do not meet this requirements, because they suffer from one or more of the following three shortcomings: (1) use of the hydrostatic approximation, which makes the models potentially ill-posed; (2) lack of a nested-grid (or multi-grid) capability, which makes it difficult to consistently evaluate the regional climate response to the global warming, and (3) spherical spectral (opposed to grid-point finite-difference) representation of model variables, which hinders model performance for parallel machine applications. The end product of the research is a highly modularized, multi-gridded, self-calibratable (for further parameterization development) global modeling system with state-of-the-science physics and chemistry. This system will be suitable for a suite of atmospheric problems: from local circulations to climate, from thunderstorms to global cloud radiative forcing, from urban pollution to global greenhouse trace gases, and from the guiding of field experiments to coupling with ocean models. It will also provide a unique testbed for high-performance computing architecture.

  16. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    SciTech Connect (OSTI)

    Tay, W. H.; Kausik, S. S.; Wong, C. S. Yap, S. L.; Muniandy, S. V.

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50?Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  17. Modelling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes

    E-Print Network [OSTI]

    Kalise, Dante

    2011-01-01

    The set of 3D inviscid primitive equations for the atmosphere is dimensionally reduced by a Discontinuous Galerkin discretization in one horizontal direction. The resulting model is a 2D system of balance laws where with a source term depending on the layering procedure and the choice of coupling fluxes, which is established in terms of upwind considerations. The "2.5D" system is discretized via a WENO-TVD scheme based in a flux limiter centered approach. We study four tests cases related to atmospheric phenomena to analyze the physical validity of the model.

  18. Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Linjiong; Bao, Qing; Liu, Yimin; Wu, Guoxiong; Wang, Wei-Chyung; Wang, Xiaocong; He, Bian; Yu, Haiyang; Li, Jiandong

    2015-03-01

    This paper documents version 1 of the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), which has a flexible horizontal resolution up to a quarter of 1°. The model, currently running on the ‘‘Tianhe 1A’’ supercomputer, is the atmospheric component of the third-generation Flexible Global Ocean-Atmosphere-Land climate System model (FGOALS3) which will participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition to describing the dynamical core and physical parameterizations of FAMIL1, this paper describes the simulated characteristics of energy and water balances and compares them with observational/reanalysis data. The comparisons indicate that the model simulates well the seasonalmore »and geographical distributions of radiative fluxes at the top of the atmosphere and at the surface, as well as the surface latent and sensible heat fluxes. A major weakness in the energy balance is identified in the regions where extensive and persistent marine stratocumulus is present. Analysis of the global water balance also indicates realistic seasonal and geographical distributions with the global annual mean of evaporation minus precipitation being approximately 10?? mm d?ą. We also examine the connections between the global energy and water balance and discuss the possible link between the two within the context of the findings from the reanalysis data. Finally, the model biases as well as possible solutions are discussed.« less

  19. Improved atmosphere-ocean coupled modeling in the tropics for climate

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article)Curves (Journal Article)Connect

  20. Improved atmosphere-ocean coupled modeling in the tropics for climate

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article)Curves (Journal Article)Connectprediction

  1. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    1960 through 2001, Carbon Dioxide Inf. Anal. Cent. , OakAtmospheric and oceanic carbon dioxide models, Science, 282,Data on Global Change, Carbon Dioxide Inf. Anal. Cent. , Oak

  2. Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements

    SciTech Connect (OSTI)

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.

    2014-12-01

    As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.

  3. 3D modeling of GJ1214b's atmosphere: vertical mixing driven by an anti-Hadley circulation

    E-Print Network [OSTI]

    Charnay, Benjamin; Leconte, Jérémy

    2015-01-01

    GJ1214b is a warm sub-Neptune transiting in front of a nearby M dwarf star. Recent observations indicate the presence of high and thick clouds or haze whose presence requires strong atmospheric mixing. In order to understand the transport and distribution of such clouds/haze, we study the atmospheric circulation and the vertical mixing of GJ1214b with a 3D General Circulation Model for cloud-free hydrogen-dominated atmospheres (metallicity of 1, 10 and 100 times the solar value) and for a water-dominated atmosphere. We analyze the effect of the atmospheric metallicity on the thermal structure and zonal winds. We also analyze the zonal mean meridional circulation and show that it corresponds to an anti-Hadley circulation in most of the atmosphere with upwelling at mid-latitude and downwelling at the equator in average. This circulation must be present on a large range of synchronously rotating exoplanets with strong impact on cloud formation and distribution. Using simple tracers, we show that vertical winds o...

  4. NASA's new modeling framework for integrating cloud processes explicitly within each grid column of a general circulation model can improve realism over the conventional model that

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    NASA's new modeling framework for integrating cloud processes explicitly within each grid column, AND SIMPSON--Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland; CHERN--Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences and Technology Center

  5. Model atmospheres and X-ray spectra of iron-rich bursting neutron stars. II. Iron rich Comptonized Spectra

    E-Print Network [OSTI]

    A. Majczyna; J. Madej; P. C. Joss; A. Rozanska

    2004-12-28

    This paper presents the set of plane-parallel model atmosphere equations for a very hot neutron star (X-ray burst source). The model equations assume both hydrostatic and radiative equilibrium, and the equation of state of an ideal gas in local thermodynamic equilibrium (LTE). The equation of radiative transfer includes terms describing Compton scattering of photons on free electrons in fully relativistic thermal motion, for photon energies approaching m_e *c^2. Model equations take into account many bound-free and free-free energy-dependent opacities of hydrogen, helium, and the iron ions, and also a dozen bound-bound opacities for the highest ions of iron. We solve model equations by partial linearisation and the technique of variable Eddington factors. Large grid of H-He-Fe model atmospheres of X-ray burst sources has been computed for 10^7 neutron stars from observational data.

  6. Model of calcareous deposit formation on cathodically protected steel in seawater: improvements and extensions 

    E-Print Network [OSTI]

    Blackburne, Patricia Nicole

    1996-01-01

    A mathematical model of calcareous deposits on cathodically protected steel in seawater has been improved for practical applications. The model can be used in industry and as a pedagogical tool. The model extracts useful information from National...

  7. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  8. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect (OSTI)

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

  9. Improvement of an Esocid Bioenergetics Model for Juvenile Fish CASEY W. SCHOENEBECK*

    E-Print Network [OSTI]

    Improvement of an Esocid Bioenergetics Model for Juvenile Fish CASEY W. SCHOENEBECK* Department temperature are known to influence the accuracy of fish bioenergetics models. In an effort to improve the accuracy of a juvenile esocid bioenergetics model, we used a regression-based approach to develop

  10. Tracking Atmospheric Ducts Using Radar Clutter: II. Surface-based Duct Tracking Using Multiple Model

    E-Print Network [OSTI]

    Gerstoft, Peter

    Tracking Atmospheric Ducts Using Radar Clutter: II. Surface-based Duct Tracking Using Multiple variability in tracking surface-based ducts in marine and coastal environments. The method tracks of the problem and evaporation duct tracking has been introduced in [1]. In previous studies, atmospheric

  11. A nonsteady one-dimensional theoretical model of Mars' neutral atmospheric composition between 30 and 200 km

    SciTech Connect (OSTI)

    Rodrigo, R.; Garcia-Alvarez, E.; Lopez-Gonzalez, M.J.; Lopez-Moreno, J.J. (Instituto de Astrofisica de Andalucia, Granada (Spain))

    1990-08-30

    There has been a big advance in the knowledge of the composition of the atmosphere of the planet Mars since its exploration by different missions in the 1970s, and this will be deeply increased in the following years as the upcoming programs to Mars develop. In this context, the authors have elaborated a model of the Mars' neutral atmosphere including the following compounds: O({sup 3}P), O({sup 1}D), O{sub 2}, O{sub 3}, H, H{sub 2}, OH, H{sub 2}O, HO{sub 2}, H{sub 2}O{sub 2}, CO, and CO{sub 2}, between 30 and 200 km of altitude. The model is carried out for middle latitudes in equinox conditions and with moderate solar activity and provides the day-to-night evolution of the atmosphere. The scarcity of observations corresponding to the nightside of the planet has made it necessary to calculate the atmospheric temperature profile based on the available observations and on theoretical estimations. The model includes a detailed treatment of both the photochemical and the dynamical processes. In this sense, the most recent values of the reaction rates and photodissociation cross sections have been used, and a new height profile of the eddy diffusion coefficient has been computed which is able to explain the vertical distribution of carbon monoxide. The concentration profiles obtained show, in general, a very good agreement with the available experimental measurements.

  12. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

  13. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticloop that limits biofuel production. These toxic effects may

  14. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  15. Improving Face Recognition Performance Using a Hierarchical Bayesian Model

    E-Print Network [OSTI]

    Shikaripur Nadig, Ashwini

    2010-04-27

    which can result in an improved recognition performance over already existing baseline approaches. We use Kernelized Fisher Discriminant Analysis (KFLD) as our baseline as it is superior to PCA in a way that it produces well separated classes even under...

  16. Modelling prominence and emphasis improves unit-selection synthesis 

    E-Print Network [OSTI]

    Strom, Volker; Nenkova, Ani; Clark, Robert A J; Vazquez-Alvarez, Yolanda; Brenier, Jason; King, Simon; Jurafsky, Daniel

    2007-01-01

    We describe the results of large scale perception experiments showing improvements in synthesising two distinct kinds of prominence: standard pitch-accent and strong emphatic accents. Previously prominence assignment has ...

  17. Atmospheric Environment ] (

    E-Print Network [OSTI]

    Raman, Sethu

    that the influence of the urban region on wind patterns and atmospheric stability could be studied. HeightAtmospheric Environment ] (

  18. Modeling of the optical properties of nonspherical particles in the atmosphere 

    E-Print Network [OSTI]

    Chen, Guang

    2009-05-15

    The single scattering properties of atmospheric particles are fundamental to radiative simulations and remote sensing applications. In this study, an efficient technique, namely, the pseudo-spectral time-domain (PSTD) ...

  19. Improving the Performance of a Dutch CSR by Modeling Pronunciation Variation 

    E-Print Network [OSTI]

    Wester, Mirjam; Kessens, Judith M; Strik, Helmer

    This paper describes how the performance of a continuous speech recognizer for Dutch has been improved by modeling pronunciation variation. We used three methods in order to model pronunciation variation. First, within-word ...

  20. Development of an equipment management model to improve effectiveness of processes

    SciTech Connect (OSTI)

    Chang, H. S.; Ju, T. Y.; Song, T. Y.

    2012-07-01

    The nuclear industries have developed and are trying to create a performance model to improve effectiveness of the processes implemented at nuclear plants in order to enhance performance. Most high performing nuclear stations seek to continually improve the quality of their operations by identifying and closing important performance gaps. Thus, many utilities have implemented performance models adjusted to their plant's configuration and have instituted policies for such models. KHNP is developing a standard performance model to integrate the engineering processes and to improve the inter-relation among processes. The model, called the Standard Equipment Management Model (SEMM), is under development first by focusing on engineering processes and performance improvement processes related to plant equipment used at the site. This model includes performance indicators for each process that can allow evaluating and comparing the process performance among 21 operating units. The model will later be expanded to incorporate cost and management processes. (authors)

  1. An improved structural mechanics model for the FRAPCON nuclear fuel performance code

    E-Print Network [OSTI]

    Mieloszyk, Alexander James

    2012-01-01

    In order to provide improved predictions of Pellet Cladding Mechanical Interaction (PCMI) for the FRAPCON nuclear fuel performance code, a new model, the FRAPCON Radial-Axial Soft Pellet (FRASP) model, was developed. This ...

  2. Vapor intrusion modeling : limitations, improvements, and value of information analyses

    E-Print Network [OSTI]

    Friscia, Jessica M. (Jessica Marie)

    2014-01-01

    Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

  3. CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models

    SciTech Connect (OSTI)

    Ma, J.; Zitney, S.

    2012-01-01

    Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

  4. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    SciTech Connect (OSTI)

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    the SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided.

  5. The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres

    E-Print Network [OSTI]

    Elisabetta Caffau; L. Sbordone; H. -G. Ludwig; P. Bonifacio; M. Steffen; N. T. Behara

    2008-03-25

    Context: The stable element hafnium (Hf) and the radioactive element thorium (Th) were recently suggested as a suitable pair for radioactive dating of stars. The applicability of this elemental pair needs to be established for stellar spectroscopy. Aims: We aim at a spectroscopic determination of the abundance of Hf and Th in the solar photosphere based on a \\cobold 3D hydrodynamical model atmosphere. We put this into a wider context by investigating 3D abundance corrections for a set of G- and F-type dwarfs. Method: High-resolution, high signal-to-noise solar spectra were compared to line synthesis calculations performed on a solar CO5BOLD model. For the other atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D models. Results: For Hf we find a photospheric abundance A(Hf)=0.87+-0.04, in good agreement with a previous analysis, based on 1D model atmospheres. The weak Th ii 401.9 nm line constitutes the only Th abundance indicator available in the solar spectrum. It lies in the red wing of an Ni-Fe blend exhibiting a non-negligible convective asymmetry. Accounting for the asymmetry-related additional absorption, we obtain A(Th)=0.09+-0.03, consistent with the meteoritic abundance, and about 0.1 dex lower than obtained in previous photospheric abundance determinations. Conclusions: Only for the second time, to our knowledge, has am non-negligible effect of convective line asymmetries on an abundance derivation been highlighted. Three-dimensional hydrodynamical simulations should be employed to measure Th abundances in dwarfs if similar blending is present, as in the solar case. In contrast, 3D effects on Hf abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model atmospheres can be conveniently used.

  6. Can Fully Accounting for Clouds in Data Assimilation Improve Short-Term Forecasts by Global Models?

    E-Print Network [OSTI]

    Robert, Pincus

    ? ROBERT PINCUS AND ROBERT J. PATRICK HOFMANN University of Colorado and NOAA/Earth System Research for Atmospheric Research, Boulder, Colorado JEFFREY S. WHITAKER NOAA/Earth Systems Research Laboratory using a single ensemble data assimilation system coupled to two present-generation climate models

  7. An improved model of the lightning electromagnetic field interaction with the D-region ionosphere

    E-Print Network [OSTI]

    14 March 2012. [1] We present an improved time-domain model of the lightning electromagnetic pulse. Introduction [2] Lightning discharges produce both an electromagnetic pulse (EMP), due to the rapid lightningAn improved model of the lightning electromagnetic field interaction with the D-region ionosphere R

  8. A global view of gravity waves in the Martian atmosphere inferred from a high-resolution general circulation model

    E-Print Network [OSTI]

    Kuroda, Takeshi; Yi?it, Erdal; Hartogh, Paul

    2015-01-01

    Global characteristics of the small-scale gravity wave (GW) field in the Martian atmosphere obtained from a high-resolution general circulation model (GCM) are presented for the first time. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. The model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere, and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered while propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates body forces of tens of m~s$^{-1}$~sol$^{-1}$, which tend to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCM si...

  9. Improving Air-Conditioner and Heat Pump Modeling

    SciTech Connect (OSTI)

    Winkler, Jon

    2012-03-02

    This presentation describes a new approach to modeling residential air conditioners and heat pumps, which allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted “behind-the-scenes” without negatively impacting the reliability of energy simulations.

  10. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  11. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model

    SciTech Connect (OSTI)

    Jensen, M; Johnson, K; Mather, J; Randall, D

    2008-03-01

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties.

  12. [10-386] Assessing and Improving the Scale Dependence of Ecosystem Processes in Earth System Models

    E-Print Network [OSTI]

    . Goodale Cornell U. *Overall Project Lead *Lead Institution Intellectual Merit: Earth system models include policies. Our research assesses and improves Earth system model simulations of the carbon cycle, ecosystem of the Community Climate System Model/Community Earth System Model, which includes statistical meteorological

  13. Knowledge Graphs as Context Models: Improving the Detection of

    E-Print Network [OSTI]

    Rosso, Paolo

    character n-gram (CL-CNG) model [9] which is based on the syntax of docu- ments, which uses character n among them. Some of these models have been compared in detecting CL plagiarism in [14]. CL-ASA and CL-CNG

  14. Security Analysis and Improvement Model for Web-based Applications 

    E-Print Network [OSTI]

    Wang, Yong

    2010-01-14

    to the current states in software systems and hardware systems, and independent of web application system states in the past. Therefore, the web-based applications can be approximately modeled by the Markov Process Model. The web-based applications can...

  15. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  16. Improved di-neutron cluster model for 6He scattering

    E-Print Network [OSTI]

    A. M. Moro; K. Rusek; J. M. Arias; J. Gomez-Camacho; M. Rodriguez-Gallardo

    2007-03-01

    The structure of the three-body Borromean nucleus 6He is approximated by a two-body di-neutron cluster model. The binding energy of the 2n-\\alpha system is determined to obtain a correct description of the 2n-\\alpha coordinate, as given by a realistic three-body model calculation. The model is applied to describe the break-up effects in elastic scattering of 6He on several targets, for which experimental data exist. We show that an adequate description of the di-neutron-core degree of freedom permits a fairly accurate description of the elastic scattering of 6He on different targets.

  17. HIDDENARTICULATOR MARKOV MODELS: PERFORMANCE IMPROVEMENTS AND ROBUSTNESS TO NOISE

    E-Print Network [OSTI]

    Bilmes, Jeff

    ], we extended the articulatory­feature model introduced by Erler [7] by using diphone units and a new] discuss the analysis­by­synthesis approach, which attempts to estimate the parameters of the Coker [3

  18. New Methods in Tissue Engineering: Improved Models for Viral Infection

    E-Print Network [OSTI]

    Ramanan, Vyas

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture ...

  19. USING NETWORKS OF JOURNEYS TO IMPROVE A PETROL MARKET MODEL

    E-Print Network [OSTI]

    Clark, Joanna

    producing promising results, the model was limited by the assumption that con- sumers would only buy petrol at the micro level are not tied to global level variables like oil prices); the parameters are often difficult

  20. An Improved Simple Chilled Water Cooling Coil Model

    E-Print Network [OSTI]

    Wang, Liping

    2014-01-01

    design and control of chilled water systems, Ph.D. Thesis,Dynamic modeling of chilled water cooling coils. PhD thesis,of the ratio of the water-side to the air-side conductance

  1. Improvements to the SHDOM Radiative Transfer Modeling Package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218 58 84(Technical Report) |Improvements

  2. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    SciTech Connect (OSTI)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; Gettelman, Andrew; Jablonowski, Christiane

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations reveals both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.

  3. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; et al

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore »both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less

  4. Improved modelling of helium and tritium production for spallation targets

    E-Print Network [OSTI]

    S. Leray; A. Boudard; J. Cugnon; J. C. David; A. Kelic-Heil; D. Mancusi; M. V. Ricciardi

    2009-12-11

    Reliable predictions of light charged particle production in spallation reactions are important to correctly assess gas production in spallation targets. In particular, the helium production yield is important for assessing damage in the window separating the accelerator vacuum from a spallation target, and tritium is a major contributor to the target radioactivity. Up to now, the models available in the MCNPX transport code, including the widely used default option Bertini-Dresner and the INCL4.2-ABLA combination of models, were not able to correctly predict light charged particle yields. The work done recently on both the intranuclear cascade model INCL4, in which cluster emission through a coalescence process has been introduced, and on the de-excitation model ABLA allows correcting these deficiencies. This paper shows that the coalescence emission plays an important role in the tritium and $^3He$ production and that the combination of the newly developed versions of the codes, INCL4.5-ABLA07, now lead to good predictions of both helium and tritium cross sections over a wide incident energy range. Comparisons with other available models are also presented.

  5. is typical of atmospheric chemistry. Years of field, laboratory and modelling studies indi-

    E-Print Network [OSTI]

    Shoubridge, Eric

    that, in the atmosphere, particle nuclea- tion and growth might involve both gas and condensed happenswhenotheratmosphericcomponents, such as anthropogenic hydrocarbons and nitrogen oxides, are added to the mix, as these compounds­41 (2008). 2. Kiendler-Scharr, A. etal. Nature 461, 381­384 (2009). 3. Tunved, P. etal. Science 312, 261

  6. Improving Battery Design with Electro-Thermal Modeling

    SciTech Connect (OSTI)

    Bharathan, D.; Pesaran, A.; Vlahinos, A.; Kim, G.-H.

    2005-01-01

    Operating temperature greatly affects the performance and life of batteries in electric and hybrid vehicles. Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry. To illustrate the process, we simulated the thermal performance of two generations of Panasonic prismatic nickel-metal-hydride modules used in the Toyota Prius. The model showed why the new generation of Panasonic modules had better thermal performance. Thermal images from two battery modules under constant current discharge indicate that the model predicts the experimental trend reasonably well.

  7. A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae

    E-Print Network [OSTI]

    Craig O. Heinke; George B. Rybicki; Ramesh Narayan; Jonathan E. Grindlay

    2006-03-01

    Current X-ray missions are providing high-quality X-ray spectra from neutron stars (NSs) in quiescent low-mass X-ray binaries (qLMXBs). This has motivated us to calculate new hydrogen-atmosphere models, including opacity due to free-free absorption and Thomson scattering, thermal electron conduction, and self-irradiation by photons from the compact object. We have constructed a self-consistent grid of neutron star models covering a wide range of surface gravities as well as effective temperatures, which we make available to the scientific community. We present multi-epoch Chandra X-ray observations of the qLMXB X7 in the globular cluster 47 Tuc, which is remarkably nonvariable on timescales from minutes to years. Its high-quality X-ray spectrum is adequately fit by our hydrogen-atmosphere model without any hard power-law component or narrow spectral features. If a mass of 1.4 Msol is assumed, our spectral fits require that its radius be in the range R=14.5^{+1.8}_{-1.6} km (90% confidence), larger than expected from currently preferred models of NS interiors. If its radius is assumed to be 10 km, then a mass of M=2.20^{+0.03}_{-0.16} Msol is required. Using models with the appropriate surface gravity for each value of the mass and radius becomes important for interpretation of the highest quality data.

  8. IMPROVING EFFICIENT MARGINAL ESTIMATORS IN BIVARIATE MODELS WITH PARAMETRIC MARGINALS

    E-Print Network [OSTI]

    Schick, Anton

    AND ANTON SCHICK Abstract. Suppose we have data from a bivariate model with parametric marginals. Efficient nonparametric estimators in the presence of a constraint, see e.g. Schick and Wefelmeyer (2008) for a recent = The research of Hanxiang Peng was supported in parts by NSF Grant DMS 0940365. The research of Anton Schick

  9. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models

    E-Print Network [OSTI]

    2014-01-01

    2013), The Community Earth System Model: A framework forsimu- lations from 15 Earth System Models (ESMs) • Most ESMsdioxide biases in Earth System Models, J. Geophys. Res.

  10. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    E-Print Network [OSTI]

    2015-01-01

    K. : THE COMMUNITY EARTH SYSTEM MODEL, B. Am. Meteor. Soc. ,M. : The Community Earth System Model: A Framework forin the Community Earth System Model, Geo- scientific Model

  11. Improving Battery Design with Electro-Thermal Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Kim, G.-H.; Duong, T.

    2005-08-01

    Temperature greatly affects the performance and life of batteries in electric and hybrid vehicles under real driving conditions, so increased attention is being paid to battery thermal management. Sophisticated electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry, material properties, loads, and boundary conditions.

  12. Electro-Thermal Modeling to Improve Battery Design: Preprint

    SciTech Connect (OSTI)

    Bharathan, D.; Pesaran, A.; Kim, G.; Vlahinos, A.

    2005-09-01

    Operating temperature greatly affects the performance and life of batteries in electric and hybrid electric vehicles (HEVs). Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. This study describes an electro-thermal finite element approach that predicts the thermal performance of a battery cell or module with realistic geometry.

  13. Dark Stars: Improved Models and First Pulsation Results

    E-Print Network [OSTI]

    Tanja Rindler-Daller; Michael H. Montgomery; Katherine Freese; Donald E. Winget; Bill Paxton

    2015-01-12

    We use the stellar evolution code MESA to study dark stars. Dark stars (DSs), which are powered by dark matter (DM) self-annihilation rather than by nuclear fusion, may be the first stars to form in the Universe. We compute stellar models for accreting DSs with masses up to 10^6 M_{sun}. The heating due to DM annihilation is self-consistently included, assuming extended adiabatic contraction of DM within the minihalos in which DSs form. We find remarkably good overall agreement with previous models, which assumed polytropic interiors. There are some differences in the details, with positive implications for observability. We found that, in the mass range of 10^4 -10^5 M_{sun}, our DSs are hotter by a factor of 1.5 than those in Freese et al.(2010), are smaller in radius by a factor of 0.6, denser by a factor of 3 - 4, and more luminous by a factor of 2. Our models also confirm previous results, according to which supermassive DSs are very well approximated by (n=3)-polytropes. We also perform a first study of dark star pulsations. Our DS models have pulsation modes with timescales ranging from less than a day to more than two years in their rest frames, at z ~ 15, depending on DM particle mass and overtone number. Such pulsations may someday be used to identify bright, cool objects uniquely as DSs; if properly calibrated, they might, in principle, also supply novel standard candles for cosmological studies.

  14. TransCom N[subscript 2]O model inter-comparison – Part 2: Atmospheric inversion estimates of N[subscript 2]O emissions

    E-Print Network [OSTI]

    Thompson, R. L.

    This study examines N[subscript 2]O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, ...

  15. 14th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 2-6 October 2011, Kos, Greece THE "VOTRE AIR" PROJECT : DEVELOPMENT OF A MODELLING TOOL TO ASSESS THE REAL

    E-Print Network [OSTI]

    Mallet, Vivien

    resolution modelling tools like Urban'Air well reproduce the spatial distribution of atmospheric pollutants OF THE SYSTEM The "Votre Air" project has been designed to monitor the atmospheric pollution over Paris center of pollutants concentrations computed by the air dispersion model are immediately corrected by the assimilation

  16. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  17. Improvements to building energy usage modeling during early design stages and retrofits

    E-Print Network [OSTI]

    Mandelbaum, Andrew (Andrew Joseph)

    2014-01-01

    A variety of improvements to the MIT Design Advisor, a whole-building energy usage modeling tool intended for use during early design stages, are investigated. These include changes to the thermal mass temperature distribution ...

  18. Reverse supply chain forecasting and decision modeling for improved inventory management

    E-Print Network [OSTI]

    Petersen, Brian J. (Brian Jude)

    2013-01-01

    This thesis details research performed during a six-month engagement with Verizon Wireless (VzW) in the latter half of 2012. The key outcomes are a forecasting model and decision-support framework to improve management of ...

  19. NEW ATLAS9 AND MARCS MODEL ATMOSPHERE GRIDS FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE)

    SciTech Connect (OSTI)

    Meszaros, Sz.; Allende Prieto, C.; De Vicente, A.; Edvardsson, B.; Gustafsson, B.; Castelli, F.; Garcia Perez, A. E.; Majewski, S. R.; Plez, B.; Schiavon, R.; Shetrone, M.

    2012-10-01

    We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from -5 to 1.5 for ATLAS and -2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H{sub 2}O line list, a wide range of carbon ([C/M]) and {alpha} element [{alpha}/M] variations, and solar reference abundances from Asplund et al. The added range of varying carbon and {alpha}-element abundances also extends the previously calculated MARCS model grids. Altogether, 1980 chemical compositions were used for the ATLAS9 grid and 175 for the MARCS grid. Over 808,000 ATLAS9 models were computed spanning temperatures from 3500 K to 30,000 K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500 K to 5500 K, and log g from 0 to 5. All model atmospheres are publicly available online.

  20. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  1. Atmospheric Environment 38 (2004) 44274436 Statistical comparison of observed and CMAQ modeled daily

    E-Print Network [OSTI]

    Jun, Mikyoung

    2004-01-01

    2004 Abstract New statistical procedures to evaluate the Models-3/Community Multiscale Air Quality reserved. Keywords: Air quality model; Model evaluation; Space­time process; Separable covariance function 1. Introduction The Models-3/Community Multiscale Air Quality (CMAQ) modeling system has been

  2. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Third Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; DA Randall; CJ Flynn

    2008-06-30

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. This report describes the aerosol optical depth (AOD) product.

  3. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom Phase II Constrained by Aircraft Observations

    SciTech Connect (OSTI)

    Samset, B. H.; Myhre, G.; Herber, Andreas; Kondo, Yutaka; Li, Shao-Meng; Moteki, N.; Koike, Makoto; Oshima, N.; Schwarz, Joshua P.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Chin, M.; Diehl, Thomas; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Lamarque, Jean-Francois; Lin, Guang; Liu, Xiaohong; Penner, Joyce E.; Schulz, M.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; Zhang, Kai

    2014-11-27

    Black carbon (BC) aerosols absorb solar radiation, and are generally held to exacerbate global warming through exerting a positive radiative forcing1. However, the total contribution of BC to the ongoing changes in global climate is presently under debate2-8. Both anthropogenic BC emissions and the resulting spatial and temporal distribution of BC concentration are highly uncertain2,9. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood, leading to large estimated uncertainty in BC concentration at high altitudes and far from emission sources10. These uncertainties limit our ability to quantify both the historical, present and future anthropogenic climate impact of BC. Here we compare vertical profiles of BC concentration from four recent aircraft measurement campaigns with 13 state of the art aerosol models, and show that recent assessments may have overestimated present day BC radiative forcing. Further, an atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in transport dominated remote regions. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in the multi-model median direct BC forcing from fossil fuel and biofuel burning over the industrial era.

  4. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models

    E-Print Network [OSTI]

    2014-01-01

    2013), The Community Earth System Model: A framework forcycle in the CMIP5 Earth System Models, J. Clim. , 26(18),feedbacks in CMIP5 Earth System Models, J. Clim. , 26(15),

  5. Changing the Climate Sensitivity of an Atmospheric General Circulation Model through Cloud Radiative Adjustment

    E-Print Network [OSTI]

    Sokolov, Andrei P.

    Conducting probabilistic climate projections with a particular climate model requires the ability to vary the model’s characteristics, such as its climate sensitivity. In this study, the authors implement and validate a ...

  6. PTFE treatment by remote atmospheric Ar/O2 plasmas: a simple reaction scheme model proposal

    E-Print Network [OSTI]

    Carbone, E A D; Keuning, W; van der Mullen, J J A M

    2013-01-01

    Polytetrafluoroethylene (PTFE) samples were treated by a remote atmospheric pressure microwave plasma torch and analyzed by water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS). In the case of pure argon plasma a decrease of WCA is observed meanwhile an increase of hydrophobicity was observed when some oxygen was added to the discharge. The WCA results are correlated to XPS of reference samples and the change of WCA are attributed to changes in roughness of the samples. A simple kinetics scheme for the chemistry on the PTFE surface is proposed to explain the results.

  7. THE CARBON-LAND MODEL INTERCOMPARISON PROJECT (C-LAMP): A PROTOTYPE FOR COUPLED BIOSPHERE-ATMOSPHERE MODEL

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    often referred to as Earth System Models (ESMs). While a number of terrestrial and ocean carbon models

  8. Sensitivity and uncertainty analysis of atmospheric ozone photochemistry models. Final report, September 30, 1993--December 31, 1998

    SciTech Connect (OSTI)

    Smith, G.P.

    1999-03-01

    The author has examined the kinetic reliability of ozone model predictions by computing direct first-order sensitivities of model species concentrations to input parameters: S{sub ij} = [dC{sub i}/C{sub i}]/[dk{sub j}/k{sub j}], where C{sub i} is the abundance of species i (e.g., ozone) and k{sub j} is the rate constant of step j (reaction, photolysis, or transport), for localized boxes from the LLNL 2-D diurnally averaged atmospheric model. An ozone sensitivity survey of boxes at altitudes of 10--55 km, 2--62N latitude, for spring, equinox, and winter is presented. Ozone sensitivities are used to evaluate the response of model predictions of ozone to input rate coefficient changes, to propagate laboratory rate uncertainties through the model, and to select processes and regions suited to more precise measurements. By including the local chemical feedbacks, the sensitivities quantify the important roles of oxygen and ozone photolysis, transport from the tropics, and the relation of key catalytic steps and cycles in regulating stratospheric ozone as a function of altitude, latitude, and season. A sensitivity-uncertainty analysis uses the sensitivity coefficients to propagate laboratory error bars in input photochemical parameters and estimate the net model uncertainties of predicted ozone in isolated boxes; it was applied to potential problems in the upper stratospheric ozone budget, and also highlights superior regions for model validation.

  9. Improving the Production Efficiency of Beef Cows through Mathematical Modeling and Genomics

    E-Print Network [OSTI]

    Improving the Production Efficiency of Beef Cows through Mathematical Modeling and Genomics that integrating recent advances in genomics, the identification of intrinsic genetic factors that determine and evaluate the individual-based model for production efficiency· of beef cows using genomic and biomarker

  10. 2 CONCEPT OF MODEL BASED TAMPERING FOR 3 IMPROVING PROCESS PERFORMANCE

    E-Print Network [OSTI]

    Bukkapatnam, Satish T.S.

    1 2 CONCEPT OF MODEL BASED TAMPERING FOR 3 IMPROVING PROCESS PERFORMANCE: 4 AN ILLUSTRATIVE 14 This paper presents the concept of a methodology called Model Based 15 Tampering (MBT based tampering (MBT), which is conceptualized in this paper, will 38 become necessary in order to meet

  11. Development of an Improved Model for Piezo-Electric Driven Ink Jets

    E-Print Network [OSTI]

    Recktenwald, Gerald

    Development of an Improved Model for Piezo-Electric Driven Ink Jets Sharon S. Berger Xerox dynamic behavior of phase-change ink jets, including the individual jets in a print head. A typical model of an ink jet is based upon lumped-parameter (no spatial variation) assumptions. While quite accurately

  12. Uncertainty in atmospheric CO? predictions from a parametric uncertainty analysis of a global carbon cycle model

    E-Print Network [OSTI]

    Holian, Gary L.; Sokolov, Andrei P.; Prinn, Ronald G.

    Key uncertainties in the global carbon cycle are explored with a 2-D model for the oceanic carbon sink. By calibrating the key parameters of this ocean carbon sink model to widely referenced values, it produces an average ...

  13. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect (OSTI)

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  14. North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution

    E-Print Network [OSTI]

    Codron, Francis

    and CNRM global climate and Earth System Models, both developed in France and contributing to the 5th

  15. Petascale Atmospheric General Circulation Models R. D. Nair and H. M. Tufo#

    E-Print Network [OSTI]

    Nair, Ramachandran D.

    ) into an Earth system model will require a highly scalable and accurate flux-form formulation of the dynamics

  16. Analytical Models of Exoplanetary Atmospheres. II. Radiative Transfer via the Two-Stream Approximation

    E-Print Network [OSTI]

    Heng, Kevin; Lee, Jaemin

    2014-01-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We further demonstrate that traditional non-isothermal treatments of each atmospheric layer lead to unphysical contributions to the ...

  17. Modeling high-energy cosmic ray induced terrestrial and atmospheric neutron flux: A lookup table

    E-Print Network [OSTI]

    Overholt, Andrew; Atri, Dimitra

    2013-01-01

    Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies solar flares, supernovae and gamma ray bursts produce high energy cosmic rays (HECRs) with drastically higher energies. The Earth is likely episodically exposed to a greatly increased HECR flux from such events, some of which lasting thousands to millions of years. The air showers produced by HECRs ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Neutrons currently contribute a significant radiation dose at commercial passenger airplane altitude. With higher cosmic ray energies, these effects will be propagated to ground level. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to high energy cosmic rays at various primary energies and altitudes. We provide here lookup tables that can be used to determine neutron fluxes from primaries with total energies 1 GeV - 1 PeV...

  18. Coupling of a regional atmospheric model (RegCM3) and a regional oceanic model (FVCOM) over the maritime continent

    E-Print Network [OSTI]

    Wei, Jun

    Climatological high resolution coupled climate model simulations for the maritime continent have been carried out using the regional climate model (RegCM) version 3 and the finite volume coastal ocean model (FVCOM) ...

  19. Improving the representation of terrestrial ecosystem processes in Earth system models to increase the quality of climate model projections and inform DOE's energy decisions

    E-Print Network [OSTI]

    Improving the representation of terrestrial ecosystem processes in Earth system models to increase results are incorporated into Earth system models to improve climate projections. e overarching goal of TES is to improve the representation of terrestrial ecosystem processes in Earth system models

  20. Physical and Mathematical Properties of a Quasi-Geostrophic Model of Intermediate Complexity of the Mid-Latitudes Atmospheric Circulation

    E-Print Network [OSTI]

    Valerio Lucarini; Antonio Speranza; Renato VItolo

    2005-11-24

    A quasi-geostrophic intermediate complexity model is considered, providing a schematic representation of the baroclinic conversion processes which characterize the physics of the mid-latitudes atmospheric circulation. The model is relaxed towards a given latitudinal temperature profile, which acts as baroclinic forcing, controlled by a parameter TE determining the forced equator-to-pole temperature gradient. As TE increases, a transition takes place from a stationary regime to a periodic regime, and eventually to an earth-like chaotic regime where evolution takes place on a strange attractor. The dependence of the attractor dimension, metric entropy, and bounding box volume in phase space is studied by varying both TE and model resolution. The statistical properties of observables having physical relevance, namely the total energy of the system and the latitudinally averaged zonal wind, are also examined. It is emphasized that while the attractor's properties are quite sensitive to model resolution, the global physical observables depend less critically on it. For more detailed physical observables, such as the latitudinal profiles of the zonal wind, model resolution again may be critical: the effectiveness of the zonal wind convergence, acting as barotropic stabilization of the baroclinic waves, heavily relies on the details of the latitudinal structure of the fields. The necessity and complementarity of both the dynamical systems and physical approach is underlined.

  1. Modeling and Remote Sensing of Urban Land-Atmosphere Interactions with a Focus on Urban Irrigation

    E-Print Network [OSTI]

    Vahmani, Pouya

    2014-01-01

    representation of both water and energy fluxes is criticalemployed to quantify water and energy cycle fluxes in urban2008), Linking urban water balance and energy balance models

  2. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North...

  3. Improved Crosstalk Modeling for Noise Constrained Interconnect Optimization Jason Cong, David Zhigang Pan and Prasanna V. Srinivas

    E-Print Network [OSTI]

    Pan, David Z.

    Improved Crosstalk Modeling for Noise Constrained Interconnect Optimization Jason Cong, David This paper presents a much improved, highly accurate yet effi- cient crosstalk noise model, the 2-˘ model, and applies it to noise- constrained interconnect optimizations. Compared with previous crosstalk noise models

  4. 17 March 2005 HPC Seminar, A. Gohm, IMGI 1 Atmospheric Modeling

    E-Print Network [OSTI]

    Gohm, Alexander

    ) Buchauer (1998) Mayr (1999) Schaffhauser (2000) Gohm (2004) Million model grid points nonlinearlinear 3D 2D 3D idealized flow realistic flow 1 grid 2 grid 3 grid 1 grid 6 grids 1 CPU 8-24 CPU Model setup CDC), currently maintained by the US spin-off company ATMET, and released under the GNU public license RAMS

  5. A new one-dimensional radiative equilibrium model for investigating atmospheric

    E-Print Network [OSTI]

    (s) into the building blocks of climate models seems necessary. The Earth system as a whole is virtually driven system 1. INTRODUCTION Climate models built on the principles of energy, momentum and mass balances have and maintained by the radiation exchange between the Earth system and space (e.g. Lesins 1990; Stephens & O

  6. ATMOSPHERIC CHEMISTRY - RESPONSE TO HUMAN INFLUENCE

    E-Print Network [OSTI]

    LOGAN, J; PRATHER, M; WOFSY, S; MCELROY, M

    1978-01-01

    Trans. II 70, 253. ATMOSPHERIC CHEMISTRY Clyne, M. A. A. &data for modelling atmospheric chemistry. NBS Technical NoteChem. 80, 2711. ATMOSPHERIC CHEMISTRY Sanadze, G. A. 1963 On

  7. Modeling high-energy cosmic ray induced terrestrial and atmospheric neutron flux: A lookup table

    E-Print Network [OSTI]

    Andrew Overholt; Adrian Melott; Dimitra Atri

    2013-06-05

    Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies solar flares, supernovae and gamma ray bursts produce high energy cosmic rays (HECRs) with drastically higher energies. The Earth is likely episodically exposed to a greatly increased HECR flux from such events, some of which lasting thousands to millions of years. The air showers produced by HECRs ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Neutrons currently contribute a significant radiation dose at commercial passenger airplane altitude. With higher cosmic ray energies, these effects will be propagated to ground level. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to high energy cosmic rays at various primary energies and altitudes. We provide here lookup tables that can be used to determine neutron fluxes from primaries with total energies 1 GeV - 1 PeV. By convolution, one can compute the neutron flux for any arbitrary CR spectrum. Our results demonstrate that deducing the nature of primaries from ground level neutron enhancements would be very difficult.

  8. Journal of Atmospheric and Solar-Terrestrial Physics 66 (2004) 14911497 Sun-to-magnetosphere modeling: CISM forecast model

    E-Print Network [OSTI]

    2004-01-01

    -to-magnetosphere modeling: CISM forecast model development using linked empirical methods D.N. Bakera,Ă, R.S. Weigela , E Space Weather Modeling (CISM) is to provide linked end-to- end models of the connected Sun­Earth system. It is envisioned that the ultimate product of the CISM effort will be a single, physics-based (i.e., ``forward

  9. An improved constitutive model for cyclic material behavior in creep range

    SciTech Connect (OSTI)

    Kussmaul, K.; Maile, K.; Xu, H.; Sheng, S.

    1995-12-31

    Structural components operated at elevated temperatures are often subjected to complex loading histories combining cyclic plasticity and creep. The design and life prediction of these components require accurate description of the non-linear stress-strain response under the cyclic loading. In the paper the results of an ongoing R&D-programme performed at MPA Stuttgart is presented. The objective of this work is to model the cyclic material behavior in the temperature range where time-dependent plasticity is dominant. A series of tests from room temperature UP to 550{degrees}C have been carried out to determine the cyclic material behavior of the turbine steels 1 CrMoV, 2CrMoVNiW and the bolt material Nimonic 80A. On the basis of the acquired experimental data the commonly used constitutive model developed by Chaboche et al. is evaluated and improved. The following aspects are considered in the improved model: Influence of the kinematic back stress on the viscoplastic material behavior Description of the temperature dependent and time-dependent viscosity Method of determination of the material constants used in the model: The comparison of these analytical results and the experimental data shows that the improved model is suitable to describe the cyclic material behavior under uniaxial loading. To verify the developed model for multiaxial loading on the basis of the test data, an implementation of the constitutive model in a finite element code will be performed.

  10. DIVISION OF MARINE AND ATMOSPHERIC CHEMISTRY

    E-Print Network [OSTI]

    Shyu, Mei-Ling

    DIVISION OF MARINE AND ATMOSPHERIC CHEMISTRY The missions of the Division of Marine and Atmospheric Chemistry (MAC) are to carry out broadly based research on the chemistry of the atmosphere and marine and stratosphere. Atmospheric Chemistry Research activities in atmospheric chemistry and modeling are diverse

  11. Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance

    SciTech Connect (OSTI)

    Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

    2012-04-30

    This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are also proposed.

  12. Modeling the Direct and Indirect Effects of Atmospheric Aerosols on Tropical Cyclones 

    E-Print Network [OSTI]

    Lee, Keun-Hee

    2012-02-14

    The direct and indirect effects of aerosols on the hurricane ‘Katrina’ have been investigated using the WRF model with a two-moment bulk microphysical scheme and modified Goddard shortwave radiation scheme. Simulations of the hurricane ‘Katrina...

  13. Simplified two-layer models of precipitating atmosphere and their J. Lambaerts,1

    E-Print Network [OSTI]

    Lapeyre, Guillaume

    is organized as follows. In Sec. II, we present a derivation of the model by vertical averaging of the primi of the characteristics is studied and we address the question of possible loss of hyperbolicity. The Rankine

  14. Modeling the impact of atmospheric moisture transport on global ice volume

    E-Print Network [OSTI]

    Nisancioglu, Kerim Hestnes, 1975-

    2004-01-01

    Following Milankovitch's original hypothesis most model studies of changes in global ice volume on orbital time scales have focused on the impact of ablation on ice sheet mass balance. In most cases, poleward moisture flux ...

  15. Parameterization of urban sub-grid scale processes in global atmospheric chemistry models

    E-Print Network [OSTI]

    Calbó, Josep.; Pan, Wen Wei.; Webster, Mort David.; Prinn, Ronald G.; McRae, Gregory J.

    We have derived a parameterization consisting of a set of analytical expressions that approximate the predictions by the CIT Urban Airshed Model for the net export to the environment (i.e., effective emissions) of several ...

  16. Precipitation Characteristics in Eighteen Coupled Climate Models National Center for Atmospheric Research,* Boulder, Colorado

    E-Print Network [OSTI]

    Dai, Aiguo

    Precipitation Characteristics in Eighteen Coupled Climate Models AIGUO DAI National Center) ABSTRACT Monthly and 3-hourly precipitation data from twentieth-century climate simulations by the newest-related variability, convective versus stratiform precipitation ratio, precipitation frequency and intensity

  17. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model - First Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; D Randall

    2007-12-30

    In 2008, the Atmospheric Radiation Measurement (ARM) program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone is ‘initial formulation of the algorithm to produce and make available, new continuous time series of retrieved cloud , aerosol and dust properties, based on results from the ARM Mobile Facility deployment in Niger, Africa. The first quarter milestone has been achieved.

  18. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings. Part 1: A model for subsonic flow

    SciTech Connect (OSTI)

    Koenig, W.M.; Hennecke, D.K.; Fottner, L.

    1996-01-01

    New blading concepts as used in modern transonic axial-flow compressors require improved loss and deviation angle correlations. The new model presented in this paper incorporates several elements and treats blade-row flows having subsonic and supersonic inlet conditions separately. In the first part of this paper two proved and well-established profile loss correlations for subsonic flows are extended to quasi-two-dimensional conditions and to custom-tailored blade designs. Instead of a deviation angle correlation, a simple method based on singularities is utilized. The comparison between the new model and a recently published model demonstrates the improved accuracy in prediction of cascade performance achieved by the new model.

  19. Atmospheric Test Models and Numerical Experiments for the Simulation of the Global Distribution of Weather Data Transponders II. Vertical Transponder Motion Considerations

    SciTech Connect (OSTI)

    Grossman, A.; Errico, R.M.

    1999-11-29

    The vertical motion of constant density atmospheric balloons has been considered via an equation of motion for the vertical displacement of a balloon, due to vertical air motion, which can be numerically solved for balloon positions. Initial calculations are made for a constant density atmosphere. Various vertical wind models with relatively large amplitudes are applied to the model to determine how tightly the balloons are coupled to the reference level and the time scale for the balloons to change to the wind driven reference altitude. A surface launch of a balloon to a 6 km reference altitude is modeled using a detailed atmospheric pressure-density-temperature profile in the equation of motion. The results show the balloons to be relatively tightly coupled ({approx} 50-100 m) to the reference altitude.

  20. Development of a computer model for calculation of radioactive materials into the atmosphere after an accident

    SciTech Connect (OSTI)

    Schershakov, V.

    1997-11-01

    Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

  1. An improved Reynolds-equation model for gas damping of microbeam motion.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert

    2003-09-01

    An improved gas-damping model for the out-of-plane motion of a near-substrate microbeam is developed based on the Reynolds equation (RE). A boundary condition for the RE is developed that relates the pressure at the beam edge to the beam motion. The coefficients in this boundary condition are determined from Navier-Stokes slip-jump (NSSJ) simulations for small slip lengths (relative to the gap height) and from direct simulation Monte Carlo (DSMC) molecular gas dynamics simulations for larger slip lengths. This boundary condition significantly improves the accuracy of the RE when the microbeam width is only slightly greater than the gap height between the microbeam and the substrate. The improved RE model is applied to microbeams fabricated using the SUMMiT V process.

  2. Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Read, Randy J. [Department of Haematology, University of Cambridge, Cambridge CB2 0XY (United Kingdom); Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-05-01

    An OMIT procedure is presented that has the benefits of iterative model building density modification and refinement yet is essentially unbiased by the atomic model that is built. A procedure for carrying out iterative model building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite ‘iterative-build’ OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular-replacement structure and with an experimentally phased structure and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank.

  3. Improved heterojunction quality in Cu2O-based solar cells through the optimization of atmospheric pressure spatial atomic layer deposited Zn1-xMgxO

    E-Print Network [OSTI]

    Ievskaya, Yulia; Hoye, Robert L. Z.; Sadhanala, Aditya; Musselman, Kevin P.; MacManus-Driscoll, Judith L.

    2015-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices...

  4. Wake models are used to improve predictions of Annual Energy Production (AEP) of wind farms.

    E-Print Network [OSTI]

    Daraio, Chiara

    measurements in the ETHZ facility compare well with measurements at the Horns Rev offshore wind farm·Wake models are used to improve predictions of Annual Energy Production (AEP) of wind farms. ·Wake and wind turbine wakes in large windfarms offshore, Wind Energy 12, pp. 431-444, 2009. [2] L.P. Chamorro

  5. Adaptive Software Testing in the Context of an Improved Controlled Markov Chain Model

    E-Print Network [OSTI]

    Kundu, Sukhamay

    Adaptive Software Testing in the Context of an Improved Controlled Markov Chain Model Hai Hu, Chang@buaa.edu.cn Abstract Adaptive software testing is the counterpart of adaptive control in software testing. It means that software testing strategy should be adjusted on- line by using the testing data collected during software

  6. On Closed Task of Chinese Word Segmentation: An Improved CRF Model Coupled with Character Clustering and

    E-Print Network [OSTI]

    Chu, Hao-hua

    On Closed Task of Chinese Word Segmentation: An Improved CRF Model Coupled with Character,yabt,clsung,hongjie,hsu}@iis.sinica.edu.tw Abstract This paper addresses two major prob- lems in closed task of Chinese word segmentation (CWS): tagging sentences interspersed with non-Chinese words, and long named entity (NE) identifica- tion

  7. Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia Institute of Technology

    E-Print Network [OSTI]

    California at Davis, University of

    Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia or organization) DOT - $92,292.15 Total Project Cost $92,292.15 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 1, 2013 ­ June 30, 2015 Brief Description of Research Project Local governments

  8. IMPROVED SEMI-PARAMETRIC TIME SERIES MODELS OF AIR POLLUTION AND MORTALITY

    E-Print Network [OSTI]

    Dominici, Francesca

    IMPROVED SEMI-PARAMETRIC TIME SERIES MODELS OF AIR POLLUTION AND MORTALITY Francesca Dominici series analyses of air pollution and health attracted the attention of the scientific community, policy makers, the press, and the diverse stakeholders con- cerned with air pollution. As the Environmental

  9. A Supply-Demand Model Based Scalable Energy Management System for Improved Energy

    E-Print Network [OSTI]

    Bhunia, Swarup

    A Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization: sxn124@case.edu Abstract-Harvesting energy from the environment can play an important role in reducing the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable

  10. Three-body interactions improve the prediction of rate and mechanism in protein folding models

    E-Print Network [OSTI]

    Plotkin, Steven S.

    Three-body interactions improve the prediction of rate and mechanism in protein folding models M. R-body interactions on rate and mechanism in protein folding by using the results of molecular dynamics simulations that stabilize protein structures and govern protein folding mechanisms is a fundamental problem in molecular

  11. 2D photochemical modeling of Saturn's stratosphere. Part I: Seasonal variation of atmospheric composition without meridional transport

    E-Print Network [OSTI]

    Hue, Vincent; Dobrijevic, Michel; Hersant, Franck; Greathouse, Thomas K

    2015-01-01

    Saturn's axial tilt of 26.7{\\deg} produces seasons in a similar way as on Earth. Both the stratospheric temperature and composition are affected by this latitudinally varying insolation along Saturn's orbital path. A new time dependent 2D photochemical model is presented to study the seasonal evolution of Saturn's stratospheric composition. This study focuses on the impact of the seasonally variable thermal field on the main stratospheric C2 hydrocarbon chemistry (C2H2 and C2H6) using a realistic radiative climate model. Meridional mixing and advective processes are implemented in the model but turned off in the present study for the sake of simplicity. The results are compared to a simple study case where a latitudinally and temporally steady thermal field is assumed. Our simulations suggest that, when the seasonally variable thermal field is accounted for, the downward diffusion of the seasonally produced hydrocarbons is faster due to the seasonal compression of the atmospheric column during winter. This ef...

  12. Atmospheric test models and numerical experiments for the simulation of the global distribution of weather data transponders

    SciTech Connect (OSTI)

    Grossman, A; Molenkamp, C R

    1999-08-25

    A proposal has been made to establish a high density global network of atmospheric micro transponders to record time, temperature, and wind data with time resolution of {le} 1 minute, temperature accuracy of {+-} 1 K, spatial resolution no poorer than {approx}3km horizontally and {approx}0.1km vertically, and 2-D speed accuracy of {le} 1m/s. This data will be used in conjunction with advanced numerical weather prediction models to provide increases in the reliability of long range weather forecasts. Major advances in data collection technology will be required to provide the proposed high-resolution data collection network. Systems studies must be undertaken to determine insertion requirements, spacing, and evolution of the transponder ensemble, which will be used to collect the data. Numerical models which provide realistic global weather pattern simulations must be utilized in order to perform these studies. A global circulation model with a 3{sup o} horizontal resolution has been used for initial simulations of the generation and evolution of transponder distributions. These studies indicate that reasonable global coverage of transponders can be achieved by a launch scenario consisting of the sequential launch of transponders at specified heights from a globally distributed set of launch sites.

  13. The Regional Atmospheric Modeling System (RAMS): Development for Parallel Processing Computer

    E-Print Network [OSTI]

    Cirne, Walfredo

    on the mesoscale (horizontal scales from 2 km to 2000 km) for purposes ranging from operational weather forecasting and simulating convective clouds, mesoscale convective systems, cirrus clouds, and precipitating weather systems models that had a great deal of overlap, the CSU cloud/mesoscale mode (Tripoli and Cotton, 1982

  14. Toward Model Free Atmospheric Sensing by Aerial Robot Networks in Strong Wind Fields

    E-Print Network [OSTI]

    Frew, Eric W.

    properties or to locate sources, contours, and boundaries [8], [9]. The final two categories are both, Boulder, CO 80309 Cooperative Institute for Research in Environmental Sciences University of Colorado area in a short amount of time in order to inform the modeling process. Finally, nonlinear aircraft

  15. A Continuous ` \\Gamma oe Vertical Coordinate for a Baroclinic Model of the Atmospheric Circulation

    E-Print Network [OSTI]

    Drake, John B.

    meteorolgoical coordinate system is developed which can support a continuous isentropic­ oe vertical coordinate and boundary layer approximations were addressed by the introduction of a hybrid (patched) model [15]. By use analysis [14, 8]. The effects of heating on the circulation are most clearly seen with the isentropic

  16. Iterative build OMIT maps: Map improvement by iterative model-building and refinement without model bias

    SciTech Connect (OSTI)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2008-02-12

    A procedure for carrying out iterative model-building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'Iterative-Build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular replacement structure and with an experimentally-phased structure, and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank.

  17. Using radiative transfer models to study the atmospheric water vapor content and to eliminate telluric lines from high-resolution optical spectra

    E-Print Network [OSTI]

    Gardini, A; Pérez, E; Quesada, J A; Funke, B

    2012-01-01

    The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400-24 000 {\\AA} range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000-10 000 {\\AA} range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.

  18. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    SciTech Connect (OSTI)

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  19. Refining climate models

    ScienceCinema (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2014-06-26

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  20. Refining climate models

    SciTech Connect (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2012-10-31

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  1. Natalie Marie Mahowald Department of Earth and Atmospheric Sciences

    E-Print Network [OSTI]

    Mahowald, Natalie

    in the Community Atmosphere Model: development of framework and impact on radiative forcing, Atmospheric Chemistry, Atmospheric Chemistry and 1 1 Natalie Marie Mahowald Department of Earth and Atmospheric Sciences Professor Director

  2. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    E-Print Network [OSTI]

    2015-01-01

    S. , and Colin, J. -L. : Miner- alogy as a critical factorCAM5, the simulation with miner- alogy has relatively highforcing for both models with miner- alogy. For CAM4, while

  3. A RECOMMENDED PASQUILL-GIFFORD STABILITY CLASSIFICATION METHOD FOR SAFETY BASIS ATMOSPHERIC DISPERSION MODELING AT SRS

    SciTech Connect (OSTI)

    Hunter, C.

    2012-03-28

    Several of the most common methods for estimating Pasquill-Gifford (PG) stability (turbulence) class were evaluated for use in modeling the radiological consequences of SRS accidental releases using the MELCOR Accident Consequence Code System, Ver. 2 (MACCS2). Evaluation criteria included: (1) the ability of the method to represent diffusion characteristics above a predominantly forested landscape at SRS, (2) suitability of the method to provide data consistent with the formulation of the MACCS2 model, and (3) the availability of onsite meteorological data to support implementation of the method The evaluation resulted in a recommendation that PG stability classification for regulatory applications at SRS should be based on measurements of the standard deviation of the vertical component of wind direction fluctuations, {sigma}{sub e}, collected from the 61-m level of the SRS meteorological towers, and processed in full accordance with EPA-454/R-99-005 (EPA, 2000). This approach provides a direct measurement that is fundamental to diffusion and captures explicitly the turbulence generated by both mechanical and buoyant forces over the characteristic surface (forested) of SRS. Furthermore, due to the potentially significant enhancement of horizontal fluctuations in wind direction from the occurrence of meander at night, the use of {sigma}{sub e} will ensure a reasonably conservative estimate of PG stability class for use in dispersion models that base diffusion calculations on a single value of PG stability class. Furthermore, meteorological data bases used as input for MACCS2 calculations should contain hourly data for five consecutive annual periods from the most recent 10 years.

  4. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  5. Cosmic ray spectrum by energy scattered by EAS particles in the atmosphere and galactic model

    E-Print Network [OSTI]

    S. P. Knurenko; A. A. Ivanov; A. V. Sabourov

    2007-11-16

    The differential energy spectrum of cosmic rays from Cherenkov radiation measurements in EAS in the energy range of 10^15-10^20eV has been compared with an anomalous diffusion model for the particles in interstellar space having fractal properties (Lagutin et al, 2001). The close association between experimental data and calculated "all particle" spectra in form at E(0) (10^15-10^18)eV is found. In this case, the average mass composition of cosmic rays calculated by five components does not contradict the average mass composition from experimental data which was obtained by several of EAS characteristics in that energy region.

  6. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport)Fermentative Activity onConnect ModelingPhase II

  7. Thermally Induced Chemistry of Meteoritic Complex Organic Molecules: A New Heat-Diffusion Model for the Atmospheric Entry of Meteorites

    E-Print Network [OSTI]

    Shingledecker, Christopher N

    2014-01-01

    Research over the past four decades has shown a rich variety of complex organic molecular content in some meteorites. This current study is an attempt to gain a better insight into the thermal conditions experienced by these molecules inside meteorites during atmospheric entry. In particular, we wish to understand possible chemical processes that can occur during entry and that might have had an effect on complex organic or prebiotic species that were delivered in this way to the early Earth. A simulation was written in Fortran to model heating by the shock generated during entry and the subsequent thermal diffusion inside the body of a meteorite. Experimental data was used for the thermal parameters of several types of meteorites, including iron-nickel and several classes of chondrites. A Sutton-Graves model of stagnation-point heating was used to calculate peak surface temperatures and an explicit difference formula was used to generate thermal diffusion profiles for both chondrites and iron-nickel type met...

  8. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect (OSTI)

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  9. Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E.; Sweeney, C.; Turner, A. J.

    2015-11-18

    Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004–June 2005 ranged from 496.4 to 511.5 Tg yr?1, with wetlandmore »methane emissions ranging from 130.0 to 203.3 Tg yr?1. The Arctic methane emissions during July 2004–June 2005 were in the range of 14.6–30.4 Tg yr?1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr?1 and from 5.4 to 7.9 Tg yr?1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.« less

  10. Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2003-07-01

    A procedure for iterative model-building, statistical density modification and refinement at moderate resolution (up to about 2.8 Ĺ) is described. An iterative process for improving the completeness and quality of atomic models automatically built at moderate resolution (up to about 2.8 Ĺ) is described. The process consists of cycles of model building interspersed with cycles of refinement and combining phase information from the model with experimental phase information (if any) using statistical density modification. The process can lead to substantial improvements in both the accuracy and completeness of the model compared with a single cycle of model building. For eight test cases solved by MAD or SAD at resolutions ranging from 2.0 to 2.8 Ĺ, the fraction of models built and assigned to sequence was 46–91% (mean of 65%) after the first cycle of building and refinement, and 78-95% (mean of 87%) after 20 cycles. In an additional test case, an incorrect model of gene 5 protein (PDB code 2gn5; r.m.s.d. of main-chain atoms from the more recent refined structure 1vqb at 1.56 Ĺ) was rebuilt using only structure-factor amplitude information at varying resolutions from 2.0 to 3.0 Ĺ. Rebuilding was effective at resolutions up to about 2.5 Ĺ. The resulting models had 60-80% of the residues built and an r.m.s.d. of main-chain atoms from the refined structure of 0.20 to 0.62 Ĺ. The algorithm is useful for building preliminary models of macromolecules suitable for an experienced crystallographer to extend, correct and fully refine.

  11. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect (OSTI)

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  12. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect (OSTI)

    Heng, Kevin; Mendonça, Joăo M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  13. Modelling Large Pathways: A Hybrid Agent-Based Discrete Event Simulation Tool for Emergency Medical Services Improvement

    E-Print Network [OSTI]

    Oakley, Jeremy

    -Based Ambulance Service model on Geographical Information System. 3. To develop a Discrete Event Simulation model services. The incorporation of geographical information systems (GIS) can provide precise data Services Improvement Anastasia Anagnostou and Simon Taylor School of Information Systems, Computing

  14. Improving the performance of a Dutch CSR by modeling within-word and cross-word pronunciation variation 

    E-Print Network [OSTI]

    Kessens, Judith M; Wester, Mirjam; Strik, Helmer

    1999-01-01

    This article describes how the performance of a Dutch continuous speech recognizer was improved by modeling pronunciation variation. We propose a general procedure for modeling pronunciation variation. In short, it consists ...

  15. Sensitivity of precipitation to parameter values in the community atmosphere model version 5

    SciTech Connect (OSTI)

    Johannesson, Gardar [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qian, Yun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wildey, Timothy Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to develop the capability to thoroughly test and understand the uncertainties in the overall climate model and its components as they are being developed. The focus on uncertainties involves sensitivity analysis: the capability to determine which input parameters have a major influence on the output responses of interest. This report presents some initial sensitivity analysis results performed by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories worked in collaboration to perform sensitivity analyses of a set of CAM5, 2° runs, where the response metrics of interest were precipitation metrics. The three labs performed their sensitivity analysis (SA) studies separately and then compared results. Overall, the results were quite consistent with each other although the methods used were different. This exercise provided a robustness check of the global sensitivity analysis metrics and identified some strongly influential parameters.

  16. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect (OSTI)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

  17. Systematic study of 16O-induced fusions with the improved quantum molecular dynamics model

    E-Print Network [OSTI]

    Ning Wang; Kai Zhao; Zhuxia Li

    2014-11-12

    The heavy-ion fusion reactions with 16O bombarding on 62Ni, 65Cu, 74Ge, 148Nd, 180Hf, 186W, 208Pb, 238U are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. The fusion cross sections at energies near and above the Coulomb barriers can be reasonably well reproduced by using this semi-classical microscopic transport model with the parameter sets SkP* and IQ3a. The dynamical nucleus-nucleus potentials and the influence of Fermi constraint on the fusion process are also studied simultaneously. In addition to the mean field, the Fermi constraint also plays a key role for the reliable description of fusion process and for improving the stability of fragments in heavy-ion collisions.

  18. Further evaluations of the CALMET/CALPUFF modeling system for the estimation of the fate of atmospheric nitrogen

    SciTech Connect (OSTI)

    Garrison, M.; Gill, S.; Sherwell, J.

    1999-07-01

    The CALMET/CALPUFF modeling system has been used to estimate nitrogen deposition in an area surrounding Baltimore and the northern portion of the Chesapeake Bay. Comprehensive NO{sub x} emissions inventories and meteorological data bases have been developed to conduct the modeling. A previous study reported on an evaluation of predicted non-ammonia, inorganic nitrogen wet deposition rates compared to measured rates at two NADP/NTN sites in Maryland. This paper presents the results of an expanded evaluation of the performance of the modeling system. Data collected at a total of 38 monitoring stations located in or near the Chesapeake Bay Watershed, including NADP/NTN, CASTNET, and AIRS sites, have been used to conduct evaluations of the model's ability to predict concentrations of nitric acid, particulate nitrate, and NO{sub x} in addition to wet nitrate deposition. This expanded evaluation has allowed for the testing of additional model technical options in an attempt to improve the performance when compared to measured data. Results of this evaluation are expected to allow for better estimates of the impacts of nitrogen species formed from utility and other anthropogenic sources of NO{sub x} on the environment in Maryland.

  19. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect (OSTI)

    Keeling, Ralph

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  20. Quantifying atmospheric pollution across north america from boreal forest fires: a combined analysis of atmospheric modelling and ground-based remote sensing 

    E-Print Network [OSTI]

    Trigwell, Robert

    2011-11-24

    This paper describes the interpretation of the 2010 summer LIDAR observations from Dal- housie University, Nova Scotia. The GEOS-Chem global 3D chemistry transport model was used to identify the chemical and optical ...

  1. The faculty and students in the Atmospheric Sciences Department use physics, chemistry, and mathematics to better understand the atmosphere

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    The faculty and students in the Atmospheric Sciences Department use physics, chemistry chemistry Atmospheric fluid dynamics Biosphere interactions Climate variability Clouds & storms Radiative, and mathematics to better understand the atmosphere and improve the prediction of its future state, both over

  2. Improved model for the analysis of air fluorescence induced by electrons

    E-Print Network [OSTI]

    F. Arqueros; F. Blanco; J. Rosado

    2008-07-24

    A model recently proposed for the calculation of air-fluorescence yield excited by electrons is revisited. Improved energy distributions of secondary electrons and a more realistic Monte Carlo simulation including some additional processes have allowed us to obtain more accurate results. The model is used to study in detail the relationship between fluorescence intensity and deposited energy in a wide range of primary energy (keVs - GeVs). In addition, predictions on the absolute value of the fluorescence efficiency in the absence of collisional quenching will be presented and compared with available experimental data.

  3. Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model

    SciTech Connect (OSTI)

    Dobos, A. P.

    2012-05-01

    This paper describes an improved algorithm for calculating the six parameters required by the California Energy Commission (CEC) photovoltaic (PV) Calculator module model. Rebate applications in California require results from the CEC PV model, and thus depend on an up-to-date database of module characteristics. Currently, adding new modules to the database requires calculating operational coefficients using a general purpose equation solver - a cumbersome process for the 300+ modules added on average every month. The combination of empirical regressions and heuristic methods presented herein achieve automated convergence for 99.87% of the 5487 modules in the CEC database and greatly enhance the accuracy and efficiency by which new modules can be characterized and approved for use. The added robustness also permits general purpose use of the CEC/6 parameter module model by modelers and system analysts when standard module specifications are known, even if the module does not exist in a preprocessed database.

  4. Improvements of the shock arrival times at the Earth model STOA

    E-Print Network [OSTI]

    Liu, H -L

    2015-01-01

    Prediction of the shocks' arrival times (SATs) at the Earth is very important for space weather forecast. There is a well-known SAT model, STOA, which is widely used in the space weather forecast. However, the shock transit time from STOA model usually has a relative large error compared to the real measurements. In addition, STOA tends to yield too much `yes' prediction, which causes a large number of false alarms. Therefore, in this work, we work on the modification of STOA model. First, we give a new method to calculate the shock transit time by modifying the way to use the solar wind speed in STOA model. Second, we develop new criteria for deciding whether the shock will arrive at the Earth with the help of the sunspot numbers and the angle distances of the flare events. It is shown that our work can improve the SATs prediction significantly, especially the prediction of flare events without shocks arriving at the Earth.

  5. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Biegalski, S. [Univ. of Texas at Austin, TX (United States); Bowyer, Ted W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cooper, Matthew W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Haas, Derek A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hoffman, Ian [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Korpach, E. [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Yi, Jing [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Miley, Harry S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rishel, Jeremy P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ungar, R. Kurt [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); White, Brian [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Woods, Vincent T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from March 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.

  6. Model testing using Chernobyl data: III. Atmospheric resuspension of radionuclides in Ukrainian regions impacted by Chernobyl fallout

    SciTech Connect (OSTI)

    Garger, E.K. [Inst. of Radioecology, Kiev (Ukraine); Hoffman, F.O. [SENES Oak Ridge, Inc., TN (United States); Miller, C.W. [Centers for Disease Control and Prevention, Atlanta, GA (United States)

    1996-01-01

    The {open_quotes}Resuspension{close_quotes} scenario is designed to test models for atmospheric resuspension of radionuclides from contaminated soils. Resuspension can be a secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. The test scenario describes three exposure situations: (1) locations within the highly contaminated 30-km zone at Chernobyl, where exposures to resuspended material are probably dominated by local processes; (2) an urban area (Kiev) outside the 30-km zone, where local processes include extensive vehicular traffic; and (3) a location 40 to 60 km west of the Chernobyl reactor, where upwind sources of contamination are important. Input data include characteristics of the {sup 137}Cs ground contamination around specific sites, climatological data for the sites, characteristics of the terrain and topography, and locations of the sampling sites. Predictions are requested for average air concentrations of {sup 137}Cs at specified locations due to resuspension of Chernobyl fallout and for specified resuspension factors and rates. Test data (field measurements) are available for all endpoints. 9 refs., 4 figs., 11 tabs.

  7. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Fourth Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; DA Randall; CJ Flynn

    2008-09-30

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone was the initial formulation of the algorithm for retrieval of these properties. The second quarter milestone included the time series of ARM-retrieved cloud properties and a year-long CCPP control simulation. The third quarter milestone included the time series of ARM-retrieved aerosol optical depth and a three-year CCPP control simulation. This final fourth quarter milestone includes the time-series of aerosol and dust properties and a decade-long CCPP control simulation.

  8. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    SciTech Connect (OSTI)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China)] [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)] [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China)] [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States)] [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  9. A NEW GENERATION OF MODEL ATMOSPHERES FOR AGB STARS INSPIRED BY ISO S. Hofner 1 , R. Loidl 2 , B. Aringer 2 , U.G. Jrgensen 3 , and J. Hron 2

    E-Print Network [OSTI]

    Höfner, Susanne

    1 A NEW GENERATION OF MODEL ATMOSPHERES FOR AGB STARS INSPIRED BY ISO S. H¨ofner 1 , R. Loidl 2 , B generation of dynamical model at­ mospheres for AGB stars based on a combined solution of time waves and a levitation of the outer atmosphere where the formation of molecules and dust takes place

  10. An improved simple polarisable water model for use in biomolecular simulation

    SciTech Connect (OSTI)

    Bachmann, Stephan J.; Gunsteren, Wilfred F. van

    2014-12-14

    The accuracy of biomolecular simulations depends to some degree on the accuracy of the water model used to solvate the biomolecules. Because many biomolecules such as proteins are electrostatically rather inhomogeneous, containing apolar, polar, and charged moieties or side chains, a water model should be able to represent the polarisation response to a local electrostatic field, while being compatible with the force field used to model the biomolecules or protein. The two polarisable water models, COS/G2 and COS/D, that are compatible with the GROMOS biomolecular force fields leave room for improvement. The COS/G2 model has a slightly too large dielectric permittivity and the COS/D model displays a much too slow dynamics. The proposed COS/D2 model has four interaction sites: only one Lennard-Jones interaction site, the oxygen atom, and three permanent charge sites, the two hydrogens, and one massless off-atom site that also serves as charge-on-spring (COS) polarisable site with a damped or sub-linear dependence of the induced dipole on the electric field strength for large values of the latter. These properties make it a cheap and yet realistic water model for biomolecular solvation.

  11. Improved electron collisional line broadening for low-temperature ions and neutrals in plasma modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johns, H. M.; Kilcrease, D. P.; Colgan, J.; Judge, E. J.; Barefield II, J. E.; Wiens, R. C.; Clegg, S. M.

    2015-09-29

    In this study, electron collisional broadening of observed spectral lines depends on plasma electron temperature and density. Including this effect in models of measured spectra is necessary to determine plasma conditions; however, computational limits make accurate line broadening treatments difficult to implement in large-scale plasma modeling efforts. In this paper, we report on improvements to the treatment of electron collisional line broadening and illustrate this with calculations using the Los Alamos ATOMIC code. We implement the Dimitrijevic and Konjevic modified semi-empirical model Dimitrijevic and Konjevic (1986 Astron. and Astrophy. 163 297 and 1987 Astron. Astrophys. 172 345), which we amendmore »by employing oscillator strengths from Hartree–Fock calculations. This line broadening model applies to near-neutral plasmas with electron temperatures of Te ~ 1 eV and electron densities of Ne ~1017 cm-3. We evaluate the D.K.-inspired model against the previous hydrogenic approach in ATOMIC through comparison to NIST-rated measurements for selected neutral and singly-ionized Ca, O, Fe, and Sn lines using both fine-structure and configuration-averaged oscillator strengths. The new D.K.-inspired model is significantly more accurate than the previous hydrogenic model and we find the use of configuration-averaged oscillator strengths a good approximation for applications such as LIBS (laser induced breakdown spectroscopy), for which we demonstrate the use of the D.K.-inspired model.« less

  12. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert [VOCALS-REx PI, University of Washington; Bretherton, Christopher [GEWEX/GCSS Representative, University of Washington; Huebert, Barry [SOLAS Representative, University of Hawaii; Mechoso, Roberto C. [VOCALS Science Working Group Chair, UCLA; Weller, Robert [Woods Hole Oceanographic Institution

    VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international CLIVAR program the major goal of which is to develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. The principal program objectives are: 1) the improved understanding and regional/global model representation of aerosol indirect effects over the SEP; 2) the elimination of systematic errors in the region of coupled atmospheric-ocean general circulation models, and improved model simulations and predictions of the coupled climate in the SEP and global impacts of the system variability. VOCALS is organized into two tightly coordinated components: 1) a Regional Experiment (VOCALSREx), and 2) a Modeling Program (VOCALS-Mod). Extended observations (e.g. IMET buoy, satellites, EPIC/PACS cruises) will provide important additional contextual datasets that help to link the field and the modeling components. The coordination through VOCALS of observational and modeling efforts (Fig. 3) will accelerate the rate at which field data can be used to improve simulations and predictions of the tropical climate variability [Copied from the Vocals Program Summary of June 2007, available as a link from the VOCALS web at http://www.eol.ucar.edu/projects/vocals/]. The CLIVAR sponsored program to under which VOCALS falls is VAMOS, which stands for Variability of the American Monsoon Systems.

  13. Using mathematical modelling to inform on the ability of stormwater ponds to improve the water quality of

    E-Print Network [OSTI]

    Using mathematical modelling to inform on the ability of stormwater ponds to improve the water the mathematical modelling of flow and solute transport through stormwater ponds. The model is based on appropriate decreased. Keywords Dilution; flow attenuation; mathematical modelling; solute transport; stormwater ponds

  14. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seaver, Samuel M.D.; Bradbury, Louis M.T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions andmore »possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.« less

  15. Earth and Atmospheric Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth and Atmospheric Sciences Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling...

  16. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect (OSTI)

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

  17. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.

    2015-05-04

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA andmore »West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less

  18. Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.

    2015-11-18

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source–receptor relationships for atmospheric BC and its deposition to snow over western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over northwestern USA and westernmore »Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based positive matrix factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less

  19. Global warming and its implications for conservation. 3. How does it work? Part two: atmospheric science and the layer model

    E-Print Network [OSTI]

    Creel, Scott

    Global warming and its implications for conservation. 3. How does it work? Part two: atmospheric warms the surface of the planet as it moves toward an equilibrium of energy fluxes in and out. The layer

  20. Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model

    E-Print Network [OSTI]

    Steele, Henry Donnan, 1974-

    2004-01-01

    Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud ...

  1. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  2. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  3. The effect of variable atmospheric forcing on oceanic subduction of a passive tracer in a numerical model: Implications for global warming

    SciTech Connect (OSTI)

    Horsfall, F.; Bleck, R.; Hanson, H.P.

    1997-11-01

    This study addresses the issue of the ocean`s response to the changing climate. The objectives is to determine the effect of variable atmospheric forcing on the ocean on decadal time scales, specifically on the subduction of a passive tracer. In the context of the model used in this study, this tracer is {open_quotes}tagged{close_quotes} water that is subducted into the thermocline and into the deep ocean. The model used in this study is the Miami Isopycnic Coordinate Ocean Model which has a realistic Atlantic domain from 20{degrees}S to 60{degrees}N. There are twelve model layers, the first (top) layer being the thermodynamically active mixed layer and the lower eleven layers all having constant potential density ({sigma}{sub {theta}}). The atmospheric forcing changes vary latitudinally, allowing for a maximum increase in wind at midlatitudes and a maximum increase in temperature at the poles. In these experiments, it was found that wind speed and temperature effects dominate in bringing about changes in mixed-layer depth and in tracer penetration at high latitudes, with wind speed effects having the greater weight. It is apparent from the results that the weakening of the North Atlantic thermohaline circulation is dependent on the atmospheric changes in air temperature and in the wind field. 11 refs., 2 figs.

  4. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

    2013-10-01

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

  5. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  6. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; Johannesson, G.; Klein, Stephen A.; Lucas, Donald; Neale, Richard; Rasch, Philip J.; Swiler, Laura P.; Tannahill, John; et al

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more »Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less

  7. Interactive dust-radiation modeling: A step to improve weather Carlos Perez,1

    E-Print Network [OSTI]

    time step when the radiation module is processed. These changes influence the atmospheric dynamics 2002 is selected to assess the radiative dust effects on the atmosphere at a regional level. A strong and scattering of incoming solar radiation, and absorption and reemission of outgoing long- wave radiation

  8. On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere

    SciTech Connect (OSTI)

    Klevtsova, Yu Yu

    2013-09-30

    The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained for the existence of a stationary measure. Bibliography: 25 titles.

  9. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    SciTech Connect (OSTI)

    Snodin, Benedict E. K. Mosayebi, Majid; Schreck, John S.; Romano, Flavio; Doye, Jonathan P. K.; Randisi, Ferdinando; Šulc, Petr; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  10. Introducing Improved Structural Properties and Salt Dependence into a Coarse-Grained Model of DNA

    E-Print Network [OSTI]

    Benedict E. K. Snodin; Ferdinando Randisi; Majid Mosayebi; Petr Sulc; John S. Schreck; Flavio Romano; Thomas E. Ouldridge; Roman Tsukanov; Eyal Nir; Ard A. Louis; Jonathan P. K. Doye

    2015-05-19

    We introduce an extended version of oxDNA, a coarse-grained model of DNA designed to capture the thermodynamic, structural and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves, and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures such as DNA origami which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na$^+$]=0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  11. Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models

    SciTech Connect (OSTI)

    Penner, Joyce

    2012-06-30

    One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

  12. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings. Part 2: A model for supersonic flow

    SciTech Connect (OSTI)

    Koenig, W.M.; Hennecke, D.K.; Fottner, L.

    1996-01-01

    New blading concepts as used in modern transonic axial-flow compressors require improved loss and deviation angle correlations. The new model presented in this paper incorporates several elements and treats blade-row flows having subsonic and supersonic inlet conditions separately. The second part of the present report focuses on the extension of a well-known correlation for cascade losses at supersonic inlet flows. It was originally established for DCA bladings and is now modified to reflect the flow situation in blade rows having low-cambered, arbitrarily designed blades including precompression blades. Finally, the steady loss increase from subsonic to supersonic inlet-flow velocities demonstrates the matched performance of the different correlations of the new model.

  13. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  14. Fiscal year 1998 summary report of the NOAA Atmospheric Sciences Modeling Division to the U.S. Environmental Protection Agency. Technical memo

    SciTech Connect (OSTI)

    Poole-Kober, E.M.; Viebrock, H.J.

    1999-06-01

    During Fiscal Year 1998, the Atmospheric Sciences Modeling Division provided meteorological and modeling assistance to the US Environmental Protection Agency. Among the significant research studies and results were the following: publication and distribution of Models-3/Community Mutliscale Air Quality system; estimation of the nitrogen deposition to Chesapeake Bay, continued evaluation and application of air quality models for mercury, dioxin, and heavy metals, continued conduct of deposition velocity field studies over various major categories of land-use; conduct of the Ozark Isoprene Experiment to investigate biogenic isoprene emissions; analysis and modeling of dust resuspension data; continued study of buoyant puff dispersion in the convective boundary layer; and development of a standard practice for an objective statistical procedure for comparing air quality model outputs with field data.

  15. Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes

    SciTech Connect (OSTI)

    Perez, F. [LULI, Ecole Polytechnique, 91128 Palaiseau Cedex (France); CEA, DAM, DIF, F-91297 Arpajon (France); Gremillet, L.; Decoster, A.; Drouin, M.; Lefebvre, E. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2012-08-15

    An improved Monte Carlo collisional scheme modeling both elastic and inelastic interactions has been implemented into the particle-in-cell code CALDER[E. Lefebvre et al., Nucl. Fusion 43, 629 (2003)]. Based on the technique proposed by Nanbu and Yonemura [J. Comput. Phys. 145, 639 (1998)] allowing to handle arbitrarily weighted macro-particles, this binary collision scheme uses a more compact and accurate relativistic formulation than the algorithm recently worked out by Sentoku and Kemp [J. Comput. Phys. 227, 6846 (2008)]. Our scheme is validated through several test cases, demonstrating, in particular, its capability of modeling the electrical resistivity and stopping power of a solid-density plasma over a broad parameter range. A relativistic collisional ionization scheme is developed within the same framework, and tested in several physical scenarios. Finally, our scheme is applied in a set of integrated particle-in-cell simulations of laser-driven fast electron transport.

  16. Simulation of ratcheting in straight pipes using ANSYS with an improved cyclic plasticity model

    SciTech Connect (OSTI)

    Hassan, T.; Zhu, Y.; Matzen, V.C.

    1996-12-01

    Ratcheting has been shown to be a contributing cause of failure in several seismic experiments on piping components and systems. Most commercial finite element codes have been unable to simulate the ratcheting in those tests accurately. The reason for this can be traced to inadequate plasticity constitutive models in the analysis codes. The authors have incorporated an improved cyclic plasticity model, based on an Armstrong-Frederick kinematic hardening rule in conjunction with the Drucker-Palgen plastic modulus equation, into an ANSYS user subroutine. This modified analysis code has been able to simulate quite accurately the ratcheting behavior of a tube subjected to a constant internal pressure and axially strain controlled cycling. This paper describes simulations obtained form this modified ANSYS code for two additional tests: (1) a tube subjected to constant axial stress and prescribed torsional cycling, and (2) a straight pipe subjected to constant internal pressure and quasi-static cyclic bending. The analysis results from the modified ANSYS code are compared to the experimental data, as well as results from ABAQUS and the original ANSYS code. The resulting correlation shows a significant improvement over the original ANSYS and the ABAQUS codes.

  17. Modeling within-word and cross-word pronunciation variation to improve the performance of a Dutch CSR. 

    E-Print Network [OSTI]

    Kessens, Judith M; Wester, Mirjam; Strik, Helmer

    1999-01-01

    This paper describes how the performance of a continuous speech recognizer for Dutch has been improved by modeling within-word and cross-word pronunciation variation. Within-word variants were automatically generated by ...

  18. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  19. Environmental Chamber Study of Atmospheric Chemistry and Secondary Organic Aerosol Formation Using Cavity Enhanced Absorption Spectroscopy

    E-Print Network [OSTI]

    Liu, Yingdi

    2011-01-01

    modelling: a review. Atmospheric Chemistry and Physics,emerging issues. Atmospheric Chemistry and Physics, 2009. 9:aqueous phase. Atmospheric Chemistry and Physics, 2009. 9:

  20. Modeling of plasma chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge described using the one-dimensional fluid model

    SciTech Connect (OSTI)

    Li Zhi [School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [Physical Science and Technical College, Dalian University, Dalian 116622 (China)

    2013-01-15

    The keynote of our research is to study the gas phase chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge, which is very important to produce the iron-nitride magnetic fluid. For this purpose, a home-made one dimensional fluid model with the Scharfetter-Gummel method has been developed. The equations solved are the particle balances, assuming a drift-diffusion approximation for the fluxes, and the electron energy equation. The self-consistent electric field is obtained by the simultaneous solution of Poisson's equation. The simulations were carried out for the different ammonia concentrations (2%, 3.5%, and 7%), at a voltage of 1 kV, and a driving frequency of 20 kHz. It concluded that the major ion products of Ar are Ar{sup +} and Ar{sub 2}{sup +}. Ar{sup +} is the most important positive ions, followed by Ar{sub 2}{sup +}. It is shown that the NH{sup +} density is smaller than that of the other ammonia ions. The density of NH{sub 4}{sup +} is more than that of the other ammonia ions when the ammonia concentration increased. The diffuse mode can be established after the discharge was ignited, and the mode changes to filamentary mode with an increase in ammonia concentration.

  1. Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program

    SciTech Connect (OSTI)

    Stokes, G.M. ); Tichler, J.L. )

    1990-06-01

    The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the study of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.

  2. Borders as membranes :metaphors and models for improved policy in border regions.

    SciTech Connect (OSTI)

    Malczynski, Leonard A.; Passell, Howard David; Forster, Craig B. (University of Utah, Salt Lake City, UT); Cockerill, Kristan (Cockerill Consulting, Boone, NC)

    2005-10-01

    Political borders are controversial and contested spaces. In an attempt to better understand movement along and through political borders, this project applied the metaphor of a membrane to look at how people, ideas, and things ''move'' through a border. More specifically, the research team employed this metaphor in a system dynamics framework to construct a computer model to assess legal and illegal migration on the US-Mexico border. Employing a metaphor can be helpful, as it was in this project, to gain different perspectives on a complex system. In addition to the metaphor, the multidisciplinary team utilized an array of methods to gather data including traditional literature searches, an experts workshop, a focus group, interviews, and culling expertise from the individuals on the research team. Results from the qualitative efforts revealed strong social as well as economic drivers that motivate individuals to cross the border legally. Based on the information gathered, the team concluded that legal migration dynamics were of a scope we did not want to consider hence, available demographic models sufficiently capture migration at the local level. Results from both the quantitative and qualitative data searches were used to modify a 1977 border model to demonstrate the dynamic nature of illegal migration. Model runs reveal that current US-policies based on neo-classic economic theory have proven ineffective in curbing illegal migration, and that proposed enforcement policies are also likely to be ineffective. We suggest, based on model results, that improvement in economic conditions within Mexico may have the biggest impact on illegal migration to the U.S. The modeling also supports the views expressed in the current literature suggesting that demographic and economic changes within Mexico are likely to slow illegal migration by 2060 with no special interventions made by either government.

  3. Evaluation of atmospheric transport models for use in Phase II of the historical public exposures studies at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Rood, A.S.; Killough, G.G.; Till, J.E.

    1999-08-01

    Five atmospheric transport models were evaluated for use in Phase II of the Historical Public Exposures Studies at the Rocky Flats Plant. Models included a simple straight-line Gaussian plume model (ISCST2), several integrated puff models (RATCHET, TRIAD, and INPUFF2), and a complex terrain model (TRAC). Evaluations were based on how well model predictions compared with sulfur hexafluoride tracer measurements taken in the vicinity of Rocky Flats in February 1991. Twelve separate tracer experiments were conducted, each lasting 9 hr and measured at 140 samplers in arcs 8 and 16 km from the release point at Rocky Flats. Four modeling objectives were defined based on the endpoints of the overall study: (1) the unpaired maximum hourly average concentration, (2) paired time-averaged concentration, (3) unpaired time-averaged concentration, and (4) arc-integrated concentration. Performance measures were used to evaluate models and focused on the geometric mean and standard deviation of the predicted-to-observed ratio and the correlation coefficient between predicted and observed concentrations. No one model consistently outperformed the others in all modeling objectives and performance measures. The overall performance of the RATCHET model was somewhat better than the other models.

  4. Reducing risk in basin scale sequestration: A Bayesian model selection framework for improving detection

    E-Print Network [OSTI]

    Seto, C.J.

    Geological CO[subscript 2] sequestration is a key technology for mitigating atmospheric greenhouse gas concentrations while providing low carbon energy. Deployment of sequestration at scales necessary for a material ...

  5. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    SciTech Connect (OSTI)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.

  6. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    SciTech Connect (OSTI)

    Watney, W.L.

    1992-01-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to link the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.

  7. The middle Martian atmosphere

    SciTech Connect (OSTI)

    Jaquin, R.F.

    1989-01-01

    Profiles of scattered light above the planetary limb from 116 Viking Orbiter images are used to constrain the temporal and spatial behavior of aerosols suspended in the Martian atmosphere. The data cover a wide range of seasons, locations, and viewing geometry, providing information about the aerosol optical properties and vertical distribution. The typical atmospheric column contains one or more discrete, optically thin, ice-like haze layers between 30 and 90 km elevation whose composition is inferred to be water ice. Below the detached hazes, a continuous haze, interpreted to have a large dust component, extends from as much as 50 km to the surface. The haze distribution exhibits an annual variation that reflects a seasonally driven circulation in the middle atmosphere. The potential role of stationary gravity waves in modifying the middle atmosphere circulation is explored using a linear theory applied to a realistic Martian environment. Martian topography derived from radar observations is decomposed into Fourier harmonics and used to linearly superpose gravity waves arising from each component. The larger amplitude topography on Mars combined with the absence of extended regions of smooth topography like oceans generates larger wave amplitudes than on the Earth. The circulation of the middle atmosphere is examined using a two-dimensional, linearized, axisymmetric model successfully employed in the study of the terrestrial mesosphere. Illustrations of temperature and wind speeds are presented for the southern summer solstice and southern spring equinox.

  8. Influence of Atmospheric Variations on Photovoltaic Performance and Modeling Their Effects for Days with Clear Skies: Preprint

    SciTech Connect (OSTI)

    Marion, B.

    2012-06-01

    Although variation in photovoltaic (PV) performance is predominantly influenced by clouds, performance variations also exist for days with clear skies with different amounts of atmospheric constituents that absorb and reflect different amounts of radiation as it passes through the earth's atmosphere. The extent of the attenuation is determined by the mass of air and the amounts of water vapor, aerosols, and ozone that constitute the atmosphere for a particular day and location. Because these constituents selectively absorb radiation of particular wavelengths, their impact on PV performance is sensitive to the spectral response of the PV device. The impact may be assessed by calculating the spectral mismatch correction. This approach was validated using PV module performance data at the National Renewable Energy Laboratory (NREL) for summer, fall, and winter days with clear skies. The standard deviation of daily efficiencies for single-crystal Si, a-Si/a-Si/a-Si:Ge, CdTe, and CIGS PV modules were reduced to 0.4% to 1.0% (relative) by correcting for spectral mismatch, temperature, and angle-of-incidence effects.

  9. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect (OSTI)

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  10. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  11. DOE Final Report for DE-FG02-01ER63198 Title: IMPROVING THE PROCESSES OF LAND-ATMOSPHERE INTERACTION IN CCSM 2.0 AT HIGHER RESOLUTION AND BETTER SUB-GRID SCALING

    SciTech Connect (OSTI)

    Dr. Robert Dickinson

    2008-08-16

    Our CCPP project consists of the development and testing of a systematic sub-grid scaling framework for the CLM. It consists of four elements: i) a complex vegetation tiling representation; ii) an orographic tiling system; iii) a tiling system to describe a distribution of water table parameters intended to provide a realistic statistical model of wetlands; and iv) improvements of past developed treatments of precipitation intensity.

  12. Improving Earthquake-Explosion Discrimination using Attenuation Models of the Crust and Upper Mantle

    SciTech Connect (OSTI)

    Pasyanos, M E; Walter, W R; Matzel, E M; Rodgers, A J; Ford, S R; Gok, R; Sweeney, J J

    2009-07-06

    In the past year, we have made significant progress on developing and calibrating methodologies to improve earthquake-explosion discrimination using high-frequency regional P/S amplitude ratios. Closely-spaced earthquakes and explosions generally discriminate easily using this method, as demonstrated by recordings of explosions from test sites around the world. In relatively simple geophysical regions such as the continental parts of the Yellow Sea and Korean Peninsula (YSKP) we have successfully used a 1-D Magnitude and Distance Amplitude Correction methodology (1-D MDAC) to extend the regional P/S technique over large areas. However in tectonically complex regions such as the Middle East, or the mixed oceanic-continental paths for the YSKP the lateral variations in amplitudes are not well predicted by 1-D corrections and 1-D MDAC P/S discrimination over broad areas can perform poorly. We have developed a new technique to map 2-D attenuation structure in the crust and upper mantle. We retain the MDAC source model and geometrical spreading formulation and use the amplitudes of the four primary regional phases (Pn, Pg, Sn, Lg), to develop a simultaneous multi-phase approach to determine the P-wave and S-wave attenuation of the lithosphere. The methodology allows solving for attenuation structure in different depth layers. Here we show results for the P and S-wave attenuation in crust and upper mantle layers. When applied to the Middle East, we find variations in the attenuation quality factor Q that are consistent with the complex tectonics of the region. For example, provinces along the tectonically-active Tethys collision zone (e.g. Turkish Plateau, Zagros) have high attenuation in both the crust and upper mantle, while the stable outlying regions like the Indian Shield generally have low attenuation. In the Arabian Shield, however, we find that the low attenuation in this Precambrian crust is underlain by a high-attenuation upper mantle similar to the nearby Red Sea Rift. Applying this 2-D MDAC methodology with the new attenuation models can significantly improve earthquake-explosion discrimination using regional P/S amplitude ratios. We demonstrate applications of this technique, including a study at station NIL (Nilore, Pakistan) using broad area earthquakes and the 1998 Indian nuclear explosion using a number of regional amplitude ratio discriminants. We are currently applying the technique in the YSKP region as well.

  13. Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds

    E-Print Network [OSTI]

    Baum, Bryan A.

    ) sensor, hyperspectral IR mea- surements from the Atmospheric Infrared Sounder (AIRS; Aumann et al. 2003 water content in the microphysical data spans six orders of magnitude. For evaluation, a library of ice suite of spaceborne sensors that compose the National Aero- nautics and Space Administration (NASA

  14. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  15. Improved volume-averaged model for steady and pulsed-power electronegative discharges

    SciTech Connect (OSTI)

    Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.; Gudmundsson, J. T.

    2006-11-15

    An improved volume-averaged global model is developed for a cylindrical (radius R, length L) electronegative (EN) plasma that is applicable over a wide range of electron densities, electronegativities, and pressures. It is applied to steady and pulsed-power oxygen discharges. The model incorporates effective volume and surface loss factors for positive ions, negative ions, and electrons combining three electronegative discharge regimes: a two-region regime with a parabolic EN core surrounded by an electropositive edge, a one-region parabolic EN plasma, and a one-region flat-topped EN plasma, spanning the plasma parameters and gas pressures of interest for low pressure processing (below a few hundred millitorr). Pressure-dependent effective volume and surface loss factors are also used for the neutral species. A set of reaction rate coefficients, updated from previous model calculations, is developed for oxygen for the species O{sub 2}, O{sub 2}({sup 1}{delta}{sub g}), O, O{sub 2}{sup +}, O{sup +}, and O{sup -}, based on the latest published cross-section sets and measurements. The model solutions yield all of the quantities above together with such important processing quantities such as the neutral/ion flux ratio {gamma}{sub O}/{gamma}{sub i}, with the discharge aspect ratio 2R/L and pulsed-power period and duty ratio (pulse on-time/pulse period) as parameters. The steady discharge results are compared to an experiment, giving good agreement. For steady discharges, increasing 2R/L from 1 to 6 leads to a factor of 0.45 reduction in {gamma}{sub O}/{gamma}{sub i}. For pulsed discharges with a fixed duty ratio, {gamma}{sub O}/{gamma}{sub i} is found to have a minimum with respect to pulse period. A 25% duty ratio pulse reduces {gamma}{sub O}/{gamma}{sub i} by a factor of 0.75 compared to the steady-state case.

  16. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect (OSTI)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

  17. Greenland and Antarctic mass balances for present and doubled atmospheric CO{sub 2} from the GENESIS version-2 global climate model

    SciTech Connect (OSTI)

    Thompson, S.L.; Pollard, D.

    1997-05-01

    As anthropogenic greenhouse warming occurs in the next century, changes in the mass balances of Greenland and Antarctica will probably accelerate and may have significant effects on global sea level. Recent trends and possible future changes in these mass balances have received considerable attention in the glaciological literature, but until recently relatively few general circulation modeling (GCM) studies have focused on the problem. However, there are two significant problems in using GCMs to predict mass balance distributions on ice sheets: (i) the relatively coarse GCM horizontal resolution truncates the topography of the ice-sheet flanks and smaller ice sheets such as Greenland, and (ii) the snow and ice physics in most GCMs does not include ice-sheet-specific processes such as the refreezing of meltwater. Two techniques are described that attack these problems, involving (i) an elevation-based correction to the surface meteorology and (ii) a simple a posteriori correction for the refreezing of meltwater following Pfeiffer et al. Using these techniques in a new version 2 of the Global Environmental and Ecological Simulation of Interactive Systems global climate model, the authors present global climate and ice-sheet mass-balance results from two equilibrated runs for present and doubled atmospheric CO{sub 2}. This GCM is well suited for ice-sheet mass-balance studies because (a) the surface can be represented at a finer resolution (2{degrees} lat x 2{degrees} long) than the atmospheric GCM, (b) the two correction techniques are included as part of the model, and the model`s mass balances for present-day Greenland and Antarctica are realistic. 131 refs., 23 figs., 2 tabs.

  18. Modeling sea level changes and geodetic variations by glacial isostasy: the improved SELEN code

    E-Print Network [OSTI]

    Spada, Giorgio; Galassi, Gaia; Colleoni, Florence

    2012-01-01

    We describe the basic features of SELEN, an open source Fortran 90 program for the numerical solution of the so-called "Sea Level Equation" for a spherical, layered, non-rotating Earth with Maxwell viscoelastic rheology. The Sea Level Equation was introduced in the 70s to model the sea level variations in response to the melting of late-Pleistocene ice-sheets, but it can be also employed for predictions of geodetic quantities such as vertical and horizontal surface displacements and gravity variations on a global and a regional scale. SELEN (acronym of SEa Level EquatioN solver) is particularly oriented to scientists at their first approach to the glacial isostatic adjustment problem and, according to our experience, it can be successfully used in teaching. The current release (2.9) considerably improves the previous versions of the code in terms of computational efficiency, portability and versatility. In this paper we describe the essentials of the theory behind the Sea Level Equation, the purposes of SELEN...

  19. Improved Indoor Tracking Based on Generalized t-Distribution Noise Model

    E-Print Network [OSTI]

    Shuo, Liu; Le, Yin; Khuen, Ho Weng; Voon, Ling Keck

    2015-01-01

    t distribution noise model. Industrial & EngineeringGeneralized t -Distribution Noise Model Liu Shuo Yin Le Hogeneralized t-distribution noise model based on influence

  20. Atmospheric Environment ] (

    E-Print Network [OSTI]

    Bornstein, Robert

    Mesoscale Model (CSUMM) to simulate summertime flows in SoCAB. Simulated daytime onshore, upslope winds were-consistent wind model of Douglas and Kessler (1991) used SCCCAMP data to analyze SoCAB mesoscale flow patterns input into the photochemical Urban Airshed Model (UAM). Results showed that an increased albedo lowered

  1. Florian SEITZ: Atmospheric and oceanic impacts to Earth rotations numerical studies with a dynamic Earth system model

    E-Print Network [OSTI]

    Schuh, Harald

    with a dynamic Earth system model (completed in October 2004) Variations of Earth rotation are caused Earth system model DyMEG has been developed. It is based on the balance of angular momentum

  2. Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    SciTech Connect (OSTI)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

    2013-03-05

    As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

  3. 4, 497545, 2011 atmosphere-wildland

    E-Print Network [OSTI]

    Mandel, Jan

    by the coupling of a mesoscale weather 498 #12;GMDD 4, 497­545, 2011 Coupled atmosphere-wildland model WRF-Fire 3

  4. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    SciTech Connect (OSTI)

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

  5. Improving Testing of Enterprise Systems by Model-based Testing on Graphical User Sebastian Wieczorek and Alin Stefanescu

    E-Print Network [OSTI]

    Southampton, University of

    Testing; System-level Testing I. INTRODUCTION Enterprise Resource Planning (ERP) software [1] supports place for the test exe- cution and that any applicable testing approach for enterprise software hasImproving Testing of Enterprise Systems by Model-based Testing on Graphical User Interfaces

  6. IMPROVING THE PREDICTIVE POWER OF MODELING THE EMITTER DIFFUSION BY FULLY INCLUDING THE PHOSPHSILICATE GLASS (PSG) LAYER

    E-Print Network [OSTI]

    Presently, the PV industry is switching to the selective emitter design, where the phosphorus densityIMPROVING THE PREDICTIVE POWER OF MODELING THE EMITTER DIFFUSION BY FULLY INCLUDING or a spin-on source. In the selective emitter design, the phosphorus density is significantly reduced

  7. Improvements to the RELAP5/MOD3 reflood model and uncertainty quantification of reflood peak clad temperature

    SciTech Connect (OSTI)

    Chung, Bub Dong; Lee, Young Lee; Park, Chan Eok; Lee, Sang Yong

    1996-10-01

    Assessment of the original REAP/N4OD3.1 code against the FLECHT SEASET series of experiments has identified some weaknesses of the reflood model, such as the lack of a quenching temperature model, the shortcoming of the Chen transition boiling model, and the incorrect prediction of droplet size and interfacial heat transfer. Also, high temperature spikes during the reflood calculation resulted in high steam flow oscillation and liquid carryover. An effort had been made to improve the code with respect to the above weakness, and the necessary model for the wall heat transfer package and the numerical scheme had been modified. Some important FLECHT-SEASET experiments were assessed using the improved version and standard version. The result from the improved REAP/MOD3.1 shows the weaknesses of REAP/N4OD3.1 were much improved when compared to the standard MOD3.1 code. The prediction of void profile and cladding temperature agreed better with test data, especially for the gravity feed test. The scatter diagram of peak cladding temperatures (PCTs) is made from the comparison of all the calculated PCTs and the corresponding experimental values. The deviation between experimental and calculated PCTs were calculated for 2793 data points. The deviations are shown to be normally distributed, and used to quantify statistically the PCT uncertainty of the code. The upper limit of PCT uncertainty at 95% confidence level is evaluated to be about 99K.

  8. Large-eddy simulation, atmospheric measurement and inverse modeling of greenhouse gas emissions at local spatial scales /

    E-Print Network [OSTI]

    Nottrott, Anders Andelman

    2014-01-01

    of SGS model and grid resolution on horizontal crosswind37 Self-similarity of horizontal crosswind profiles of mean39 Crosswind horizontal profiles of concentration variance

  9. Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites

    E-Print Network [OSTI]

    Chow, Fotini K.

    2009-01-01

    Modeling the effects of topography and wind on atmosphericof dispersion in idealized topographies shows that CO 2 canSimulation of a variety of topographies, winds, and release

  10. Towards an improved modeling of the glottal source in statistical parametric speech synthesis 

    E-Print Network [OSTI]

    Cabral, Joao P; Renals, Steve; Richmond, Korin; Yamagishi, Junichi

    2007-01-01

    This paper proposes the use of the Liljencrants-Fant model (LF-model) to represent the glottal source signal in HMM-based speech synthesis systems. These systems generally use a pulse train to model the periodicity of the ...

  11. Pool boilup analysis using the TRANSIT-HYDRO code with improved vapor/liquid drag models. [LMFBR

    SciTech Connect (OSTI)

    Wigeland, R.A.; Graff, D.L.

    1984-01-01

    The TRANSIT-HYDRO computer code is being developed to provide a tool for assessing the consequences of transition phase events in a hypothetical core disruptive accident in an LMFBR. The TRANSIT-HYDRO code incorporates detailed geometric modeling on a subassembly-by-subassembly basis and detailed modeling of reactor material behavior and thermal and hydrodynamic phenomena. The purpose of this summary is to demonstrate the validity of the improved vapor/liquid momentum exchange models in the TRANSIT-HYDRO code for a prototypic experiment and describe some implications for transition phase scenarios.

  12. Tellus 000, 000000 (0000) Printed 14 March 2009 (Tellus LATEX style file v2.2) Modeling the Atmospheric Airborne Fraction in a Simple Carbon

    E-Print Network [OSTI]

    Khatiwala, Samar

    of anthropogenic CO2 emissions remaining in the atmosphere, known as the air- borne fraction (AF), has remained as the "airborne fraction", AF, defined as the ratio of the annual increase of atmospheric CO2 to total emissions atmospheric CO2 levels and hence climate are often justified on this basis. On the other hand, recent

  13. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  14. Improving LER Coupling and PEP-II Luminosity with Model-Independent...

    Office of Scientific and Technical Information (OSTI)

    Ring, or LER) for collision. The goal of this project was to improve the linear optics of the LER in order to decrease coupling, thereby decreasing emittance and increasing...

  15. Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General Circulation Models

    E-Print Network [OSTI]

    Arumugam, Sankar

    Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater

  16. Improved Indoor Tracking Based on Generalized t-Distribution Noise Model

    E-Print Network [OSTI]

    Shuo, Liu; Le, Yin; Khuen, Ho Weng; Voon, Ling Keck

    2015-01-01

    function. Industrial & engineering chemistry research, 42(model. Industrial & Engineering Chemistry Research, 52(11):

  17. Improved Indoor Tracking Based on Generalized t-Distribution Noise Model

    E-Print Network [OSTI]

    Shuo, Liu; Le, Yin; Khuen, Ho Weng; Voon, Ling Keck

    2015-01-01

    objective function. Industrial & engineering chemistryfunction approac. Industrial & Engineering Chem- istrynoise model. Industrial & Engineering Chemistry Research,

  18. A process for evaluation and state approval of an emergency response atmospheric dispersion model for Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Hodgin, C.R.

    1991-11-06

    This document contains copies of the vugraphs used by C. R. Hodgin for the November 6, 1991 presentation summarizing the process to be used for evaluation of the Emergency Response Dispersion Model. (MHB)

  19. Particulate dispersion apparatus for the validation of plume models 

    E-Print Network [OSTI]

    Bala, William D

    2001-01-01

    The purpose of this thesis is to document design, development, and fabrication of a transportable source of dry aerosol to improve testing and validation of atmospheric plume models. The proposed dispersion apparatus is intended to complement...

  20. Trees and beyond : exploiting and improving tree-structured graphical models

    E-Print Network [OSTI]

    Choi, Myung Jin, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    Probabilistic models commonly assume that variables are independent of each other conditioned on a subset of other variables. Graphical models provide a powerful framework for encoding such conditional independence structure ...

  1. Improving the Fanger model's thermal comfort predictions for naturally ventilated spaces

    E-Print Network [OSTI]

    Truong, Phan Hue

    2010-01-01

    The Fanger model is the official thermal comfort model in U.S. and international standards and is based on the heat balance of the human body with the environment. This investigation focuses on re-specifying the parameters ...

  2. Geosynchronous orbit determination using space surveillance network observations and improved radiative force modeling

    E-Print Network [OSTI]

    Lyon, Richard Harry, 1981-

    2004-01-01

    Correct modeling of the space environment, including radiative forces, is an important aspect of space situational awareness for geostationary (GEO) spacecraft. Solar radiation pressure has traditionally been modeled using ...

  3. Improving Computational Efficiency of Prediction in Model-based Prognostics Using the Unscented Transform

    E-Print Network [OSTI]

    Daigle, Matthew

    , and availability. Prognos- tics deals with determining the health state of compo- nents, and projecting) predictions. Model-based prognos- tics approaches perform these tasks with the aid of a model that captures

  4. Improved Model of Isoprene Emissions in Africa using Ozone Monitoring Instrument (OMI) Satellite Observations of Formaldehyde: Implications for Oxidants and Particulate Matter

    SciTech Connect (OSTI)

    Marais, E. A.; Jacob, D.; Guenther, Alex B.; Chance, K.; Kurosu, T. P.; Murphy, J. G.; Reeves, C. E.; Pye, H.

    2014-08-01

    We use a 2005-2009 record of isoprene emissions over Africa derived from OMI satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission on the scale of the continent and evaluate the impact of isoprene emissions on atmospheric composition in Africa. OMI-derived isoprene emissions show large seasonality over savannas driven by temperature and leaf area index (LAI), and much weaker seasonality over equatorial forests driven by temperature. The commonly used MEGAN (version 2.1) global 31 isoprene emission model reproduces this seasonality but is biased high, particularly for 32 equatorial forests, when compared to OMI and relaxed-eddy accumulation measurements. 33 Isoprene emissions in MEGAN are computed as the product of an emission factor Eo, LAI, and 34 activity factors dependent on environmental variables. We use the OMI-derived emissions to 35 provide improved estimates of Eo that are in good agreement with direct leaf measurements from 36 field campaigns (r = 0.55, bias = -19%). The largest downward corrections to MEGAN Eo values are for equatorial forests and semi-arid environments, and this is consistent with latitudinal transects of isoprene over West Africa from the AMMA aircraft campaign. Total emission of isoprene in Africa is estimated to be 77 Tg C a-1, compared to 104 Tg C a-1 in MEGAN. Simulations with the GEOS-Chem oxidant-aerosol model suggest that isoprene emissions increase mean surface ozone in West Africa by up to 8 ppbv, and particulate matter by up to 1.5 42 ?g m-3, due to coupling with anthropogenic influences.

  5. Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses progress on thermal comfort modeling and detailed design, fabrication, and component/system-level testing of TE architecture

  6. Modeling of Non-Homogeneous Containment Atmosphere in the ThAI Experimental Facility Using a CFD Code

    SciTech Connect (OSTI)

    Babic, Miroslav; Kljenak, Ivo; Mavko, Borut [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia)

    2006-07-01

    The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the simulation was to reproduce the non-homogeneous temperature and species concentration distributions in the ThAI experimental facility. A three-dimensional model of the ThAI vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also introduced. The calculated time-dependent variables together with temperature and concentration distributions at the end of experiment phases are compared to experimental results. (authors)

  7. A modelling approach to carbon, water and energy feedbacks and interactions across the land-atmosphere interface. 

    E-Print Network [OSTI]

    Hill, Timothy C

    2007-01-01

    The climate is changing and the rate of this change is expected to increase. In the 20th century global surface temperatures rose by 0.6 (±0.2) K. Based on current model predictions, and economic forecasts, global temperature ...

  8. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    SciTech Connect (OSTI)

    Robert Y. Parker

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  9. Towards improved 1-D settler modelling: impact on control strategies using the

    E-Print Network [OSTI]

    Bürger, Raimund

    model recommended for controller design and evaluation of control strategies Bürger-Diehl model A new 1-D SST model was developed by Bürger et al. (2011, 2013). Features ·Settling fl ux calculated. Manipulation in underflow rate (left) and MLSS concentration in the first activated sludge tank (right) under

  10. Upper ocean model of dissolved atmospheric gases. Final report for the period 1 August 1991--31 May 1995

    SciTech Connect (OSTI)

    Schudlich, R.; Emerson, S.

    1996-05-01

    This report summarizes results from three years of funding for a modelling study of processes controlling the distribution of metabolic chemical tracers in surface waters. We determined concentrations of the gases O{sub 2}, Ar, N{sub 2}, and the stable isotope ratio ({sup 18}O/{sup 16}O) of molecular oxygen in surface waters at Station ALOHA in conjunction with the Global Ocean Flux Study (GOFS) Hawaiian Ocean Time-series project during the years 1989- 90 and 1992-93. Under this contract we have incorporated chemical tracers into an existing ocean mixed-layer model to simulate the physical processes controlling the distribution and seasonal cycle of dissolved gases in the upper ocean. The broad background of concurrent chemical, physical, and biological measurements at Station ALOHA provides enough redundancy of ``ground truth`` to assess the model`s accuracy. Biological oxygen production estimated from modelled chemical tracers agrees with estimates based on measurement of carbon fluxes into the deep ocean and nitrate fluxes into the upper ocean during 1989-90 and 1992-93, verifying for the first time the utility of chemical tracers for determining biological fluxes in the ocean. Our results suggest that in the euphotic zone (the upper 100 m of the ocean), the net biological O{sub 2} production is 1.0-2. 0 moles m{sup -2}yr{sup - 1}. Inert gas (Ar, N{sub 2}) supersaturation levels show that air and bubble injection are important modes of air-sea gas transfer in the Station ALOHA region.

  11. Architectural Improvements and New Processing Tools for the Open XAL Online Model

    SciTech Connect (OSTI)

    Allen, Christopher K [ORNL; Pelaia II, Tom [ORNL; Freed, Jonathan M [ORNL

    2015-01-01

    The online model is the component of Open XAL providing accelerator modeling, simulation, and dynamic synchronization to live hardware. Significant architectural changes and feature additions have been recently made in two separate areas: 1) the managing and processing of simulation data, and 2) the modeling of RF cavities. Simulation data and data processing have been completely decoupled. A single class manages all simulation data while standard tools were developed for processing the simulation results. RF accelerating cavities are now modeled as composite structures where parameter and dynamics computations are distributed. The beam and hardware models both maintain their relative phase information, which allows for dynamic phase slip and elapsed time computation.

  12. The Role of Circulation Features on Black Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5)

    SciTech Connect (OSTI)

    Ma, Po-Lun; Rasch, Philip J.; Wang, Hailong; Zhang, Kai; Easter, Richard C.; Tilmes, S.; Fast, Jerome D.; Liu, Xiaohong; Yoon, Jin-Ho; Lamarque, Jean-Francois

    2013-05-28

    Current climate models generally under-predict the surface concentration of black carbon (BC) in the Arctic due to the uncertainties associated with emissions, transport, and removal. This bias is also present in the Community Atmosphere Model Version 5.1 (CAM5). In this study, we investigate the uncertainty of Arctic BC due to transport processes simulated by CAM5 by configuring the model to run in an “offline mode” in which the large-scale circulations are prescribed. We compare the simulated BC transport when the offline model is driven by the meteorology predicted by the standard free-running CAM5 with simulations where the meteorology is constrained to agree with reanalysis products. Some circulation biases are apparent: the free-running CAM5 produces about 50% less transient eddy transport of BC than the reanalysis-driven simulations, which may be attributed to the coarse model resolution insufficient to represent eddies. Our analysis shows that the free-running CAM5 reasonably captures the essence of the Arctic Oscillation (AO), but some discernable differences in the spatial pattern of the AO between the free-running CAM5 and the reanalysis-driven simulations result in significantly different AO modulation of BC transport over Northeast Asia and Eastern Europe. Nevertheless, we find that the overall climatological circulation patterns simulated by the free-running CAM5 generally resembles those from the reanalysis products, and BC transport is very similar in both simulation sets. Therefore, the simulated circulation features regulating the long-range BC transport is unlikely the most important cause of the large under-prediction of surface BC concentration in the Arctic.

  13. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  14. IMPROVED SEMI-PARAMETRIC TIME SERIES MODELS OF AIR POLLUTION AND MORTALITY

    E-Print Network [OSTI]

    Hastie, Trevor

    we provide improvements in semi-parametric regression directly relevant to risk estimation in time of an intense national debate, that has led to a high profile research agenda (National Research Council, 1998, 1999, 2001). In the United States and elsewhere, evidence

  15. Modeling Building Energy Use and HVAC Efficiency Improvements in Extreme Hot and Humid Regions 

    E-Print Network [OSTI]

    Bible, Mitchell

    2011-10-21

    improvement was studied. Simulations were run in the relatively milder climates of Houston and Phoenix and compared to those found for Doha. It was found that variable speed fan operation is a more cost effective option for milder climates, while outside air...

  16. Toward Improved Identifiability of Soil Hydraulic Parameters: On the Selection of a Suitable Parametric Model

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    hydraulic properties (Hopmans et al., 1992; van Dam useful description of parameter uncertainty and itsToward Improved Identifiability of Soil Hydraulic Parameters: On the Selection of a Suitable identifiability analysis of the soil hydraulic During the last two decades, a great deal of researchparameters

  17. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  18. Loading containers on double-stack cars: Multi-objective optimization models and solution algorithms for improved safety and reduced maintenance cost

    E-Print Network [OSTI]

    Zhou, Xuesong

    1 Loading containers on double-stack cars: Multi-objective optimization models and solution-stack cars: Multi-objective optimization models and solution algorithms for improved safety and reduced maintenance cost Abstract To improve safety measures of loading containers on double-stack rail cars

  19. Integrating Empirical-Modeling Approaches to Improve Understanding of Terrestrial Ecology Processes

    SciTech Connect (OSTI)

    McCarthy, Heather [University of Oklahoma; Luo, Yiqi [University of Oklahoma; Wullschleger, Stan D [ORNL

    2012-01-01

    Recent decades have seen tremendous increases in the quantity of empirical ecological data collected by individual investigators, as well as through research networks such as FLUXNET (Baldocchi et al., 2001). At the same time, advances in computer technology have facilitated the development and implementation of large and complex land surface and ecological process models. Separately, each of these information streams provides useful, but imperfect information about ecosystems. To develop the best scientific understanding of ecological processes, and most accurately predict how ecosystems may cope with global change, integration of empirical and modeling approaches is necessary. However, true integration - in which models inform empirical research, which in turn informs models (Fig. 1) - is not yet common in ecological research (Luo et al., 2011). The goal of this workshop, sponsored by the Department of Energy, Office of Science, Biological and Environmental Research (BER) program, was to bring together members of the empirical and modeling communities to exchange ideas and discuss scientific practices for increasing empirical - model integration, and to explore infrastructure and/or virtual network needs for institutionalizing empirical - model integration (Yiqi Luo, University of Oklahoma, Norman, OK, USA). The workshop included presentations and small group discussions that covered topics ranging from model-assisted experimental design to data driven modeling (e.g. benchmarking and data assimilation) to infrastructure needs for empirical - model integration. Ultimately, three central questions emerged. How can models be used to inform experiments and observations? How can experimental and observational results be used to inform models? What are effective strategies to promote empirical - model integration?

  20. A Comprehensive Parameterization of Heterogeneous Ice Nucleation of Dust Surrogate: Laboratory Study with Hematite Particles and Its Application to Atmospheric Models

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Paukert, Marco; Steinke, Isabelle; Zhang, Kai; Kulkarni, Gourihar R.; Hoose, Corinna; Schnaiter, Martin; Saathoff, Harald; Mohler, Ottmar

    2014-12-10

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 ?C to -78 ?C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost independent freezing was observed at -60 ?C < T < -50 ?C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 ?C < T < -60 ?C and -50 ?C < T < -36 ?C. More specifically, observations at T colder than -60 ?C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than -50 ?C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 ?C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.

  1. Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints

    SciTech Connect (OSTI)

    Doligez, B.; Eschard, R.; Geffroy, F.

    1997-08-01

    The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

  2. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses comfort model enhancement/validation, climate system efficiency parameters and system trade off, and powertrain mode operation changes to further vehicle energy saving while preserving occupant comfort.

  3. Modeling performance of thin fibrous coatings with orthogonally layered nanofibers for improved aerosol filtration

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    Modeling filtration Electrospinning Advances in nanofiber fabrication techniques (e.g., electrospinning is not a trivial task. However, the possibility of using the electrospinning pro- cess for producing

  4. Improved Modeling and Understanding of Diffusion-Media Wettability on Polymer-Electrolyte-Fuel-Cell Performance

    E-Print Network [OSTI]

    Weber, Adam

    2010-01-01

    component for successful PEFC operation, especially underIt is also critical for good PEFC durability and lifetime. Aand transport throughout the PEFC, mathematical modeling has

  5. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    Riley, W.J.

    2008-01-01

    south and west of California), transport within and acrossCalifornia and their relationships with atmospheric transportfossil fuel CO 2 transport out of California. The figure

  6. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect (OSTI)

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al. 2000).

  7. Improved Multivariate Calibration Models for Corn Stover Feedstock and Dilute-Acid Pretreated Corn Stover

    SciTech Connect (OSTI)

    Wolfrum, E. J.; Sluiter, A. D.

    2009-01-01

    We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.

  8. Heating-induced transitions to improved confinement regimes in a zero-dimensional model for tokamak plasmas

    E-Print Network [OSTI]

    Zhu, H; Dendy, R O

    2013-01-01

    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine the effect of step changes in heating rate in the model of M.A.Malkov and P.H.Diamond, Phys. Plasmas 16, 012504 (2009), which nonlinearly couples the evolving temperature gradient, microturbulence and a mesoscale flow; and in the extension of H.Zhu, S.C.Chapman and R.O.Dendy, Phys. Plasmas 20, 042302 (2013), which couples to a second mesoscale flow component. The temperature gradient rises, as does the confinement time defined by analogy with the fusion context, while microturbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model.

  9. Dynamic topic adaptation for improved contextual modelling in statistical machine translation 

    E-Print Network [OSTI]

    Hasler, Eva Cornelia

    2015-06-29

    In recent years there has been an increased interest in domain adaptation techniques for statistical machine translation (SMT) to deal with the growing amount of data from different sources. Topic modelling techniques ...

  10. HIDDEN-ARTICULATOR MARKOV MODELS: PERFORMANCE IMPROVEMENTS AND ROBUSTNESS TO NOISE

    E-Print Network [OSTI]

    Diorio, Chris

    ], we extended the articulatory-feature model introduced by Erler [7] by using diphone units and a new] discuss the analysis-by-synthesis approach, which attempts to estimate the parameters of the Coker [3

  11. Improved Building Energy Performance Modelling through Comparison of Measured Data with Simulated Results 

    E-Print Network [OSTI]

    Bambrook, S.; Jacob, D.

    2008-01-01

    the building and comparing simulated results to the measured data. The simulated building energy performance results achieved in the first stage of computer modelling show a reasonable correlation with measured data, however, further work is required to create...

  12. Improving Well Productivity Based Modeling with the Incorporation of Geologic Dependencies

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Hydrocarbon7,747 8,021Improving

  13. Studying atmosphere-dominated hot Jupiter Kepler phase curves: Evidence that inhomogeneous atmospheric reflection is common

    E-Print Network [OSTI]

    Shporer, Avi

    2015-01-01

    We identify 3 Kepler transiting planet systems, Kepler-7, Kepler-12, and Kepler-41, whose orbital phase-folded light curves are dominated by planetary atmospheric processes including thermal emission and reflected light, while the impact of non-atmospheric (i.e. gravitational) processes, including beaming (Doppler boosting) and tidal ellipsoidal distortion, is negligible. Therefore, those systems allow a direct view of their atmospheres without being hampered by the approximations used in the inclusion of both atmospheric and non-atmospheric processes when modeling the phase curve shape. Here we analyze Kepler-12b and Kepler-41b atmosphere based on their Kepler phase curve, while the analysis of Kepler-7b was presented elsewhere. The model we used efficiently computes reflection and thermal emission contributions to the phase curve, including inhomogeneous atmospheric reflection due to longitudinally varying cloud coverage. We confirm Kepler-12b and Kepler-41b show a westward phase shift between the brightest...

  14. IMPROVED MODELING OF THE ROSSITER-McLAUGHLIN EFFECT FOR TRANSITING EXOPLANETS

    SciTech Connect (OSTI)

    Hirano, Teruyuki; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Suto, Yasushi; Taruya, Atsushi [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Narita, Norio [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sato, Bun'ei, E-mail: hirano@utap.phys.s.u-tokyo.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2011-12-01

    We present an improved formula for the anomalous radial velocity of the star during planetary transits due to the Rossiter-McLaughlin (RM) effect. The improvement comes from a more realistic description of the stellar absorption line profiles, taking into account stellar rotation, macroturbulence, thermal broadening, pressure broadening, and instrumental broadening. Although the formula is derived for the case in which radial velocities are measured by cross-correlation, we show through numerical simulations that the formula accurately describes the cases where the radial velocities are measured with the iodine absorption-cell technique. The formula relies on prior knowledge of the parameters describing macroturbulence, instrumental broadening, and other broadening mechanisms, but even 30% errors in those parameters do not significantly change the results in typical circumstances. We show that the new analytic formula agrees with previous ones that had been computed on a case-by-case basis via numerical simulations. Finally, as one application of the new formula, we reassess the impact of the differential rotation on the RM velocity anomaly. We show that differential rotation of a rapidly rotating star may have a significant impact on future RM observations.

  15. Modeling Improvements for Air Source Heat Pumps using Different Expansion Devices at Varied Charge Levels Part II

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01

    This paper describes steady-state performance simulations performed on a 3-ton R-22 split heat pump in heating mode. In total, 150 steady-state points were simulated, which covers refrigerant charge levels from 70 % to 130% relative to the nominal value, the outdoor temperatures at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C), indoor air flow rates from 60% to 150% of the rated air flow rate, and two types of expansion devices (fixed orifice and thermostatic expansion valve). A charge tuning method, which is to calibrate the charge inventory model based on measurements at two operation conditions, was applied and shown to improve the system simulation accuracy significantly in an extensive range of charge levels. In addition, we discuss the effects of suction line accumulator in modeling a heat pump system using either a fixed orifice or thermal expansion valve. Last, we identify the issue of refrigerant mass flow mal-distribution at low charge levels and propose an improved modeling approach.

  16. Renewed growth of atmospheric methane R. G. Prinn,1

    E-Print Network [OSTI]

    use these data, along with an inverse method applied to a simple model of atmospheric chemistry this observation further using a simple model of atmospheric transport and chemistry to attempt to quantifyRenewed growth of atmospheric methane M. Rigby,1 R. G. Prinn,1 P. J. Fraser,2 P. G. Simmonds,3 R. L

  17. Development and Testing of a Life Cycle Model and a Parameterization of Thin Mid-level Stratiform Clouds

    SciTech Connect (OSTI)

    Krueger, Steven K.

    2008-03-03

    We used a cloud-resolving model (a detailed computer model of cloud systems) to evaluate and improve the representation of clouds in global atmospheric models used for numerical weather prediction and climate modeling. We also used observations of the atmospheric state, including clouds, made at DOE's Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility located in the Southern Great Plains (Kansas and Oklahoma) during Intensive Observation Periods to evaluate our detailed computer model as well as a single-column version of a global atmospheric model used for numerical weather prediction (the Global Forecast System of the NOAA National Centers for Environmental Prediction). This so-called Single-Column Modeling approach has proved to be a very effective method for testing the representation of clouds in global atmospheric models. The method relies on detailed observations of the atmospheric state, including clouds, in an atmospheric column comparable in size to a grid column used in a global atmospheric model. The required observations are made by a combination of in situ and remote sensing instruments. One of the greatest problems facing mankind at the present is climate change. Part of the problem is our limited ability to predict the regional patterns of climate change. In order to increase this ability, uncertainties in climate models must be reduced. One of the greatest of these uncertainties is the representation of clouds and cloud processes. This project, and ARM taken as a whole, has helped to improve the representation of clouds in global atmospheric models.

  18. Dataset used to improve liquid water absorption models in the microwave

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Turner, David

    2015-12-14

    Two datasets, one a compilation of laboratory data and one a compilation from three field sites, are provided here. These datasets provide measurements of the real and imaginary refractive indices and absorption as a function of cloud temperature. These datasets were used in the development of the new liquid water absorption model that was published in Turner et al. 2015.

  19. Modeling and Simulation Improvement in Laser Shock Processing Wenwu Zhang and Y. Lawrence Yao

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    to be arbitrarily chosen. The expansion of plasma is modeled as one-dimensional laser supported combustion wave. The 1D results are then modified to consider radial and axial expansion effects. The influence of pulse laser supported combustion wave. The 1D results are ICALEO 2001 Congress Proceedings #12;then modified

  20. On improving the communication between models and data MICHAEL C. DIETZE1

    E-Print Network [OSTI]

    Dietze, Michael

    more accessible. Bayesian statistics pro- vides powerful tools for assimilating a diversity of data networks, cloud computing and virtual machines are increasingly making information available at our in this special issue have highlighted the state-of-the-art in plant models across a wide range of disciplines

  1. Short Communication Coating with paclitaxel improves graft survival in a porcine model of

    E-Print Network [OSTI]

    Park, Jong-Sang

    cause of failure of polytetra- fluoroethylene (PTFE) dialysis grafts. We recently reported that coating-coating could prolong graft survival in a porcine model. Methods. PTFE grafts were double-coated with pacli graft survival. Coated PTFE grafts may be effective for the prevention of graft failure in patients

  2. Modeling Syntactic Context Improves Morphological Segmentation Yoong Keok Lee Aria Haghighi Regina Barzilay

    E-Print Network [OSTI]

    Barzilay, Regina

    Barzilay Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology {yklee, aria42, regina}@csail.mit.edu Abstract The connection between part-of-speech (POS) categories. Our model learns that words with com- mon affixes are likely to be in the same syn- tactic category

  3. Improved Modeling and Understanding of Diffusion-Media Wettability on Polymer-Electrolyte-Fuel-Cell Performance

    SciTech Connect (OSTI)

    Weber, Adam

    2010-03-05

    A macroscopic-modeling methodology to account for the chemical and structural properties of fuel-cell diffusion media is developed. A previous model is updated to include for the first time the use of experimentally measured capillary pressure -- saturation relationships through the introduction of a Gaussian contact-angle distribution into the property equations. The updated model is used to simulate various limiting-case scenarios of water and gas transport in fuel-cell diffusion media. Analysis of these results demonstrate that interfacial conditions are more important than bulk transport in these layers, where the associated mass-transfer resistance is the result of higher capillary pressures at the boundaries and the steepness of the capillary pressure -- saturation relationship. The model is also used to examine the impact of a microporous layer, showing that it dominates the response of the overall diffusion medium. In addition, its primary mass-transfer-related effect is suggested to be limiting the water-injection sites into the more porous gas-diffusion layer.

  4. ENTHALPY-BASED THERMAL EVOLUTION OF LOOPS. II. IMPROVEMENTS TO THE MODEL

    SciTech Connect (OSTI)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2012-06-20

    This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model 'Enthalpy-based Thermal Evolution of Loops' (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  5. Can dipole modelling be improved by removing muscular and ocular artifacts from ictal scalp EEG?

    E-Print Network [OSTI]

    . Furthermore, we want to investigate whether the use of the dipole model returns better interpretable results together with abnormal electric activity in the brain. The activity stems from clusters of neuronal sources which depolarize and repolarize synchronously. An electro-encephalogram (EEG) records this activity

  6. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect (OSTI)

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  7. The Asperity-deformation Model Improvements and Its Applications to Velocity Inversion 

    E-Print Network [OSTI]

    Bui, Hoa Q.

    2010-01-16

    -of-nails? (BNM) model. Existing analytic solutions include one that assumes the host rock is infinitely more rigid than the fractures, and one that takes the host-rock compliance into account. Inversion results indicate that although both solutions can fit...

  8. A Temperature and Abundance Retrieval Method for Exoplanet Atmospheres

    E-Print Network [OSTI]

    Madhusudhan, Nikku

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large ...

  9. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  10. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    SciTech Connect (OSTI)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko; McLing, Travis; Neupane, Ghanashyam; Palmer, Carl; Reed, David; Thompson, Vicki

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  11. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    SciTech Connect (OSTI)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  12. Improved zircon fission-track annealing model based on reevaluation of annealing data

    SciTech Connect (OSTI)

    Guedes, Sandro [Instituto de Fisica Gleb Wataghin, Unicamp, Brazil; Moreira, Pedro A.F.P. [Universidade Estadual de Campinas, Sao Paulo; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Weber, William J [ORNL; Hadler, Julio C [Instituto de Fisica Gleb Wataghin, Unicamp, Brazil

    2013-01-01

    The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T0, beyond which fission tracks are erased within a time t0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

  13. Improved zircon fission-track annealing model based on reevaluation of annealing data

    SciTech Connect (OSTI)

    Guedes, S.; Moreira, Pedro; Devanathan, Ramaswami; Weber, William J.; Hadler, J. C.

    2012-11-10

    The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T 0, beyond which fission tracks are erased within a time t 0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

  14. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  15. From filtergrams to physical atmospheric magnitudes: A prospective diagnostic

    SciTech Connect (OSTI)

    Toro Iniest, J.C. del; Tarbell, T.; Ruiz Cobo, B.

    1992-01-01

    The first steps of a thorough study on the capabilities of the Lockheed tunable filter instrument are presented. We explore the sensitivities of the different filtergrams (magnetograms, dopplergrams) on the various physical magnitudes characterizing the atmosphere which photons are coming from. The Response Functions of several lines normally used with this instrument in real observations are evaluated and their properties in several solar structures discusses. This study is of crucial importance if we want to use the highly resolved data which are obtained with this instrument in excellent sites like the Observatorio del Roque de Los Muchachos (La Palma, Spain) to improve the current models of active and quiet regions of the sun.

  16. Cumulant expansions for atmospheric flows

    E-Print Network [OSTI]

    Ait-Chaalal, Farid; Meyer, Bettina; Marston, J B

    2015-01-01

    The equations governing atmospheric flows are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifests itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. We review how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can successfully capture the growth of the convective boundary layer. Seco...

  17. Atmospheric chemistry and global change

    E-Print Network [OSTI]

    Prather, MJ

    1999-01-01

    and particles. Thus Atmospheric Chemistry and Global Changethe future of atmospheric chemistry. BROWSINGS Tornadothe complexity of atmospheric chemistry well, but trips a

  18. Improvement of Stent Retriever Design and Efficacy of Mechanical Thrombectomy in a Flow Model

    SciTech Connect (OSTI)

    Wenger, Katharina; Nagl, Frank; Wagner, Marlies Berkefeld, Joachim

    2013-02-15

    In vitro experiments were performed to evaluate the efficacy of mechanical intracranial thrombectomy comparing the newly developed Aperio stent retriever and standard devices for stroke treatment. The Aperio (A), with an increased working length of 4 cm and a special cell design for capturing and withholding clots, was compared to three benchmark devices: the Solitaire retrievable stent (B), the Merci X6 (C), and the Merci L5 retriever (D). In a vascular glass model with pulsatile flow, reminiscent of the M1 segment of the middle cerebral artery, we repeatedly induced occlusion by generating thrombi via a modified Chandler loop system. The numbers of recanalization attempts, peripheral embolizations, and recanalizations at the site of occlusion were recorded during 10 retrieval experiments with each device. Eleven devices were able to remove the blood clots from the occluded branch. In 34 of 40 experiments, restoration of flow was obtained in 1-3 attempts. The main differences between the study devices were observed in terms of clot withholding and fragmentation during retrieval. Although there was only one fragmentation recorded for device A, disengagement of the whole clot or peripheral embolization of fragments occurred more frequently (5-7 times) with devices B, C, and D. In a vascular model, the design of device A was best at capturing and withholding thrombi during retrieval. Further study will be necessary to see whether this holds true in clinical applications.

  19. Using model analyses and surface-atmosphere exchange measurements from the Howland AmeriFlux Site in Maine, USA, to improve understanding of forest ecosystem C cycling

    SciTech Connect (OSTI)

    Hollinger, David Y.; Davidson, Eric A.; Richardson, Andrew D.; Dail, D. B.; Scott, N.

    2013-03-25

    Summary of research carried out under Interagency Agreement DE-AI02-07ER64355 with the USDA Forest Service at the Howland Forest AmeriFlux site in central Maine. Includes a list of publications resulting in part or whole from this support.

  20. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01

    74 ii Soil Moisture Sensors: Decagon ECH2O Capacitance133 A.10 Soil types corresponding to each75 Soil Moisture and Temperature Probe

  1. HYDRODYNAMIC THERMAL MODELING OF 9-CELL ILC CAVITY ELECTROPOLISHING AND IMPLICATIONS FOR IMPROVING THE EP PROCESS

    SciTech Connect (OSTI)

    Charles Reece; John Mammosser; Jun Ortega

    2008-02-12

    Multi-cell niobium cavities often obtain the highest performance levels after having been subjected to an electropolishing (EP) process. The horizontal EP process first developed at KEK/Nomura Plating for TRISTAN[1] cavities is being applied to TESLA-style cavities and other structures for the XFEL and ILC R&D. Jefferson Lab is presently carrying this activity in the US. Because the local electropolishing current density is highly temperature dependent, we have created using CFDesign™ a full-scale hydrodynamic model which simulates the various thermal conditions present during 9-cell cavity electropolishing. The results of these simulations are compared with exterior surface temperature data gathered during ILC cavity EP at JLab. Having benchmarked the simulation, we explore the affect of altered boundary conditions in order to evaluate potentially beneficial modifications to the current standard process.

  2. Validation of detailed thermal hydraulic models used for LMR safety and for improvement of technical specifications

    SciTech Connect (OSTI)

    Dunn, F.E.

    1995-12-31

    Detailed steady-state and transient coolant temperatures and flow rates from an operating reactor have been used to validate the multiple pin model in the SASSYS-1 liquid metal reactor systems analysis code. This multiple pin capability can be used for explicit calculations of axial and lateral temperature distributions within individual subassemblies. Thermocouples at a number of axial locations and in a number of different coolant sub-channels m the XXO9 instrumented subassembly in the EBR-II reactor provided temperature data from the Shutdown Heat Removal Test (SHRT) series. Flow meter data for XXO9 and for the overall system are also available from these tests. Results of consistent SASSYS-1 multiple pin analyses for both the SHRT-45 loss-of-flow-without-scram-test and the S14RT-17 protected loss-of-flow test agree well with the experimental data, providing validation of the SASSYS-1 code over a wide range of conditions.

  3. Final report for the project "Improving the understanding of surface-atmosphere radiative interactions by mapping surface reflectance over the ARM CART site" (award DE-FG02-02ER63351)

    SciTech Connect (OSTI)

    Alexander P. Trishchenko; Yi Luo; Konstantin V. Khlopenkov, William M. Park; Zhanqing Li; Maureen Cribb

    2008-11-28

    Surface spectral reflectance (albedo) is a fundamental variable affecting the transfer of solar radiation and the Earth’s climate. It determines the proportion of solar energy absorbed by the surface and reflected back to the atmosphere. The International Panel on Climate Change (IPCC) identified surface albedo among key factors influencing climate radiative forcing. Accurate knowledge of surface reflective properties is important for advancing weather forecasting and climate change impact studies. It is also important for determining radiative impact and acceptable levels of greenhouse gases in the atmosphere, which makes this work strongly linked to major scientific objectives of the Climate Change Research Division (CCRD) and Atmospheric Radiation Measurement (ARM) Program. Most significant accomplishments of eth project are listed below. I) Surface albedo/BRDF datasets from 1995 to the end of 2004 have been produced. They were made available to the ARM community and other interested users through the CCRS public ftp site ftp://ftp.ccrs.nrcan.gc.ca/ad/CCRS_ARM/ and ARM IOP data archive under “PI data Trishchenko”. II) Surface albedo properties over the ARM SGP area have been described for 10-year period. Comparison with ECMWF data product showed some deficiencies in the ECMWF surface scheme, such as missing some seasonal variability and no dependence on sky-conditions which biases surface energy budget and has some influence of the diurnal cycle of upward radiation and atmospheric absorption. III) Four surface albedo Intensive Observation Period (IOP) Field Campaigns have been conducted for every season (August, 2002, May 2003, February 2004 and October 2004). Data have been prepared, documented and transferred to ARM IOP archive. Nine peer-reviewed journal papers and 26 conference papers have been published.

  4. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Jiao, Y.; Navid, A.

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.

  5. Improvements to Regional Explosion Identification using Attenuation Models of the Lithosphere

    SciTech Connect (OSTI)

    Pasyanos, M E; Walter, W R

    2009-03-30

    Regional P/S amplitudes have been recognized as an effective discriminant between earthquakes and explosions. While closely spaced earthquake and explosions generally discriminate easily, the application of this technique to broad regions has been hampered by large variations in the amplitude of regional phases due to the attenuation structure of the crust and upper mantle. Making use of a recent P-wave and S-wave attenuation model of the lithosphere, we have found that correcting the events using our amplitude methodology significantly reduces the scattering in the earthquake population. We demonstrate an application of this technique to station NIL (Nilore, Pakistan) using broad area earthquakes and the 1998 Indian nuclear explosion recorded at the station using the Pn/Lg discriminant in the 1-2 Hz passband. We find that the explosion, which is lost in the scatter of the earthquakes in the uncorrected discriminant, clearly separates by correcting for the attenuation structure. We see a similar reduction in scatter and separation for the Pn/Sn and Pg/Lg discriminants in the same passband.

  6. Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments

    SciTech Connect (OSTI)

    Dr. Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

    2012-10-01

    As part of the Research and Development program for Next Generation High Temperature Reactors (HTR), a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. The data representing the crucial test fuel conditions (e.g., temperature, neutron fast fluence, and burnup) while impossible to obtain from direct measurements are calculated by physics and thermal models. The irradiation and post-irradiation examination (PIE) experimental data are used in model calibration effort to reduce the inherent uncertainty of simulation results. This paper is focused on fuel temperature predicted by the ABAQUS code’s finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for improving qualification of AGR-1 thermocouple data. The present work exercises the idea that the abnormal trends of measured data observed from statistical analysis may be caused by either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. As an example, the uneven reduction of the control gas gap in Capsule 5 revealed by the capsule metrology measurements in PIE helps justify the reduction in TC readings instead of TC drift. This in turn prompts modification of thermal model to better fit with experimental data, thus help increase confidence, and in other word reduce model uncertainties in thermal simulation results of the AGR-1 test.

  7. Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas

    SciTech Connect (OSTI)

    Zhu, H.; Chapman, S. C.; Dendy, R. O.; Itoh, K.

    2014-06-15

    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine for the first time the effect of step changes in heating rate in the models of Kim and Diamond [Phys. Rev. Lett. 90, 185006 (2003)] and Malkov and Diamond [Phys. Plasmas 16, 012504 (2009)], which nonlinearly couple the evolving temperature gradient, micro-turbulence, and a mesoscale flow; and in the extension of Zhu et al. [Phys. Plasmas 20, 042302 (2013)], which couples to a second mesoscale flow component. The temperature gradient rises, as does the confinement time defined by analogy with the fusion context, while micro-turbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model. It is also demonstrated that oscillating changes in heating rate can drive the level of micro-turbulence through a period-doubling path to chaos, where the amplitude of the oscillatory component of the heating rate is the control parameter.

  8. Improved Modeling of Transition Metals, Applications to Catalysis and Technetium Chemistry

    SciTech Connect (OSTI)

    Cundari, T. R.

    2004-03-05

    There is considerable impetus for identification of aqueous OM catalysts as water is the ultimate ''green'' solvent. In collaboration with researchers at Ames Lab, we investigated effective fragment and Monte Carlo techniques for aqueous-phase hydroformylation (HyF). The Rh of the HyF catalyst is weakly aquated, in contrast to the hydride of the Rh-H bond. As the insertion of the olefin C=C into Rh-H determines the linear-to-branched aldehyde ratio, it is reasonable to infer that solvent plays an important role in regiochemistry. Studies on aqueous-phase organometallic catalysis were complemented in studies of the gas-phase reaction. A Rh-carbonyl-phosphine catalyst was investigated. Two of the most important implications of this research include (a) pseudorotation among five-coordinate intermediates is significant in HyF, and (b) CO insertion is the rate-determining step. The latter is in contrast to experimental deductions, highlighting the need for more accurate modeling. To this end, we undertook studies of (a) experimentally relevant PR{sub 3} co-ligands (PMe{sub 3}, PPh{sub 3}, P(p-PhSO{sub 3{sup -}}){sub 3}, etc.), and (b) HyF of propene. For the propylene research, simulations indicated that the linear: branched aldehyde ratio (linear is more desirable) is determined by thermodynamic discrimination of two distinct pathways. Other projects include a theory-experiment study of C-H activation by early transition metal systems, which establishes that weakly-bound adducts play a key role in activity selectivity. By extension, more selective catalysts for functionalization of methane (major component of natural gas) will require better understanding of these adducts, which are greatly affected by steric interactions with the ligands. In the de novo design of Tc complexes, we constructed (and are now testing) a coupled quantum mechanics-molecular mechanics protocol. Initial research shows it to be capable of accurately predicting structure ''from scratch.'' Challenges include conformational, geometric, coordination, spin, and particularly linkage (e.g., Tc-SCN versus Tc-NCS) isomerism. In general, our protocol can rapidly (<1 day with desktop software/hardware) predict the structure of diverse Tc complexes with an accuracy commensurate to organics. Our de novo strategy is also being used to investigate tris-pyrazolyl borate (Tp) complexes. Data suggests a fundamental difference in methane activation between TpRe and related CpRe complexes. Furthermore, Tp is a more electronically ''flexible'' platform for catalysts modification than Cp.

  9. Atmospheric Chemistry of Venus-like Exoplanets Laura Schaefer

    E-Print Network [OSTI]

    - 1 - Atmospheric Chemistry of Venus-like Exoplanets by Laura Schaefer and Bruce Fegley, Jr thermodynamic calculations to model atmospheric chemistry on terrestrial exoplanets that are hot enough for chemical equilibria between the atmosphere and lithosphere, as on Venus. The results of our calculations

  10. New and Improved Data Logging and Collection System for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western Pacific, and North Slope of Alaska Sky Radiation, Ground Radiation, and MET Systems

    SciTech Connect (OSTI)

    Ritsche, M.T.; Holdridge, D.J.; Pearson, R.

    2005-03-18

    Aging systems and technological advances mandated changes to the data collection systems at the Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) and North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) sites. Key reasons for the upgrade include the following: achieve consistency across all ACRF sites for easy data use and operational maintenance; minimize the need for a single mentor requiring specialized knowledge and training; provide local access to real-time data for operational support, intensive operational period (IOP) support, and public relations; eliminate problems with physical packaging (condensation, connectors, etc.); and increase flexibility in programming and control of the data logger.

  11. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    SciTech Connect (OSTI)

    Zucca, J J; Walter, W R; Rodgers, A J; Richards, P; Pasyanos, M E; Myers, S C; Lay, T; Harris, D; Antoun, T

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags contemporary research. Current monitoring practice is to use relatively simple Earth models that generally afford analytical prediction of seismic observables (see Examples of Current Monitoring Practice below). Empirical relationships or corrections to predictions are often used to account for unmodeled phenomena, such as the generation of S-waves from explosions or the effect of 3-dimensional Earth structure on wave propagation. This approach produces fast and accurate predictions in areas where empirical observations are available. However, accuracy may diminish away from empirical data. Further, much of the physics is wrapped into an empirical relationship or correction, which limits the ability to fully understand the physical processes underlying the seismic observation. Every generation of seismology researchers works toward quantitative results, with leaders who are active at or near the forefront of what has been computationally possible. While recognizing that only a 3-dimensional model can capture the full physics of seismic wave generation and propagation in the Earth, computational seismology has, until recently, been limited to simplifying model parameterizations (e.g. 1D Earth models) that lead to efficient algorithms. What is different today is the fact that the largest and fastest machines are at last capable of evaluating the effects of generalized 3D Earth structure, at levels of detail that improve significantly over past efforts, with potentially wide application. Advances in numerical methods to compute travel times and complete seismograms for 3D models are enabling new ways to interpret available data. This includes algorithms such as the Fast Marching Method (Rawlison and Sambridge, 2004) for travel time calculations and full waveform methods such as the spectral element method (SEM; Komatitsch et al., 2002, Tromp et al., 2005), higher order Galerkin methods (Kaser and Dumbser, 2006; Dumbser and Kaser, 2006) and advances in more traditional Cartesian finite difference methods (e.g. Pitarka, 1999; Nilsson et al., 2007). The ability to compute seis

  12. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    of Energy, Oak Ridge, Tenn. Marr, L. C. , D. R. Black, andrequires improvement [Marr et al. , 2002], particularly at

  13. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  14. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    E-Print Network [OSTI]

    Dimitra Atri; Adrian L. Melott; Brian C. Thomas

    2010-05-03

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV - 1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  15. Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries

    E-Print Network [OSTI]

    2013-01-01

    in the Community Earth System Model: Evaluation andpredictions from CMIP5 Earth system models and comparisonusing the Community Earth System Model–Biogeochemistry (

  16. Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries

    E-Print Network [OSTI]

    2013-01-01

    predictions from CMIP5 Earth system models and comparisonin the Community Earth System Model: Evaluation andusing the Community Earth System Model–Biogeochemistry (

  17. Oceanography and Atmospheric Sciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    Oceanography and Atmospheric Sciences 1959­2009 WayneBurt. #12;Oceanography and Atmospheric in Oceanography (TENOC). Wayne Burt immediately responds with proposal to President Strand of Oregon State College to start a graduate Department of Oceanography. 1959 Oregon State Board of Higher Education approves

  18. An improved neutral diffusion model and numerical solution of the two dimensional edge plasma fluid equations. Final report

    SciTech Connect (OSTI)

    Prinja, A.K.

    1998-09-01

    In this work, it has been shown that, for the given sets of parameters (transport coefficients), the Tangent-Predictor (TP) continuation method, which was used in the coarsest grid, works remarkably well. The problems in finding an initial guess that resides well within Newton`s method radius of convergence are alleviated by correcting the initial guess by the predictor step of the TP method. The TP method works well also in neutral gas puffing and impurity simulations. The neutral gas puffing simulation is performed by systematically increasing the fraction of puffing rate according to the TP method until it reaches a desired condition. Similarly, the impurity simulation characterized by using the fraction of impurity density as the continuation parameter, is carried out in line with the TP method. Both methods show, as expected, a better performance than the classical embedding (CE) method. The convergence criteria {epsilon} is set to be 10{sup {minus}9} based on the fact that lower value of {epsilon} does not alter the solution significantly. Correspondingly, the number of Newton`s iterations in the corrector step of the TP method decrease substantially, an extra point in terms of code speed. The success of the TP method enlarges the possibility of including other sets of parameters (operations and physics). With the availability of the converged coarsest grid solution, the next forward step to the multigrid cycle becomes possible. The multigrid method shows that the memory storage problems that plagued the application of Newton`s method on fine grids, are of no concern. An important result that needs to be noted here is the performance of the FFCD model. The FFCD model is relatively simple and is based on the overall results the model has shown to predict different divertor plasma parameters. The FFCD model treats exactly the implementation of the deep penetration of energetic neutrals emerging from the divertor plate. The resulting ionization profiles are relatively smooth as a consequence of the less localized recycling, leading to an improved convergence rate of the numerical algorithm. Peak plasma density is lower and the temperature correspondingly higher than those predicted by the standard diffusion model. It is believed that the FFCD model is more accurate. With both the TP continuation and multigrid methods, the author has demonstrated the robustness of these two methods. A mutually beneficial hybridization between the TP method and multigrid methods is clearly an alternative for edge plasma simulation. While the fundamental transport model considered in this work has ignored important physics such as drifts and currents, he has nevertheless demonstrated the versatility and robustness of the numerical scheme to handle such new physics. The application of gaseous-radiative divertor model in this work is just a beginning and up to this point numerically, the future is exciting.

  19. Critical review of studies on atmospheric dispersion in coastal regions

    SciTech Connect (OSTI)

    Shearer, D.L.; Kaleel, R.J.

    1982-09-01

    This study effort was required as a preliminary step prior to initiation of field measurements of atmospheric dispersion in coastal regions. The Nuclear Regulatory Commission (NRC) is in the process of planning an extensive field measurement program to generate data which will serve as improved data bases for licensing decisions, confirmation of regulations, standards, and guides, and for site characterizations. The study being reported here is an effort directed to obtaining as much information as is possible from existing studies that is relevant toward NRC's objectives. For this study, reports covering research and meteorological measurements conducted for industrial purposes, utility needs, military objectives, and academic studies were obtained and critically reviewed in light of NRC's current data needs. This report provides an interpretation of the extent of existing usable information, an indication of the potential for tailoring existing research toward current NRC information needs, and recommendations for several follow-on studies which could provide valuable additional information through reanalysis of the data. Recommendations are also offered regarding new measurement programs. Emphasis is placed on the identification and acquisition of data from atmospheric tracer studies conducted in coastal regions. A total of 225 references were identified which deal with the coastal atmosphere, including meteorological and tracer measurement programs, theoretical descriptions of the relevant processes, and dispersion models.

  20. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data

    SciTech Connect (OSTI)

    Hayes, Daniel J [ORNL; Turner, David P [Oregon State University, Corvallis; Stinson, Graham [Pacific Forestry Centre, Canadian Forest Service; Mcguire, David [University of Alaska; Wei, Yaxing [ORNL; West, Tristram O. [Joint Global Change Research Institute, PNNL; Heath, Linda S. [USDA Forest Service; De Jong, Bernardus [ECOSUR; McConkey, Brian G. [Agriculture and Agri-Food Canada; Birdsey, Richard A. [U.S. Department of Agriculture Forest Service; Kurz, Werner [Canadian Forest Service; Jacobson, Andrew [NOAA ESRL and CIRES; Huntzinger, Deborah [University of Michigan; Pan, Yude [U.S. Department of Agriculture Forest Service; Post, Wilfred M [ORNL; Cook, Robert B [ORNL

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.