National Library of Energy BETA

Sample records for improvement champion iron

  1. Integrated Safety Management Champions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Champions Integrated Safety Management Champions November 1, 2006 CHARTER FOR THE ISM CHAMPIONS COUNCIL 1. PURPOSE. The purpose of the ISM Champions Council (Council) is to support line management in developing and sustaining vital, mature ISM systems throughout the Department so that work is reliably accomplished in a safe manner. The Council will promote continuous learning and improvement of ISM effectiveness throughout the DOE complex. 2. BACKGROUND. The Department established the Integrated

  2. DOE ISM CHAMPIONS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    92712 DOE ISM CHAMPIONS Organization Points of Contact Phone E-mail DOE ISM Co- Champion (HSS) Pat Worthington (301) 903-5926 pat.worthington@hq.doe.gov DOE ISM Co- Champion (EM) ...

  3. Alaska Energy Champion: Craig Moore

    Broader source: Energy.gov [DOE]

    The Alaska Energy Champions is a regular feature spotlighting pioneers of Alaska's new energy frontier.

  4. Climate Action Champion: Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.gov/betterbuildings Climate Action Champion: Technical Assistance to the City of Seattle Planning for Seattle's new Building Energy Code Overview The City of Seattle, identified as a Climate Action Champion (CAC) by the Department of Energy (DOE), is revising its 2012 Energy Code, already one of the most progressive in the country. Seattle has made a pledge to be carbon neutral by 2050. Seattle received technical assistance from the Pacific Northwest National Laboratory in order to

  5. Community Efficiency Champions Designated in Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Efficiency Champions Designated in Alaska Community Efficiency Champions Designated in Alaska February 18, 2016 - 6:49pm Addthis Energy Department Secretary Ernest Moniz visited Alaska this week and recognized the Community Efficiency Champions who have pledged to improve energy efficiency and lower energy costs through the Remote Alaskan Communities Energy Efficiency Competition. Energy Department Secretary Ernest Moniz visited Alaska this week and recognized the Community Efficiency

  6. Zhicheng Champion aka Guangdong Cheshing Champion | Open Energy...

    Open Energy Info (EERE)

    Cheshing Champion) Place: Dongguan, Guangdong Province, China Zip: 523718 Product: Lead-acid battery and UPS maker moving into a-Si thin-film PV production. Coordinates:...

  7. VPP Hanford Site Champions Committee - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Champions Committee Hanford Site Voluntary Protection Program VPP Home VPP Hanford Site Champions Committee Who We Are Annual Reports Assessments Getting Started Maintaining STAR VPP Communications VPP Conferences VPP Hanford Site Champions Committee Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size VPP Hanford Site Champions Committee VPP Committee VPP Champions Committee Charter (PDF) Business Case (PDF) VPP Champions Committee Roster (PDF) Share on

  8. Champion Energy Services (Ohio) | Open Energy Information

    Open Energy Info (EERE)

    Services Place: Ohio Website: www.championenergyservices.com Twitter: @ChampionEnergy Facebook: https:www.facebook.comChampionEnergyServices Outage Hotline: 877-653-5090 Outage...

  9. Climate Action Champions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Climate Action Champions Climate Action Champions Climate Action Champions The White House launched the Climate Action Champions (CAC) Initiative in December 2014 with the U.S. Department of Energy (DOE) as lead Agency. The Administration expanded the Initiative in December 2015 through a strategic partnership with the Corporation for National Community Service (CNCS). PROGRAM POLICY OBJECTIVES The Climate Action Champions Initiative supports local and tribal government climate

  10. Champion (Roscoe II) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Champion (Roscoe II) Wind Farm Jump to: navigation, search Name Champion (Roscoe II) Wind Farm Facility Champion (Roscoe II) Sector Wind energy Facility Type Commercial Scale Wind...

  11. Champions of Change: Veterans Advancing Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Yesterday, Secretary Moniz honored veterans advancing clean energy and climate security at a White House "Champions of Change" event.

  12. Alternative Fuels Data Center: Government Champions Workplace Charging

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Endeavors Government Champions Workplace Charging Endeavors to someone by E-mail Share Alternative Fuels Data Center: Government Champions Workplace Charging Endeavors on Facebook Tweet about Alternative Fuels Data Center: Government Champions Workplace Charging Endeavors on Twitter Bookmark Alternative Fuels Data Center: Government Champions Workplace Charging Endeavors on Google Bookmark Alternative Fuels Data Center: Government Champions Workplace Charging Endeavors on Delicious Rank

  13. Champion Energy Services (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania) Jump to: navigation, search Name: Champion Energy Services Place: Pennsylvania Phone Number: 877.653.5090 Website: www.championenergyservices.com Facebook: https:...

  14. Champion Energy Services (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    Number: 888.653.0087 Website: www.championenergyservices.com Twitter: @championenergy Facebook: https:www.facebook.comChampionEnergyServices Outage Hotline: 1.800.334.7661...

  15. EECBG Success Story: New Jersey Township Champions Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jersey Township Champions Sustainability EECBG Success Story: New Jersey Township Champions Sustainability April 30, 2010 - 3:25pm Addthis Woodbridge Township has installed solar...

  16. DOE Integrated Safety Management Champions List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Management Champions List DOE Integrated Safety Management Champions List List of DOE Integrated Safety Management Champions: May 27, 2016 List of DOE Integrated Safety Management Champions: May 2016 (135.41 KB) More Documents & Publications FTCP Members FAQS Sponsors and Recognized Experts Fire Safety Committee Membership List

  17. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  18. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  19. Alaska Energy Champion: Jed Drolet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jed Drolet Alaska Energy Champion: Jed Drolet April 26, 2016 - 10:00am Addthis Alaska Energy Champion: Jed Drolet Change doesn't happen on its own. It's led by dedicated and passionate people who are championing innovative solutions to Alaska's energy challenges. Alaska Energy Champions is a regular feature spotlighting pioneers of Alaska's new energy frontier. Photo of Jed Drolet. Name: Jed Drolet Title/Role: Energy Information Analyst Affiliation: Alaska Energy Authority What is your role in

  20. Alaska Energy Champion: Karen Johnson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Karen Johnson Alaska Energy Champion: Karen Johnson February 2, 2016 - 11:46am Addthis Alaska Energy Champion: Karen Johnson Change doesn't happen on its own. It's led by dedicated and passionate people who are championing innovative solutions to Alaska's energy challenges. Alaska Energy Champions is a regular feature spotlighting pioneers of Alaska's new energy frontier. Name: Karen Johnson Title/Role: Program manager specializing in rural Alaska workforce development at the Denali Commission

  1. White House Highlights Climate Action Champions' Achievements

    Broader source: Energy.gov [DOE]

    After a competitive application process, the Department of Energy designated 16 communities as Climate Action Champions, including two tribes: the Sault Ste. Marie Tribe of Chippewa Indians (Michigan) and the Blue Lake Rancheria Tribe (California). These tribes were selected for their local leadership in climate mitigation and adaptation.

  2. Development of Improved Iron-Aluminide Filter Tubes and Elements

    SciTech Connect (OSTI)

    Judkins, R.R.; Sutton, T.G.; Miller, C.J.; Tortorelli, P.F.

    2008-01-14

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to explore and develop advanced manufacturing techniques to fabricate sintered iron-aluminide intermetallic porous bodies used for gas filtration so as to reduce production costs while maintaining or improving performance in advanced coal gasification and combustion systems. The use of a power turbine fired with coal-derived synthesis gas requires some form of gas cleaning in order to protect turbine and downstream components from degradation by erosion, corrosion, and/or deposition. Hot-gas filtration is one form of cleaning that offers the ability to remove particles from the gases produced by gasification processes without having to substantially cool and, possibly, reheat them before their introduction into the turbine. This technology depends critically on materials durability and reliability, which have been the subject of study for a number of years.

  3. Integrated Safety Management Champions Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Champions Workshop Integrated Safety Management Champions Workshop Integrated Safety Management Champions Workshop Dear colleagues, On behalf of Mr. Glenn Podonsky, Chief Health, Safety and Security Officer, I would like to thank everyone for their contribution to, and participation in, the Special Integrated Safety Management Workshop, Optimizing Activity-Level Work Planning and Control, which was held May 15-16, 2013. Briefly, the Workshop was held as a key element of the Deputy Secretary's

  4. Building Champions: National Science Bowl Offseason | U.S. DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Champions: National Science Bowl Offseason News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science ...

  5. Energy Department Announces National Champions of Student Energy...

    Office of Environmental Management (EM)

    (NSTA) today announced the national champions of the America's Home Energy Education Challenge (AHEEC), a student competition created to help families save money by saving energy. ...

  6. Energy Department Announces Climate Action Champion, City of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Action Champion, City of San Francisco, Embracing Hydrogen and Fuel Cell Technologies ... as well as provide detailed cost analyses for hydrogen fuel cell ...

  7. Climate Action Champions Request for Applications Informational Webinar

    Broader source: Energy.gov [DOE]

    This Webinar will provide prospective Applicants with an overview of the Climate Actions Champions Request for Applications, the application process and respond to questions posed by attendees.

  8. Veterans Advancing Clean Energy and Climate Security Champions of Change

    Broader source: Energy.gov [DOE]

    The White House honors American veterans as Champions of Change for their extraordinary work to advance clean energy and increase climate resilience and preparedness in their communities.

  9. Climate Action Champions: Portland, OR

    Broader source: Energy.gov [DOE]

    In 1993, Portland became the first local government in the U.S. to adopt a plan for reducing carbon emissions. The current Portland Climate Action Plan was adopted by Portland City Council in 2009. Portland’s overarching climate objective is to reduce emissions to 80 percent below 1990 levels by 2050, with an interim goal of a 40 percent reduction by 2030. Portland has reduced emissions by 14 percent as of 2013, through a combination of improved efficiency in buildings, appliances, and vehicles; a shift to lower-carbon energy sources; a focus on a compact urban development pattern; and a rise in walking, biking and transit made possible by shifts in infrastructure investment.

  10. Oberlin, Ohio A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oberlin, Ohio A White House Climate Action Champions Case Study INDEX Executive Summary................................ 1 Climate Action Champion...................... 2 Project Spotlight.................................... 3 Project Facts........................................... 7 Project Costs........................................... 8 Partners & Contacts............................... 9 1 Executive Summary With a rich history of social and civil rights leadership beginning with its

  11. The development of precipitated iron catalysts with improved stability

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. This report covers testing an iron catalyst. During the last quarter, a new precipitated iron catalyst was prepared and tested in the slurry autoclave reactor at various conditions. This catalyst did not noticeably deactivate during 1250 hours of testing. This quarter, the test was extended to include performance evaluations at different conversion levels ranging from 35 to 88% at 265 and 275{degree}C. The conversion levels were varied by changing the feed rate. The catalytic performance at different conversion intervals was then integrated to approximately predict performance in a bubble column reactor. The run was shut down at the end of 1996 hours because of a 24-hour-power outage. When the power was back on, the run was restarted from room temperature. Catalytic performance during the first 300 hours after the restart-up was monitored. Overall product distributions are being tabulated as analytical laboratory data are obtained. 34 figs., 3 tabs.

  12. Energy Department Announces Climate Action Champion, City of San Francisco,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Embracing Hydrogen and Fuel Cell Technologies | Department of Energy Climate Action Champion, City of San Francisco, Embracing Hydrogen and Fuel Cell Technologies Energy Department Announces Climate Action Champion, City of San Francisco, Embracing Hydrogen and Fuel Cell Technologies May 20, 2016 - 1:00pm Addthis Today, the Energy Department's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) announced the city of San Francisco has been selected as the first Climate Action

  13. DOE FACT SHEET: CLIMATE ACTION CHAMPION TECHNICAL ASSISTANCE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET: CLIMATE ACTION CHAMPION TECHNICAL ASSISTANCE Blue Lake Rancheria Energy Performance Assessment Overview The Blue Lake Rancheria Tribe (BLR) was recognized as a Climate Action Champion (CAC) by The White House and the Department of Energy (DOE) in December 2014. In 2015, DOE released a Notice of Technical Assistance (NOTA) to provide CACs with additional opportunities for financial and technical assistance to support and advance their greenhouse gas emissions reduction and climate

  14. Alaskan Community Efficiency Champions Compete for Funds to Implement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Reduction Plans | Department of Energy Alaskan Community Efficiency Champions Compete for Funds to Implement Energy Reduction Plans Alaskan Community Efficiency Champions Compete for Funds to Implement Energy Reduction Plans June 6, 2016 - 1:08pm Addthis Alaska possesses great natural beauty, but also has some of the most expensive energy costs in the United States. The Energy Department is helping many Alaskan communities adopt more sustainable energy strategies to alleviate high

  15. Leading the Charge: Chairman Vig Champions Progress, Sustainability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chairman Vig Champions Progress, Sustainability Leading the Charge: Chairman Vig Champions Progress, Sustainability October 20, 2014 - 5:00pm Addthis A photo of Chairman Vig. Change doesn't happen on its own. It's led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular feature spotlighting the movers and shakers in energy on tribal lands. This issue we had the opportunity to

  16. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  17. Geological input to reservoir simulation, Champion Field, offshore Brunei

    SciTech Connect (OSTI)

    Carter, R.; Salahudin, S.; Ho, T.C.

    1994-07-01

    Brunei Shell Petroleum's giant Champion field is in a mature stage of development with about 23 yr of production history to date. The field comprises a complex sequence of Miocene shallow marine and deltaic layered clastic reservoirs cut by numerous growth faults. This study was aimed at providing a quantified estimate of the effect of lateral and vertical discontinuities within the I and J reservoirs on the recovery for both depletion drive and in a waterflood, with a view to identifying the optimal method of completing the development of the oil reserves in this area. Geological input to the ECLIPSE simulator was aimed at quantifying two key parameters: (1) STOIIP connected to the well bore and (2) permeability contrast. Connected STOIIP is a function of the domain size of interconnected sand bodies, and this parameter was quantified by the use of detailed sedimentology resulting in sand-body facies maps for each reservoir sublayer. Permeability contrast was quantified by using a wireline-log based algorithm, calibrated against core data, which improved the existing accuracy of permeability estimates in this part of the field. Results of simulation runs illustrate the importance of quantifying geologic heterogeneity and provide valuable information for future field development planning.

  18. Fast-growing willow shrub named `Tully Champion`

    DOE Patents [OSTI]

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-08-28

    A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Tully Champion`, characterized by rapid stem growth producing greater than 25% more woody biomass than two current production clones (Salix dasyclados `SV1` and Salix miyabeana `SX64`), more than 2.5-fold greater biomass than one of its parents (Salix miyabeana `SX67`), and nearly 3-fold more biomass than another production clone (Salix sacchalinensis, `SX61`) when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Tully Champion` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Tully Champion` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  19. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOE Patents [OSTI]

    Liu, Chain T.; McKamey, Claudette G.; Tortorelli, Peter F.; David, Stan A.

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  20. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOE Patents [OSTI]

    Liu, C.T.; McKamey, C.G.; Tortorelli, P.F.; David, S.A.

    1994-06-14

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium. 9 figs.

  1. EIS-0265-SA-57: Supplement Analysis

    Broader source: Energy.gov [DOE]

    Watershed Management Program - Idaho Fish Screening Improvement (Champion, Iron, Fourth of July, Goat Creeks)

  2. Energy Department Announces National Champions of Student Energy Conservation Competition

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy and the National Science Teachers Association (NSTA) today announced the national champions of the America’s Home Energy Education Challenge (AHEEC), a student competition created to help families save money by saving energy.

  3. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    SciTech Connect (OSTI)

    Maziasz, Philip J.; Goodwin, Gene M.; Liu, Chain T.

    1996-01-01

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding.

  4. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    DOE Patents [OSTI]

    Maziasz, P.J.; Goodwin, G.M.; Liu, C.T.

    1996-08-13

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding. 13 figs.

  5. Effect of FeO-content and potentials for quality improvements of iron ore pellets

    SciTech Connect (OSTI)

    Kortmann, H.A.; Mertins, E.; Ritz, V.J.

    1995-12-01

    The FeO-content strongly influences the physical and metallurgical properties of iron ore pellets. A wide range of FeO-contents within the pellet deliveries to the Germany market is evaluated. Investigations include the effect of pellet size. The paper concludes potentials for quality improvement of iron ore pellets. Most of the German blast furnaces are operated with high injection rates either of oil or of coal resulting in a decrease of coke consumption down to a level of about 300 kg/t hot metal. As the retention time of the burden increases, blast furnace operators demand higher quality burden material, basically with respect to strength before and during reduction.

  6. Strategic Energy Planning, Project Development and the Importance of Champions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roger Taylor Group Manager State, Local & Tribal Initiatives November 18, 2009 Strategic Energy Planning, Project Development and the Importance of Champions Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation for Our Energy Future Power Direct Use PV - Remote Homes Direct Use Buildings Stock Watering Big Wind Small Wind Small Hydro Biomass Heat, Power & Fuels Diesel Hybrids Power Direct Use PV - Remote Homes CS Power & Heat

  7. Climate Action Champions: Blue Lake Rancheria Tribe, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blue Lake Rancheria Tribe, CA Climate Action Champions: Blue Lake Rancheria Tribe, CA The Blue Lake Rancheria, California, a federally recognized Native American tribal Government and community, is located on over 100 acres of land spanning the scenic Mad River in northwestern California. In its operational strategy, the Tribe has implemented the ‘seven generations’ philosophy, where actions taken today will have a positive impact for seven generations to come. This results

  8. Climate Action Champions: Metropolitan Washington Council of Governments,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC, MD, and VA | Department of Energy Metropolitan Washington Council of Governments, DC, MD, and VA Climate Action Champions: Metropolitan Washington Council of Governments, DC, MD, and VA The Metropolitan Washington Council of Governments (COG) is an independent, nonprofit association that brings area leaders together to address major regional issues in the District of Columbia, suburban Maryland, and Northern Virginia. COG and its member governments seek to create a more accessible,

  9. Climate Action Champions: Oberlin, OH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oberlin, OH Climate Action Champions: Oberlin, OH Oberlin, Ohio, is a small town south of Lake Erie with a nationally significant history. It is home to Oberlin College, a liberal arts college and music conservatory. | Photo courtesy of the City of Oberlin. Oberlin, Ohio, is a small town south of Lake Erie with a nationally significant history. It is home to Oberlin College, a liberal arts college and music conservatory. | Photo courtesy of the City of Oberlin. Climate Action Progress and Plans

  10. Climate Action Champions: San Francisco, CA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Francisco, CA Climate Action Champions: San Francisco, CA To meet the challenge of climate change, San Francisco is working with residents, businesses, community organizations, and state and federal agencies to create innovative programs and policies. To meet the challenge of climate change, San Francisco is working with residents, businesses, community organizations, and state and federal agencies to create innovative programs and policies. Climate Action Progress and Plans San Francisco

  11. Climate Action Champions: Southeast Florida Regional Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact, FL | Department of Energy Southeast Florida Regional Climate Change Compact, FL Climate Action Champions: Southeast Florida Regional Climate Change Compact, FL The Southeast Florida Regional Climate Change Compact was executed by Broward, Miami-Dade, Monroe, and Palm Beach Counties in January 2010 to coordinate mitigation and adaptation efforts across county lines. The Compact represents a new form of regional climate governance designed to allow local governments to set the agenda

  12. EECBG Success Story: New Jersey Township Champions Sustainability

    Broader source: Energy.gov [DOE]

    Caroline Ehrlich describes her New Jersey town as “a very diverse township where the quality of life and educational systems are terrific.” But it’s Woodbridge Township’s sustainability efforts in actions such as installing solar panels and using fuel-efficient vehicles that have earned it even more attention as a sustainability champion, and community leaders are not stopping there. Learn more.

  13. Climate Action Champions: Resilience and Equity Webinar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Climate Action Champions: Resilience and Equity (July 9, 2015) This webinar was hosted jointly by the Department of Energy and the Department of Housing and Urban Development (HUD). Presenters from the Boston Metropolitan Area Planning Council, PolicyLink, and the National Institute of Environmental Health Sciences discussed issues of climate change resilience and equity, including the impacts of climate change on different regions and socioeconomic groups. In addition, HUD provided

  14. Champions in Science Whose Stars Are Still Rising: Profile of Paco Jain,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Science Bowl Champion 1998 Paco Jain, National Science Bowl Champion 1998 News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 04.20.15 Champions in Science Whose Stars Are Still Rising: Profile of Paco

  15. Champions in Science Whose Stars Are Still Rising: Profile of Steven Sivek,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Science Bowl Champion 2002 Steven Sivek, National Science Bowl Champion 2002 News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 03.30.15 Champions in Science Whose Stars Are Still Rising: Profile of

  16. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOE Patents [OSTI]

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  17. Alaska Energy Champion: David Pelunis-Messier | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Pelunis-Messier Alaska Energy Champion: David Pelunis-Messier March 11, 2015 - 1:03pm Addthis Gary Williams, Tribal Administrator for the Organized Village of Kake, Jay Peltz, Peltz Power solar installer, and Dave Pelunis-Messier are finishing up the racking for a dual axis tracking array installed in Kake, Alaska, in 2012. Gary Williams, Tribal Administrator for the Organized Village of Kake, Jay Peltz, Peltz Power solar installer, and Dave Pelunis-Messier are finishing up the racking for

  18. Climate Action Champions: Boston, MA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boston, MA Climate Action Champions: Boston, MA Boston is the largest city in New England and one of the oldest in the United States. Home to sixty colleges and universities, world-renowned medical facilities, nationally competitive professional sports teams, and thriving music and arts scene, Boston is a cultural hub and leader in innovation. | Photo courtesy of the City of Boston. Boston is the largest city in New England and one of the oldest in the United States. Home to sixty colleges and

  19. Climate Action Champions: Fact Sheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheets Climate Action Champions: Fact Sheets FACT SHEET: Blue Lake Rancheria Tribe's Energy Performance (158.59 KB) FACT SHEET: Seattle's New Building Energy Code (333.97 KB) FACT SHEET: Seattle's Transition to High Efficiency Space Heating (98.54 KB) FACT SHEET: Seattle's Net Zero Performance Analysis (162.92 KB) FACT SHEET: Seattle's Cost-Effectiveness of Deep Green Alterations of Multi-family Buildings (142.58 KB) FACT SHEET: Sault Saint Marie Tribe's Net Zero Retrofit Analysis (135.97

  20. Climate Action Champions: Salt Lake City, UT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, UT Climate Action Champions: Salt Lake City, UT Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the “Crossroads of the West,” Salt Lake City today is a major economic center in the Great Basin and a hub of tourism. │ Photo courtesy of University of Utah Department of Mathematics. Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the

  1. Climate Action Champions: Seattle, WA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seattle, WA Climate Action Champions: Seattle, WA The City of Seattle has long been at the leading edge of environmental innovation. Seattle has been recycling for over 25 years and today has one of the highest recycling and composting rates nationwide. In 2005, Seattle City Light became the first electric utility in the nation to be carbon neutral. Recently, Seattle was recognized as the “most sustainable city in the nation” by STAR communities with a 5-STAR rating and the highest

  2. Salt Lake City, Utah A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, Utah A White House Climate Action Champions Case Study INDEX Executive Summary.............................. 2 Climate Action Champion.................... 2 Project Spotlight.................................... 3 Challenges and lessons learned.......... 4 Resources & Contacts........................... 5 2 Executive Summary Salt Lake City has a robust set of ambitious climate goals that target reducing emissions while simultaneously prioritizing ways to become more resilient

  3. Sonoma County Regional Climate Protection Authority A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sonoma County Regional Climate Protection Authority A White House Climate Action Champions Case Study INDEX Executive Summary..............................x Climate Action Champion...................x Project Spotlight...............................x-x Co-benefits...........................................x Challenges and lessons learned.........x Resources & Contacts..........................x 2 Executive Summary The communities of Sonoma County are employing regional collaboration,

  4. Southeast Florida Regional Climate Change Compact A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Florida Regional Climate Change Compact A White House Climate Action Champions Case Study INDEX Executive Summary..............................2 Climate Action Champion...................2 Project Spotlight...............................2-4 Co-benefits...........................................4 Challenges and lessons learned.........5 Resources & Contacts......................5-6 2 Executive Summary The Southeast Florida Regional Climate Change Compact, a collaboration among the

  5. Development of improved iron Fischer-Tropsch catalysts. Final technical report: Project 6464

    SciTech Connect (OSTI)

    Bukur, D.B.; Ledakowicz, S.; Koranne, M.

    1994-02-28

    Despite the current worldwide oil glut, the United States will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer Tropsch (FT) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Texas A&M University (TAMU) with sponsorship from the US Department of Energy, Center for Energy and Mineral Resources at TAMU, Texas Higher Education Coordinating Board, and Air Products and Chemicals, Inc., has been working on development of improved iron FT catalysts and characterization of hydrodynamic parameters in two- and three-phase bubble columns with FT derived waxes. Our previous studies have provided an improved understanding of the role of promoters (Cu and K), binders (silica) and pretreatment procedures on catalyst activity, selectivity and longevity (deactivation). The objective of the present contract was to develop improved catalysts with enhanced slurry phase activity and higher selectivity to liquid fuels and wax. This was accomplished through systematic studies of the effects of pretreatment procedures and variations in catalyst composition (promoters and binders). The major accomplishments and results in each of these two main areas of research are summarized here.

  6. Two Tribes Recognized as Climate Action Champions During White House Tribal Nations Conference

    Broader source: Energy.gov [DOE]

    Two Tribes are among the winners of the Climate Action Champions competition, the White House announced on Wednesday, December 3, at the White House Tribal Nations Conference in Washington, D.C.

  7. Why 3D Printers Might Create the Next Robotic Champion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Why 3D Printers Might Create the Next Robotic Champion Why 3D Printers Might Create the Next Robotic Champion December 11, 2013 - 4:18pm Addthis As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries, with tools like 3D printers. Dot Harris Dot Harris Director, Office of Economic

  8. WIPP Team Chosen as Overall Champion at National Mine Rescue Competition |

    Office of Environmental Management (EM)

    Department of Energy Team Chosen as Overall Champion at National Mine Rescue Competition WIPP Team Chosen as Overall Champion at National Mine Rescue Competition August 28, 2014 - 12:00pm Addthis CBFO Manager Joe Franco (sixth from left) with the WIPP Red Team and competition officials at the 2014 National Metal and Nonmetal Mine Rescue Competition. CBFO Manager Joe Franco (sixth from left) with the WIPP Red Team and competition officials at the 2014 National Metal and Nonmetal Mine Rescue

  9. Climate Action Champions: Mid-America Regional Council, KS and MO |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mid-America Regional Council, KS and MO Climate Action Champions: Mid-America Regional Council, KS and MO The Mid-America Regional Council (MARC) is a nonprofit association of city and county governments and the metropolitan planning organization for the bistate Kansas City region. They provide a forum for the region to work together to advance social, economic and environmental progress. MARC received the Climate Action Champion designation in consortium with the City

  10. Climate Champion Award to Los Alamos National Laboratory, DOE and NNSA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Champion Award to Los Alamos National Laboratory, DOE and NNSA Climate Champion Award to Los Alamos National Laboratory, DOE and NNSA December 3, 2015 - 1:48pm Addthis In the photo, L to R: Matt Moury, Associate Undersecretary of Energy for Environment, Health, Safety and Security Mike Sweitzer, NNSA Office of Environment and Sustainability; Josh Silverman, DOE Office of Sustainable Environmental Stewardship; Christy Goldfuss, Managing Director, Council on Environmental

  11. Iron-nickel-chromium alloy having improved swelling resistance and low neutron absorbence

    DOE Patents [OSTI]

    Korenko, Michael K.

    1986-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a delta or eta phase distributed at or near grain boundaries. The alloy consists essentially of about 33-39.5% nickel, 7.5-16% chromium, 1.5-4% niobium, 0.1-0.7% silicon, 0.01-0.2% zirconium, 1-3% titanium, 0.2-0.6% aluminum, and the remainder essentially all iron. Up to 0.4% manganese and up to 0.010% magnesium can be added to inhibit trace element effects.

  12. Climate Action Champions: Sonoma County Regional Climate Protection...

    Broader source: Energy.gov (indexed) [DOE]

    in California, providing power at lower cost and a 33% lower emission rate - as well as ... improved modeling, monitoring, and forecasting, and better decision making around ...

  13. White House Solar Champions of Change - Watch Now | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    On April 17, 2014 the White House honored solar energy deployment Champions of Change from across the United States. The honorees included several current and former SunShot awardees. The event live streamed from the White House - check out the video above. Additional Resources White House Fact Sheet: Building Progress, Supporting Solar Deployment and Jobs White House Blog Post: Building our Progress in Solar Deployment Addthis Related Articles White House Spotlights Solar Innovation as Summit

  14. Climate Action Champions: Sault Ste. Marie Tribe of Chippewa Indians, MI |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sault Ste. Marie Tribe of Chippewa Indians, MI Climate Action Champions: Sault Ste. Marie Tribe of Chippewa Indians, MI The Sault Ste. Marie Tribe of Chippewa Indians is a 44,000-strong federally recognized Indian tribe that is an economic, social and cultural force in its community across the eastern Upper Peninsula counties of Chippewa, Luce, Mackinac, Schoolcraft, Alger, Delta and Marquette, with housing and tribal centers, casinos, and other enterprises that employ

  15. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  17. Champions in Science Whose Stars are Still Rising: Profile of David Savage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | U.S. DOE Office of Science (SC) David Savage News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 04.19.16 Champions in Science Whose Stars are Still Rising: Profile of David Savage For the run-up to the 2016

  18. Champions in Science Whose Stars are Still Rising: Profile of Jeff Zira |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Jeff Zira News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 04.29.16 Champions in Science Whose Stars are Still Rising: Profile of Jeff Zira For the run-up to the 2016 National

  19. Champions in Science Whose Stars are Still Rising: Profile of Julia Hu |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Julia Hu News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 04.05.16 Champions in Science Whose Stars are Still Rising: Profile of Julia Hu For the run-up to the 2016 National

  20. Champions in Science Whose Stars are Still Rising: Profile of Kay Aull |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Kay Aull News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 04.26.16 Champions in Science Whose Stars are Still Rising: Profile of Kay Aull For the run-up to the 2016 National

  1. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.

    1986-09-16

    An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  2. Improving the weldability and service performance of nickel- and iron-based superalloys by grain boundary engineering

    SciTech Connect (OSTI)

    Lehockey, E.M.; Palumbo, G.; Lin, P.

    1998-12-01

    The principal limitation of today`s Ni- and Fe-based superalloys continues to be their susceptibility to intergranular degradation arising from creep, hot corrosion, and fatigue. Many precipitation-strengthened superalloys are also difficult to weld, owing to the formation of heat-affected zone (HAZ) cracks during postweld heat treatments (PWHTs). The present work highlights significant improvements in high-temperature intergranular degradation susceptibility and weldability arising from increasing the relative proportion of crystallographically special low-{Sigma} CSL grain boundaries in the microstructure. Susceptibility of intergranular degradation phenomena is reduced by between 30 and 90 pct and is accompanied by decreases in the extent and length of PWHT cracking of up to 50-fold, with virtually no compromise in mechanical (tensile) properties upon which the functionality of these specialty materials depends. Collectively, the data presented suggest that engineering the crystallographic structure of grain boundaries offers the possibility to extend superalloy lifetimes and reliability, while minimizing the need for specialized welding techniques which can negatively impact manufacturing costs and throughput.

  3. Weldability of iron aluminides

    SciTech Connect (OSTI)

    David, S.A.; Zacharia, T.; Reed, R.W.

    1990-01-01

    A preliminary investigation was carried out to determine the weldability of a class of advanced iron aluminides. Thin sheets of iron aluminides were gas tungsten arc (GTA) and electron beam (EB) welded at different travel speeds and power levels. The results indicate that the weldability of these alloys is very sensitive to the welding conditions and compositions, producing good welds sometimes and severely cracked welds at other times. Alloys containing TiB{sub 2} additions for improved strength and ductility cracked severely upon welding. Alloys without boron and zirconium, in particular alloy FA-129, was found to show more promise for welding than most of the other iron aluminides. 4 refs., 3 figs., 2 tabs.

  4. Chromium modified nickel-iron aluminide useful in sulfur bearing environments

    DOE Patents [OSTI]

    Cathcart, John V.; Liu, Chain T.

    1989-06-13

    An improved nickel-iron aluminide containing chromium and molybdenum additions to improve resistance to sulfur attack.

  5. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.

    1985-10-28

    Disclosed is an improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  6. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang

    2012-05-15

    China’s annual crude steel production in 2010 was 638.7 Mt accounting for nearly half of the world’s annual crude steel production in the same year. Around 461 TWh of electricity and 14,872 PJ of fuel were consumed to produce this quantity of steel in 2010. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese iron and steel industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 416 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 139 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 237 Mt CO2. The FCSC model for the iron and steel industry shows cumulative cost-effective fuel savings potential of 11,999 PJ, and the total technical fuel saving potential is 12,139. The CO2 emissions reduction associated with cost-effective and technical fuel savings is 1,191 Mt CO2 and 1,205 Mt CO2, respectively. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  7. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  8. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOE Patents [OSTI]

    Shen, Ming-Shing (Rocky Point, NY); Yang, Ralph T. (Middle Island, NY)

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  9. Weldability of iron aluminides

    SciTech Connect (OSTI)

    Goodwin, G.M.; McKamey, C.J.; Maziasz, P.J.; Sikka, V.K.

    1993-12-31

    Corrosion-resistant, weldable iron-aluminide alloys with improved high-temperature strength are being developed for structural applications, and for weld overlay cladding of conventional structural steels and alloys. The weld hot cracking of iron-aluminide alloys is highly variable to over a wide range of aluminum content. In general, the higher aluminum content alloys are somewhat more resistant to hot cracking, and by careful choice of alloying additions (and balancing of multiple additions), cracking resistance equivalent to commercial austenitic stainless steels can be achieved. Improved weldability, however, often comes at the expense of high-temperature strength. Delayed cold cracking, presumed to be hydrogen-related, is also an important consideration in welding these alloys, either as monolithic materials, or as weld overlay cladding on stainless or low alloy steel substrates. The authors are employing various combinations of preheat and postweld stress relief heat treatments to assess the severity of this problem, and have determined that heat treatment in excess of 400 C following welding will be required to avoid delayed cracking. Due to the difficulties encountered in fabricating some of the alloy compositions into wire or rod, they are also pursuing the formulation of coated electrodes for use in shielded metal-arc (SMA) welding. Initial attempts have shown very high aluminum losses in the welding arc, and additional batches of electrodes are being formulated and produced.

  10. Climate Action Champions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H I T E H O U S E C L I M AT E A C T I O N C H A M P I O N S T r i b a l L e a d e r F o r u m 4 M a r c h , 2 0 1 5 G O A L 1 : P r o m o t e c h a m p i o n s u c c e s s a n d a c h i e v e m e n t t o p e e r s a n d b e y o n d , t o s u p p o r t f u r t h e r c l i m a t e a c t i o n a t t h e c i t y, r e g i o n a l a n d t r i b a l g o v e r n m e n t l e v e l . G O A L 2 : I d e n t i f y & s t r e a m l i n e a c c e s s t o f e d e r a l f u n d i n g / t e c h n i c a l a s

  11. Climate Action Champion: Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance based code compliance is a way that designers can meet overall code requirements by trading off some energy efficiency measures for others. For example, a designer may ...

  12. Removal of metallic iron on oxide slags

    SciTech Connect (OSTI)

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  13. Weldability of iron aluminides

    SciTech Connect (OSTI)

    Zacharia, T.; David, S.A.

    1991-01-01

    Improvements in the ductility of iron aluminide alloys, achieved through control of composition and microstructure, has led to growing interest in using these materials for structural applications. weldability is a key issues in the utilization of these alloys for structural components. This paper describes the welding and welding behavior of an Fe{sub 3}Al alloy (FA-129) containing niobium and carbon. Weldability of this alloy has been found to be a strong function of composition, welding process and processing conditions. Crack free welds were made on both sheet and plate material using the electron beam (EB) welding process. Gas tungsten arc (GTA) welds, on the other hand, exhibited a tendency for delayed cold cracking. However, the study clearly demonstrated that successful welds can be made using matching filler metal and proper choice of processing conditions. 15 ref., 5 figs.

  14. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  15. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  16. Plea for Iron Astrochemistry

    SciTech Connect (OSTI)

    Mostefaoui, T. A.; Benmerad, B.; Kerkar, M.

    2010-10-31

    Iron is a key element and compound in living bodies. It is the most abundant refractory element and has the most stable nucleus in the Universe. Also, elemental Iron has a relevant abundance in the interstellar medium and dense clouds, it can be in gas phase or included in dust particles. During this talk, I shall explain why this special interest in Iron and shall give a brief explanation about its origin and the interstellar nucleosynthesis. After this I'll detail the rich chemistry that Iron can be involved in the interstellar medium, dense clouds with several species.

  17. Electrical and thermal transport properties of iron and iron...

    Office of Scientific and Technical Information (OSTI)

    Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure Citation Details In-Document Search Title: Electrical and thermal transport properties ...

  18. Thin Wall Iron Castings

    SciTech Connect (OSTI)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  19. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  20. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  1. Carbonaceous fuel combustion with improved desulfurization

    DOE Patents [OSTI]

    Yang, Ralph T. (Middle Island, NY); Shen, Ming-shing (Rocky Point, NY)

    1980-01-01

    Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

  2. Electronic effects on iron porphyrins

    SciTech Connect (OSTI)

    Rosa, M. De La; Lopez, M.A.

    1995-12-31

    We have inserted iron into a series of substituted iron tetraphenylporphyrins for the purposes of investigating electronic effects on properties of the iron porphyrins. The properties of interest are the CO stretching frequencies of the ferrous porphyrins, the rates of CO dissociation from the ferrous porphyrins, and the UV-visible spectra of the iron porphyrins. We will present our results to date.

  3. Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes

    SciTech Connect (OSTI)

    Gan Y. X.; Zhang L.; Gan B.J.

    2011-10-01

    Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

  4. Iron dominated magnets

    SciTech Connect (OSTI)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  5. High-temperature fabricable nickel-iron aluminides

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN)

    1988-02-02

    Nickel-iron aluminides are described that are based on Ni.sub.3 Al, and have significant iron content, to which additions of hafnium, boron, carbon and cerium are made resulting in Ni.sub.3 Al base alloys that can be fabricated at higher temperatures than similar alloys previously developed. Further addition of molybdenum improves oxidation and cracking resistance. These alloys possess the advantages of ductility, hot fabricability, strength, and oxidation resistance.

  6. Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Iron Catalysis in Oxidations by Ozone Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ozone is used commercially for treatment of potable and non-potable water, and as an industrial oxidant. ISU and Ames Laboratory researchers have developed a method for using iron in ozone oxidation that significantly improves the speed of oxidation reactions. Description Ozone is recognized as potent and effective oxidizing agent, and has a

  7. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  8. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  9. MECS 2006- Iron and Steel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input, October 2012 (MECS 2006)

  10. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    Nitrided iron catalysts are active and durable and have an unusal selectivity. They do not produce significant amounts of wax, which should be advantageous in situations where gasoline is the desired product. The low yield of wax permits operation of nitrided iron in fluidized fixed-bed or entrained reactors at 230 to 255/sup 0/C. Conventional reduced iron catalysts in these reactors must be operated at about 325/sup 0/C to prevent formation of higher hydrocarbon that leads to agglomeration of the fluidized particles. At 325/sup 0/C carbon deposition and other processes leading to catalyst deterioration proceed rapidly. The yields of methane and ethane from nitrided iron are larger than desired for most purposes. Possibly promoters may be found to improve the selectivity of nitrided iron catalysts. The Bureau of Mines did not conduct a systematic catalyst development program on iron nitrides. (DP) 5 fgures, 6 tables.

  11. Method for reducing iron losses in an iron smelting process

    DOE Patents [OSTI]

    Sarma, B.; Downing, K.B.

    1999-03-23

    A process of smelting iron that comprises the steps of: (a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; (b) maintaining conditions in said reactor to cause (1) at least some of the iron oxide to be chemically reduced, (2) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (3) carbon monoxide gas to rise through the slag; (c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and (d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: (1) keep the temperature of the molten iron at or below about 1550 C and (2) keep the slag weight at or above about 0.8 ton per square meter. 13 figs.

  12. Method for reducing iron losses in an iron smelting process

    DOE Patents [OSTI]

    Sarma, Balu; Downing, Kenneth B.

    1999-01-01

    A process of smelting iron that comprises the steps of: a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; b) maintaining conditions in said reactor to cause (i) at least some of the iron oxide to be chemically reduced, (ii) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (iii) carbon monoxide gas to rise through the slag; c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: e) keep the temperature of the molten iron at or below about 1550.degree. C. and f) keep the slag weight at or above about 0.8 tonne per square meter.

  13. It is ironic: many immigrants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is ironic: many immigrants fleeing Adolf Hitler's and Benito Mussolini's fascist governments in the 1930s and 1940s played critical roles in the development of Los Alamos National ...

  14. Nickel aluminides and nickel-iron aluminides for use in oxidizing environments

    DOE Patents [OSTI]

    Liu, Chain T.

    1988-03-15

    Nickel aluminides and nickel-iron aluminides treated with hafnium or zirconium, boron and cerium to which have been added chromium to significantly improve high temperature ductility, creep resistance and oxidation properties in oxidizing environments.

  15. ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's Office of Industrial Technologes has formed a partnership with the U.S. iron and steel industry to accelerate development of technologies and processes that will improve the industry's production and energy efficiency and environmental performance.

  16. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  17. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  18. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  19. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    SciTech Connect (OSTI)

    Von L. Richards

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: ???¢???????¢ Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. ???¢???????¢ Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. ???¢???????¢ Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. ???¢???????¢ Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  20. Steelmaking with iron carbide

    SciTech Connect (OSTI)

    Geiger, G.H.; Stephens, F.A. )

    1993-01-01

    The concept of using iron carbide in steelmaking is not new. Tests were run several decades ago, using carbide made from ore, in steelmaking furnaces. The problem was that at that time, the need for the product was not clear and the economics of production were not favorable. In the early 1970's Frank M. Stephens, Jr., conceived the basis for the present process, and considerable development work has been done during the past decade to bring the carbide production process to its present state, with the first commercial unit now under construction. The process utilizes the following overall reaction to produce Fe[sub 3]C from ore: 3Fe[sub 2]O[sub 3] + 5H[sub 2] + 2 CH[sub 4][equals]2 Fe[sub 3]C + 9 H[sub 2]O. Hydrogen gas from a natural gas reformer is blended with natural gas to form the process gas that is recirculated through the fluid bed reactor, the cooling tower, to remove reaction product water, and back through the reactor again, after reheating. The closed loop nature of the process means that virtually 100% of the process reagents are utilized by the process. The only exception is that a small stream of the process gas is burned as fuel in the reheating step, in order to maintain the level of inerts in the process gas at an acceptable level. The quantity of the bleed stream is entirely dependent on the concentration of inert gases in the fuel supply.

  1. ISM Workshop on Work Planning and Controls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ISM Champions Workshop 2013 14 play video Integrated Safety Management 15 ISM Champions ... Controls and Work Within Controls: * Feedback and Improvement: Ensure lessons ...

  2. Kumba Iron Ore | Open Energy Information

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Kumba Iron Ore is a company located in Pretoria, South Africa . References "Kumba Iron Ore" Retrieved from "http:en.openei.orgw...

  3. Iron Edison Battery Company | Open Energy Information

    Open Energy Info (EERE)

    is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced Nickel-iron (Ni-Fe) battery technology. Vastly out-lasting the 7...

  4. Removal of copper from carbon-saturated steel with an aluminum sulfide/iron sulfide slag

    SciTech Connect (OSTI)

    Cohen, A.; Blander, M.

    1995-12-01

    Scrap iron and steel has long been considered a resource in the steel-making industry, and its value is largely determined by its impurity content. As the mini-mills, the major consumers of scrap iron and steel, expand into producing flat-rolled sheet, the demand for high-quality scrap will increase. Of the impurities present in scrap, copper is particularly troublesome because of its role in causing hot shortness. Therefore, the copper content of scrap should be kept below {approx} 0.1 wt%. A method for removing copper from steel could be used to improve the quality of scrap and make it more available for use by mini-mills. To determine the effectiveness of a binary slag consisting of aluminum sulfide and iron sulfide on the removal of copper from steel and iron, the distribution coefficient of copper between the slag and a carbon-saturated iron melt was investigated at 1,365 C. The composition of the slag was varied from nearly pure aluminum sulfide to pure iron sulfide. A maximum distribution coefficient of 30 was found, and the copper level in the iron melt was reduced to as low as 0.07 wt.% with a 4:1 ratio of iron to slag.

  5. Welding studies of nickel aluminide and nickel-iron aluminides

    SciTech Connect (OSTI)

    Santella, M.L.; David, S.A.; Horton, J.A.; White, C.L.; Liu, C.T.

    1985-08-01

    Because welding is often used during the fabrication of structural components, one of the key issues in the development of nickel aluminides and nickel-iron aluminides for engineering applications is their weldability. The goals of this study were to characterize weldment microstructures and to identify some of the factors controlling weldability of ductile Ni/sub 3/Al alloys. The alloys used in this initial study were Ni/sub 3/Al containing 500 wppm boron and Ni/sub 3/Al containing 10 at. % iron and either 500 wppm or 20 wppm boron. Full-penetration autogenous welds were made in sheet shock by the electron beam (EB) and gas tungsten arc (GTA) processes. The main process variables were travel speed and preheat. The as-welded coupons were examined visually and in detail by the usual optical and electron metallographic methods. Weldments of boron-doped Ni/sub 3/Al were composed of nearly 100% ordered ..gamma..' phase. Weldments of the nickel-iron aluminides were ..gamma..' + ..beta..' phase mixtures, with martensitic ..beta..' distributed interdendritically in the fusion zone and decorating grain boundaries in the heat-affected zone. All welds made in this particular boron-doped Ni/sub 3/Al alloy contained cracks. Weldability improved with the addition of iron, and defect-free welds were made in the nickel-iron aluminides by both EB and GTA welding. Nevertheless, the iron-containing alloys were susceptible to cracking, and their weldability was affected by boron concentration, welding speed, and (for GTA) gas shielding. Defect-free welds were found to have good tensile properties relative to those of the base metal. 34 refs., 17 figs., 2 tabs.

  6. Ligand iron catalysts for selective hydrogenation

    DOE Patents [OSTI]

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  7. Combining automatic titration of total iron and sulfur in thermal battery materials

    SciTech Connect (OSTI)

    Marley, N.A.

    1986-05-28

    Optimal thermal battery performance requires careful control of the iron disulfide content in the catholyte mixture. Previously, the iron and sulfur content of battery materials was determined separately, each requiring a lengthy sample preparation and clean up procedure. A new method has been developed which allows both determinations to be made on the same sample following a simple dissolution procedure. Sample preparation requires oxidation and dissolution with nitric acid followed by dissolution in hydrochloric acid. Iron and sulfur are then determined on sample aliquots by automatic titration. The implementation of this combined procedure for the determination of iron and sulfur by automatic titration has resulted in a substantial reduction in the analysis time. Since sample aliquots are used for each determination, the need to repeat a sample for analysis is rare, improving both the analytical efficiency and sample throughput. Results obtained for sulfur show an improved precision.

  8. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage

    SciTech Connect (OSTI)

    Yan, Huiying; Hao, Shuangying; Sun, Xiaoyan; Zhang, Dingding; Gao, Xin; Yu, Zhuang; Li, Kuanyu; Hang, Chun-Hua

    2015-01-24

    Highlights: • Iron accumulation was involved in the acute phase following SAH. • Blockage of MCU could attenuate cellular iron accumulation following SAH. • Blockage of MCU could decrease ROS generation and improve cell energy supply following SAH. • Blockage of MCU could alleviate apoptosis and brain injury following SAH. - Abstract: Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague–Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH + RR, and SAH + Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron–sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH.

  9. IMPROVED IRON CATALYSTS FOR SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    Dr. Dragomir B. Bukur; Dr. Lech Nowicki; Victor Carreto-Vazquez; Dr. Wen-Ping Ma

    2001-11-28

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

  10. Iron production maintenance effectiveness system

    SciTech Connect (OSTI)

    Augstman, J.J.

    1996-12-31

    In 1989, an internal study in the Coke and Iron Maintenance Department identified the opportunities available to increase production, by decreasing unscheduled maintenance delays from 4.6%. A five year front loaded plan was developed, and presented to the company president. The plan required an initial investment of $1.4 million and a conservative break-even point was calculated to be 2.5 years. Due to budget restraints, it would have to be self-funded, i.e., generate additional production or savings, to pay for the program. The program began in 1991 at number 2 coke plant and the blast furnaces. This paper will describe the Iron Production Maintenance Effectiveness System (ME), which began with the mechanical and pipefitting trades.

  11. ODS iron aluminides

    SciTech Connect (OSTI)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; Ohriner, E.K.

    1996-06-01

    Interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system, has led to investigation of materials for heat exchangers capable of operation at temperatures of the order of 1200 to 1300{degrees}C. The candidate materials are ceramics and, possibly, oxide dispersion-strengthened (ODS) alloys. An ODS FeCrAl alloy was found to meet the strength requirements for such an application, in which the working fluid at 0.9 MPa was to be heated from 800 to 1100{degrees}C over a tube length of 4 m. The oxidation life of ODS FeCrAl alloys is determined by their ability to form or reform a protective alumina scale, and can be related to the time for the aluminum content of the alloy to be depleted to some minimum level. As a result, the service life is a function of the available aluminum content of the alloys and the minimum aluminum level at which breakaway oxidation occurs, hence there is a limit on the minimum cross section which can be safely employed at temperatures above 1200{degrees}C. Because of their significantly higher aluminum content ({ge}28 atom %/{ge}16 wt. percent compared to {approx}9 atom %15 wt. percent), alloys based on Fe{sub 3}Al afford a potentially larger reservoir of aluminum to sustain oxidation resistance at higher temperatures and, therefore, offer a possible improvement over the currently-available ODS FeCrAl alloys, providing they can be strengthened in a similar manner.

  12. A High-Performance Rechargeable Iron Electrode for Large-Scale Battery-Based Energy Storage

    SciTech Connect (OSTI)

    Manohar, AK; Malkhandi, S; Yang, B; Yang, C; Prakash, GKS; Narayanan, SR

    2012-01-01

    Inexpensive, robust and efficient large-scale electrical energy storage systems are vital to the utilization of electricity generated from solar and wind resources. In this regard, the low cost, robustness, and eco-friendliness of aqueous iron-based rechargeable batteries are particularly attractive and compelling. However, wasteful evolution of hydrogen during charging and the inability to discharge at high rates have limited the deployment of iron-based aqueous batteries. We report here new chemical formulations of the rechargeable iron battery electrode to achieve a ten-fold reduction in the hydrogen evolution rate, an unprecedented charging efficiency of 96%, a high specific capacity of 0.3 Ah/g, and a twenty-fold increase in discharge rate capability. We show that modifying high-purity carbonyl iron by in situ electro-deposition of bismuth leads to substantial inhibition of the kinetics of the hydrogen evolution reaction. The in situ formation of conductive iron sulfides mitigates the passivation by iron hydroxide thereby allowing high discharge rates and high specific capacity to be simultaneously achieved. These major performance improvements are crucial to advancing the prospect of a sustainable large-scale energy storage solution based on aqueous iron-based rechargeable batteries. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.034208jes] All rights reserved.

  13. Method for the manufacture of iron-containing sintered electrodes

    SciTech Connect (OSTI)

    Buhl, H.; Gutjahr, M.

    1980-12-02

    A method is described for manufacturing an iron-containing sintered electrode for alkaline accumulators as well as the product obtained by such method, in which iron powder and at least one reducible iron compound are intimately mixed with each other; the powder mixture is sintered into a stable body and the reducible iron compound is reduced to highly active iron.

  14. Weldability and hot ductility of iron aluminides

    SciTech Connect (OSTI)

    Ash, D.I.; Edwards, G.R. . Center for Welding and Joining Research); David, S.A. )

    1991-05-01

    The weldability of iron aluminide alloys is discussed. Although readily welded with electron beam (EB) and gas-tungsten arc (GTA) techniques, iron aluminides are sometimes susceptible to cracking during cooling when welded with the GTA welding process. Taken into account are the effects of microstructural instability (grain growth), weld heat input (cooling rate) and environment on the hot ductility of an iron aluminide alloy designated FA-129. 64 refs., 59 figs., 3 tabs.

  15. Surface modification of high temperature iron alloys

    DOE Patents [OSTI]

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  16. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Electron Correlation in Iron-Based Superconductors Print Wednesday, 24 February 2010 00:00 In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of

  17. Method for producing iron-based catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina; Kaufman, Phillip B.; Diehl, J. Rodney; Kathrein, Hendrik

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  18. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At bottom left, the kinds of iron species found in two transects of the Southern Ocean are ... (ACC stands for Antarctic Circumpolar Current.) The map shows chlorophyll ...

  19. Iron oxyhydroxide mineralization on microbial extracellular polysaccha...

    Office of Scientific and Technical Information (OSTI)

    a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the...

  20. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between different theoretical models and experimental data indicated that, instead of localized states due to strong electron interactions, electrons in iron pnictides prefer...

  1. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    SciTech Connect (OSTI)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  2. Oregon Iron Works Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Oregon Iron Works Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  3. Cation-exchange fiber reduces iron oxide leakage

    SciTech Connect (OSTI)

    MacClure, S.L.

    1993-10-01

    This article describes how addition of new fiber in powdered-resin precoat improves demineralizer crud-retention capability and reduces disposal cost for radioactive spent resin. Various attempts have been made to reduce the concentrations of iron oxide at the outlet of filter/demineralizer (FTD) vessels. Each vessel is fitted with an array of tubular septa that are precoated with powdered ion-exchange resin. The coatings perform filtering and ion-exchange actions on incoming feedwater, removing both suspended and dissolved solids. Experience at Duane Arnold Energy Center (CAED) indicates that use of a powdered-resin precoat containing cation-exchange fibers rather than cellulose fibers can reduce iron oxide levels in FTD effluent significantly.

  4. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  6. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  7. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  8. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  9. The production of iron carbide

    SciTech Connect (OSTI)

    Anderson, K.M.; Scheel, J.

    1997-12-31

    From start-up in 1994 to present, Nucor`s Iron Carbide plant has overcome many obstacles in achieving design production. Many of these impediments were due to flaws in equipment design. With the integration existing within the plant, limitations in any one system reduced the operating capacity of others. For this reason, as modifications were made and system capacities were increased, the need for additional modifications became apparent. Subsequently, operating practices, maintenance scheduling, employee incentives, and production objectives were continually adapted. This paper discusses equipment and design corrections and the quality issues that contributed to achieving the plant`s production capacity.

  10. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present...

  11. Microbial reduction of iron ore (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a...

  12. Iron and Steel (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Iron and Steel (125.81 KB) More Documents & Publications MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October

  13. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Iron and Steel (125.81 KB) More Documents & Publications MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October

  14. Production of iron from metallurgical waste

    SciTech Connect (OSTI)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  15. IRON COATED URANIUM AND ITS PRODUCTION

    DOE Patents [OSTI]

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  16. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1997-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products.

  17. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ALS. Researchers hypothesized that the iron had come from dinosaurs' blood and muscle cells during decay, and were able to identify iron-facilitated reactions that...

  18. Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors...

    Office of Scientific and Technical Information (OSTI)

    Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Title: Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Authors: Guo, Jing ; Chen, Xiao-Jia ...

  19. Neutron scattering of iron-based superconductors (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Neutron scattering of iron-based superconductors Citation Details In-Document Search Title: Neutron scattering of iron-based superconductors Low-energy spin excitations have been...

  20. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come...

  1. Phase Discrimination through Oxidant Selection for Iron Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron...

  2. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Environmental Management (EM)

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  3. COLLOQUIUM: How Trenton Iron and Steel Innovations Reshaped America...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium COLLOQUIUM: How Trenton Iron and Steel Innovations Reshaped America Mr. Clifford Zink Independent Historian Iron and steel innovations in Trenton helped transform ...

  4. Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and their ... Title: Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and ...

  5. Ancient Blacksmiths, The Iron Age, Damascus Steels, and Modern Metallurgy

    SciTech Connect (OSTI)

    Sherby, O.D.; Wadsworth, J.

    2000-09-11

    The history of iron and Damascus steels is described through the eyes of ancient blacksmiths. For example, evidence is presented that questions why the Iron Age could not have begun at about the same time as the early Bronze Age (i.e. approximately 7000 B.C.). It is also clear that ancient blacksmiths had enough information from their forging work, together with their observation of color changes during heating and their estimate of hardness by scratch tests, to have determined some key parts of the present-day iron-carbon phase diagram. The blacksmiths' greatest artistic accomplishments were the Damascus and Japanese steel swords. The Damascus sword was famous not only for its exceptional cutting edge and toughness, but also for its beautiful surface markings. Damascus steels are ultrahigh carbon steels (UHCSs) that contain from 1.0 to 2.1%. carbon. The modern metallurgical understanding of UHCSs has revealed that remarkable properties can be obtained in these hypereutectoid steels. The results achieved in UHCSs are attributed to the ability to place the carbon, in excess of the eutectoid composition, to do useful work that enhances the high temperature processing of carbon steels and that improves the low and intermediate temperature mechanical properties.

  6. Champion Energy Services | Open Energy Information

    Open Energy Info (EERE)

    Id 54862 Utility Location Yes Ownership R NERC ERCOT Yes NERC RFC Yes ISO Ercot Yes RTO PJM Yes ISO MISO Yes Activity Retail Marketing Yes This article is a stub. You can help...

  7. New Jersey Township Champions Sustainability | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Caroline Ehrlich describes her New Jersey town as "a very diverse township where the ... population is roughly that of California, Texas, New York and Maryland combined). ...

  8. Climate Action Champions: Metropolitan Washington Council of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    baseline regional greenhouse gas inventory, examines potential climate change impacts, evaluates mitigation and adaptation strategies, and establishes greenhouse gas emission ...

  9. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1997-03-18

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

  10. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1998-06-02

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

  11. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1997-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

  12. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1998-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

  13. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Iron Availability in the Southern Ocean Print Friday, 21 June 2013 10:08 The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is

  14. Synthesis of iron based hydrocracking catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Eldredge, Patricia A. (Barboursville, VA); Ladner, Edward P. (Pittsburgh, PA)

    1993-01-01

    A method of preparing a fine particle iron based hydrocracking catalyst and the catalyst prepared thereby. An iron (III) oxide powder and elemental sulfur are reacted with a liquid hydrogen donor having a hydroaromatic structure present in the range of from about 5 to about 50 times the weight of iron (III) oxide at a temperature in the range of from about 180.degree. C. to about 240.degree. C. for a time in the range of from about 0 to about 8 hours. Various specific hydrogen donors are disclosed. The catalysts are active at low temperature (<350.degree. C.) and low pressure.

  15. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Animal, Vegetable or Mineral? Iron is a limiting nutrient in many parts of the oceans, nowhere more so than in the Southern Ocean's photic zone, which receives enough sunlight for...

  16. System and method for producing metallic iron

    DOE Patents [OSTI]

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  17. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which prevents two electrons from occupying the same site, resulting in a so-called Mott insulator. The lack of information on the strength of electron correlation in the iron...

  18. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  19. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  20. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1997-04-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. 10 figs.

  1. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  2. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  3. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  4. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  5. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  6. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  7. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  8. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  9. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  10. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  11. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; Meyer, Daniel; Sharma, Amit; Qiang, You

    2006-01-01

    Nmore » anoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.« less

  12. Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Yang, B; Prakash, GKS; Narayanan, SR

    2012-01-01

    Rechargeable iron-based alkaline batteries such as iron - air and nickel - iron batteries are attractive for large-scale electrical energy storage because iron is inexpensive, globally-abundant and environmentally-friendly. Further, the iron electrode is known for its robustness to repeated charge/discharge cycling. During manufacturing these batteries are charged and discharged 20 to 50 times during which the discharge capacity of the iron electrode increases gradually and attains a stable value. This process of achieving stable capacity is called formation. In this study we have focused our efforts on understanding the effect of electrode design on formation. We have investigated the role of wetting agent, pore-former additive, and sulfide additive on the formation of carbonyl iron electrodes. The wetting agent increased the rate of formation while the pore-former additive increased the final capacity. Sodium sulfide added to the electrolyte worked as a de-passivation agent and increased the final discharge capacity. We have proposed a phenomenological model for the formation process that predicts the rate of formation and final discharge capacity given the design parameters for the electrode. The understanding gained here will be useful in reducing the time lost in formation and in maximizing the utilization of the iron electrode. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.021301jes] All rights reserved.

  13. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    DOE Patents [OSTI]

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  14. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOE Patents [OSTI]

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  15. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect (OSTI)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  16. The microstructure of the laser-alloyed steel and iron: Similarities and differences

    SciTech Connect (OSTI)

    Goldfarb, I.; Bamberger, M.

    1996-04-01

    Formation of hard boride compounds can improve the hardness and wear resistance of steels. Heating steels in the presence of boron powders to high temperatures for relatively long periods of time produces iron borides, but, simultaneously, may lead to significant grain growth and reduction of strength of the bulk material. Laser surface alloying can improve surface properties while leaving the bulk unaffected. Recently, laser surface alloying of steel and iron with CrB{sub 2} particles was investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). A variety of phases identified created a demand for examination on a finer scale. Goldfarb et al. investigated the microstructure of AISI 1045 steel, laser-alloyed with CrB particles, by transmission electron microscopy (TEM). They found a new polytypic structure of chromium boride caused by faulting, following the phase transformation from the initial iron boride. In this work, the microstructures of laser-alloyed AISI 1045 steel and Armco iron are compared and it is concluded that carbon does not play any significant role in the process of polytype formation.

  17. Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films | ANSER Center | Argonne-Northwestern National Laboratory Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films

  18. City of Mountain Iron, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Mountain Iron, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Iron Place: Minnesota Phone Number: (218)748-7570 Website: www.mtniron.com...

  19. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced...

  20. Baotou Iron and Steel Group Baotou Steel | Open Energy Information

    Open Energy Info (EERE)

    search Name: Baotou Iron and Steel Group (Baotou Steel) Place: Baotou, Inner Mongolia Autonomous Region, China Product: Baotou-based iron and steel maker as well as a rare...

  1. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  2. Sorption of Ferric Iron from Siderophore Complexes by Layer Type...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bottom: Structure of the iron-siderophore complex ferrioxamine B Fe(III)HDFOB+. Image courtesy of Andrzej Jarzecki, Brooklyn College, the City University of New York. Iron is one ...

  3. How Trenton Iron and Steel Innovations Reshaped America Clifford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trenton Iron and Steel Innovations Reshaped America Clifford Zink Independent Historian ... DeParTmenT of energy faciliTy Iron and steel innovations in Trenton helped transform ...

  4. Minnesota Jobs to Come with Efficient Iron Plant

    Broader source: Energy.gov [DOE]

    New energy-efficient iron plant offers a ray of hope for workers after local mining company shuts down.

  5. The influence of carbon content in the borided Fe-alloys on the microstructure of iron borides

    SciTech Connect (OSTI)

    Kulka, M. . E-mail: coolka@sol.put.poznan.pl; Pertek, A. . E-mail: pertek@sol.put.poznan.pl; Klimek, L. . E-mail: kemilk@p.lodz.pl

    2006-04-15

    This paper presents the results of Electron Back-Scatter Diffraction (EBSD) analyses of the borided layers produced on substrate of varying carbon content. Two types of materials were investigated: borided Armco iron of very low carbon content and borocarburized chromium- and nickel-based steels of high carbon content beneath iron borides. The tetragonal phase Fe{sub 2}B was identified in all materials studied. It was difficult to obtain an EBSD pattern from iron boride (FeB) because of its presence at low depths below the surface, and because of the rounded corners of the specimens. EBSD provided information on the orientation of Fe{sub 2}B crystals. In case of the low-carbon Armco iron the crystallographic orientation was constant along the full length of the Fe{sub 2}B needle. The EBSPs obtained from borocarburized steel indicate that the crystallographic orientation of the Fe{sub 2}B phase changes along the length of the needle. This is the result of hindered boron diffusion due to boriding of the carburized substrate. The increased resistance to friction wear of borocarburized layers arises from two reasons. One is the decreased microhardness gradient between the iron borides and the substrate, which causes a decrease in the brittleness of the iron borides and an improved distribution of internal stresses in the diffusion layer. The second is the changeable crystallographic orientation of iron borides, which leads to the lower texture and porosity of borided layers. These advantageous properties of the borocarburized layer can be obtained if the carbon content beneath the iron borides is no more than about 1.0-1.2 wt.% C.

  6. Self-Assembled Monolayers of n-Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes

    SciTech Connect (OSTI)

    Malkhandi, S; Yang, B; Manohar, AK; Prakash, GKS; Narayanan, SR

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  7. Iron/potassium perchlorate pellet burn rate measurements

    SciTech Connect (OSTI)

    Reed, J.W.; Walters, R.R.

    1995-01-25

    A burn rate test having several advantages for low gas-producing pyrotechnic compacts has been developed. The technique involves use of a high speed video motion analysis system that allows immediate turnaround and produces all required data for rate computation on magnetic tape and becomes immediately available on the display screen. The test technique provides a quick method for material qualification along with data for improved reliability and function. Burn rate data has been obtained for both UPI and Eagle Pitcher Iron/Potassium Perchlorate blends. The data obtained for the UPI blends cover a range of composition, pellet density, and ambient (before ignition) pellet temperature. Burn rate data for the E-P blends were extended to include surface conditions or particle size as a variable parameter.

  8. Organic binders for iron ore pelletization and steelmaking

    SciTech Connect (OSTI)

    Karkoska, D.; Sankey, E.; Anderson, R.

    1995-12-01

    Historically, bentonite has been used in the agglomeration process in North American iron ore plants. In 1986, Eveleth Mines replaced bentonite with Peridur, a carboxy methyl cellulose organic binder used in conjunction with 1% limestone. Since May of 1993, Allied Colloids` Alcotac FE8 has been used by Eveleth as the replacement for bentonite. This paper discusses the performance benefits obtained when bentonite was replaced with an organic binder. These totally synthetic binders are used in conjunction with limestone. The benefits of organic binders are: improved metallurgical parameters of the fired pellet, especially the reducibility, which results in more efficient use of gases in the blast furnace; reduced silica in the pellet, in the case of Eveleth Mines this was a reduction of 0.5%, a lower silica pellet reduces slag in the blast furnace; increased production in both the agglomeration/induration and steelmaking processes; and a decrease in coke consumption.

  9. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same

    DOE Patents [OSTI]

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  10. F-T process using an iron on mixed zirconia-titania supported catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1987-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  11. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOE Patents [OSTI]

    Natesan, Krishnamurti

    1992-01-01

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  12. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOE Patents [OSTI]

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  13. Method for preparing hydrous iron oxide gels and spherules

    DOE Patents [OSTI]

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  14. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage

    SciTech Connect (OSTI)

    Yang, B; Malkhandi, S; Manohar, AK; Prakash, GKS; Narayanan, SR

    2014-07-03

    Rechargeable iron-air and nickel-iron batteries are attractive as sustainable and inexpensive solutions for large-scale electrical energy storage because of the global abundance and eco-friendliness of iron, and the robustness of iron-based batteries to extended cycling. Despite these advantages, the commercial use of iron-based batteries has been limited by their low charging efficiency. This limitation arises from the iron electrodes evolving hydrogen extensively during charging. The total suppression of hydrogen evolution has been a significant challenge. We have found that organo-sulfur compounds with various structural motifs (linear and cyclic thiols, dithiols, thioethers and aromatic thiols) when added in milli-molar concentration to the aqueous alkaline electrolyte, reduce the hydrogen evolution rate by 90%. These organo-sulfur compounds form strongly adsorbed layers on the iron electrode and block the electrochemical process of hydrogen evolution. The charge-transfer resistance and double-layer capacitance of the iron/electrolyte interface confirm that the extent of suppression of hydrogen evolution depends on the degree of surface coverage and the molecular structure of the organo-sulfur compound. An unanticipated electrochemical effect of the adsorption of organo-sulfur molecules is "de-passivation" that allows the iron electrode to be discharged at high current values. The strongly adsorbed organo-sulfur compounds were also found to resist electro-oxidation even at the positive electrode potentials at which oxygen evolution can occur. Through testing on practical rechargeable battery electrodes we have verified the substantial improvements to the efficiency during charging and the increased capability to discharge at high rates. We expect these performance advances to enable the design of efficient, inexpensive and eco-friendly iron-based batteries for large-scale electrical energy storage.

  15. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect (OSTI)

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  16. Blast furnace gas fired boiler for Eregli Iron and Steel Works (Erdemir), Turkey

    SciTech Connect (OSTI)

    Green, J.; Strickland, A.; Kimsesiz, E.; Temucin, I.

    1996-11-01

    Eregli Demir ve Celik Fabriklari T.A.S. (Eregli Iron and Steel Works Inc.), known as Erdemir, is a modern integrated iron and steel works on the Black Sea coast of Turkey, producing flat steel plate. Facilities include two blast furnaces, coke ovens, and hot and cold rolling mills, with a full supporting infrastructure. Four oil- and gas-fired steam boilers provide steam for electric power generation, and to drive steam turbine driven fans for Blast Furnace process air. Two of these boilers (Babcock and Wilcox Type FH) were first put into operation in 1965, and still reliably produce 100 tons/hour of steam at a pressure of 44 bar and a temperature of 410 C. In 1989 Erdemir initiated a Capacity Increase and Modernization Project to increase the steel production capability from two million to three million tons annually. This project also incorporates technology to improve the product quality. Its goals include a reduction in energy expenses to improve Erdemir`s competitiveness. The project`s scheduled completion is in late 1995. The by-product gases of the blast furnaces, coke ovens, and basic oxygen furnaces represent a considerable share of the consumed energy in an integrated iron and steel works. Efficient use of these fuels is an important factor in improving the overall efficiency of the operation.

  17. Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30%

    Broader source: Energy.gov [DOE]

    Remember when IBMs super computer Watson defeated Jeopardy! champions Ken Jennings and Brad Rutter? With funding from the U.S. Department of Energy SunShot Initiative, IBM researchers are using...

  18. Weld overlay cladding with iron aluminides

    SciTech Connect (OSTI)

    Goodwin, G.M.

    1995-08-01

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions have limited their use in applications where good weldability is required. Using hot crack testing techniques invented at ORNL, and experimental determinations of preheat and postweld heat treatment needed to avoid cold cracking, we have developed iron aluminide filler metal compositions which can be successfully used to weld overlay clad various substrate materials, including 9Cr-1Mo steel, 2-1/4Cr-1Mo steel, and 300-series austenitic stainless steels. Dilution must be carefully controlled to avoid crack-sensitive deposit compositions. The technique used to produce the current filler metal compositions is aspiration-casting, i.e. drawing the liquid from the melt into glass rods. Future development efforts will involve fabrication of composite wires of similar compositions to permit mechanized gas tungsten arc (GTA) and/or gas metal arc (GMA) welding.

  19. Water Clustering on Nanostructured Iron Oxide Films

    SciTech Connect (OSTI)

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing moleculemolecule and moleculesurface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire structure.

  20. Lithium-aluminum-iron electrode composition

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  1. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  2. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  3. Thin Wall Cast Iron: Phase II

    SciTech Connect (OSTI)

    Doru M. Stefanescu

    2005-07-21

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  4. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iraq NNSA program strengthens national security from afar The Nuclear Smuggling Detection and Deterrence (NSDD) program is a key component of NNSA's core mission to reduce nuclear threats. The program, part of NNSA's Office of Defense Nuclear Nonproliferation, provides partners tools and training to deter, detect, and investigate smuggling of

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South

  5. Spectroscopic absorption measurements of an iron plasma

    SciTech Connect (OSTI)

    Springer, P.T.; Fields, D.J.; Wilson, B.G.; Nash, J.K.; Goldstein, W.H.; Iglesias, C.A.; Rogers, F.J.; Swenson, J.K.; Chen, M.H.; Bar-Shalom, A.; Stewart, R.E. Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190 )

    1992-12-28

    The first quantitative measurement of photoabsorption in the region determining the Rosseland and Planck mean opacities is obtained for a well-characterized, radiatively heated iron plasma using new techniques and instrumentation. The plasma density and temperature are simultaneously constrained with high accuracy, allowing unambiguous comparisons with opacity models used in modeling radiative transfer in equilibrium astrophysical and laboratory plasmas. The experimental Rosseland and Planck group means are constrained to an accuracy of 15%.

  6. Superconductivity at Dawn of the Iron Age

    ScienceCinema (OSTI)

    Tesanovic, Zlatko [Johns Hopkins University, Baltimore, Maryland, United States

    2010-09-01

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  7. Seal welded cast iron nuclear waste container

    DOE Patents [OSTI]

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  8. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub

  9. Efficiency Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency improvements Efficiency Improvements New Target Alignment Sensor Installed on NIF For successful ignition experiments, NIF's 192 laser beams and targets must be aligned within a tolerance of about 20 microns-about one-fifth the diameter of an average human hair. Achieving this level of precision requires many fine-tuned calibrations and correlations between the laser beams and the target. Earlier this month a key instrument for achieving this level of precision, a new target alignment

  10. Fabrication and mechanical properties of Fe sub 3 Al-based iron aluminides

    SciTech Connect (OSTI)

    Sikka, V.K.; McKamey, C.G.; Howell, C.R.; Baldwin, R.H.

    1990-03-01

    Iron aluminides based on Fe{sub 3}Al are ordered intermetallic alloys that offer good oxidation resistance, excellent sulfidation resistance, and lower material cost than many stainless steels. These materials also conserve strategic elements such as chromium and have a lower density than stainless steels. However, limited ductility at ambient temperature and a sharp drop in strength have been major deterrents to their acceptance for structural applications. This report presents results on iron aluminides with room-temperature elongations of 15 to 20%. Ductility values were improved by a combination of thermomechanical processing and heat-treatment control. This method of ductility improvement has been demonstrated for a range of compositions. Melting, casting, and processing of 7-kg (15-lb) heats produced at the Oak Ridge National Laboratory (ORNL) and 70-kg (150-lb) commercial heats are described. Vacuum melting and other refining processes such as electroslag remelting are recommended for commercial heats. The Fe{sub 3}Al-based iron aluminides are hot workable by forging or extruding at temperatures in the range of 850 to 1100{degree}C. rolling at 800{degree}C is recommended with a final 50% reduction at 650{degree}C. Tensile and creep properties of 7- and 70-kg (15- and 150-lb) heats are presented. The presence of impurities such as manganese an silicon played an important role in reducing the ductility of commercially melted heats. 7 refs., 60 figs., 12 tabs.

  11. Iron-titanium-mischmetal alloys for hydrogen storage

    DOE Patents [OSTI]

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  12. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  13. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  14. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  15. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  16. LANSCE | Lujan Center | Highlights | Local iron displacements and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetoelastic coupling in a spin-ladder compound Local iron displacements and magnetoelastic coupling in a spin-ladder compound Hypothesis: Is magnetoelastic coupling in [FeX4]-based materials, an important ingredient in the emergence of superconductivity? Lujan Center: Combined Total Scattering and magnetic structure determination (HIPD-NPDF) The study of local, average and magnetic structure shows the existenceof highly correlated local iron (Fe) displacements in the spin-ladder iron

  17. Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Source on Ocean Photosynthesis Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of

  18. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  19. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  20. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  1. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Iron is the Key to Preserving Dinosaur Soft Tissue Print Thursday, 21 August 2014 10:43 Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were

  2. Reduction and carburization reactions in the iron bath smelter

    SciTech Connect (OSTI)

    Uemura, Kenichiro

    1993-01-01

    Slag-metal-coal reactions in the iron-bath smelter were analyzed based on a reaction model. It was concluded that the productivity and carbon content of the hot metal produced in a smelter can be controlled by adjusting the slag volume and iron oxide content in slag. Furthermore, iron oxide content is determined by the slag volume and the stirring intensity of the slag.

  3. Big Iron for Big Data: An Unnatural Alliance?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Iron for Big Data: An Unnatural Alliance? Steve Plimpton Sandia National Labs Salishan Conference on High-Speed Computing April 2012 Big data analytics (BD) versus scientific...

  4. Iron active electrode and method of making same

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Seidel, Joseph (Pittsburgh, PA); Pantier, Earl A. (Verona, PA)

    1982-10-26

    An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.

  5. Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide ... Publication Date: 2014-07-21 OSTI Identifier: 1123936 Resource Type: Journal Article ...

  6. Mountain Iron, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Iron, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5324267, -92.623515 Show Map Loading map... "minzoom":false,"mappi...

  7. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    occurring mechanism for stabilization of soft tissues has implications beyond paleontology. If iron-mediated reactions are part of a continuum from those that facilitate life...

  8. Recoil-free fractions of iron in aluminous bridgmanite fromtemperatur...

    Office of Scientific and Technical Information (OSTI)

    from temperature-dependent Mssbauer spectra Citation Details In-Document Search Title: Recoil-free fractions of iron in aluminous bridgmanite from temperature-dependent ...

  9. Correlation effects in the iron pnictides (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    One of the central questions about the iron pnictides concerns the extent to which their electrons are strongly correlated. Here we address this issue through the phenomenology of ...

  10. Microstructural Modification of a Cast Iron by Magnetic Field Processing

    SciTech Connect (OSTI)

    Kenik, Edward A; Ludtka, Gail Mackiewicz-; Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A

    2010-01-01

    The current study deals with the microstructural modification of a nodular cast iron during solidification under the influence of high magnetic fields (up to 18 tesla).

  11. Determination of ferrous and total iron in refractory spinels...

    Office of Scientific and Technical Information (OSTI)

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions ...

  12. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Evidence for a Weak Iron Core at Earth's Center Print Wednesday, 30 April 2014 00:00 Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron

  13. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Total Onsite Electricity Export 1 Manufacturing Energy and Carbon Footprint Sector: Iron and Steel (NAICS 3311,3312) Onsite Generation Process Energy Machine-Driven Systems Fans ...

  14. Low Resistivity Contact to Iron-Pnicitide Superconductors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Advanced Materials Find More Like This Return to Search Low Resistivity Contact to Iron-Pnicitide Superconductors Ames Laboratory Contact AMES About This Technology...

  15. Low Resistivity Contact to Iron-Pnicitide Superconductors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Resistivity Contact to Iron-Pnicitide Superconductors Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Superconductors are materials which carry...

  16. Iron County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Iron County, Wisconsin Anderson, Wisconsin Carey, Wisconsin Gurney, Wisconsin Hurley, Wisconsin Kimball, Wisconsin...

  17. Lithium Iron Phosphate Composites for Lithium Batteries (IN-11...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries (IN-11-024) Low-Cost Phosphate Compounds Enhance Lithium Battery Performance Argonne National Laboratory Contact ANL About ...

  18. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  19. Development of attrition resistant iron-based Fischer-Tropsch catalysts

    SciTech Connect (OSTI)

    2000-09-20

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results a steady loss of catalyst from the reactor. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (1) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University (2) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (3) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to effects of pretreating procedures, using H{sub 2}, CO and syngas (H{sub 2}/CO = 0.67) as reductants, on the performance (activity, selectivity and stability with time) of a precipitated iron catalyst (100Fe/5Cu/4.2K/10SiO{sub 2} on a mass basis ) during F-T synthesis were studied in a fixed-bed reactor.

  20. Hydrogen-induced cracking in pure iron

    SciTech Connect (OSTI)

    Armstrong, J.H.; Carpenter, S.H.

    1985-01-01

    The modulus and internal friction of Armco iron were continuously measured during cathodic charging with hydrogen to investigate crack initiation and growth. The observed modulus decrease was attributed to crack initiation and growth. The internal friction increase during cathodic charging was attributed to plastic deformation accompanying the crack formation. Both the modulus and internal friction behavior were found to be a sum of two parallel exponential processes. The two exponential processes were consistent with different sources of carbon for the crack-producing hydrogen bubble nucleation.

  1. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  2. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  3. Investigation of Iron Aluminide Weld Overlays

    SciTech Connect (OSTI)

    Banovic, S.W.; DuPont, J.B.; Levin, B.F.; Marder, A.R.

    1999-08-02

    Conventional fossil fired boilers have been retrofitted with low NO(sub)x burners in order for the power plants to comply with new clean air regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion typically has been enhanced resulting in premature tube failure. To protect the existing panels from accelerated attack, weld overlay coatings are typically being applied. By depositing an alloy that offers better corrosion resistance than the underlying tube material, the wastage rates can be reduced. While Ni-based and stainless steel compositions are presently providing protection, they are expensive and susceptible to failure via corrosion-fatigue due to microsegregation upon solidification. Another material system presently under consideration for use as a coating in the oxidation/sulfidation environments is iron-aluminum. These alloys are relatively inexpensive, exhibit little microsegregation, and show excellent corrosion resistance. However, their use is limited due to weldability issues and their lack of corrosion characterization in simulated low NO(sub)x gas compositions. Therefore a program was initiated in 1996 to evaluate the use of iron-aluminum weld overlay coatings for erosion/corrosion protection of boiler tubes in fossil fired boilers with low NO(sub)x burners. Investigated properties included weldability, corrosion behavior, erosion resistance, and erosion-corrosion performance.

  4. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

  5. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  6. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Superconductivity at Dawn of the Iron Age Citation Details In-Document Search Title: Superconductivity at Dawn of the Iron Age Superconductivity is a stunning quantum ...

  7. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1989-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  8. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst comparisons. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  9. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  10. Development of process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  11. Development and process evaluation of improved Fischer-Tropsch slurry catalysts

    SciTech Connect (OSTI)

    Withers, H.P. ); Bukur, D.B.; Rosynek, M.P. )

    1988-01-01

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (F-T) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  12. Large Tensions and Strength of Iron in Different Structure States

    SciTech Connect (OSTI)

    Razorenov, S. V.; Savinykh, A. S.; Kanel, G. I.; Fortov, V. E.

    2006-07-28

    Results of shock-wave experiments with iron single crystals, ultra-fine grain and as-received Armco-iron, at load durations of {approx}20 ns to 200 ns are presented. No evidence of the expected formation of rarefaction shock waves, as predicted by the ab initio calculations, was observed in the range of attained tensile stresses down to -7.6 GPa. The tensile fracture stresses achieved 25-50% of the theoretical iron ultimate strength for a load duration of {approx}10-8 s. The spall strength of a coarse-grain Armco-iron is much less than that of single crystals whereas an intensively deformed Armco-iron with a sub-micron grain size demonstrates nearly the same spall strength as the crystals do.

  13. System and method for producing metallic iron nodules

    DOE Patents [OSTI]

    Bleifuss, Rodney L.; Englund, David J.; Iwasaki, Iwao; Lindgren, Andrew J.; Kiesel, Richard F.

    2011-09-20

    A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.

  14. Improved aethalometer

    DOE Patents [OSTI]

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.

  15. System and method for producing metallic iron

    DOE Patents [OSTI]

    Bleifuss, Rodney L; Englund, David J; Iwasaki, Iwao; Fosnacht, Donald R; Brandon, Mark M; True, Bradford G

    2013-09-17

    A hearth furnace for producing metallic iron material has a furnace housing having a drying/preheat zone, a conversion zone, a fusion zone, and optionally a cooling zone, the conversion zone is between the drying/preheat zone and the fusion zone. A moving hearth is positioned within the furnace housing. A hood or separation barrier within at least a portion of the conversion zone, fusion zone or both separates the fusion zone into an upper region and a lower region with the lower region adjacent the hearth and the upper region adjacent the lower region and spaced from the hearth. An injector introduces a gaseous reductant into the lower region adjacent the hearth. A combustion region may be formed above the hood or separation barrier.

  16. System and method for producing metallic iron

    DOE Patents [OSTI]

    Bleifuss, Rodney L.; Englund, David J.; Iwasaki, Iwao; Fosnacht, Donald R.; Brandon, Mark M.; True, Bradford G.

    2012-01-17

    A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.

  17. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  18. Predict carbonation rate on iron catalyst

    SciTech Connect (OSTI)

    Dry, M.E.

    1980-02-01

    On solely thermodynamic grounds, the main hydrocarbon product of the Fischer-Tropsch reaction should be methane; in practice, however, carbon is frequently produced as well and deposited on the iron catalyst, fouling the active surface sites. South African Coal, Oil and Gas Corp., Ltd.'s experiments with a fluidized Fischer-Tropsch catalyst bed demonstrate that the rate of carbon deposition is strongly dependent on the hydrogen partial pressure in the reactor, much less dependent on the CO pressure, and not affected at all by the pressure of CO/sub 2/. A suggested reaction scheme for the Fischer-Tropsch synthesis explains these observations and provides a basis for a correlation useful in predicting carbon-deposition rates.

  19. Rhombohedral magnetostriction in dilute iron (Co) alloys

    SciTech Connect (OSTI)

    Jones, Nicholas J. Wun-Fogle, Marilyn; Restorff, J. B.; Petculescu, Gabriela; Clark, Arthur E.; Hathaway, Kristl B.; Schlagel, Deborah; Lograsso, Thomas A.

    2015-05-07

    Iron is a well-utilized material in structural and magnetic applications. This does not mean, however, that it is well understood, especially in the field of magnetostriction. In particular, the rhombohedral magnetostriction of iron, λ{sub 111}, is anomalous in two respects: it is negative in sign, in disagreement with the prediction of first principles theory, and its magnitude decreases with increasing temperature much too rapidly to be explained by a power law dependence on magnetization. These behaviors could arise from the location of the Fermi level, which leaves a small region of the majority 3d t{sub 2g} states unfilled, possibly favoring small internal displacements that split these states. If this view is correct, adding small amounts of Co to Fe fills some of these states, and the value of λ{sub 111} should increase toward a positive value, as predicted for perfect bcc Fe. We have measured the magnetostriction coefficients (λ{sub 111} and λ{sub 100}) of pure Fe, Fe{sub 97}Co{sub 3}, and Fe{sub 94}Co{sub 6} single crystals from 77 K to 450 K. Resonant ultrasound spectroscopy has been used to check for anomalies in the associated elastic constants, c{sub 44} and c′. The additional electrons provided by the cobalt atoms indeed produced positive contributions to both magnetostriction constants, λ{sub 111} and λ{sub 100}, exhibiting an increase of 2.8 × 10{sup −6} per at. % Co for λ{sub 111} and 3.8 × 10{sup −6} per at. % Co for λ{sub 100}.

  20. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    SciTech Connect (OSTI)

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of FischerTropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  1. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  2. Iron aluminide alloy coatings and joints, and methods of forming

    DOE Patents [OSTI]

    Wright, Richard N. (Idaho Falls, ID); Wright, Julie K. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID)

    1994-01-01

    A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  3. Iron aluminide alloy coatings and joints, and methods of forming

    DOE Patents [OSTI]

    Wright, R.N.; Wright, J.K.; Moore, G.A.

    1994-09-27

    Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  4. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  5. Spall behavior of cast iron with varying microstructures

    SciTech Connect (OSTI)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  6. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  7. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  8. Iron-carbon compacts and process for making them

    DOE Patents [OSTI]

    Sheinberg, Haskell

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  9. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the

  10. Probing iron at Super-Earth core conditions

    SciTech Connect (OSTI)

    Amadou, N.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Brygoo, S.; Morard, G.; Guyot, F.; Resseguier, T. de; Mazevet, S.; Miyanishi, K.; Ozaki, N.; Kodama, R.; Henry, O.; Raffestin, D.; Boehly, T.; and others

    2015-02-15

    In this paper, we report on the quasi-isentropic compression of an iron sample using ramp shaped laser irradiation. This technique allows us to quasi-isentropically compress iron up to 700 GPa and 8500 K. To our knowledge, these data are the highest pressures reached on iron in off-Hugoniot conditions and the closest to the thermodynamic states thought to exist in Earth-like planetary cores. The experiment was performed on the Ligne d'Intégration laser facility at CESTA, Bordeaux, France.

  11. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  12. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  13. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  14. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  15. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; COPPER OXIDES; DIMENSIONS; IRON; PHYSICS; PNICTIDES; SUPERCONDUCTIVITY; SUPERCONDUCTORS; SYNCHROTRON ...

  16. Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

    Broader source: Energy.gov [DOE]

    Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

  17. Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

    Broader source: Energy.gov [DOE]

    Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

  18. Improved high temperature creep resistant austenitic alloy

    DOE Patents [OSTI]

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  19. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that...

  20. Magnetic properties of the iron laminations for CBA magnets

    SciTech Connect (OSTI)

    Tannenbaum, M.J.; Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1983-01-01

    The required magnetic properties of the iron for CBA dipoles are for the most part the same as those for conventional accelerators, namely: low coercive force, high permeability at both low and high inductions, and high saturation induction. There are two main differences in the CBA application, (1) the iron is at 3.8/sup 0/K, and (2) the magnetic field in the iron can go as high as 6 Tesla, which is well above saturation. Measurements of the magnetization curves for CBA iron laminations at 300/sup 0/K and 4.2/sup 0/K are presented. The data are analyzed in terms of a simple model in which the variation in saturation induction can be separated from the low field permeability variation. Tolerances on coercive force, permeability, and saturation induction are discussed.

  1. EOS for Armco Iron at pressures less than 100 GPa

    SciTech Connect (OSTI)

    Moss, W.C.

    1984-06-06

    We have constructed an analytic EOS for Armco Iron, at pressures less than 100 GPa using shock data. The efects of the ..cap alpha.. reversible epsilon phase transition have been included.

  2. Percolation Explains How Earth's Iron Core Formed | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... at high pressure (64 GPa) and temperature (3,300 K). a,b, The channel in a has been confirmed to be iron-rich material by element-sensitive nanoscale tomographic imaging; the ...

  3. Evaluation of Characterization Techniques for Iron Pipe Corrosion...

    Office of Scientific and Technical Information (OSTI)

    Films A common problem faced by drinking water studies is that of properly characterizing ... Fe (hydr)oxides used to simulate the iron pipe used in municipal drinking-water systems. ...

  4. Shewanella loihica sp. nov., isolated from iron-rich microbial...

    Office of Scientific and Technical Information (OSTI)

    loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean A novel marine bacterial strain, PV-4T, isolated from a microbial mat located at a hydrothermal vent...

  5. Dopant Site Determination in Iron Oxide Nanoparticles Utilizing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dopant Site Determination in Iron Oxide Nanoparticles Utilizing X-ray Absorption Techniques Monday, September 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Dr....

  6. Probing high-energy spin fluctuations in iron pnictide superconductors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spin fluctuations in iron pnictide superconductors and the metal-insulator transition in rare-earth nickelates by soft X-ray RIXS Wednesday, November 18, 2015 - 3:00pm...

  7. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory...

  8. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide...

    Office of Scientific and Technical Information (OSTI)

    Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano...

  9. Method and system for producing metallic iron nuggets

    SciTech Connect (OSTI)

    Iwasaki, Iwao; Kiesel, Richard F.; Englund, David J; Hendrickson, Dave

    2012-12-18

    A method and system for producing metallic iron nuggets may include providing multiple layers of agglomerates, such as briquettes, balls and extrusions, of a reducible mixture of reducing material (such as carbonaceous material) and of a reducible iron bearing material (such as iron oxide) on a hearth material layer (such as carbonaceous material) and providing a coarse overlayer of carbonaceous material over at least some of the agglomerates. Heating the agglomerates of reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  10. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, James M.; Trowbridge, Lee D.

    1999-01-01

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag.

  11. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, J.M.; Trowbridge, L.D.

    1999-03-23

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

  12. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    SciTech Connect (OSTI)

    J.Y. Hwang

    2006-10-04

    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  13. Korea Iron Steel Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Steel Co Ltd Jump to: navigation, search Name: Korea Iron & Steel Co Ltd Place: Changwon, South Gyeongsang, Korea (Republic) Zip: 641 370 Product: Korea-based manufacturer of steel...

  14. Marine Diatoms Survive Iron Droughts in the Ocean by Storing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In particular, phytoplankton, which are aquatic, free-drifting, single-celled organisms that can harvest energy from the sun, have an elevated demand for iron due to the large role ...

  15. Origin of banded iron formations : oceanic crust leaching & self...

    Office of Scientific and Technical Information (OSTI)

    Subject: 58 GEOSCIENCES; IRON; LEACHING; OCEANIC CRUST; ORIGIN Word Cloud More Like This Full Text Journal Articles Find in Google Scholar Find in Google Scholar Search WorldCat ...

  16. Iron speciation in minerals and glasses probed by M [subscript...

    Office of Scientific and Technical Information (OSTI)

    Title: Iron speciation in minerals and glasses probed by M subscript 23 -edge X-ray Raman scattering spectroscopy Authors: Nyrow, A. ; Sternemann, C. ; Wilke, M. ; Gordon, R. A. ...

  17. Modernization of the iron making plant at SOLLAC FOS

    SciTech Connect (OSTI)

    Crayelynghe, M. van; Dufour, A.; Soland, J.; Feret, J.; Lebonvallet, J.

    1995-12-01

    When the blast furnaces at SOLLAC/FOS were relined, the objective being to ensure a worklife of 15 years, it was decided that the iron making plant would be modernized at the same time: the coking plant has been overhauled and renovated and its coking time increased to ensure a worklife of at least 34 years. The surface area of the sinter strand was increased from 400 to 520 m{sup 2}, the burden preparation circuit were simplified, and pig iron production capacity increased from 4.2 to 4.5 million metric tons per year. Coal injection was developed so as to obtain 170 kg/t of pig iron, an expert system was added to ensure more efficient blast furnace operation, and new measures have been carried out for environmental protection. Since these heavy investments have been completed, SOLLAC/FOS is a high-performance iron making plant, allowing it to face new challenges in the future.

  18. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial...

  19. Nitrogen Atom Transfer From High Valent Iron Nitrides

    SciTech Connect (OSTI)

    Johnson, Michael D.; Smith, Jeremy M.

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  20. SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION

    DOE Patents [OSTI]

    Kuhlman, C.W. Jr.; Lang, G.P.

    1961-12-19

    A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)

  1. Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrosilylation Catalysts Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone Hydrosilylation Catalysts Authors: Trovitch, R.J. Title: Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone Hydrosilylation Catalysts Source: Synlett Year: 2014 Volume: published online May 8, 2014 Pages: ABSTRACT: A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was

  2. DOE - Office of Legacy Management -- Knoxville Iron Co - TN 07

    Office of Legacy Management (LM)

    Knoxville Iron Co - TN 07 FUSRAP Considered Sites Site: KNOXVILLE IRON CO. (TN.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Knoxville , Tennessee TN.07-1 Evaluation Year: 1994 TN.07-2 TN.07-3 Site Operations: Melted uranium contaminated scrap metal in order to test industrial hygiene procedures in the mid-1950s. TN.07-1 Site Disposition: Eliminated - AEC license TN.07-2 Radioactive Materials Handled: Yes Primary Radioactive

  3. Strong Orbital-selective Correlation Effects Unite Iron Chalcogenide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconductors | Stanford Synchrotron Radiation Lightsource Strong Orbital-selective Correlation Effects Unite Iron Chalcogenide Superconductors Wednesday, September 30, 2015 Seven years ago when superconductivity was first discovered in the iron-based compounds (FeSCs), one of the very first questions in the field was to find out whether the physics governing superconductivity in these materials were the same or different from the only other known high temperature superconductors (HTSC) -

  4. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    SciTech Connect (OSTI)

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  5. Cost and Reliability Improvement for CIGS-Based PV on Flexible Substrate: May 24, 2006 -- July 31, 2010

    SciTech Connect (OSTI)

    Wiedeman, S.

    2011-05-01

    Global Solar Energy rapidly advances the cost and performance of commercial thin-film CIGS products using roll-to-roll processing on steel foil substrate in compact, low cost deposition equipment, with in-situ sensors for real-time intelligent process control. Substantial increases in power module efficiency, which now exceed 13%, are evident at GSE factories in two countries with a combined capacity greater than 75 MW. During 2009 the average efficiency of cell strings (3780 cm2) was increased from 7% to over 11%, with champion results exceeding 13% Continued testing of module reliability in rigid product has reaffirmed extended life expectancy for standard glass product, and has qualified additional lower-cost methods and materials. Expected lifetime for PV in flexible packages continues to increase as failure mechanisms are elucidated, and resolved by better methods and materials. Cost reduction has been achieved through better materials utilization, enhanced vendor and material qualification and selection. The largest cost gains have come as a result of higher cell conversion efficiency and yields, higher processing rates, greater automation and improved control in all process steps. These improvements are integral to this thin film PV partnership program, and all realized with the 'Gen2' manufacturing plants, processes and equipment.

  6. Study of hydrogen induced cracking in iron

    SciTech Connect (OSTI)

    Armstrong, J.H.

    1985-01-01

    The hydrogen assisted crack growth of Armco iron from cathodic charging was studied using continuous measurements of the modulus and internal friction. A Marx composite piezoelectric oscillator was used to measure resonant frequency and internal friction during the cathodic charging. Internal friction measured before and after cathodic charging was separated into dislocation and magnetic effects. The effects of charging time, vibratory strain amplitude and charging current density were studied. In all cases the modulus decreased continuously during cathodic charging. The internal friction increased rapidly during the early portion of cathodic charging and leveled off during the latter portion. Using a composite sample model (a cracked thin outer layer with a solid core), the change in modulus was found to be proportional to the quantity na/sup 3/..delta..d, where n is the crack density, a is the average crack radius and d is the depth of cracking. The kinetic behavior of both the internal friction and modulus change were found to be a two-part parallel exponential process. The rapid process was quite rapid and was found to be consistent with the initiation and growth of cracks due to the combination of hydrogen and carbon found at grain boundaries. The rapid increase in internal friction during the first process was attributed to the rapid plastic deformation from the initiation of the cracks.

  7. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Dr. Dragomir B. Bukur; Dr. X. Lang; Dr. S. Chokkaram; Dr. L. Nowicki; G. Wei; Dr. Y. Ding; Dr. B. Reddy; Dr. S. Xiao

    1999-07-22

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  8. New trends in industrial energy efficiency in the Mexico iron and steel industry

    SciTech Connect (OSTI)

    Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

    1999-07-31

    Energy use in the Mexican industrial sector experienced important changes in the last decade related to changes in the Mexican economy. In previous studies, we have shown that a real change in energy-intensity was the most important factor in the overall decline of energy use and CO2 emissions in the Mexican industrial sector. Real changes in energy intensity were explained by different factors, depending on the industrial sub-sector. In this paper, we analyze the factors that influenced energy use in the Mexican iron and steel industry, the largest energy consuming and energy-intensive industry in the country. To understand the trends in this industry we used a decomposition analysis based on physical indicators to decompose the changes in intra-sectoral structural changes and efficiency improvements. Also, we use a structure-efficiency analysis for international comparisons, considering industrial structure and the best available technology. In 1995, Mexican iron and steel industry consumed 17.7 percent of the industrial energy consumption. Between 1970 and 1995, the steel production has increased with an annual growth rate of 4.7 percent, while the specific energy consumption (SEC) has decreased from 28.4 to 23.8 GJ/tonne of crude steel. This reduction was due to energy efficiency improvements (disappearance of the open hearth production, increase of the share of the continuous casting) and to structural changes as well (increase of the share of scrap input in the steelmaking).

  9. Interplay between interband coupling and ferromagnetism in iron pnictide superconductor/ferromagnet/iron pnictide superconductor junctions

    SciTech Connect (OSTI)

    Liu, S. Y.; Tao, Y. C.; Hu, J. G.

    2014-08-28

    An extended eight-component Bogoliubov-de Gennes equation is applied to study the Josephson effect between iron-based superconductors (SCs) with s{sub }-wave pairing symmetry, separated by an ferromagnet (FM). The feature of damped oscillations of critical Josephson current as a function of FM thickness, the split of the peaks induced by the interband coupling is much different from that for the junction with the s{sub }-wave SCs replaced by s{sub ++}-wave ones. In particular, a 0?? transition as a function of interband coupling strength ? is found to always exhibit with the corresponding dip shifting toward the larger ? due to enhancing the spin polarization in the FM, while there exits no 0?? transition for the SC with s{sub ++}-wave pairing symmetry. The two features can be used to identify the pairing symmetry in the iron pnictide SC different from the s{sub ++}-wave one in MgB{sub 2}. Experimentally, by adjusting the doping level in the s{sub }-wave SCs, one can vary ?.

  10. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 October--31 December 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  11. Development of process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 April--30 June 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  12. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 July--30 September 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (F-T) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  13. Microstructural Characterization of Nodular Ductile Iron

    SciTech Connect (OSTI)

    Springer, H K

    2012-01-03

    The objective of this study is to quantify the graphite particle phase in nodular ductile iron (NDI). This study provides the basis for initializing microstructure in direct numerical simulations, as part of developing microstructure-fracture response models. The work presented here is a subset of a PhD dissertation on spall fracture in NDI. NDI is an ideal material for studying the influence of microstructure on ductile fracture because it contains a readily identifiable second-phase particle population, embedded in a ductile metallic matrix, which serves as primary void nucleation sites. Nucleated voids grow and coalesce under continued tensile loading, as part of the micromechanisms of ductile fracture, and lead to macroscopic failure. For this study, we used 2D optical microscopy and quantitative metallography relationships to characterize the volume fraction, size distribution, nearest-neighbor distance, and other higher-order metrics of the graphite particle phase. We found that the volume fraction was {Phi} = 0.115, the average particle diameter was d{sub avg} = 25.9 {mu}m, the Weibull shape and scaling parameters were {beta} = 1.8 and {eta} = 29.1 {mu}m, respectively, the (first) nearest neighbor distance was L{sub nn} = 32.4 {mu}m, the exponential coefficients for volume fraction fluctuations was A{sub {Phi}} = 1.89 and B{sub {Phi}} = -0.59, respectively. Based on reaching a coefficient-of-variation (COV) of 0.01, the representative volume element (RVE) size was determined to be 8.9L{sub nn} (288 {mu}m).

  14. The effect of iron dilution on strength of nickel/steel and Monel/steel welds

    SciTech Connect (OSTI)

    Fout, S.L.; Wamsley, S.D.

    1983-03-28

    The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

  15. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    SciTech Connect (OSTI)

    Lu, S; Chourey, Karuna; REICHE, M; Nietzsche, S; Shah, Manesh B; Hettich, Robert {Bob} L; Kusel, K

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  16. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan; Santosh K. Gangwal

    1999-03-29

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m

  17. Are You a Smart Grid Champion? | Department of Energy

    Energy Savers [EERE]

    Americas_Next_Top_Energy_Innovator_Fact_Sheet.pdf Americas_Next_Top_Energy_Innovator_Fact_Sheet.pdf (161.45 KB) More Documents & Publications Commercializing Department of Energy Technologies: Success Stories FAQS Reference Guide -Radiation Protection Meeting Materials: December 6, 2012 Department of Energy

    Ames Laboratory Scientist Receives Award for Advancing Diversity Ames Laboratory Scientist Receives Award for Advancing Diversity November 6, 2014 - 1:28pm Addthis Ames Laboratory

  18. Dubuque, Iowa A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2013, the Council took the bold step of adopting the 50% by 2030 Community Climate ... Sustainable Dubuque initiative was the reconstruction of the waste water treatment plant. ...

  19. Corvette Racing, Muscle Milk Teams Crowned Green Racing Champions

    Broader source: Energy.gov [DOE]

    With a wave of the checkered flag, the fourth Green Racing season came to an end in late October at the Petit Le Mans – an American Le Mans Series (ALMS) race at Road Atlanta in Braselton, Georgia. The Green Racing protocols – published by the Energy Department, Environmental Protection Agency and SAE International – emphasize cleaner fuels, efficient vehicle technologies, and speed in the races that adopt them, such as the Petit Le Mans.

  20. Thirteen Alaska Community Efficiency Champions Selected to Receive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Many of these communities also face high poverty and unemployment rates, so the high costs of energy create an even more disproportionate economic burden. A wind turbine in the ...

  1. Alaskan Community Efficiency Champions Compete for Funds to Implement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... And due to the limited accessibility at these remote locations, residents face some of the highest energy costs in the nation. Many of these communities also face high poverty and ...

  2. Knoxville, Tennessee A White House Climate Action Champions Case...

    Broader source: Energy.gov (indexed) [DOE]

    In 2012, recognizing the potential for energy efficiency to help alleviate cycles of poverty, the City of Knoxville applied for and received a 400,000 technical assistance grant ...

  3. Two Tribes Recognized as Climate Action Champions During White...

    Office of Environmental Management (EM)

    ... House State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience. ... Agency to assess preparedness for and resilience to extreme weather events Access to DOE ...

  4. Leading the Charge: Chairman Vig Champions Progress, Sustainability...

    Office of Environmental Management (EM)

    A photo of Chairman Vig. Change doesn't happen on its own. It's led by dedicated and passionate people who are committed to empowering Indian Country to energize future ...

  5. White House Champions of Change Recognizes Solar Innovator

    Broader source: Energy.gov [DOE]

    A solar innovator among a group of honorees representing the best and brightest entrepreneurs from around the world.

  6. Climate Action Champions: Montpelier, VT | Department of Energy

    Office of Environmental Management (EM)

    - including electricity, heat and transportation - by the year 2030. The city has demonstrated its leadership and innovation in climate mitigation and resilience by creating a ...

  7. Climate Action Champions: Dubuque, IA | Department of Energy

    Office of Environmental Management (EM)

    meter technologies that allow them to reduce water usage, electricity usage, and garbage. ... focused on risk reduction and resilience, and it has been restoring a major ...

  8. A White House Climate Action Champions Case Study INDEX Executive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for residential solar. * San Francisco has many plans and projects to go from "gray-to-green" infrastructure including the SF Carbon Fund, the Green Connectors project, ...

  9. Climate Action Champions: Minneapolis, MN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of leadership in actions and policies targeting reductions in greenhouse gas emissions. ... transportation, and waste sectors to reduce community-wide greenhouse gas emissions. ...

  10. Climate Action Champions: Knoxville, TN | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Since 2007, the City of Knoxville's Energy & Sustainability Initiative has made Knoxville a greener, more sustainable city. The initiative aims to reduce greenhouse gas emissions ...

  11. A White House Climate Action Champions Case Study INDEX Executive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Harvard University (within Boston city limits), Partners HealthCare-Massachusetts ... The program also creates opportunities for economic growth through multiple avenues. ...

  12. Video: Mira Loma High School Named Science Bowl Grand Champion

    Broader source: Energy.gov [DOE]

    Today, Mira Loma High School won the 2014 National Science Bowl at the National Building Museum in Washington, D.C.

  13. Seattle, Washington A White House Climate Action Champions Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2013, the City adopted a Citywide Resource Conservation Management Plan (RCMP) and dedicated a staff position to implement the plan. The RCMP lays out a three-part strategy for ...

  14. Climate Action Champions: Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Florida Case Study (160.49 KB) More Documents & Publications Community Organizing and Outreach Climate Preparedness and Resiliency Forum CESP Tool 0.2: Value Brief Presentation

  15. Climate Champion Award to Los Alamos National Laboratory, DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chair of SPLC Board of Directors; Josh Silverman and Shab Fardanesh, DOE; Jason Pearson, Executive Director, SPLC 2015 Awards For Leadership In Sustainable Purchasing...

  16. Climate Action Champions: Sonoma County Regional Climate Protection Authority, CA

    Broader source: Energy.gov [DOE]

    The RCPA has pursued goals centered on energy and water, transportation, and land use by collaborating with partners, pooling resources, and working across silos. Regional highlights include spurring the creation of large solar PV projects and the deployment of electric vehicle fleets and chargers through participation in the biggest government fleet deployment in the nation. RCPA’s financial innovations include programs to facilitate customer energy and water efficiency such as PACE (Property Assessed Clean Energy) financing and the Pay As You Save (PAYS®) on-bill pilot program. In 2014, Sonoma Clean Power became the largest community choice aggregation program in California, providing power at lower cost and a 33% lower emission rate – as well as a 100% local renewable option.

  17. DOE FACT SHEET: CLIMATE ACTION CHAMPION TECHNICAL ASSISTANCE

    Energy Savers [EERE]

    insulation, fan and motor upgrades, and low-flow plumbing. ... and verification of power and comfort conditions. * ... structure to inform optimal times to utilize equipment. ...

  18. Climate Action Champions: Resilience and Equity Webinar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy July 9, 2015 This webinar was hosted jointly by the Department of Energy and the Department of Housing and Urban Development (HUD). Presenters from the Boston Metropolitan Area Planning Council, PolicyLink, and the National Institute of Environmental Health Sciences discussed issues of climate change resilience and equity, including the impacts of climate change on different regions and socioeconomic groups. In addition, HUD provided tools and resources to assist with community

  19. Method and system for producing metallic iron nuggets

    DOE Patents [OSTI]

    Iwasaki, Iwao; Lindgren, Andrew J.; Kiesel, Richard F.

    2013-06-25

    Method and system for producing metallic nuggets includes providing reducible mixture of reducing material (such as carbonaceous material) and reducible iron bearing material (such as iron oxide) that may be arranged in discrete portions, such as mounds or briquettes, on at least a portion of a hearth material layer (such as carbonaceous material). A coarse overlayer of carbonaceous material may be provided over at least some of the discrete portions. Heating the reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  20. Reaction of iron and steel slags with refractories

    SciTech Connect (OSTI)

    Banerjee, S.; Anderson, M.W.

    1993-04-01

    Slag corrosion and erosion has been a major wear factor for refractories wear in contact with molten iron and steel. In blast furnace ironmaking, the slag/iron interface plays a more important role than does the slag/refractory interface. On the other hand in steelmaking, the slag in the ladles and tundish predominantly affect refractory wear. This paper presents the results of a detailed microstructural evaluation of (a) slag and slag/iron interactions with A1{sub 2}O{sub 3}-SiC-C refractories for ironmaking in blast furnaces, (b) basic oxygen furnace and ladle slag interactions with alumina spinel refractories for steelmaking, and (c) slag interactions with working refractory lining for continuous casting tundishes. Results will also be presented on refractory wear/failure due to simultaneous corrosion and penetration by the slag.

  1. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOE Patents [OSTI]

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  2. Electronic spin state of iron in lower mantle perovskite

    SciTech Connect (OSTI)

    Li, J.; Struzhkin, V.; Mao, H.-k.; Shu, J.; Hemley, R.; Fei, Y.; Mysen, B.; Dera, P.; Parapenka, V.; Shen, G.

    2010-11-16

    The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O{sub 3} under the lower mantle pressures. Our results demonstrate that as pressure increases, iron in perovskite transforms gradually from the initial high-spin state toward the final low-spin state. At 100 GPa, both aluminum-free and aluminum-bearing samples exhibit a mixed spin state. The residual magnetic moment in the aluminum-bearing perovskite is significantly higher than that in its aluminum-free counterpart. The observed spin evolution with pressure can be explained by the presence of multiple iron species and the occurrence of partial spin-paring transitions in the perovskite. Pressure-induced spin-pairing transitions in the perovskite would have important bearing on the magnetic, thermoelastic, and transport properties of the lower mantle, and on the distribution of iron in the Earth's interior. The lower mantle constitutes more than half of the Earth's interior by volume (1), and it is believed to consist predominantly (80-100%) of (Mg,Fe)(Si,Al)O{sub 3} perovskite (hereafter called perovskite), with up to 20% (Mg,Fe)O ferropericlase (2). The electronic spin state of iron has direct influence on the physical properties and chemical behavior of its host phase. Hence, knowledge on the spin state of iron is important for the interpretation of seismic observations, geochemical modeling, and geodynamic simulation of the Earth's deep interior (3, 4). Crystal field theory (4, 5) and band theory (6) predicted that a high-spin to low-spin transition would occur as a result of compression. To date, no experimental data exist on the spin sate of iron in Al-bearing perovskite. To detect possible spinpairing transition of iron in perovskite under the lower mantle

  3. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  4. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  5. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  6. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  7. Recovery of iron oxide from coal fly ash

    DOE Patents [OSTI]

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  8. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect (OSTI)

    Burt, R.P.; Edwards, G.R.; David, S.A.

    1996-08-01

    Iron aluminides form a coarse fusion zone microstructure when gas-tungsten arc welded. This microstructure is susceptible to hydrogen cracking when water vapor is present in the welding environment. Because fusion zone microstructural refinement can reduce the hydrogen cracking susceptibility, titanium was used to inoculate the weld pool in iron aluminide alloy FA-129. Although the fusion zone microstructure was significantly refined by this method, the fracture stress was found to decrease with titanium additions. This decrease is attributed to an increase in inclusions at the grain boundaries.

  9. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iran Deal is Working The Iran Deal is Working Addthis Topic Nuclear Security & Safety Since the Iran Deal came into effect in October 2015, the International Atomic Energy Agency (IAEA) verified that Iran undertook critical steps to ensure its four pathways to a nuclear bomb are blocked. Watch to see how the Iran Deal is working

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a

  10. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  11. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  12. Wear of Spheroidal Graphite Cast Irons for Tractor Drive Train Components

    SciTech Connect (OSTI)

    Beltowski, Mark F; Blau, Peter Julian; Qu, Jun

    2009-01-01

    The study was prompted by a desire to improve the wear resistance of power transmission components in rear axle drives on commercial farm tractors. Reciprocating wear tests were conducted under lubricated and non-lubricated conditions on three spheroidal cast irons which varied in strength and hardness (designated GGG450, GGG600, and GGG700). Hemispherically-tipped steel pins (designed 42CrMoS4/ 41CrS4) were used as the sliders. Except for the test duration, test procedures were similar to those described in ASTM Standard Test Method G133 for linearly-reciprocating sliding. Among the three cast irons tested, the harder and stronger the alloy, the lower was its wear rate. Wear factors were approximately four orders of magnitude lower for experiments lubricated in fresh, fully-formulated lubricating oil. There was a linear relationship between Brinell hardness of the alloys and the negative logarithm of the wear factors that were expressed in (mm3/N-m). Wear of lubricated test pins was not measurable due to the presence of deposits; however under non-lubricated sliding, the ratio of the wear of the flat specimen to that of the pin decreased as the hardness of the flat specimens approached that of the pin specimen.

  13. ITP Steel: Energy and Environmental Profile fo the U.S. Iron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile fo the U.S. Iron and Steel Industry ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry steelprofile.pdf (581.28 KB) ...

  14. ITmk3: High-Quality Iron Nuggets Using a Rotary Hearth Furnace

    Broader source: Energy.gov [DOE]

    The industrial sector consumes 30% of all U.S. energy consumption, of which about half (1.5 quad) is consumed by iron and steel production. Despite steadily increasing demand the iron and steel...

  15. Iron Pyrite Thin Films Synthesized from an Fe(acac)[subscript...

    Office of Scientific and Technical Information (OSTI)

    Iron Pyrite Thin Films Synthesized from an Fe(acac)subscript 3 Ink Citation Details In-Document Search Title: Iron Pyrite Thin Films Synthesized from an Fe(acac)subscript 3 Ink...

  16. Solvent Tuning of Properties of Iron-Sulfur Clusters in Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Proteins Figure 1. Schematic repre-sentation of the common active-site iron-sulfur cluster structural motif. Proteins containing Fe4S4 iron-sulfur clusters are ubiquitous in...

  17. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility ...

  18. Magnetic states of the two-leg-ladder alkali metal iron selenides...

    Office of Scientific and Technical Information (OSTI)

    states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Prev Next Title: Magnetic states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Authors: Luo, ...

  19. High-strength iron aluminide alloys

    SciTech Connect (OSTI)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  20. Studies of anisotropy of iron based superconductors

    SciTech Connect (OSTI)

    Murphy, Jason

    2013-05-15

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, {Delta}{lambda}#1;#21;(T), have been measured in several compounds, along with the angular dependent upper critical field, H{sub c2}(T). Study was undertaken on single crystals of Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature {Delta}{lambda}#1;#21;(T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was #12;tted with a power-law function {Delta}{lambda}#1;#21;(T) = AT{sup n}. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s{sub {+-}}#6; scenario for the whole doping range. Knowing that the s{sub {+-}}#6; gap symmetry exists across the superconducting dome for the electron doped systems, we next looked at {lambda}#21;(T), in optimally - doped, SrFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}, x =0.35. Both, as-grown (T{sub c} ~ #25;25 K) and annealed (T{sub c} ~ #25;35 K) single crystals of SrFe{sub 2}(As{sub 1-x}P{sub x}){sub 2} were measured. Annealing decreases the absolute value of the London penetration depth from #21;{lambda}(0) = 300 {+-}#6; 10 nm in as-grown samples to {lambda}#21;(0) = 275{+-}#6;10 nm. At low temperatures, {lambda}#21;(T) #24;~ T indicates a superconducting gap with line nodes. Analysis of the full-temperature range superfluid density is consistent with the line nodes, but differs from the simple single-gap d-wave. The observed behavior is very similar to that of BaFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}, showing that isovalently substituted pnictides are inherently

  1. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  2. Bandwidth Study U.S. Iron and Steel Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel Manufacturing Bandwidth Study U.S. Iron and Steel Manufacturing Bandwidth Study U.S. Iron and Steel Manufacturing Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in

  3. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    SciTech Connect (OSTI)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-17

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930 deg. C for 90 min and then austempered in fluidized bed at 380 deg. C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  4. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    SciTech Connect (OSTI)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E. Jr.

    2007-02-02

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.

  5. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect (OSTI)

    Mulac, B.L.; Edwards, G.R.; Burt, R.P.; David, S.A.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  6. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect (OSTI)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  7. Friedel-Like Oscillations from Interstitial Iron in Superconducting...

    Office of Scientific and Technical Information (OSTI)

    Fe1+yTe0.62Se0.38 Citation Details In-Document Search Title: Friedel-Like Oscillations from Interstitial Iron in Superconducting Fe1+yTe0.62Se0.38 Using polarized and ...

  8. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect (OSTI)

    Bartholomew, C H

    1991-02-14

    Progress is reported for a four-year fundamental investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which were to (1) determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation and (2) model the global rates of deactivation at the surface of the catalyst for the same catalysts. A computer-automated reactor system to be used in the kinetic and deactivation studies was designed, constructed and tested. Kinetic data for CO hydrogenation on unsupported, unpromoted iron, 99% Fe/1% Al{sub 2}O{sub 3}, and K-promoted 99% Fe/1% Al{sub 2}O{sub 3} catalysts were obtained as functions of temperature, reactant particle pressures and time. The activity/selectivity and kinetic data are consistent with those previously reported for supported, unpromoted and promoted iron. Two kinds of deactivation were observed during FT synthesis on these samples: (1) loss of surface area after reduction of unsupported, unpromoted iron at 400{degree}C and (2) loss of activity with time due to carbon deposition, especially in the case of K-promoted 99% Fe/1% A1{sub 2}O{sub 3}. Deactivation rate data were obtained for CO hydrogenation on promoted Fe as a function of time, temperature, and H{sub 2}/CO ratio. 50 refs., 24 figs., 5 tabs.

  9. Weldability of nickel and iron aluminides

    SciTech Connect (OSTI)

    Ash, D.I.; Edwards, G.R. ); Maguire, M.C. )

    1990-01-01

    The weldability of alloys based on Ni{sub 3}Al and Fe{sub 3}Al is discussed. Both of these ordered alloy systems may experience problems associated with welding. In the case of Ni{sub 3}Al alloys, limited hot ductility contributes to heat-affected zone cracking. Fe{sub 3}Al alloys experience similar difficulties in zone cracking. Fe{sub 3}Al alloys experience similar difficulties in welding due to excessive grain embrittlement due to the presence of water vapor. Advances in both alloying and substructural refinement to improve the weldability are reviewed. 18 refs., 10 figs.

  10. Iron-lithium anode for thermal battery

    SciTech Connect (OSTI)

    Winchester, C.S.

    1987-06-23

    This patent describes a lithium anode for use in a thermal battery having a composite material comprising lithium and a particulate metal capable of being wetted by molten lithium, but only slightly or not alloyable with the lithium. The composite anode material is positioned adjacent a metal collector element the improvement comprising: a metal screen positioned between and substantially co-extensive with the anode composite and the metal collector element. The anode is thereby spaced apart from the element but is in electrical contact and the screen is electrically conductive.

  11. The role of SO{sub 4}{sup 2?} surface distribution in arsenic removal by iron oxy-hydroxides

    SciTech Connect (OSTI)

    Tresintsi, S.; Simeonidis, K.; Pliatsikas, N.; Vourlias, G.; Patsalas, P.; Mitrakas, M.

    2014-05-01

    This study investigates the contribution of chemisorbed SO{sub 4}{sup 2?} in improving arsenic removal properties of iron oxy-hydroxides through an ion-exchange mechanism. An analytical methodology was developed for the accurate quantification of sulfate ion (SO{sub 4}{sup 2?}) distribution onto the surface and structural compartments of iron oxy-hydroxides synthesized by FeSO{sub 4} precipitation. The procedure is based on the sequential determination of SO{sub 4}{sup 2?} presence in the diffuse and Stern layers, and the structure of these materials as defined by the sulfate-rich environments during the reaction and the variation in acidity (pH 312). Physically sorbed SO{sub 4}{sup 2?}, extracted in distilled water, and physically/chemically adsorbed ions on the oxy-hydroxide's surface leached by a 5 mM NaOH solution, were determined using ion chromatography. Total sulfate content was gravimetrically measured by precipitation as BaSO{sub 4}. To validate the suggested method, results were verified by X-ray photoelectron and Fourier-transformed infrared spectroscopy. Results showed that low precipitation pH-values favor the incorporation of sulfate ions into the structure and the inner double layer, while under alkaline conditions ions shift to the diffuse layer. - Graphical abstract: An analytical methodology for the accurate quantification of sulfate ions (SO{sub 4}{sup 2?}) distribution onto the diffuse layer, the Stern layer and the structure of iron oxy-hydroxides used as arsenic removal agents. - Highlights: Quantification of sulfate ions presence in FeOOH surface compartments. Preparation pH defines the distribution of sulfates. XPS and FTIR verify the presence of SO{sub 4}{sup 2?} in the structure, the Stern layer the diffuse layer of FeOOH. Chemically adsorbed sulfates control the arsenic removal efficiency of iron oxyhydroxides.

  12. Integration of nonlinear dielectric barium strontium titanate with polycrystalline yttrium iron garnet

    SciTech Connect (OSTI)

    Jia, Q.X.; Groves, J.R.; Arendt, P.; Fan, Y.; Findikoglu, A.T.; Foltyn, S.R.; Jiang, H.; Miranda, F.A.

    1999-03-01

    Biaxially oriented nonlinear dielectric Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) films have been grown on polycrystalline ferrite yttrium iron garnet (YIG) substrates. We use a structurally and chemically compatible MgO buffer to improve the crystallinity of the BST on polycrystalline YIG substrates, where the biaxially oriented MgO is deposited by an ion-beam assisted-deposition technique. The biaxially oriented BST has a dielectric loss of less than 0.01 and a capacitance tunability of greater than 25{percent} at a direct current bias voltage of 40 V at room temperature. {copyright} {ital 1999 American Institute of Physics.}

  13. High-strength iron aluminide alloys

    SciTech Connect (OSTI)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  14. Alteration of Iron-Rich Lacustrine Sediments by Dissimilatory Iron-Reducing Bacteria

    SciTech Connect (OSTI)

    Crowe,S.; Roberts, J.; Weisener, C.; Fowle, D.

    2007-01-01

    The reduction of Fe during bacterial anaerobic respiration in sediments and soils not only causes the degradation of organic matter but also results in changes in mineralogy and the redistribution of many nutrients and trace metals. Understanding trace metal patterns in sedimentary rocks and predicting the fate of contaminants in the environment requires a detailed understanding of the mechanisms through which they are redistributed during Fe reduction. In this work, lacustrine sediments from Lake Matano in Indonesia were incubated in a minimal media with the dissimilatory iron reducing (DIR) bacterium Shewanella putrefaciens 200R. These sediments were reductively dissolved at rates slower than pure synthetic goethite despite the presence of an 'easily reducible' component, as defined by selective extractions. DIR of the lacustrine sediments resulted in the substrate-dependent production of abundant quantities of extracellular polymeric substances. Trace elements, including Ni, Co, P, Si, and As, were released from the sediments with progressive Fe reduction while Cr was sequestered. Much of the initial trace metal mobility can be attributed to the rapid reduction of a Mn-rich oxyhydroxide phase. The production of organo-Fe(III) reveals that DIR bacteria can generate significant metal complexation capacity. This work demonstrates that DIR induces the release of many elements associated with Fe-Mn oxyhydroxides, despite secondary mineralization.

  15. Efficiency Improvements - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Efficiency Improvements - 2016 June Dual-Purpose Positioner Installed on NIF March A NIF Record: 17 Shots in a Week January Improving Optics Processing Efficiencies

  16. Hydropower Process Improvements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Improvements William J. Palmer Hydropower Program Manager South Atlantic Division 2 April 2015 BUILDING STRONG Focus Areas For Process Improvements InspectionsCondition ...

  17. Iron Aerogel and Xerogel Catalysts for Fischer-Tropsch Synthesis of Diesel Fuel

    SciTech Connect (OSTI)

    Bali, S.; Huggins, F; Huffman, G; Ernst, R; Pugmire, R; Eyring, E

    2009-01-01

    Iron aerogels, potassium-doped iron aerogels, and potassium-doped iron xerogels have been synthesized and characterized and their catalytic activity in the Fischer-Tropsch (F-T) reaction has been studied. Iron aerogels and xerogels were synthesized by polycondensation of an ethanolic solution of iron(III) chloride hexahydrate with propylene oxide which acts as a proton scavenger for the initiation of hydrolysis and polycondensation. Potassium was incorporated in the iron aerogel and iron xerogel by adding aqueous K{sub 2}CO{sub 3} to the ethanolic solutions of the Fe(III) precursor prior to addition of propylene oxide. Fischer-Tropsch activities of the catalysts were tested in a fixed bed reactor at a pressure of 100 psi with a H{sub 2}:CO ratio of 2:1. Iron aerogels were found to be active for F-T synthesis, and their F-T activities increased on addition of a K containing promoter. Moessbauer spectroscopic data are consistent with an open, nonrigid iron(III) aerogel structure progressing to an iron carbide/metallic iron catalyst via agglomeration as the F-T synthesis proceeds in the course of a 35 h fixed bed reaction test.

  18. Use of bimodal carbon distribution in compacts for producing metallic iron nodules

    DOE Patents [OSTI]

    Iwasaki, Iwao

    2014-04-08

    A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.

  19. Use of bimodal carbon distribution in compacts for producing metallic iron nodules

    DOE Patents [OSTI]

    Iwasaki, Iwao

    2012-10-16

    A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.

  20. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. [Tenth] quarterly technical progress report, 1 January--31 March 1989

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1989-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  1. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Sixth quarterly technical progress report, 1 January--31 March 1988

    SciTech Connect (OSTI)

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst comparisons. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  2. Arsenic Sequestration By Sorption Processes in High-Iron Sediments

    SciTech Connect (OSTI)

    Root, R.A.; Dixit, S.; Campbell, K.M.; Jew, A.D.; Hering, J.G.; O'Day, P.A.

    2009-06-04

    High-iron sediments in North Haiwee Reservoir (Olancha, CA), resulting from water treatment for removal of elevated dissolved arsenic in the Los Angeles Aqueduct system, were studied to examine arsenic partitioning between solid phases and porewaters undergoing shallow burial. To reduce arsenic in drinking water supplies, ferric chloride and a cationic polymer coagulant are added to the aqueduct upstream of Haiwee Reservoir, forming an iron-rich floc that scavenges arsenic from the water. Analysis by synchrotron X-ray absorption spectroscopy (XAS) showed that the aqueduct precipitate is an amorphous hydrous ferric oxide (HFO) similar to ferrihydrite, and that arsenic is associated with the floc as adsorbed and/or coprecipitated As(V). Arsenic-rich floc and sediments are deposited along the inlet channel as aqueduct waters enter the reservoir. Sediment core samples were collected in two consecutive years from the edge of the reservoir along the inlet channel using 30- or 90-cm push cores. Cores were analyzed for total and extractable arsenic and iron concentrations. Arsenic and iron speciation and mineralogy in sediments were examined at selected depths by synchrotron XAS and X-ray diffraction (XRD). Sediment-porewater measurements were made adjacent to the core sample sites using polyacrylamide gel probe samplers. Results showed that sediment As(V) is reduced to As(III) in all cores at or near the sediment-water interface (0--4 cm), and only As(III) was observed in deeper sediments. Analyses of EXAFS spectra indicated that arsenic is present in the sediments mostly as a bidentate-binuclear, inner-sphere sorption complex with local atomic geometries similar to those found in laboratory studies. Below about 10 cm depth, XAS indicated that the HFO floc had been reduced to a mixed Fe(II, III) solid with a local structure similar to that of synthetic green rust (GR) but with a slightly contracted average interatomic Fe-Fe distance in the hydroxide layer. There was no

  3. Solid-solid phase transition measurements in iron

    SciTech Connect (OSTI)

    Schwartz, Cynthia Louise

    2010-01-01

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the Los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy mUlti-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where radiographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {mu}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {mu}m/5.251 km/s = 50 ns. Both Boettger and Jensen conclude that the

  4. Kinetics of Solid-Solid Phase Transition in Iron (u)

    SciTech Connect (OSTI)

    Schwartz, Cynthia, L

    2011-01-27

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy multi-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where rad iographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {micro}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {micro}m/5.251 km/s = 50 ns. Both Boettger1 & Jensen2 conclude that

  5. Synthesis of carbon-coated iron nanoparticles by detonation technique

    SciTech Connect (OSTI)

    Sun, Guilei, E-mail: sunguilei@126.com [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China)] [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China); Li, Xiaojie, E-mail: dalian03@vip.sina.com [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)] [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China); Wang, Qiquan [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China)] [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China); Yan, Honghao [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)] [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)

    2010-05-15

    Carbon-coated iron nanoparticles were synthesized by detonating a mixture of ferrocene, naphthalene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an explosion vessel under low vacuum conditions (8.1 kPa). The RDX functioned as an energy source for the decomposition of ferrocene and naphthalene. The carbon-coated iron nanoparticles were formed as soot-like deposits on the inner surface of the reactor, which were characterized by XRD, TEM, HRTEM, Raman spectroscopy and vibrating sample magnetometer. And a portion of the detonation soot was treated with hydrochloric acid. The product was carbon-coated nanoparticles in perfect core-shell structures with graphitic shells and bcc-Fe cores. The detonation technique offers an energy-saving route to the synthesis of carbon-coated nanomaterials.

  6. Weldability of Fe sub 3 Al based iron aluminide alloys

    SciTech Connect (OSTI)

    Zacharia, T.; Maziasz, P.J.; David, S.A.; McKamey, C.G.

    1992-01-01

    An investigation was carried out to determine the weldability of Fe{sub 3}Al type alloys. Sigmajig tests of a commercial heat of FA-129 alloy indicate that hot-cracking may not be a problem for this alloy. Additionally, several new Fe{sub 3}Al based iron aluminides were evaluated for weldability. The preliminary results are encouraging and suggest that some of these alloys have comparable or better weldability than FA-129 based iron-aluminides. For the first time, successful welds, without hot or cold cracking, were made on 13 mm (0.5 in.) thick plates from a commercial heat of FA-129 using the proper choice of welding conditions and parameters.

  7. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  8. Iron beam acceleration using direct plasma injection scheme

    SciTech Connect (OSTI)

    Okamura, M.; Kanesue, T.; Yamamoto, T.; Fuwa, Y.; RIKEN, Wako, Saitama 351-0198

    2014-02-15

    A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

  9. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Korenko, Michael K.

    1980-01-01

    A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime phase, the alloy consisting essentially of about 40 to 50% nickel, 7.5 to 14% chromium, 1.5 to 4% niobium, 0.3 to 0.75% silicon, 1 to 3% titanium, 0.1 to 0.5% aluminum, 0.02 to 1% carbon, 0.002 to 0.0015% boron and the remain substantially all iron. To obtain optimal results, the alloy is cold-worked 20 to 60% followed by heating at 1050.degree. C. for 1/2 hour with an air-cool plus heating at 800.degree. C. for 2 hours with a furnace cool to 625.degree. C. The alloy is then held at 625.degree. C. for 12 hours, followed by an air-cool.

  10. Iron aluminide alloy container for solid oxide fuel cells

    DOE Patents [OSTI]

    Judkins, Roddie Reagan; Singh, Prabhakar; Sikka, Vinod Kumar

    2000-01-01

    A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.

  11. Brooklyn Union develops tool for replacing steel, cast iron mains

    SciTech Connect (OSTI)

    Marazzo, J.J. )

    1994-12-01

    Over the last 10 years, Brooklyn Union Gas Co. has undergone significant changes in the methods it has used to install gas service and gas main systems. Recently, Brooklyn Union engineers developed a user friendly method of replacing steel and cast iron gas mains and service lines with same size or larger polyethylene pipe without using conventional trench excavation. The system, known as the ''Bullet'' pipe replacement system, involves splitting steel and cast iron pipe using a series of rolling cutter wheels. After consecutive cutting wheels completely penetrate both pipe and fittings, both pipe and soil are spread with an expander and new polyethylene pipe is inserted. The ''Bullet'' pipe splitting system for 1[1/4] in. (32 mm) through 6 in. (150 mm) diameter has been developed.

  12. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Merrick, Howard F.; Korenko, Michael K.

    1982-01-01

    A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a bimodal distribution of gamma prime phase within a network of dislocations, the alloy consisting essentially of about 25% to 45% nickel, 10% to 16% chromium, 1.5% to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025.degree. C. to 1075.degree. C. for 2-5 minutes, cold-worked about 20% to 60%, aged at a temperature of about 775.degree. C. for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650.degree. C. to 700.degree. C. for 2 hours followed by an air-cool.

  13. Gamma prime hardened nickel-iron based superalloy

    DOE Patents [OSTI]

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  14. The world`s first commercial iron carbide plant

    SciTech Connect (OSTI)

    Prichard, L.C.; Schad, D.

    1995-12-01

    The paper traces the development of Nucor`s investigation of clean iron unit processes, namely, direct reduction, and the decision to build and operate the world`s first commercial iron carbide plant. They first investigated coal based processes since the US has abundant coal reserves, but found a variety of reasons for dropping the coal-based processes from further consideration. A natural gas based process was selected, but the failure to find economically priced gas supplies stopped the development of a US based venture. It was later found that Trinidad had economically priced and abundant supplies of natural gas, and the system of government, the use of English language, and geographic location were also ideal. The cost estimates required modification of the design, but the plant was begun in April, 1993. Start-up problems with the plant are also discussed. Production should commence shortly.

  15. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Not Available

    1980-04-03

    A method is described for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime, the alloy consisting essentially of about 25 to 45% nickel, 10 to 16% chromium, 1.5 to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025 to 1075/sup 0/C for 2 to 5 minutes, cold-worked about 20 to 60%, aged at a temperature of about 775/sup 0/C for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650 to 700/sup 0/C for 2 hours followed by an air-cool.

  16. Low resistivity contact to iron-pnictide superconductors

    DOE Patents [OSTI]

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud'ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  17. Magnetism and Superconductivity Compete in Iron-based Superconductors |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Magnetism and Superconductivity Compete in Iron-based Superconductors Wednesday, April 30, 2014 HTSC Figure 1 Fig. 1. Measured electronic structure of underdoped Ba1-xKxFe2As2 in the orthorhombic spin-density-wave (SDW) ordered state. The antiferromagnetic and ferromagnetic directions are indicated by arrows. High-temperature superconductivity (HTSC), one of the long-standing unsolved mysteries of condensed matter physics, is a beautiful example of

  18. Methods for making a supported iron-copper catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  19. Bifunctional air electrodes containing elemental iron powder charging additive

    DOE Patents [OSTI]

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  20. Processing Iron Pyrite Nanocrystals for Use in Solar Cells - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Processing Iron Pyrite Nanocrystals for Use in Solar Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryFor solar energy to become an economically viable energy source, alternative semiconductor materials to be used in solar cells must be found. Silicon, the longtime standard for solar cells, is expensive to process and in ever-growing demand.

  1. Technology development for iron F-T catalysts. Final report

    SciTech Connect (OSTI)

    Frame, R.R.; Gala, H.B.

    1994-08-01

    The objectives of this work were twofold. The first objective was to design and construct a pilot plant for preparing precipitated iron oxide F-T precursors and demonstrate that the rate of production from this plant is equivalent to 100 lbs/day of dried metal oxide. Secondly, these precipitates were to be used to prepare catalysts capable of achieving 88% CO + H{sub 2} conversion with {le} 5 mole percent selectivity to methane + ethane.

  2. Method of fabricating a prestressed cast iron vessel

    DOE Patents [OSTI]

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  3. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect (OSTI)

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  4. Coal Fly Ash as a Source of Iron in Atmospheric Dust

    SciTech Connect (OSTI)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A.; Scherer, Michelle; Grassian, Vicki H.

    2012-01-18

    Anthropogenic coal fly ash aerosols may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made to compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report an investigation of the iron dissolution of three fly ash samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust, a reference material of mineral dust. The effects of pH, cloud processing, and solar irradiation on Fe solubility were explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provide predominant dissolved iron compared with iron in oxides. Iron solubility of fly ash is higher than Arizona test dust, especially at the higher pH conditions investigated. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology aluminosilicate glass, a dominantly material in fly ash particle. Iron continuously releases into the aqueous solution as fly ash particles break up into smaller fragments. The assessment of dissolved atmospheric iron deposition fluxes, and their effect on the biogeochemistry at ocean surface should be constrained by taking into account the source, environment pH, Fe speciation, and solar radiation.

  5. Interface driven magnetic interactions in nanostructured thin films of iron nanocrystallites embedded in a copper matrix

    SciTech Connect (OSTI)

    Desautels, R. D. Lierop, J. van; Shueh, C.; Lin, K.-W.; Freeland, J. W.

    2015-05-07

    We have fabricated thin films of iron nanocrystallites embedded in a copper matrix using a dual ion beam assisted deposition technique. A secondary End-Hall ion beam bombarded the iron atoms during deposition altering significantly the morphology of the films and allowing for control of the intermixing between iron and copper components. Cross-sectional transmission electron microscopy and x-ray reflectometry experiments indicated that the morphology of the films was that of iron nanocrystallites embedded in a copper matrix. Rietveld refinements of the diffraction pattern identified fcc-copper and amorphous iron. An increased amount of disorder was observed with a reduction in the amount of deposited iron from a 1:1 Fe:Cu ratio to 0.25:0.75 Fe:Cu ratio. Interfacial copper-iron alloys were identified by DC susceptibility experiments through their reduced T{sub C,Alloy} (370, 310, and 280 K) compared with that of bulk iron (∼1000 K). Element specific x-ray absorption and x-ray magnetic circular dichroism experiments were performed to identify the contributions to the magnetism from the iron and the copper-iron alloy.

  6. Effects of W on microstructure of as-cast 28 wt.%Cr–2.6 wt.%C–(0–10)wt.%W irons

    SciTech Connect (OSTI)

    Imurai, S.; Thanachayanont, C.; Pearce, J.T.H.; Tsuda, K.; Chairuangsri, T.

    2015-01-15

    Microstructures of as-cast 28 wt.%Cr–2.6 wt.%C irons containing (0–10)wt.%W with the Cr/C ratio about 10 were studied and related to their hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the irons with 1 to 10 wt.%W addition was hypereutectic containing large primary M{sub 7}C{sub 3}, whereas the reference iron without W addition was hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. The volume fractions of primary M{sub 7}C{sub 3} and the total carbides increased, but that of eutectic carbides decreased with increasing the W content of the irons. W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M{sub 23}C{sub 6}. At about 4 wt.%W, two eutectic carbides including M{sub 7}C{sub 3} and M{sub 6}C were observed together with primary M{sub 7}C{sub 3}. At 10 wt.%W, multiple carbides including primary M{sub 7}C{sub 3}, fish-bone M{sub 23}C{sub 6}, and M{sub 6}C were observed. M{sub x}C where x = 3 or less has not been found due possibly to the high M/C ratio in the studied irons. W distribution to all carbides has been determined increasing from ca. 0.3 to 0.8 in mass fraction as the W content in the irons was increased. W addition led to an increase in Vickers macro-hardness of the irons up to 671 kgf/(mm){sup 2} (HV30/15) obtained from the iron with 10 wt.%W. The formation of primary M{sub 7}C{sub 3} and aggregates of M{sub 6}C and M{sub 23}C{sub 6} were the main reasons for hardness increase, indicating potentially improved wear performance of the as-cast irons with W addition. - Highlights: • W addition at 1 up to 10 wt.%W to Fe–28Cr–2.6C produced “hypereutectic” structure. • W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M

  7. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    SciTech Connect (OSTI)

    Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

    2008-10-09

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a

  8. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect (OSTI)

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the

  9. The Effects of Iron Complexing Ligands on the Long Term Ecosystem Response to Iron Enrichment of HNLC waters

    SciTech Connect (OSTI)

    Mark L. Wells; Mary Jane Perry; William P. Cochlan; Charles G. Trick

    2006-11-18

    The central hypothesis of this project is that natural iron-complexing organic ligands in seawater differentially regulate iron availability to large (microplankton) and small (nano and picoplankton) class of phytoplankton and thereby strongly influence the potential carbon sequestration in High Nitrate Low Chlorophyll (HNLC) regions of the ocean. The primary project goals are to: 1) determine how different natural and synthetic Fe chelators affect Fe availability to phytoplankton species that are representative of offshore HNLC waters, 2) elucidate how the changes in absolute concentrations of these chelators affect the longer-term ecosystem response to alleviation of Fe limitation, and 3) ascertain how changes in the ligand composition affect rates of cell sinking and aggregation - representative measures of the efficiency of carbon sequestration to the deep.

  10. Mssbauer study of metallic iron and iron oxide nanoparticles having environmental purifying ability

    SciTech Connect (OSTI)

    Kubuki, Shiro Watanabe, Yuka Akiyama, Kazuhiko; Risti?, Mira; Krehula, Stjepko; Homonnay, Zoltn; Kuzmann, Ern?; Nishida, Tetsuaki

    2014-10-27

    A relationship between local structure and methylene blue (MB) decomposing ability of nanoparticles (NPs) of metallic iron (Fe{sup 0}) and maghemite (??Fe{sub 2}O{sub 3}) was investigated by {sup 57}Fe Mssbauer spectroscopy, X-ray diffractometry and UV-visible light absorption spectroscopy. ??Fe{sub 2}O{sub 3} NPs were successfully prepared by mixing (NH{sub 4}){sub 2}Fe(SO{sub 4}){sub 2}?6H{sub 2}O (Mohr's salt) and (NH{sub 4}){sub 3}Fe(C{sub 2}O{sub 4}){sub 3}?3H{sub 2}O aqueous solution at 30 C for 1 h, while those of Fe{sup 0} were obtained by the reduction of Mohr's salt with NaBH{sub 4}. From the Scherrer's equation, the smallest crystallite sizes of ??Fe{sub 2}O{sub 3} NPs and Fe{sup 0} NPs were determined to be 9.7 and 1.5 nm, respectively. {sup 57}Fe Mssbauer spectrum of ??Fe{sub 2}O{sub 3} NPs consists of a relaxed sextet with isomer shift (?) of 0.33{sub 0.01} mm s{sup ?1}, internal magnetic field (H{sub int}) of 25.8{sub 0.5} T, and linewidth (?) of 0.62{sub 0.04} mm s{sup ?1}. {sup 57}Fe Mssbauer spectrum of Fe{sup 0} NP is mainly composed of a sextet having ?, ?, and H{sub int} of 0.00{sub 0.01} mm s{sup ?1} 0.45{sub 0.01} mm s{sup ?1}, and 22.8{sub 0.1} T, respectively. A bleaching test of the mixture of Fe{sup 0} and ??Fe{sub 2}O{sub 3} NPs (3:7 ratio, 100 mg) in MB aqueous solution (20 mL) for 6 h showed a remarkable decrease of MB concentration with the first-order rate constant (k{sub MB}) of 6.7 10{sup ?1} h{sup ?1}. This value is larger than that obtained for the bleaching test using bulk Fe{sup 0}+??Fe{sub 2}O{sub 3} (3:7) mixture (k{sub MB}?=?6.510{sup ?3}h{sup ?1}). These results prove that MB decomposing ability is enhanced by the NPs mixture of Fe{sub 0} and ??Fe{sub 2}O{sub 3}.

  11. Fe sub 3 Al-type iron aluminides: Aqueous corrosion properties in a range of electrolytes and slow-strain-rate ductilities during aqueous corrosion

    SciTech Connect (OSTI)

    Buchanan, R.A.; Kim, J.G. . Dept. of Materials Science and Engineering)

    1992-08-01

    The Fe{sub 3}Al-type iron aluminides have undergone continued development at the Oak Ridge National Laboratory for enhancement of mechanical and corrosion properties. Improved alloys and thermomechanical processing methods have evolved. The overall purpose of the project herein described was to evaluate the aqueous corrosion properties of the most recent alloy compositions in a wide range of possibly-aggressive solutions and under several different types of corrosion-test conditions. The work supplements previous aqueous-corrosion studies on iron aluminides by the present authors. Four stages of this one-year aqueous-corrosion investigation are described. First the corrosion properties of selected iron aluminides were evaluated by means of electrochemical tests and longer-time immersion tests in a range of acidic, basic and chloride solutions. Theses tests were performed under non-crevice conditions, i.e. the specimens were not designed to contain crevice geometries. Second, the iron-aluminide alloy that proved most resistance to chloride-induced localized corrosion under non-crevice conditions was further evaluated under more-severe crevice conditions by electrochemical and immersion testing. Third, in order to study the relative roles of Fe, Al, Cr and Mo in the formation of passive films, the chemical compositions of passive films were determined by X-ray photoelectron spectroscopy (XPS). And fourth, in order to study aqueous-corrosion effects on the ductilities of iron aluminides as related to hydrogen embrittlement and/or stress-corrosion cracking, slow-strain-rate corrosion (SSRC) tests were conducted over a range of electrochemical potentials.

  12. Fe{sub 3}Al-type iron aluminides: Aqueous corrosion properties in a range of electrolytes and slow-strain-rate ductilities during aqueous corrosion

    SciTech Connect (OSTI)

    Buchanan, R.A.; Kim, J.G.

    1992-08-01

    The Fe{sub 3}Al-type iron aluminides have undergone continued development at the Oak Ridge National Laboratory for enhancement of mechanical and corrosion properties. Improved alloys and thermomechanical processing methods have evolved. The overall purpose of the project herein described was to evaluate the aqueous corrosion properties of the most recent alloy compositions in a wide range of possibly-aggressive solutions and under several different types of corrosion-test conditions. The work supplements previous aqueous-corrosion studies on iron aluminides by the present authors. Four stages of this one-year aqueous-corrosion investigation are described. First the corrosion properties of selected iron aluminides were evaluated by means of electrochemical tests and longer-time immersion tests in a range of acidic, basic and chloride solutions. Theses tests were performed under non-crevice conditions, i.e. the specimens were not designed to contain crevice geometries. Second, the iron-aluminide alloy that proved most resistance to chloride-induced localized corrosion under non-crevice conditions was further evaluated under more-severe crevice conditions by electrochemical and immersion testing. Third, in order to study the relative roles of Fe, Al, Cr and Mo in the formation of passive films, the chemical compositions of passive films were determined by X-ray photoelectron spectroscopy (XPS). And fourth, in order to study aqueous-corrosion effects on the ductilities of iron aluminides as related to hydrogen embrittlement and/or stress-corrosion cracking, slow-strain-rate corrosion (SSRC) tests were conducted over a range of electrochemical potentials.

  13. Studies on the reduction kinetics of hematite iron ore pellets with noncoking coals for sponge iron plants

    SciTech Connect (OSTI)

    Kumar, M.; Mohapatra, P.; Patel, S.K.

    2009-07-01

    In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integral and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.

  14. Superexchange and iron valence control by off-stoichiometry in yttrium iron garnet thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Dumont, Y.; Keller, N.; Popova, E.; Schmool, D.S.; Bhattacharya, S.; Stahl, B.; Tessier, M.; Guyot, M.

    2005-05-15

    Controlled off-stoichiometric single phase polycrystalline yttrium iron garnet (YIG) thin films have been grown by pulsed laser deposition, adjusting the oxygen partial pressure P{sub O2} between 5 and 400 mTorr. Atomic stoichiometry by RBS shows an oxygen deficiency for P{sub O2}iron and yttrium deficiency for P{sub O2}>P{sub stoich}. P{sub stoich}=30 mTorr refers to films showing magnetic and structural properties of the bulk stoichiometric YIG. Curie temperature T{sub c} and saturation magnetization 4{pi}Ms decreased for P{sub O2}P{sub stoich}: Increase of Tc (up to +10%) and of 4{pi}Ms (up to +20%) and lattice parameter compression. Microscopic interpretation is given in terms of superexchange interaction and creation and site selectivity of iron vacancies.

  15. Laboratory study related to the production and properties of pig iron nuggets

    SciTech Connect (OSTI)

    Anameric, B.; Kawatra, S.K.

    2006-02-15

    Pig iron nuggets were produced in a laboratory-scale furnace at Michigan Technological University. The process was intended to replicate Kobe Steel's ITmk3 direct ironmaking process. These nuggets were produced from pellets that were made from a mixture of iron oxide, coal, flux and a binder and heated in a furnace with a chamber temperature of 1450{sup o}C. The pellets then self-reduced to produce a solid, high-density, highly metallized (96.5% Fe) pig iron. During the nugget production process, a separate liquid slag phase formed that cleanly separated from the molten metal. The physical and chemical properties of the pig iron nuggets were similar to pig iron produced by blast furnaces, which is distinct from direct reduced iron (DRI).

  16. Improved technical specifications

    SciTech Connect (OSTI)

    Hoffman, D.R.

    1994-12-31

    Improved technical specifications for nuclear power plants are outlined. The objectives of this work are to improve safety, provide a clearer understanding of safety significance, and ease NRC and industry administrative burdens. Line item improvements, bases, and implementation of the specifications are discussed.

  17. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    SciTech Connect (OSTI)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  18. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect (OSTI)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1?, IL-6, and TNF-?), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: Iron supplementation at high altitudes induced lung histological changes in rats. Iron induced oxidative stress in lung tissues of rats at high altitudes. Iron increased

  19. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    SciTech Connect (OSTI)

    Lee, Seung-Min [Department of Biological Sciences, University of Columbia, NY (United States) [Department of Biological Sciences, University of Columbia, NY (United States); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Attieh, Zouhair K. [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon) [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Son, Hee Sook [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of) [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Chen, Huijun [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China) [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Bacouri-Haidar, Mhenia [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon) [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Vulpe, Chris D., E-mail: vulpe@berkeley.edu [Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  20. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    SciTech Connect (OSTI)

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  1. Assessing the Role of Iron Sulfides in the Long Term Sequestration...

    Office of Scientific and Technical Information (OSTI)

    effort conducted at Arizona State University (ASU) and the University of Michigan (UM). ... precipitation, the mineralogical characteristics of the iron sulfides, and how uranium ...

  2. Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys

    SciTech Connect (OSTI)

    Bethel, E Wes; Brugger, Eric

    2011-01-01

    Supercomputing centers are unique resources that aim to enable scientific knowledge discovery by employing large computational resources - the 'Big Iron.' Design, acquisition, installation, and management of the Big Iron are carefully planned and monitored. Because these Big Iron systems produce a tsunami of data, it's natural to colocate the visualization and analysis infrastructure. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys doesn't receive the same level of treatment as that of the Big Iron. This article explores the following questions about the Little Iron: How should we size the Little Iron to adequately support visualization and analysis of data coming off the Big Iron? What sort of capabilities must it have? Related questions concern the size of visualization support staff: How big should a visualization program be - that is, how many Skinny Guys should it have? What should the staff do? How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?

  3. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  4. Molten iron oxysulfide as a superior sulfur sorbent

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-01-01

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for determining the most effective operating conditions of the first stage of a combustor are calculated for several Illinois coals. These conditions include contact of the gas with the phase combinations: CaO/CaSO{sub 4}, CaO/CaS, and Fe/FeO/liquid for the temperature range 950{degree} to 1300{degree}C. In the latter system, the minimum dosage of iron required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of SO{sub 2} per million Btu of heat evolution calculated for complete combustion. The calculations indicate that for the Fe-O-S system, higher temperatures give better results approaching 96 percent sulfur removal from a coal containing 4.2% sulfur. For this example, the stack gas emerging from the second stage of combustion under stoichiometric conditions would contain 0.36 pounds of SO{sub 2} per million BTU's of heat generated. The temperature limits of the sulfate and sulfide forming reactions are defined.

  5. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    SciTech Connect (OSTI)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E.., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2006-12-13

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxyhydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au L{sub III}-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl){sub 4}), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution--Multi Site Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.

  6. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Efficiency Champions Designated in Alaska Community Efficiency Champions Designated in Alaska February 18, 2016 - 6:49pm Addthis Energy Department Secretary Ernest Moniz visited Alaska this week and recognized the Community Efficiency Champions who have pledged to improve energy efficiency and lower energy costs through the Remote Alaskan Communities Energy Efficiency Competition. Energy Department Secretary Ernest Moniz visited Alaska this week and recognized the Community Efficiency

  7. Kinetics of fatigue cracks in iron in electrolytic hydrogen impregnation

    SciTech Connect (OSTI)

    Pokhmurskii, V.I.; Bilyi, L.M.

    1985-05-01

    Fatigue failure of metals is localized in the zone of plastic deformation at the tip of the developing crack. Crack development depends to a large extent upon the parameters of the deformed volume, the loading conditions, and features of the material microstructure. It may be assumed that the medium, especially a hydrogen-impregnating medium, leads to a change in the zone of plastic deformation and thereby influences the rate of fatigue crack growth. This work is devoted to a study of cyclic crack resistance and determination of the zone of plastic deformation of failure specimens of Armco iron under conditions of the action of a hydrogen-impregnating medium.

  8. Iron catalyst for preparation of polymethylene from synthesis gas

    DOE Patents [OSTI]

    Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY)

    1990-01-01

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a cabon monoxide containing gas to a product which could substitute for high density polyethylene.

  9. New iron catalyst for preparation of polymethylene from synthesis gas

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.

    1988-03-31

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  10. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  11. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1981-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen enviroment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode.

  12. An Octahedral Coordination Complex of Iron(VI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the most abundant transition element on earth, and is typically found in formal oxidation states of either II or III. However, high valent Fe(IV) and Fe(V) complexes are invoked in the mechanisms of both heme and non-heme enzymes; and Fe(VI) is known to exist in the mineral ferrate.[1] Ferrate is a powerful oxidant, which has been used in soil and wastewater treatment, batteries, and disinfectants; however, it is unstable and often indiscriminately reactive. This has driven chemists to

  13. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.; Franco, Sofia C. S.

    1994-01-01

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  14. Ergonomic Improvements for Foundries

    SciTech Connect (OSTI)

    Frank Peters; Patrick Patterson

    2002-06-18

    The goal of this project was to make improvements to the production systems of the steel casting industry through ergonomic improvements. Because of the wide variety of products, the wide range of product sizes, and the relatively small quantities of any particular product, manual operations remain a vital part of the production systems of the steel casting companies. Ergonomic improvements will assist the operators to more efficiently and consistently produce quality products.

  15. Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst

    SciTech Connect (OSTI)

    Sarkar,A.; Jacobs, G.; Ji, Y.; Hamdeh, H.; Davis, B.

    2008-01-01

    Rubidium promoted iron Fischer-Tropsch synthesis (FTS) catalysts were prepared with two Rb/Fe atomic ratios (1.44/100 and 5/100) using rubidium nitrate and rubidium carbonate as rubidium precursors. Results of catalytic activity and deactivation studies in a CSTR revealed that rubidium promoted catalysts result in a steady conversion with a lower deactivation rate than that of the corresponding unpromoted catalyst although the initial activity of the promoted catalyst was almost half that of the unpromoted catalyst. Rubidium promotion results in lower methane production, and higher CO2, alkene and 1-alkene fraction in FTS products. M{umlt o}ssbauer spectroscopic measurements of CO activated and working catalyst samples indicated that the composition of the iron carbide phase formed after carbidization was -Fe5 C2 for both promoted and unpromoted catalysts. However, in the case of the rubidium promoted catalyst, '-Fe2.2C became the predominant carbidic phase as FTS continued and the overall catalyst composition remained carbidic in nature. In contrast, the carbide content of the unpromoted catalyst was found to decline very quickly as a function of synthesis time. Results of XANES and EXAFS measurements suggested that rubidium was present in the oxidized state and that the compound most prevalent in the active catalyst samples closely resembled that of rubidium carbonate.

  16. Technology Development for Iron Fischer-Tropsch Catalysis.

    SciTech Connect (OSTI)

    Davis, B.H.

    1997-12-16

    The goal of the proposed work is the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The catalyst that is developed will be suitable for testing at the Advanced Fuels Development Facility at LaPorte, Texas or similar sized plant. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the `standard-catalyst` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  17. Electron uptake by iron-oxidizing phototrophic bacteria

    SciTech Connect (OSTI)

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  18. Discharge model for the lithium iron-phosphate electrode

    SciTech Connect (OSTI)

    Srinivasan, Venkat; Newman, John

    2004-02-28

    This paper develops a mathematical model for lithium intercalation and phase change in an iron phosphate-based lithium-ion cell in order to understand the cause for the low power capability of the material. The juxtaposition of the two phases is assumed to be in the form of a shrinking core, where a shell of one phase covers a core of the second phase. Diffusion of lithium through the shell and the movement of the phase interface are described and incorporated into a porous electrode model consisting of two different particle sizes. Open-circuit measurements are used to estimate the composition ranges of the single-phase region. Model-experimental comparisons under constant current show that ohmic drops in the matrix phase, contact resistances between the current collector and the porous matrix, and transport limitations in the iron phosphate particle limit the power capability of the cells. Various design options, consisting of decreasing the ohmic drops, using smaller particles, and substituting the liquid electrolyte by a gel are explored, and their relative importance discussed. The model developed in this paper can be used as a means of optimizing the cell design to suit a particular application.

  19. Thermo-Mechanical Processing and Properties of a Ductile Iron

    SciTech Connect (OSTI)

    Syn, C.K.; Lesuer, R.R.; Sherby, O.D.

    1997-07-14

    Thermo-mechanical processing of ductile irons is a potential method for enhancing their mechanical properties. A ductile cast iron containing 3.6% C, 2.6% Si and 0.045% Mg was continuously hot-and-warm rolled or one-step press-forged from a temperature in the austenite range (900{degrees}C-1100{degrees}C) to a temperature below the A, temperature. Various amounts of reduction were used (from 60% to more than 90%) followed by a short heat ent at 600`C. The heat ent lead to a structure of fine graphite in a matrix of ferrite and carbides. The hot-and- warm worked materials developed a pearlitic microstructure while the press-forged material developed a spheroidite-like carbide microstructure in the matrix. Cementite-denuded ferrite zones were developed around graphite stringers in the hot-and-warm worked materials, but such zones were absent in the press-forged material. Tensile properties including tensile strength and total elongation were measured along the direction parallel and transverse to the rolling direction and along the direction transverse to the press-forging direction. The tensile ductility and strength both increased with a decrease in the amount of hot-and-warm working. The press- forged materials showed higher strength (645 MPa) than the hot-and-warrn worked materials (575 MPa) when compared at the same ductility level (22% elongation).

  20. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect (OSTI)

    Bartholomew, C.H.

    1990-10-11

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for Fischer-Tropsch (FT) synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the thirteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made on the testing of the system hardware and software. H{sub 2} chemisorption capacities and activity selectivity data were also measured for three iron catalysts promoted with 1% alumina. 47 refs., 8 figs., 1 tab.

  1. Technology development for iron fisher-tropsch catalysis

    SciTech Connect (OSTI)

    Davis, B.H.

    1997-07-15

    The goal of the proposed work is the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. the catalyst that is developed will be suitable for testing at the Advanced Fuels Development Facility at LaPorte, Texas or similar sized plant. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the standard-catalyst developed by German workers for slurry phase synthesis, The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. the oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studies at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity, and aging characteristics.

  2. Sublattice Magnetic Relaxation in Rare Earth Iron Garnets

    SciTech Connect (OSTI)

    McCloy, John S.; Walsh, Brian

    2013-07-08

    The magnetic properties of rare earth garnets make them attractive materials for applications ranging from optical communications to magnetic refrigeration. The purpose of this research was to determine the AC magnetic properties of several rare earth garnets, in order to ascertain the contributions of various sublattices. Gd3Fe5O¬12, Gd3Ga5O12, Tb3Fe5O12, Tb3Ga5O12, and Y3Fe5O12 were synthesized by a solid state reaction of their oxides and verified by x-ray diffraction. Frequency-dependent AC susceptibility and DC magnetization were measured versus temperature (10 – 340 K). Field cooling had little effect on AC susceptibility, but large effect on DC magnetization, increasing magnetization at the lowest temperature and shifting the compensation point to lower temperatures. Data suggest that interaction of the two iron lattices results in the two frequency dependent magnetic relaxations in the iron garnets, which were fit using the Vogel-Fulcher and Arrhenius laws.

  3. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  4. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    SciTech Connect (OSTI)

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits and environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.

  5. Iron Fertilization of the Southern Ocean: Regional Simulation and Analysis of C-Sequestration in the Ross Sea

    SciTech Connect (OSTI)

    Kevin Arrigo

    2012-03-13

    A modified version of the dynamic 3-dimensional mesoscale Coupled Ice, Atmosphere, and Ocean model (CIAO) of the Ross Sea ecosystem has been used to simulate the impact of environmental perturbations upon primary production and biogenic CO2 uptake. The Ross Sea supports two taxonomically, and spatially distinct phytoplankton populations; the haptophyte Phaeocystis antarctica and diatoms. Nutrient utilization ratios predict that P. antarctica and diatoms will be driven to nitrate and phosphate limitation, respectively. Model and field data have confirmed that the Ross Sea is iron limited with only two-thirds of the macronutrients consumed by the phytoplankton by the end of the growing season. In this study, the CIAO model was improved to simulate a third macronutrient (phosphate), dissolved organic carbon, air-sea gas exchange, and the carbonate system. This enabled us to effectively model pCO2 and subsequently oceanic CO2 uptake via gas exchange, allowing investigations into the affect of alleviating iron limitation on both pCO2 and nutrient drawdown.

  6. GLASSES CONTAINING IRON (II III) OXIDES FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM

    SciTech Connect (OSTI)

    KRUGER AA; HEO J; XU K; CHOI JK; HRMA PR; UM W

    2011-11-07

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as {approx} 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to {approx}50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  7. Evolution of iron-containing defects during processing of Si solar cells

    SciTech Connect (OSTI)

    Mchedlidze, Teimuraz Weber, Jrg; Mller, Christian; Lauer, Kevin

    2014-12-28

    The formation of iron-containing defects was studied during the fabrication process of a Si solar cell. Three Cz-Si crystals with different iron content in the feedstock were grown for the study. Iron-containing defects in and near-to the n{sup +}p-junction volume (NJV) of the cells are formed directly after phosphorus diffusion due to an inflow of iron atoms from the dissolving iron-silicide precipitates. These NJV-defects strongly affect the dark saturation current of the junctions. Partial dissolution or gettering of the NJV-defects during formation of the antireflection coating is accompanied by an increase in defect concentrations in the bulk of the cell. Further deterioration of bulk carrier lifetime during the formation of electrical contacts is related to the partial dissolution of remaining iron-silicide precipitates during the firing process. A general description of the defect evolution in iron-contaminated wafers during solar cell processing is presented and possible strategies for reducing the influence of iron-containing defects are proposed.

  8. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese

    DOE Patents [OSTI]

    Wagh, Arun S.; Jeong, Seung-Young

    2002-01-01

    A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.

  9. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOE Patents [OSTI]

    Jothimurugesan, Kandaswamy; Goodwin, Jr., James G.; Gangwal, Santosh K.

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  10. Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys

    SciTech Connect (OSTI)

    Bethel, E. Wes; van Rosendale, John; Southard, Dale; Gaither, Kelly; Childs, Hank; Brugger, Eric; Ahern, Sean

    2010-12-01

    Supercomputing Centers (SC's) are unique resources that aim to enable scientific knowledge discovery through the use of large computational resources, the Big Iron. Design, acquisition, installation, and management of the Big Iron are activities that are carefully planned and monitored. Since these Big Iron systems produce a tsunami of data, it is natural to co-locate visualization and analysis infrastructure as part of the same facility. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys does not receive the same level of treatment as that of the Big Iron. The main focus of this article is to explore different aspects of planning, designing, fielding, and maintaining the visualization and analysis infrastructure at supercomputing centers. Some of the questions we explore in this article include:"How should the Little Iron be sized to adequately support visualization and analysis of data coming off the Big Iron?" What sort of capabilities does it need to have?" Related questions concern the size of visualization support staff:"How big should a visualization program be (number of persons) and what should the staff do?" and"How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?"

  11. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    SciTech Connect (OSTI)

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  12. Improved wire chamber

    DOE Patents [OSTI]

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  13. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  14. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    SciTech Connect (OSTI)

    Westre, T.E.

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s{yields}3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  15. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2004-04-27

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  16. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2004-07-28

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  17. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon; Reina Calderon

    2004-01-27

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  18. Iron (II) and Silicate Effects on Mineralization and Immobilzation of Actinides

    SciTech Connect (OSTI)

    Tyler A. Sullens; Cynthia-May S. Gong; Kenneth R. Szerwinski

    2006-01-01

    Abstract - The unique composition of the Yucca Mountain repository site, which contains large concentrations of silicate in an oxidative environment, has required extensive research into compound formation involving uranium and iron(II) under such conditions. The possibility of uranium leakage from within the containment vessels into the near-field ground water, as well as iron leaching from the vessel itself, necessitates study of the individual contributions of these elements for compound formation. By mimicking the known silicate concentration found in surrounding ground water and varying concentrations of both uranyl and iron(II), subsequent precipitation of uranyl silicate phases has shown evidence of iron(II) sorption to the available sites on the mineral surface. The mineralization seems to be driven by the formation of uranyl silicate, in contrast to iron(III)-control of precipitation in the oxidated system. Characterization of this system presented includes ICP-AES analysis as well as preliminary EDAX, XRD, and FT-IR

  19. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-01-25

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  20. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-01-26

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  1. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2006-01-30

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  2. Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project

    SciTech Connect (OSTI)

    Albert Calderon

    2007-03-31

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase 1 was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  3. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-07-29

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  4. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2006-04-19

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

  5. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2004-10-28

    This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

  6. A study of kinetics and mechanisms of iron ore reduction in ore/coal composites

    SciTech Connect (OSTI)

    Sun, S.; Lu, W.K.

    1996-12-31

    Blast furnace ironmaking technology, by far the most important ironmaking process, is based on coke and iron ore pellets (or sinter) to produce liquid iron. However, there has been a worldwide effort searching for a more economical and environmental friendly alternative process for the production of liquid iron. The essential requirement is that it should be minimized in the usage of metallurgical coke and agglomerate of iron ore concentrates. With iron ore concentrate and coal as raw materials, there are two approaches: (a) Smelting reduction; melting the ore before reduction; (b) Reduction of the ore in solid state followed by melting. The present work is on the fundamentals of the latter. It consists of a better designed experimental study including pressure gradient measurement, and a more rigorous non-isothermal and non-isobaric mathematical model. Results of this work may be applied to carbothermic processes, such as FASTMET and LB processes, as well as recycling of fines in steel plants.

  7. The nature of iron deposits differs between symptomatic and asymptomatic carotid atherosclerotic plaques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopriva, David; Kisheev, Anastasye; Meena, Deiter; Pelle, Shaneen; Karnitsky, Max; Lavoie, Andrea; Buttigieg, Josef; Hagemeyer, Christoph E.

    2015-11-25

    Iron within atherosclerotic plaque has been implicated as a catalyst of oxidative stress that causes progression of plaque, and plaque rupture. Iron is believed to accumulate within plaque by incorporation of erythrocytes following plaque rupture and hemorrhage. There is only indirect evidence to support this hypothesis. Plaque specimens were obtained from ten symptomatic and fifteen asymptomatic patients undergoing carotid endarterectomy at a single institution. Plaques were sectioned for study using synchrotron radiation induced X-ray fluorescence the study the distribution of zinc, calcium and iron. Histologic staining was carried out with Prussian Blue, and immunohistochemical staining was done to localize macrophagesmore » with CD68. Data were compared against patient clinical variables. Ten symptomatic (15 ± 10 days between index symptoms and surgery) and fifteen asymptomatic carotid plaques were studied. Zinc and calcium co-localized in mineralized areas of symptomatic and asymptomatic plaque. Iron was identified away from zinc and calcium in both symptomatic and asymptomatic plaques. Within the symptomatic plaques, iron was found within the thrombus associated with plaque rupture and hemorrhage. It did not stain with Prussian Blue, but was found in association with CD68 positive macrophages. In symptomatic plaques, the abundance of iron showed an association with the source patient’s LDL cholesterol (R2 = 0.39, Significance F = 0.05). Iron in asymptomatic plaque was present as hemosiderin/ferritin that stained positive with Prussian Blue, and was observed in association with CD68 positive macrophages. Iron in acutely symptomatic plaques is found within thrombus, in the presence of macrophages. Moreover, the abundance of iron in symptomatic plaques is associated with the source patient’s LDL cholesterol. Within asymptomatic plaques, iron is found in association with macrophages, as hemosiderin/ferritin.« less

  8. The nature of iron deposits differs between symptomatic and asymptomatic carotid atherosclerotic plaques

    SciTech Connect (OSTI)

    Kopriva, David; Kisheev, Anastasye; Meena, Deiter; Pelle, Shaneen; Karnitsky, Max; Lavoie, Andrea; Buttigieg, Josef; Hagemeyer, Christoph E.

    2015-11-25

    Iron within atherosclerotic plaque has been implicated as a catalyst of oxidative stress that causes progression of plaque, and plaque rupture. Iron is believed to accumulate within plaque by incorporation of erythrocytes following plaque rupture and hemorrhage. There is only indirect evidence to support this hypothesis. Plaque specimens were obtained from ten symptomatic and fifteen asymptomatic patients undergoing carotid endarterectomy at a single institution. Plaques were sectioned for study using synchrotron radiation induced X-ray fluorescence the study the distribution of zinc, calcium and iron. Histologic staining was carried out with Prussian Blue, and immunohistochemical staining was done to localize macrophages with CD68. Data were compared against patient clinical variables. Ten symptomatic (15 ± 10 days between index symptoms and surgery) and fifteen asymptomatic carotid plaques were studied. Zinc and calcium co-localized in mineralized areas of symptomatic and asymptomatic plaque. Iron was identified away from zinc and calcium in both symptomatic and asymptomatic plaques. Within the symptomatic plaques, iron was found within the thrombus associated with plaque rupture and hemorrhage. It did not stain with Prussian Blue, but was found in association with CD68 positive macrophages. In symptomatic plaques, the abundance of iron showed an association with the source patient’s LDL cholesterol (R2 = 0.39, Significance F = 0.05). Iron in asymptomatic plaque was present as hemosiderin/ferritin that stained positive with Prussian Blue, and was observed in association with CD68 positive macrophages. Iron in acutely symptomatic plaques is found within thrombus, in the presence of macrophages. Moreover, the abundance of iron in symptomatic plaques is associated with the source patient’s LDL cholesterol. Within asymptomatic plaques, iron is found in association with macrophages, as hemosiderin/ferritin.

  9. Bainitic transformation in austempered ductile iron with reference to untransformed austenite volume phenomenon

    SciTech Connect (OSTI)

    Ahmadabadai, M.N.

    1997-10-01

    Much interest has been focused on austempered ductile iron (ADI) because of its superior mechanical properties, which might be improved by further control of microstructure. It has so far been assumed that segregation of alloying elements in the intercellular region just delays bainitic reaction in these regions. However, the existence of bainite-free regions (UAV) even after 10,000 minutes at test temperature, e.g., 375 C, indicates something intrinsic to the mechanism of bainitic transformation. The bainitic transformation start (B{sub s}) temperature is a function of alloying elements; segregation of alloying elements can also alter the B{sub s} temperature. In other words, B{sub s} temperature in the region near graphite should be different from the intercellular region. Therefore, the intercellular region with higher concentration of alloying elements such as Mn should have a lower B{sub s} temperature, which leads to formation of UAV even after a long high-temperature austempering time (hereafter, this stable UAV will be named as the minimum UAV value). To examine this concept, theoretical and experimental procedures were employed.

  10. IEA Energy conservation in the iron and steel industry. [US and Western Europe

    SciTech Connect (OSTI)

    Tunnah, B.G.

    1981-01-01

    The NATO Committee on the Challenges of Modern Society research program, under the auspices of the IEA, had the objectives of collecting data on material requirements and energy-consumption patterns in selected energy-intensive industries in the US and Western Europe, of identifying technologies and operating practices with the potential for energy conservation in those industries, and of recommending research projects that could lead to improved energy efficiency. The steel industry was selected for analysis and ideas for an international cooperative program were developed. Representatives from various countries conducted meetings and the form of an implementing agreement for a research and development program was finalized in December, 1980. The program includes three technical areas: hot-surface inspection, heat recovery, and coal gasification. Hot-surface inspection methods to be demonstrated are: optical, induction, electromagnetic ultrasonic, electromagnetic ultrasonic surface testing methods, and eddy current method for hot surface inspection and an infrared system (possibly). Three heat-recovery projects are: ceramic heat wheel development; demonstration of granular bed/heat pipe system for heat recovery; and demonstration of tubular ceramic recuperators. Processes in coal gasification are: converter process, gas treatment, and iron treatment. Each project is described in detail. (MCW)

  11. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    SciTech Connect (OSTI)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R.

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  12. Evaluation of lead-iron-phosphate glass as a high-level waste form

    SciTech Connect (OSTI)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure.

  13. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    SciTech Connect (OSTI)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu.

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  14. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect (OSTI)

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  15. Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.; Hautier, Geoffroy; Ceder, Gerbrand; Whittingham, M. Stanley

    2015-10-15

    The mixed-metal phases, (Li{sub 2}Mn{sub 1-y}Fe{sub y}P{sub 2}O{sub 7}, 0 {le} y {le} 1), were synthesized using a 'wet method', and found to form a solid solution in the P2{sub 1}/a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+ oxidation state for both the Mn and Fe. The electrochemical capacity improves as the Fe concentration increases, as do the intensities of the redox peaks of the cyclic voltammogram, indicating higher lithium-ion diffusivity in the iron phase. The two Li{sup +} ions in the three-dimensional tunnel structure of the pyrophosphate phase allows for the cycling of more than one lithium per redox center. Cyclic voltammograms show a second oxidation peak at 5 V and 5.3 V, indicative of the extraction of the second lithium ion, in agreement with ab initio computation predictions. Thus, electrochemical capacities exceeding 200 Ah/kg may be achieved if a stable electrolyte is found.

  16. Behavior of melts during softening and melting down of iron ore sinter under load

    SciTech Connect (OSTI)

    Cho, Y.H.

    1995-12-01

    In order to achieve effective operation in the blast furnace, the distribution control and quality improvement of burden materials are very important. In spite of the difficulties in obtaining suitable samples and making direct observation, significant progress including the placement of probes into the stack, tuyere drilling and laboratory simulation studies has been made. Investigation of the behavior of melts during softening and melting down was carried out in the temperature range of 800 C to 1,515 C. In this report, emphasis is given to investigating the mineral formation and properties of melts during softening and melting down of the iron ore sinter. Sized coke layers were placed above and below the sample to maintain uniform upward flow of gas and insure a smooth downward flow of melts. When the temperature of the sample reached the set point during the test the power was shut off and the sample was cooled in the furnace air. The weight, the height, porosity and contraction of each sample were measured. Chemical composition, observation of microstructures, SEM analysis and X-ray diffraction analysis were conducted. Results are presented.

  17. Evaluation of two lower-melting electrolytes in lithium silicon/iron disulfide thermal batteries

    SciTech Connect (OSTI)

    Morella, A.T.

    1991-08-02

    Two new thermal battery electrolyte materials were investigated with the intent of extending the life of lithium silicon/iron disulfide [Li(Si)/FeS{sub 2}] thermal batteries. These new electrolyte materials freeze at a lower temperature than the standard electrolyte, which should extend the life of the thermal batteries in which they are used. Sandia National Laboratories (SNL), Albuquerque requested that the GE Neutron Devices (GEND) Power Sources Engineering group evaluate these new electrolytes in 40 MC3575 thermal batteries and compare the performance to an established data base. It was found that the batteries using the lower-melting electrolytes performed equal to or better than the batteries in the data base using the standard LiCl/KCl electrolyte at the same test conditions. The usage of these electrolytes increased the battery life, suppressed the voltage spikes, reduced heat requirements, shortened battery stack heights, and produced faster rise times. All of these improvements would merit further investigation of the new electrolyte materials.

  18. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  19. Improving Meningococcal Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Improving Manufacturing through Technology and Innovation Improving Manufacturing through Technology and Innovation June 20, 2016 - 11:12am Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient and competitive. | Advanced Manufacturing Office video. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy KEY FACTS Since February 2010, the U.S. manufacturing sector has added more than 800,000 jobs.

  20. Infrastructure Improvements - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Improvements As the designated Community Reuse Organization for the Department of Energy's (DOE) Savannah River Site (SRS), our 22-member citizen-led Board of Directors has undertaken a study to point out the critical need for improving the deteriorating infrastructure at SRS. Priority attention needs to be made now to maximize SRS contributions and potential in the years ahead. SRS has all the assets required in people, land, expertise and community support to continue to play a