Powered by Deep Web Technologies
Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Research highlights potential for improved solar cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for improved solar cells Research highlights potential for improved solar cells Research has shown that carrier multiplication is a real phenomenon in tiny semiconductor...

2

Nontoxic quantum dot research improves solar cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Nontoxic quantum dot research improves solar cells Nontoxic quantum dot research improves solar cells Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve...

3

Improving the design of solar cells  

Science Conference Proceedings (OSTI)

Improving the design of solar cells. Photovoltaic (PV) systems convert the sun's light directly to electrical power by absorption ...

2012-10-02T23:59:59.000Z

4

Solar Cell Modules With Improved Backskin  

SciTech Connect

A laminated solar cell module comprises a front light transmitting support, a plurality of interconnected solar cells encapsulated by a light-transmitting encapsulant material, and an improved backskin formed of an ionomer/nylon alloy. The improved backskin has a toughness and melting point temperature sufficiently great to avoid any likelihood of it being pierced by any of the components that interconnect the solar cells.

Gonsiorawski, Ronald C. (Danvers, MA)

2003-12-09T23:59:59.000Z

5

Improved monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, M.W.

1991-04-23T23:59:59.000Z

6

Improved Dye-Sensitized Solar Cell (DSSC) for Higher Energy ...  

solar cells to potentially compete with fossil fuels. Improved Dye-Sensitized Solar Cell (DSSC) for Higher Energy Conversion Efficiency Page 1 of 1 Data Update

7

Argonne CNM Highlight: Improved Hybrid Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Hybrid Solar Cells Improved Hybrid Solar Cells inorganic-organic hybrid photovoltaic (PV) cells imade of highly ordered titanium dioxide (TiO2) nanotube arrays filled with solid organic hole conductors such as conjugated polymers One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered titanium dioxide (TiO2) nanotube arrays with solid organic hole conductors such as conjugated polymers. Center for Nanoscale Materials researchers and collaborative users from the University of Chicago present a new in situ ultraviolet (UV) polymerization method for growing polythiophene inside TiO2 nanotubes and compare this method to the conventional approach of infiltrating nanotubes with presynthesized polymer. A nanotubular TiO2 substrate is immersed in a 2,5-diiodothiophene (DIT)

8

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization  

E-Print Network (OSTI)

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization Sanja Tepavcevic, Seth B-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples mobility of the photoactive layer can be enhanced. 1. Introduction Hybrid solar cells have been developed

Sibener, Steven

9

Available Technologies:Improved Amorphous Silicon Solar Cells  

Solar cells; Large solar panels; ADVANTAGES. Increased performance ; Less expensive than crystalline silicon solar cells; Enables thinner, lighter solar panels;

10

Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials  

E-Print Network (OSTI)

Solar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using Propulsion Laboratory, California Institute of Technology, Mail Stop T1714 106, 4800 Oak Grove Drive and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

Dowling, Jonathan P.

11

Improved Amorphous Silicon Solar Cells - Energy Innovation Portal  

Alex Zettl, Jeffrey Grossman and Lucas Wagner of Lawrence Berkeley National Laboratory have invented hydrogenated amorphous silicon solar cells with 30% improved ...

12

Toward Improved Hybrid Solar Cells (IN-07-053)  

In an effort to help build a sufficient supply of clean energy, scientists from Argonne National Laboratory have developed a method to create improved hybrid solar cells through the ultraviolet polymerization of a polymer precursor.

13

Improved Dye-Sensitized Solar Cell (DSSC) for Higher Energy ...  

A University of Colorado research group led by Rich Noble has developed a novel approach to dye-sensitized solar cells that increases solar-to-electrical energy ...

14

Berkeley Lab Sheds Light on Improving Solar Cell Efficiency  

DOE Green Energy (OSTI)

Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material at the dislocations. He was purportedly the first to show that they were 'decorated' with iron.

Lawrence Berkeley National Laboratory

2007-07-20T23:59:59.000Z

15

Improved Electrodes and Electrolytes for Dye-Based Solar Cells  

SciTech Connect

The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

2011-10-26T23:59:59.000Z

16

Improved hybrid solar cells via in situ UV-polymerization.  

DOE Green Energy (OSTI)

One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO{sub 2} nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO{sub 2} NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO{sub 2} substrate is immersed in a 2,5-diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C-I bond produces monomer radicals with intact {pi}-ring structure that further produce longer oligothiophene/PT molecules. Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO{sub 2} surface via a charge transfer complex. Coupling with the TiO{sub 2} surface improves UV-PT crystallinity and {pi}-{pi} stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of {approx} 5 {micro}A cm{sup -2} - surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO{sub 2} surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.

Tepavcevic, S.; Darling, S. B.; Dimitrijevic, N. M.; Rajh, T.; Sibener, S. J.; Univ. of Chicago

2009-08-03T23:59:59.000Z

17

Methods for improving solar cell open circuit voltage  

DOE Patents (OSTI)

A method for producing a solar cell having an increased open circuit voltage. A layer of cadmium sulfide (CdS) produced by a chemical spray technique and having residual chlorides is exposed to a flow of hydrogen sulfide (H.sub.2 S) heated to a temperature of 400.degree.-600.degree. C. The residual chlorides are reduced and any remaining CdCl.sub.2 is converted to CdS. A heterojunction is formed over the CdS and electrodes are formed. Application of chromium as the positive electrode results in a further increase in the open circuit voltage available from the H.sub.2 S-treated solar cell.

Jordan, John F. (El Paso, TX); Singh, Vijay P. (El Paso, TX)

1979-01-01T23:59:59.000Z

18

Methods For Improving Polymeric Materials For Use In Solar Cell Applications  

DOE Patents (OSTI)

A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

Hanoka, Jack I. (Brookline, MA)

2003-07-01T23:59:59.000Z

19

Methods For Improving Polymeric Materials For Use In Solar Cell Applications  

DOE Patents (OSTI)

A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

Hanoka, Jack I. (Brookline, MA)

2001-11-20T23:59:59.000Z

20

Improved Transparent Conducting Oxides Boost Performance of Thin-Film Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Today?s thin-film solar cells could not function without transparent conducting oxides (TCOs). TCOs act as a window, both protecting the cell and allowing light to pass through to the cell?s active layers. Until recently, TCOs were seen as a necessary, but static, layer of a thin-film photovoltaic (PV) cell. But a group of researchers at the National Renewable Energy Laboratory (NREL) has identified a pathway to producing improved TCO films that demonstrate higher infrared transparency. To do so, they have modified the TCOs in ways that did not seem possible a few years ago.

Not Available

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Efficiency improvement of solar cells by importing microdome-shaped anti-reflective structures as a surface protection layer  

Science Conference Proceedings (OSTI)

A novel dome-shaped and anti-reflective microdome array (MDA) was developed for a solar cell surface protection layer with the aim to improve the cell efficiency. Uniform microdomes in the array were obtained by isotropic wet-etching of quartz. The microdome ... Keywords: Anti-reflective coating, Isotropic etching, Microdome array (MDA), Polymer replica molding, Solar cell, Surface protection layer

Minwoo Nam; Jaejin Lee; Kee-Keun Lee

2011-08-01T23:59:59.000Z

22

Design of Zinc Oxide Based Solid-State Excitonic Solar Cell with Improved Efficiency  

E-Print Network (OSTI)

Excitonic photovoltaic devices, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, are attractive alternatives to conventional inorganic solar cells due to their potential for low cost and low temperature solution-based processing on flexible substrates in large scale. Though encouraging, they are currently limited by the efficiency from not yet optimized structural and material parameters and poor overall knowledge regarding the fundamental details. This dissertation aims to achieve improved performance of hybrid solar cells by enhancing material property and designing new device architecture. The study begins with the addition of XD-grade single-walled carbon nanotube (XDSWNT) into poly(3-hexylthiophene) (P3HT) to improve the current density. By having a weight ratio of XDSWNT and P3HT equaled to 0.1:1, short-circuit current was quadrupled from 0.12 mA cm-2 to 0.48 mA cm-2 and solar cell efficiency was tripled from 0.023% to 0.07%, compared to devices with pure P3HT as a hole transport material. Secondly, a significant improvement in device efficiency with 250 nm long ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increased from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers. Followed by the novel layer-by-layer self-assembly deposition process, the hybrid photoanode study was extended to the longer ZnO nanorod arrays. The best performance, 0.64%, was achieved when the thickness of the photoanodes equaled to 1.2 ?m. Finally, the photovoltaic devices were modified by adding ZnO nanoarpticles into P3HT to increase interfacial area between ZnO and P3HT. The efficiency was enhanced from 0.18% to 0.45% when the ZnO nanorod arrays were 625 nm in length. Our successful design of the device morphology significantly contributes to the performance of solid-state hybrid solar cells.

Lee, Tao Hua

2011-12-01T23:59:59.000Z

23

Better Internal Optics Can Improve III-V Solar Cell Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

that calculates external luminescent efficiency has potential to enhance performance of solar cells dominated by radiative recombination. Researchers at the National Renewable...

24

New Fabrication Method Improves the Efficiency and Economics of Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Synthetic fabrication strategy optimizes the illumination geometry and transport properties of dye-sensitized solar cells. Using oriented titanium oxide (TiO{sub 2}) nanotube (NT) arrays has shown promise for dye-sensitized solar cells (DSSCs). High solar conversion efficiency requires that the incident light enters the cell from the photoelectrode side. However, for NT-based DSSCs, the light normally enters the cell through the counter electrode because a nontransparent titanium foil is typically used as the substrate for forming the aligned NTs and for making electrical contact with them. It has been synthetically challenging to prepare transparent TiO{sub 2} NT electrodes by directly anodizing Ti metal films on transparent conducting oxide (TCO) substrates because it is difficult to control the synthetic conditions. National Renewable Energy Laboratory (NREL) researchers have developed a general synthetic strategy for fabricating transparent TiO{sub 2} NT films on TCO substrates. With the aid of a conducting Nb-doped TiO{sub 2} (NTO) layer between the Ti film and TCO substrate, the Ti film can be anodized completely without degrading the TCO. The NTO layer protects the TCO from degradation through a self-terminating mechanism by arresting the electric field-assisted dissolution process at the NT-NTO interface. NREL researchers found that the illumination direction and wavelength of the light incident on the DSSCs strongly influenced the incident photon-to-current conversion efficiency, light-harvesting, and charge-collection properties, which, in turn, affect the photocurrent density, photovoltage, and solar energy conversion efficiency. Researchers also examined the effects of NT film thickness on the properties and performance of DSSCs and found that illuminating the cell from the photoelectrode side substantially increased the conversion efficiency compared with illuminating it from the counter-electrode side. This method solves a key challenge in fabricating NT-based DSSCs and determines an optimal illumination direction to use in these cells. The synthetic fabrication strategy will improve the economics and conversion efficiency of DSSCs.

Not Available

2012-07-01T23:59:59.000Z

25

Solar cell modules with improved backskin and methods for forming same  

SciTech Connect

A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.

Hanoka, Jack I. (Brookline, MA)

1998-04-21T23:59:59.000Z

26

Improving PbS Quantum Dot Solar Cell Power Conversion Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

research team developed a new process that improves the efficiency of PbS quantum dot solar power conversion. Key Result By using a transition metal oxide in the quantum dot...

27

Efficiency Improvement of Crystalline Solar Cells: Final Subcontract Report, 1 January 2002 - 30 September 2006  

DOE Green Energy (OSTI)

UC-Berkeley study of transition metal related defects in PV-grade mc-Si to understand their pathways into solar cells; chemical state/distribution; interaction with structural defects; defect engineering.

Weber, E. R.

2007-11-01T23:59:59.000Z

28

Application of Vacancy Injection Gettering to Improve Efficiency of Solar Cells Produced by Millinet Solar: Cooperative Research and Development Final Report, CRADA Number CRD-10-417  

SciTech Connect

NREL will apply vacancy injection gettering (VIG) to Millinet solar cells and evaluate the performance improvement produced by this process step. The VIG will be done in conjunction with the formation of a back, Al-alloyed, contact. Millinet Solar will provide NREL with cells having AR coating on the front side and screen-printed Al on the backside, which will be processed in the NREL's optical furnace to perform simultaneous VIG and back contact alloying with deep BSF. These cells will be sent back to Millinet solar for a screen-printed front/side contact mask, followed by a second firing at NREL. Detailed analyses will be performed to determine improvements due to BSF and VIG.

Sopori, B.

2012-07-01T23:59:59.000Z

29

Nanocrystal Solar Cells  

E-Print Network (OSTI)

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

30

Diffraction: Enhanced Light Absorption of Solar Cells and ...  

Solar and Renewable Energy Photovoltaic Thin-film Solar Cells Space Solar Cells Polarization-Dependent Photodetectors BENEFITS Improved performance of

31

Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance  

Science Conference Proceedings (OSTI)

We report on CdS/CdTe photovoltaic devices that contain a thin Ta2O5 film deposited onto the CdS window layer by sputtering. We show that for thicknesses below 5 nm, Ta2O5 films between CdS and CdTe positively affect the solar cell performance, improving JSC, VOC, and the cell power conversion efficiency despite the insulating nature of the interlayer material. Using the Ta2O5 interlayer, a VOC gain of over 100 mV was demonstrated compared to a CdTe/CdS baseline. Application of a 1nm Ta2O5 interlayer enabled the fabrication of CdTe solar cells with extremely thin (less than 30 nm) CdS window layers. The efficiency of these cells exceeded that of a base line cell with 95 nm of CdS.

Lemmon, John P.; Polikarpov, Evgueni; Bennett, Wendy D.; Kovarik, Libor

2012-05-05T23:59:59.000Z

32

Solar Cells  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Here we are using microwaves for increasing the surface area of titania nanopowders for energy based applications like dye sensitized solar ...

33

Development of economical improved thick film solar cell contact. Final report, September 1978-April 1979  

DOE Green Energy (OSTI)

The potential for economy and efficiency has been demonstrated for the thick film metallization process using screen printing for solar cell electrodes. However, process reliability and materials economy remain deficient. It is believed that these deficiencies can be removed by the use of ink formulations designed specifically for silicon solar cells, departing from ceramic technology tradition and utilizing all metal systems. The objectives of this investigation are as follows: 1) eliminate the glass frit which has been the conventional liquid phase sintering medium and adhesive for metallization inks; 2) provide an appropriate metal which can serve as the liquid phase sintering medium; 3) find a chemical constituent which effectively removes the native oxide from the silicon during the firing step, which can be made part of the ink, and which either becomes fugitive or remains an inert part of the matured metallization; and 4) maintain cognizance of the cost objectives of the LSA Project in selecting materials and processes. Progress is reported. (WHK)

Ross, B.

1979-04-01T23:59:59.000Z

34

Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer  

DOE Patents (OSTI)

Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1980-01-01T23:59:59.000Z

35

The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells  

E-Print Network (OSTI)

broadly across the solar spectrum, have functional groupsbroadly across the solar spectrum. Open circuit voltages (Vabsorbing 80% of the solar spectrum from 350-900 nm would

Armstrong, Paul Barber

2010-01-01T23:59:59.000Z

36

Improved Energy Conversion Efficiency in Wide-Bandgap Cu(In,Ga)Se2 Solar Cells: Preprint  

DOE Green Energy (OSTI)

This report outlines improvements to the energy conversion efficiency in wide bandgap (Eg>1.2 eV) solar cells based on CuIn1-xGaxSe2. Using (a) alkaline containing high temperature glass substrates, (b) elevated substrate temperatures 600?C-650?C and (c) high vacuum evaporation from elemental sources following NREL's three-stage process, we have been able to improve the performance of wider bandgap solar cells with 1.218% for absorber bandgaps ~1.30 eV and efficiencies ~16% for bandgaps up to ~1.45 eV. In comparing J-V parameters in similar materials, we establish gains in the open-circuit voltage and, to a lesser degree, the fill factor value, as the reason for the improved performance. The higher voltages seen in these wide gap materials grown at high substrate temperatures may be due to reduced recombination at the grain boundary of such absorber films. Solar cell results, absorber materials characterization, and experimental details are reported.

Contreras, M.; Mansfield, L.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.

2011-07-01T23:59:59.000Z

37

Monolithic tandem solar cell  

DOE Patents (OSTI)

It is an object of the invention to provide a monolithic tandem photovoltaic solar cell which is highly radiation resistant and efficient; in which the energy bandgap of the lower subcell can be tailored for specific applications; solar cell comprising layers of InP and GaInAsP (or GaInAs), where said photovoltaic cell is useful, for example, in space power applications; having an improved power-to-mass ratio; in which subcells are lattice-matches; and are both two terminal and three terminal monolithic tandem photovoltaic solar cells. To achieve the foregoing and other objects and in accordance with the purpose of the present invention, as embodied and broadly described herein, the monolithic tandem photovoltaic solar cell may comprise; (a) an InP substrate having an upper surface; (b) a first photoactive subcell on the upper surface of the InP substrate; wherein the first subcell comprises GaInAs (which could include GaInAsP) and includes a homojunction; and (c) a second photoactive subcell on the first subcell; wherein the second subcell comprises InP and includes a homojunction. The cell is described in detail. 5 figs., 2 tabs.

Wanlass, M.W.

1989-11-03T23:59:59.000Z

38

Improved solar heating systems  

DOE Patents (OSTI)

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

39

Development of economical improved thick film solar cell contact. Extension final report, April-December 1979  

DOE Green Energy (OSTI)

In the second half of the investigation of all metal screened electrodes, the focus was on base metal pastes in addition to further work with the silver systems. Contact resistance measurements were refined. A facility allowing firing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed. A previously published vapor pressure curve for silver fluoride was corrected. Base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised based upon experimentation which gave evidence that the silver fluoride-silicon dioxide reaction was modified by the presence of hydrogen. It was found that nitrogen prefiring allowed the silver fluoride dissociation and oxide removal without causing catastrophic oxidation of the base metal powders. The subsequent hydrogen firing step reduced oxides tht had formed and gave the proper sintered structure. Electrodes were coherent, adherent, and solderable in both nickel lead and copper lead systems. Towards the end of the contractual period aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4'' diameter solar cell back contacts, both with good results (eta = 9.4% AM1 uncoated).

Ross, B.

1979-12-01T23:59:59.000Z

40

Silicon solar cell assembly  

DOE Patents (OSTI)

A silicon solar cell assembly comprising a large, thin silicon solar cell bonded to a metal mount for use when there exists a mismatch in the thermal expansivities of the device and the mount.

Burgess, Edward L. (Albuquerque, NM); Nasby, Robert D. (Albuquerque, NM); Schueler, Donald G. (Albuquerque, NM)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Amorphous silicon solar cells  

SciTech Connect

The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided. 136 references.

Takahashi, K.; Konagai, M.

1986-01-01T23:59:59.000Z

42

Solar Cell Silicon  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon. Sponsorship, The Minerals, Metals ...

43

Bilayer Polymer Solar Cells with Improved Power Conversion Efficiency and Enhanced Spectrum Coverage  

SciTech Connect

We demonstrate the construction of an efficient bilayer polymer solar cell comprising of Poly(3-hexylthiophene)(P3HT) as a p-type semiconductor and asymmetric fullerene (C{sub 70}) as n-type counterparts. The bilayer configuration was very efficient compared to the individual layer performance and it behaved like a regular p-n junction device. The photovoltaic characteristic of the bilayers were studied under AM 1.5 solar radiation and the optimized device parameters are the following: Voc = 0.5V, Jsc = 10.1 mA/cm{sup 2}, FF = 0.60 and power conversion efficiency of 3.6 %. A high fill factor of {approx}0.6 was achieved, which is only slightly reduced at very intense illumination. Balanced mobility between p-and n-layers is achieved which is essential for achieving high device performance. Correlation between the crystallinity, morphology and the transport properties of the active layers is established. The External quantum efficiency (EQE) spectral distribution of the bilayer devices with different processing solvents correlates well with the trends of short circuit current densities (J{sub sc}) measured under illumination. Efficiency of the bilayer devices with rough P3HT layer was found to be about 3 times higher than those with a planar P3HT surface. Hence it is desirable to have a larger grains with a rough surface of P3HT layer for providing larger interfacial area for the exciton dissociation.

Kekuda, Dhananjaya [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal, India 576 104 (India); Chu, Chih-Wei [Research Center for Applied Science, Academia Sinica, Taipei, Taiwan 300 13 (China)

2011-10-20T23:59:59.000Z

44

Hybrid Solar Cells via UV-Polymerization of Polymer Precursor  

AVAIL ABLE FOR L ICENSING New fabrication method results in high-performing solar cells The Invention A method to create improved hybrid solar cells through the ...

45

Improved performance of self-aligned, selective-emitter silicon solar cells  

DOE Green Energy (OSTI)

The authors improved a self-aligned emitter etchback technique that requires only a single emitter diffusion and no alignment to form self-aligned, patterned-emitter profiles. Standard commercial screen-printed gridlines mask a plasma-etchback of the emitter. A subsequent PECVD-nitride deposition provides good surface and bulk passivation and an antireflection coating. They used full-size multicrystalline silicon (mc-Si) cells processed in a commercial production line and performed a statistically designed multiparameter experiment to optimize the use of a hydrogenation treatment to increase performance. They obtained an improvement of almost a full percentage point in cell efficiency when the self-aligned emitter etchback was combined with an optimized 3-step PECVD-nitride surface passivation and hydrogenation treatment. They also investigated the inclusion of a plasma-etching process that results in a low-reflectance, textured surface on multicrystalline silicon cells. Preliminary results indicate reflectance can be significantly reduced without etching away the emitter diffusion.

Ruby, D.S.; Yang, P. [Sandia National Labs., Albuquerque, NM (United States); Zaidi, S.; Brueck, S. [Univ. of New Mexico, Albuquerque, NM (United States); Roy, M.; Narayanan, S. [Solarex, Frederick, MD (United States)

1998-08-01T23:59:59.000Z

46

Heterojunction solar cell  

DOE Patents (OSTI)

A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

Olson, J.M.

1994-08-30T23:59:59.000Z

47

Heterojunction solar cell  

DOE Patents (OSTI)

A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

Olson, Jerry M. (Lakewood, CO)

1994-01-01T23:59:59.000Z

48

Efficiency-improvement study for GaAs solar cells. Final report, March 31, 1980-September 30, 1981  

DOE Green Energy (OSTI)

High-yield fabrication of good quality AlGaAs/GaAs concentration solar cells has been a limiting factor in widespread utilization of these high conversion efficiency (22 to 24%) photovoltaic cells. Reported is a series of investigations to correlate solar cell yield with substrate quality, growth techniques, layer composition, and metallization processes. In addition, several diagnostic techniques are described to aid in device characterization.

Cape, J.A.; Oliver, J.R.; Zehr, S.W.

1982-04-01T23:59:59.000Z

49

Solar Cell Silicon  

Science Conference Proceedings (OSTI)

... continued and costs have been cut dramatically along the production value chain. The most important feedstock for crystalline solar cells is high purity silicon .

50

TiO2 Nanotubes with a ZnO Thin Energy Barrier for Improved Current Efficiency of CdSe Quantum-Dot-Sensitized Solar Cells  

Science Conference Proceedings (OSTI)

This paper reports the formation of a thin ZnO energy barrier between a CdSe quantum dot (Q dots) sensitizer and TiO{sub 2} nanotubes (TONTs) for improved current efficiency of Q dot-sensitized solar cells. The formation of a ZnO barrier between TONTs and the Q dot sensitizer increased the short-circuit current under illumination and also reduced the dark current in a dark environment. The power conversion efficiency of Q dot-sensitized TONT solar cells increased by 25.9% in the presence of the ZnO thin layer due to improved charge-collecting efficiency and reduced recombination.

Lee, W.; Kang, S. H.; Kim, J. Y.; Kolekar, G. B.; Sung, Y. E.; Han, S. H.

2009-01-01T23:59:59.000Z

51

Lateral superlattice solar cells  

DOE Green Energy (OSTI)

A novel structure which comprises of a lateral superlattice as the active layer of a solar cell is proposed. If the alternating regions A and B of a lateral superlattice ABABAB... are chosen to have a Type-II band offset, it is shown that the performance of the active absorbing region of the solar cell is optimized. In essence, the Type-II lateral superlattice region can satisfy the material requirements for an ideal solar cells active absorbing region, i.e. simultaneously having a very high transition probability for photogeneration and a very long minority carrier recombination lifetime.

Mascarenhas, A.; Zhang, Y. [National Renewable Energy Lab., Golden, CO (United States); Millunchick, J.M.; Twesten, R.D.; Jones, E.D. [Sandia National Labs., Albuquerque, NM (United States)

1997-10-01T23:59:59.000Z

52

Thermal Management of Solar Cells  

E-Print Network (OSTI)

Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,compact heat exchangers, and solar cells," Sci-Tech News,2011. C. J. Chen, Physics of Solar Energy: Wiley, 2011. M.

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

53

Photovoltaic solar cell  

DOE Patents (OSTI)

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26T23:59:59.000Z

54

Solar cell array interconnects  

DOE Patents (OSTI)

Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

1995-11-14T23:59:59.000Z

55

Solar cell array interconnects  

DOE Patents (OSTI)

Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

1995-01-01T23:59:59.000Z

56

Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

57

Silicon concentrator solar cell research  

DOE Green Energy (OSTI)

This report describes work conducted between December 1990 and May 1992 continuing research on silicon concentrator solar cells. The objectives of the work were to improve the performance of high-efficiency cells upon p-type substrates, to investigate the ultraviolet stability of such cells, to develop concentrator cells based on n-type substrates, and to transfer technology to appropriate commercial environments. Key results include the identification of contact resistance between boron-defused areas and rear aluminum as the source of anomalously large series resistance in both p- and n-type cells. A major achievement of the present project was the successful transfer of cell technology to both Applied Solar Energy Corporation and Solarex Corporation.

Green, M.A.; Zhao, J.; Wang, A.; Dai, X.; Milne, A.; Cai, S.; Aberle, A.; Wenham, S.R. [Univ. of New South Wales, Kensington, NSW (AU). Centre for Photovoltaic Devices and Systems

1993-06-01T23:59:59.000Z

58

Development of concentrator solar cells  

DOE Green Energy (OSTI)

A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

Not Available

1994-08-01T23:59:59.000Z

59

Quantum Dot Solar Cells: Preprint  

DOE Green Energy (OSTI)

Presented at the 2001 NCPV Program Review Meeting: Potential of quantum dot solar cells to increase the maximum attainable thermodynamic conversion efficiency of solar photoconversion to about 66%.

Nozik, A. J.

2001-10-01T23:59:59.000Z

60

Improved amorphous Si solar cells. Quarterly progress report, August 1-October 31, 1980  

DOE Green Energy (OSTI)

A model for explaining the growth, H incorporation and bandgap data in a-Si deposited from (SiF/sub 4/ + H/sub 2/) has been developed. It is proposed that the a-Si films are subjected to reactive ion etching and ion bombardment during growth, which may lead to lower defect densities (and hence lower H content) and microcrystallinity in doped films. A morphological study of B-doped a-Si:H has also been carried out. It is found that there are certain regions of pressure, temperature and relative B/sub 2/H/sub 6/ concentrations which lead to agglomerative growth. Study of drift mobility of electrons has continued. We have obtained very high drift mobilities, (approx. 0.8 cm/sup 2//V-sec) on thick films (approx. 3 ..mu..m). Thin films (approx. 1 ..mu..m) have significantly lower mobilities. It is proposed that this phenomenon is due to the existence of a transition layer between the substrate and high quality a-Si. We have continued nip device fabrication in a-Si:H. The following parameters have been obtained individually on cells of 0.24 cm/sup 2/ area. J/sub sc/ (internal) = 12 mA/cm/sup 2/ at 100 mW/cm/sup 2/, V/sub oc/ = 820 mV, and FF = 0.56 are obtained.

Dalal, V.L.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

Kaiser, Todd J.

62

Broad spectrum solar cell  

DOE Patents (OSTI)

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15T23:59:59.000Z

63

Thermal Management of Solar Cells  

E-Print Network (OSTI)

of the valence band. Solar radiation enters the p-n junctiona fraction of absorbed solar radiation energy is turned intoenclosure, the radiation energy from the solar cell light

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

64

Heterojunction solar cells  

DOE Green Energy (OSTI)

A qualitative description of semiconductor/semiconductor heterojunction solar cells is given. The two groups of heterojunctions of greatest economic potential, very highly efficient cells for concentrator applications and moderately efficient thin film cells for flat plates, are described with examples. These examples illustrate the role of heterojunctions in surface passivation, monolithic multijunction devices, devices with semiconductors of only one conductivity type, and low-temperature fabrication techniques.

Wagner, S.

1978-01-01T23:59:59.000Z

65

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45, -45, and...

66

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

Wanlass, Mark W. (Golden, CO)

1991-01-01T23:59:59.000Z

67

Mixed ternary heterojunction solar cell  

SciTech Connect

A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

1992-08-25T23:59:59.000Z

68

NREL Makes Substantial Progress in Developing CZTSe Solar Cells (Fact Sheet) (Revised)  

DOE Green Energy (OSTI)

By defining the deposition process, NREL has significantly improved the conversion efficiency of CZTSe solar cells.

Not Available

2011-11-01T23:59:59.000Z

69

Amorphous semiconductor solar cell  

SciTech Connect

A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

Dalal, Vikram L. (Newark, DE)

1981-01-01T23:59:59.000Z

70

Nanostructured plasmonics silicon solar cells  

Science Conference Proceedings (OSTI)

We report a plasmonics silicon solar cell design, with the possibility of lower cost and higher efficiency. The proposed solar cell consists of a radial p-n junction silicon nanopillar arrays in combination with metallic nanoparticles resolved at the ... Keywords: Antireflection coating, Optical absorption, Power conversion efficiency, Solar cells

Pushpa Raj Pudasaini, Arturo A. Ayon

2013-10-01T23:59:59.000Z

71

Improved blue response and efficiency of A-Si:H solar cells deposited from disilane using a dual-chamber plasma system  

DOE Green Energy (OSTI)

Thin film amorphous silicon solar cells with glass/SnO/sub 2//p/i/n/Al structures and 6 to 7% AM1 conversion efficiencies were fabricated at rapid deposition rates in a newly constructed dual-chamber glow discharge deposition system. The 500 nm thick intrinsic layer was deposited at the rate of 1.7 nm/s using disilane (Si/sub 2/H/sub 6/)-helium mixtures. This deposition rate is an order of magnitude greater than conventional high efficiency amorphous silicon solar cell depositions. Residual boron doping effects at the p/i interface can severely degrade cell performance particularly when the intrinsic layer is deposited in one chamber of the dual-chamber system and the intrinsic layer is deposited in the other chamber that is free of boron contaminants. Parameters such as electrode spacing, Si/sub 2/H/sub 6/ partial pressure and flow rate were optimized to produce uniform deposition over large areas. At the substrate temperature T/sub s/ selected for solar cell intrinsic layer deposition, the spin density was measured to be a minimum at 5 x 10/sup 15//cm/sup 3/. For a given T/sub s/, an intrinsic layer deposited from Si/sub 2/H/sub 6/ absorbs fewer photons and can generate less current under solar simulation than a similar film produced from monosilane. Identical solar cells were deposited in either the single-chamber mode or the dual-chamber mode for comparison. Single-chamber mode cells perform poorly over the visible wavelengths and hence produce low short circuit currents. The dual-chamber mode cells show a significant improvement in blue response and a factor of two increase in short circuit current over the single-chamber mode cells. Under short circuit conditions, 15 mA/cm/sup 2/ was generated from rapidly deposited (1.7 nm/s) cells from disilane and 18 mA/cm/sup 2/ from low deposition rate (0.18 nm/s) monosilane cells. These values are comparable to or better than those reported for similar cells by other groups.

Rajeswaran, G.; Vanier, P.E.; Corderman, R.R.; Kampas, F.J.

1985-01-01T23:59:59.000Z

72

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 08 · Solar Cell Characterization 1Montana State University: Solar Cells Lecture 8: Characterization Solar Cell Operation n Emitter p Base Rear completing the circuit 2Montana State University: Solar Cells Lecture 8: Characterization Solar Cell

Kaiser, Todd J.

73

Fabrication and Characterization of Organic Solar Cells  

E-Print Network (OSTI)

8? Würfel P.  Physics of solar cells : from principles to Photocell for Converting  Solar Radiation into Electrical generation  photovoltaics:  solar  cells  for  2020  and 

Yengel, Emre

2010-01-01T23:59:59.000Z

74

Nanowire-based All Oxide Solar Cells  

E-Print Network (OSTI)

photovoltaic performance is widely applicable to any nanowire solar cellfilm solar cells. The principal photovoltaic (PV) materialphotovoltaic performance is widely applicable to any nanowire solar cell

Yang, Peidong

2009-01-01T23:59:59.000Z

75

Solar Cells Hellas SA | Open Energy Information  

Open Energy Info (EERE)

Cells Hellas SA Jump to: navigation, search Name Solar Cells Hellas SA Place Athens, Greece Product Greek manufacturer of PV wafers, cells and modules. References Solar Cells...

76

Compensated amorphous silicon solar cell  

SciTech Connect

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

77

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

with Photovoltaic Cells Contains initial work for the current PV kit experiments o Solar Cells o Solar Electric Arrays o Photovoltaics in Arrays: Solar Cells Generating Electricity http://www.californiasolarcenter.org/history_pv and the Solar Radiation Monitoring Laboratory

Kaiser, Todd J.

78

Process monitoring in solar cell manufacturing  

DOE Green Energy (OSTI)

In this paper, the authors describe a new method that is capable of on-line monitoring of several solar cell process steps such as texturing, AR coatings, and metal contact properties. The measurement technique is rapid and specifically designed for solar cells and wafers. The system implementing this new concept is named ''PV Reflectometer.'' The idea was originally conceived several years ago and the principle of the method has been demonstrated for some simple cases. Recently, this method has been improved to be more suitable for commercial applications. For completeness, the paper first includes a brief review of the process control requirements and the common monitoring methods in solar cell production.

Sopori, B.; Zhang, Y.; Chen, W.

1999-10-26T23:59:59.000Z

79

Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement  

Science Conference Proceedings (OSTI)

Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: Black-Right-Pointing-Pointer PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. Black-Right-Pointing-Pointer Photoelectric conversion efficiency after hybridization was enhanced by 60%. Black-Right-Pointing-Pointer PANI hybridizing ZnO nanograss induced a rapid charge separation.

Zhu Shibu; Wei Wei; Chen Xiangnan [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Jiang Man, E-mail: jiangman1021@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Zhou Zuowan, E-mail: zwzhou@at-c.net [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China)

2012-06-15T23:59:59.000Z

80

Solar cell module lamination process  

DOE Patents (OSTI)

A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

Wanlass, M.W.

1994-06-21T23:59:59.000Z

82

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, Mark W. (Golden, CO)

1994-01-01T23:59:59.000Z

83

Thermal Management of Solar Cells.  

E-Print Network (OSTI)

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in one… (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

84

TUTORIALS: Solar Cell Operation - TMS  

Science Conference Proceedings (OSTI)

Jan 21, 2008 ... This animated tutorial describes the basics of solar cell operation. It defines the photovoltaic effect, discusses electron and current flow within a ...

85

Thin air-plasma-treated alkali fluoride layers for improved hole extraction in copper phthalocyanine/C70-based solar cells  

SciTech Connect

Alkali fluorides, mostly LiF and CsF, are well-known to improve electron injection/extraction in organic light-emitting diodes (OLEDs) and organic solar cells (OSCs). They are also utilized, though to a lesser extent, for hole injection in OLEDs. Here we demonstrate a new role for such fluorides in enhancing OSCs’ hole extraction.We show that an ultrathin air-plasmatreated alkali fluoride layer between the indium tin oxide (ITO) anode and the active layer in copper phthalocyanine đCuPcŢ?C70-based OSCs increases the short circuit current by up to ?17% for cells with LiF and ?7% for cells with NaF or CsF. The effects of the fluoride layer thickness and treatment duration were evaluated, as were OSCs with oxidized and plasma-treated Li and UV-ozone treated LiF. Measurements included current voltage, absorption, external quantum efficiency (EQE), atomic force microscopy, and x-ray photoelectron spectroscopy, which showed the presence of alkali atoms F and O at the treated ITO/fluoride surface. The EQE of optimized devices with LiF increased at wavelengths >560 nm, exceeding the absorption increase. Overall, the results indicate that the improved performance is due largely to enhanced hole extraction, possibly related to improved energy-level alignment at the fluorinated ITO/CuPc interface, reduced OSC series resistance, and in the case of LiF, improved absorption.

Xiao, Teng; Cui, Weipan; Cai, Min; Liu, Rui; Anderegg, James W.; Shinar, Joseph; Shinar, Ruth

2012-03-12T23:59:59.000Z

86

Nanocrystal Solar Cells  

E-Print Network (OSTI)

absorption of the solar spectrum. Also, like branched CdSeonly a fraction of the solar spectrum may be utilized for PVonly part of the solar spectrum. As such, blends should

Gur, Ilan

2006-01-01T23:59:59.000Z

87

Accurate performance measurement of silicon solar cells  

E-Print Network (OSTI)

of the research is a testing `recipe' that uses low-cost equipment and gives an estimate of measurement is an important part of the solar cell manufacturing process. Two classes of measurement can be considered measurement ­ for cell sorting and process improvement. This work describes techniques that address both

88

The challenges of organic polymer solar cells  

E-Print Network (OSTI)

The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

Saif Addin, Burhan K. (Burhan Khalid)

2011-01-01T23:59:59.000Z

89

Bulb mounting of solar cell  

SciTech Connect

An energy converting assembly is provided for parasiting of light from a fluorescent light bulb utilizing a solar cell. The solar cell is mounted on a base member elongated in the dimension of elongation of the fluorescent bulb, and electrical interconnections to the cell are provided. A flexible sheet of opaque material having a flat white interior reflective surface surrounds the fluorescent bulb and reflects light emitted from the bulb back toward the bulb and the solar cell. The reflective sheet is tightly held in contact with the bottom of the bulb by adhesive, a tie strap, an external clip, or the like.

Thompson, M.E.

1983-04-05T23:59:59.000Z

90

ELECTROSPUN POLYMER-FIBER SOLAR CELL.  

E-Print Network (OSTI)

??A study of fabricating the first electrospun polymer-fiber solar cell with MEHPPV is presented. Motivation for the work and a brief history of solar cell… (more)

Nagata, Shinobu

2011-01-01T23:59:59.000Z

91

Ideal Configuration For Nanoscale Solar Cells - Energy ...  

Technology Marketing Summary The standard design of excitonic solar cells, which includes most organic-based solar cells, is ideal in only two out of ...

92

Available Technologies: Thinner Film Silicon Solar Cells  

Berkeley Lab scientists have designed a new approach to create highly efficient thin film silicon solar cells. This technology promises to lower solar cell material ...

93

Nanoparticle Solar Cell Final Technical Report  

DOE Green Energy (OSTI)

The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

2008-06-17T23:59:59.000Z

94

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating...

95

Module level solutions to solar cell polarization  

Science Conference Proceedings (OSTI)

A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

2012-05-29T23:59:59.000Z

96

Nanowire-based All Oxide Solar Cells  

E-Print Network (OSTI)

1999; 7: 471. 6) Rai, B.P. Solar Cells, 1988, 25, 265. 7)Paul, G.K. , Sakurai, T. , Solar Energy, 2006, 80, 715. 9)1999, 2) Green, M.A. , Solar Cells, 1982, Prentice-Hall,

Yang, Peidong

2009-01-01T23:59:59.000Z

97

Definition: Solar cell | Open Energy Information  

Open Energy Info (EERE)

Solar cell Solar cell (Redirected from Definition:PV cell) Jump to: navigation, search Dictionary.png Solar cell Converts light into electrical energy. Traditional solar cells are made from silicon; second-generation solar cells (thin-film solar cells) are made from amorphous silicon or nonsilicon materials such as cadmium telluride; and third-generation solar cells are being made from variety of new materials, including solar inks, solar dyes, and conductive plastics.[1][2] View on Wikipedia Wikipedia Definition A solar cell (also called a photovoltaic cell) is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. It is a form of photoelectric cell (in that its electrical characteristics-e.g. current, voltage, or resistance-vary

98

Thermal Management of Solar Cells  

E-Print Network (OSTI)

as a source of photovoltaic energy is rapidly increasingphotovoltaic cells under concentrated illumination: a critical review," Solar Energyphotovoltaic/thermal collector, PV/T, and it utilizes both electrical and heat energies

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

99

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 10 · Summary 1Montana State University: Solar Cells Lecture 10: Summary Summer 2010 Class Montana State University: Solar Cells Lecture 10: Summary 2 Solar Cell Operation n Emitter p Base Rear Contact Antireflection coating Absorption of photon

Kaiser, Todd J.

100

Solar cell with back side contacts  

SciTech Connect

A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

2013-12-24T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improving PbS Quantum Dot Solar Cell Power Conversion Efficiency to an NREL-Certified 4.4% (Fact Sheet)  

DOE Green Energy (OSTI)

Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals. A research team at the National Renewable Energy Laboratory (NREL) has demonstrated that inserting a transition metal oxide (TMO) between the lead sulfide (PbS) quantum dot (QD) layer and the metal electrode eliminates the Schottky barrier that impedes efficient hole extraction and thereby improves the overall conversion efficiency. This allows for inexpensive metals such as Al to be employed without loss of performance. n-type TMOs consisting of molybdenum oxide (MoO{sub x}) and vanadium oxide (V{sub 2}O{sub x}) were used as an efficient hole extraction layer (HEL) in heterojunction ZnO/PbS QD solar cells. A 4.4% NREL-certified device was reported based on the MoO{sub x} HEL with Al as the back contact material, representing a more than 65% efficiency improvement compared with the case of Au contacting the PbS QD layer directly. The team finds the acting mechanism of the HEL to be a dipole formed at the MoO{sub x} and PbS interface, which enhances band bending to allow efficient hole extraction from the valence band of the PbS layer by MoO{sub x}. The carrier transport to the metal anode is likely enhanced through shallow gap states in the MoO{sub x} layer.

Not Available

2012-01-01T23:59:59.000Z

102

Nanocrystal Solar Cells  

E-Print Network (OSTI)

research on organic photovoltaic cells since small molecule10 years prior (4). Photovoltaic cells with an active layerof the associated photovoltaic cells. 2.4 Charge transport

Gur, Ilan

2006-01-01T23:59:59.000Z

103

Success Stories: Solexant Nanocrystal Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Rolling Out Affordable Solar Energy The high cost of producing photovoltaic cells has been cited as the main obstacle in expanding solar energy's reach. Lawrence Berkeley National...

104

Solar cells with a twist Comments ( 35)  

E-Print Network (OSTI)

Solar cells with a twist Article Comments ( 35) JULIE STEENHUYSEN REUTERS OCTOBER 7, 2008 AT 9:58 AM EDT CHICAGO -- U.S. researchers have found a way to make efficient silicon-based solar cells of buildings as opportunities for solar energy," Prof. Rogers said in a telephone interview. Solar cells, which

Rogers, John A.

105

Amorphous and Microcrystalline Silicon Solar Cells: Preprint  

DOE Green Energy (OSTI)

We review the progress made by amorphous silicon solar cells, including the emerging technology of solar cells of microcrystalline silicon. The long-term trend in the efficiency of stabilized laboratory cells based on a-Si:H has been a rise of {approx}0.6 % per year. The recent trend in the a-Si,Ge:H cell efficiency alone, measured in the spectral window assigned to the bottom device in a triple-junction cell, has been an increase of {approx}0.16% per year. These improvements have brought within reach the target of 15% efficiency identified by EPRI and DOE for widespread application. Our review leads to an identification of areas of promising research, with emphasis on the fundamental science required to reach the 15% target, and then to move to the next-level efficiency goal.

Wagner, S. (Princeton University); Carlson, D. E. (Solarex); Branz, H. M. (National Renewable Energy Laboratory)

1999-04-01T23:59:59.000Z

106

Research on MPPT for Solar Cells Based on Flyback Converter  

Science Conference Proceedings (OSTI)

A voltage source and rheostat are successfully used to simulate the solar cell's character in this paper. Its feasibility is analyzed theoretically. The basic principle of the maximum power point tracking (MPPT) is described. An improved disturbance ... Keywords: solar cells, maximum power point tracking (MPPT), flyback converter

Zhang Housheng

2010-05-01T23:59:59.000Z

107

Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)  

SciTech Connect

Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs’ performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

Xiao, Teng

2012-04-27T23:59:59.000Z

108

Fabrication and Characterization of Organic Solar Cells  

E-Print Network (OSTI)

5  Figure 1-3 The Solar Spectrum at the Top of thesolar cells. Figure 1-3 The Solar Spectrum at the Top of thenarrow range of solar spectrum, as they are commonly known

Yengel, Emre

2010-01-01T23:59:59.000Z

109

Organic Solar Cells: Absolute Measurement of Domain Composition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Solar Cells: Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in Solar Cells Organic Solar Cells: Absolute Measurement of...

110

Definition: Solar cell | Open Energy Information  

Open Energy Info (EERE)

cell cell Jump to: navigation, search Dictionary.png Solar cell Converts light into electrical energy. Traditional solar cells are made from silicon; second-generation solar cells (thin-film solar cells) are made from amorphous silicon or nonsilicon materials such as cadmium telluride; and third-generation solar cells are being made from variety of new materials, including solar inks, solar dyes, and conductive plastics.[1][2] View on Wikipedia Wikipedia Definition A solar cell (also called a photovoltaic cell) is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. It is a form of photoelectric cell (in that its electrical characteristics-e.g. current, voltage, or resistance-vary when light is incident upon it) which, when exposed to light, can generate

111

Improvement of short-circuit current density in dye-sensitized solar cells using sputtered nanocolumnar TiO2compact layer  

Science Conference Proceedings (OSTI)

The effect of a nanocolumnar TiO2 compact layer in dye-sensitized solar cells (DSSCs) was examined. Such a compact layer was sputtered on a glass substrate with an indium tin oxide (ITO) film using TiO2 powder as the raw material, ...

Lung-Chien Chen; Cheng-Chiang Chen; Bo-Shiang Tseng

2010-01-01T23:59:59.000Z

112

TUTORIALS: Semiconductors & Electroceramics - Solar cell ... - TMS  

Science Conference Proceedings (OSTI)

Jan 21, 2008 ... This tutorial introduces the operation of p-n junction solar cells, discusses the CdS/CdTe solar cell in detail, and describes several deposition ...

113

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce...

114

Cermet layer for amorphous silicon solar cells  

DOE Patents (OSTI)

A transparent high work function metal cermet forms a Schottky barrier in a Schottky barrier amorphous silicon solar cell and adheres well to the P+ layer in a PIN amorphous silicon solar cell.

Hanak, Joseph J. (Lawrenceville, NJ)

1979-01-01T23:59:59.000Z

115

Compensated amorphous silicon solar cell  

DOE Patents (OSTI)

An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

Carlson, David E. (Yardley, PA)

1980-01-01T23:59:59.000Z

116

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 05 · P-N Junction 1Montana State University: Solar Cells Lecture 5: P-N Junction P-N Junction · Solar Cell is a large area P-N junction electron (hole) positive) 2Montana State University: Solar Cells Lecture 5: P-N Junction p-n Junction p n P

Kaiser, Todd J.

117

Process of making solar cell module  

DOE Patents (OSTI)

A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

Packer, M.; Coyle, P.J.

1981-03-09T23:59:59.000Z

118

Solar Cell Silicon - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon. Sponsorship, TMS Extraction and ...

119

Key Physical Mechanisms in Nanostructured Solar Cells  

DOE Green Energy (OSTI)

The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

Dr Stephan Bremner

2010-07-21T23:59:59.000Z

120

Electron-Beam Irradiation of Solar Cells  

Science Conference Proceedings (OSTI)

Electron-Beam Irradiation of Solar Cells. Summary: The Dosimetry Group operates a system capable of performing electron ...

2013-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 02 Microfabrication ­ A combination · Photolithograpy · Depostion · Etching 1 Montana State University: Solar Cells Lecture 2: Microfabrication Flow Montana State University: Solar Cells Lecture 2: Microfabrication Questions · What is heat? · Heat

Kaiser, Todd J.

122

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 07 · EE Fundamentals 1Montana State University: Solar Cells Lecture 7: EE Fundamentals What is Electrical Engineering · Opposite of lightning · Symbolic information: electronics Montana State University: Solar Cells Lecture 7: EE Fundamentals 2 Review

Kaiser, Todd J.

123

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 03 · Nature of Sunlight 1Montana State University: Solar Cells Lecture 3: Nature of Sunlight Wave-Particle Duality · Light acts as ­ Waves University: Solar Cells Lecture 3: Nature of Sunlight Properties of Light · Sunlight contains photons of many

Kaiser, Todd J.

124

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 04 · Semiconductor Materials · Chapter 1 1Montana State University: Solar Cells Lecture 4: Semiconductor Materials Semiconductor Bond Model · Bohr electrons interact to form bonds 2Montana State University: Solar Cells Lecture 4: Semiconductor Materials

Kaiser, Todd J.

125

Alloys and Compounds for Thermoelectric and Solar Cell Applications  

Science Conference Proceedings (OSTI)

Alloys and Compounds for Thermoelectric and Solar Cell Applications II: Alloys and Compounds for Thermoelectric and Solar Cell Applications: Thermoelectric ...

126

Improved Solar Cell Efficiency Through the Use of an Additive Nanostructure-Based Optical Downshifter: Final Subcontract Report, January 28, 2010 -- February 28, 2011  

DOE Green Energy (OSTI)

This final report summarizes all SpectraWatt's progress in achieving a boost in solar cell efficiency using an optical downshifter. Spectrawatt's downshifting technology is based on a nanostructured material system which absorbs high energy (short wavelength) light and reemits it at a lower energy (long wavelength) with high efficiency. This system has shown unprecedented performance parameters including near unity quantum yield and high thermal stability.

Kurtin, J.

2011-05-01T23:59:59.000Z

127

Solar cell emulator and solar cell characteristics measurements in dark and illuminated conditions  

Science Conference Proceedings (OSTI)

This paper describes a novel data acquisition system designed and implemented with facilities for measuring and monitoring the characteristics of a PV solar cell, module and/or system. The functioning of the equipment is based on the so-called virtual ... Keywords: AVR microcontroller, I-V curve measurements, LabVIEW, solar cell emulator, solar cells & solar array

Yousry Atia; Mohamed Zahran; Abdullah Al-Hossain

2011-04-01T23:59:59.000Z

128

Compensated amorphous-silicon solar cell  

DOE Patents (OSTI)

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

Devaud, G.

1982-06-21T23:59:59.000Z

129

Three-junction solar cell  

SciTech Connect

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

130

Spectral sensitization of nanocrystalline solar cells  

DOE Patents (OSTI)

This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

Spitler, Mark T. (Concord, MA); Ehret, Anne (Malden, MA); Stuhl, Louis S. (Bedford, MA)

2002-01-01T23:59:59.000Z

131

Multiscale Models of Quantum Dot Based Nanomaterials and Nanodevices for Solar Cells  

Science Conference Proceedings (OSTI)

NASA future exploration missions and space electronic equipment require improvements in solar cell efficiency and radiation hardness. Novel nano-engineered materials and quantum-dot (QD) based photovoltaic devices promise to deliver more efficient, lightweight, ... Keywords: Nanostructured solar cell, computer-aided design, drift-diffusion, hydrodynamics, intermediate band solar cells, multiscale, nanostructures, photovoltaic, quantum dot

Alexander I. Fedoseyev; Marek Turowski; Ashok Raman; Qinghui Shao; Alexander A. Balandin

2008-06-01T23:59:59.000Z

132

VISUALS: Photovoltaic Solar Cells Close-Up  

Science Conference Proceedings (OSTI)

Jan 10, 2008 ... This site contains very close-up static and portrait shots of photovoltaic solar cells and cell arrays. Two cell types are shown: A silver and gray ...

133

Amorphous silicon/polycrystalline thin film solar cells  

DOE Patents (OSTI)

An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

Ullal, H.S.

1991-03-13T23:59:59.000Z

134

TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH  

DOE Green Energy (OSTI)

Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT patterning and alignment, advances in commercial and research materials and field effect schemes. In addition, Eikos continued to develop improved efficiency coating materials and transfer methods suitable for batch and continuous roll-to-roll fabrication requirements. Finally, Eikos collaborated with NREL and the PV-community at large in fabricating and characterizing Invisicon���® enabled solar cells.

Glatkowski, P.J.; Landis, D.A.

2013-04-16T23:59:59.000Z

135

Immersion Cooling of Photovoltaic Cells in Highly Concentrated Solar Beams.  

E-Print Network (OSTI)

??Concentrated solar radiation can be utilized to generate electrical power from photovoltaic cells, but concentrated solar radiation increases the photovoltaic cell’s temperature. This increase in… (more)

Darwish, Ahmed

2011-01-01T23:59:59.000Z

136

Economical Pyrite-Based Solar Cells  

compete with fossil fuels (payback time of about 5-7 years). The second generation of solar cells focuses on low production costs using thin film cells, which resulted in much lower efficiency rates. The third generation of solar cells has not yet ...

137

Bypass diode for a solar cell  

SciTech Connect

Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

2012-03-13T23:59:59.000Z

138

Moon's Radiation Environment and Expected Performance of Solar Cells during Future Lunar Missions  

E-Print Network (OSTI)

Several lunar missions are planned ahead and there is an increasing demand for efficient photovoltaic power generation in the moon. The knowledge of solar cell operation in the lunar surface obtained during early seventies need to be updated considering current views on solar variability and emerging space solar cell technologies. In this paper some aspects of the solar cell performance expected under variable lunar radiation environment during future space missions to moon are addressed. We have calculated relative power expected from different types of solar cells under extreme solar proton irradiation conditions and high lunar daytime temperature. It is also estimated that 2-3 % of annual solar cell degradation is most probable during the future lunar missions. We have also discussed photovoltaic power generation in long term lunar bases emphasizing technological needs such as sunlight concentration, solar cell cooling and magnetic shielding of radiation for improving the efficiency of solar cells in the lunar environment.

T. E Girish; S Aranya

2010-12-03T23:59:59.000Z

139

Technique Reveals Critical Physics in Deep Regions of Solar Cells (Fact Sheet)  

SciTech Connect

NREL's improved time-resolved photoluminescence method measures minority-carrier lifetime deep within photovoltaic samples to help develop more efficient solar cells.

Not Available

2014-01-01T23:59:59.000Z

140

Back-Contact Crystalline-Silicon Solar Cells and Modules  

DOE Green Energy (OSTI)

This paper summarizes recent progress in the development of back-contact crystalline-silicon (c-Si) solar cells and modules at Sandia National Laboratories. Back-contact cells have potentially improved efficiencies through the elimination of grid obscuration and allow for significant simplifications in the module assembly process. Optimization of the process sequence has improved the efficiency of our back-contact cell (emitter wrap through) from around 12% to near 17% in the past 12 months. In addition, recent theoretical work has elucidated the device physics of emitter wrap-through cells. Finally, improvements in the assembly processing back-contact cells are described.

Bode, M.D.; Garrett, S.E.; Gee, J.M.; Jimeno, J.C.; Smith, D.D.

1999-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Highly Efficient Multigap Solar Cell Materials  

Scientists at Berkeley Lab have invented multiband gap semiconducting materials for developing solar cells that could achieve power conversion efficiencies of 50 percent or higher.

142

The Quest for Inexpensive Silicon Solar Cells  

To learn more about NREL's silicon solar cell research, visit the Silicon Materials and Devices Web site. Did you find what you needed? Yes No. Thank ...

143

Efficient Polymer Solar Cells - Energy Innovation Portal  

Ames Laboratory researchers have developed a process for producing more efficient polymer solar cells by increasing light absorption through a thin ...

144

Electrical Modeling of Polymer Solar Cell  

Science Conference Proceedings (OSTI)

A numerical model to predict the current-voltage curves of bilayer polymer solar cell. The model includes drift and diffusion currents, injection and extraction at ...

145

Efficiency of silicon solar cells containing chromium  

DOE Patents (OSTI)

Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

Frosch, Robert A. Administrator of the National Aeronautics and Space (New Port Beach, CA); Salama, Amal M. (New Port Beach, CA)

1982-01-01T23:59:59.000Z

146

Front contact solar cell with formed emitter  

SciTech Connect

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John (Menlo Park, CA)

2012-07-17T23:59:59.000Z

147

Current and lattice matched tandem solar cell  

DOE Patents (OSTI)

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

Olson, Jerry M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

148

Magnetically Guided Shaping for Solar Cell Silicon Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Solar Cell Silicon. Presentation Title, Magnetically Guided Shaping for Solar ...

149

Thin film polycrystalline silicon solar cells  

DOE Green Energy (OSTI)

During the present quarter efficiency of heterostructure solar cells has been increased from 13 to 13.7% for single crystal and from 10.3 to 11.2% for polysilicon. For polysilicon the improvements can be attributed to reductions in grid-area coverage and in reflection losses and for single crystal to a combination of reduction in grid-area coverage and increase in fill factor. The heterostructure cells in both cases were IT0/n-Si solar cells. Degradation in Sn0/sub 2//n-Si solar cells can be greatly reduced to negligible proportions by proper encapsulation. The cells used in stability tests have an average initial efficiency of 11% which reduces to a value of about 10.5% after 6 months of exposure to sunlight and ambient conditions. This small degradation occurs within the first month, and the efficiency remains constant subsequently. The reduction in efficiency is due to a decrease in the open-circuit voltage only, while the short-circuit current and fill factor remain constant. The effects of grain-size on the Hall measurements in polysilicon have been analyzed and interpreted, with some modifications, using a model proposed by Bube. This modified model predicts that the measured effective Hall voltage is composed of components originating from the bulk and space-charge region. For materials with large grains, the carrier concentration is independent of the inter-grain boundary barrier, whereas the mobility is dependent on it. However, for small rains, both the carrier density and mobility depend on the barrier. These predictions are consistant with experimental results of mm-size Wacker polysilicon and ..mu..m-size NTD polysilicon.

Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

1980-01-01T23:59:59.000Z

150

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

151

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01T23:59:59.000Z

152

Improved electrolytes for fuel cells  

DOE Green Energy (OSTI)

Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

Gard, G.L.; Roe, D.K.

1991-06-01T23:59:59.000Z

153

Si concentrator solar cell development. [Final report  

DOE Green Energy (OSTI)

This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

1994-10-01T23:59:59.000Z

154

Amorphous silicon solar cell allowing infrared transmission  

DOE Patents (OSTI)

An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

Carlson, David E. (Yardley, PA)

1979-01-01T23:59:59.000Z

155

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

of the intermediate band solar cell under nonideal spaceefficient InGaP/GaAs tandem solar cells,” Appl. Phys. Lett.band impact ionization and solar cell efficiency,” J. Appl.

Shao, Qinghui

2009-01-01T23:59:59.000Z

156

CRADA Final Report: Process development for hybrid solar cells  

E-Print Network (OSTI)

development for hybrid solar cells Summary of the specific20 wafers with full tandem solar cell test structure perIII–Nitride/Silicon Tandem Solar Cell,” Appl. Phys. Express

Ager, Joel W

2011-01-01T23:59:59.000Z

157

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45°, -45°, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs; however, silicon is brittle, and thinner silicon, coupled with other recent trends in SPV technologies (thinner glass, lighter or no metal frames, increased use of certain polymers for encapsulation of the silicon cells), is more susceptible to stress and cracking. When the thin

158

Nanowire-based All Oxide Solar Cells  

Science Conference Proceedings (OSTI)

We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

2008-12-07T23:59:59.000Z

159

Improved photoelectrodialytic cell  

DOE Patents (OSTI)

A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment.

Murphy, G.W.

1981-08-14T23:59:59.000Z

160

Florida Solar Energy Center (Building America Partnership for Improved  

Open Energy Info (EERE)

(Building America Partnership for Improved (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Place Orlando, FL Website http://www.floridasolarenergyc References Florida Solar Energy Center (Building America Partnership for Improved Residential Construction[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Florida Solar Energy Center (Building America Partnership for Improved Residential Construction is a company located in Orlando, FL. References

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Controlled Structure of Organic-Nanomaterial Solar Cells - Energy ...  

Technology Marketing Summary Organic, polymer-based solar cells—lightweight alternatives to conventional, silicon-based solar cells—have great potential for ...

162

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic...

163

New Morphological Paradigm Uncovered in Organic Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive...

164

Potential of Silicon Solar Cells from Metallurgical Process Route  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Solar Cell Silicon. Presentation Title, Potential of Silicon Solar Cells from ...

165

Alloys and Compounds for Thermoelectric and Solar Cell Applications  

Science Conference Proceedings (OSTI)

Alloys and Compounds for Thermoelectric and Solar Cell Applications II: Alloys and Compounds for Thermoelectric and Solar Cell Applications: Thermoelectric I

166

Techniques of Nanoscale Silicon Texturing of Solar Cells ...  

Patent 6,329,296: Metal catalyst technique for texturing silicon solar cells Textured silicon solar cells and techniques for their manufacture ...

167

Development and fabrication of advanced cover glass for a GaAs solar cell  

DOE Green Energy (OSTI)

This report summarizes work on improving solar cell conversion efficiencies by modifying the cell cover glass. Two approaches were investigated during the course of this work: grooved cover glasses to reduce the effect of top contact obscuration and secondary concentrators to improve concentrator solar cell performances in tracking modules. The grooved cover glass work used an array of metallized V shaped grooves in a thin cover glass (plastic) window to deflect incident light rays away from solar cell front surface regions covered by the solar cell electrical contact metallization onto unobstructed, optically active regions of the solar cell. Secondary concentrators are being considered for use on concentrator solar cells to improve overall system conversion efficiency and reduce receiver module cost. Secondary concentrators designed and fabricated during this project consist of small glass cones to attach directly to the top of the receiver solar cell. When appropriately designed, these secondary concentrator glass cones increase sunlight concentration on the solar cell, improve solar flux uniformity on the cell, improve system tolerance to tracking error, and allow for concentration ratios greater than can be ordinarily achieved with acrylic Fresnel lenses.

Borden, P.G.; Kaminar, N.R.; Grounner, M.

1984-01-01T23:59:59.000Z

168

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

169

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

170

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

171

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

172

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

173

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

174

Potential for PV Solar Cells  

Science Conference Proceedings (OSTI)

Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and Thermoelectric. Presentation Title, Columnar p-n Heterostructures Formed by a ...

175

SunShot Initiative: Dye-Sensitized Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Dye-Sensitized Solar Cells to Dye-Sensitized Solar Cells to someone by E-mail Share SunShot Initiative: Dye-Sensitized Solar Cells on Facebook Tweet about SunShot Initiative: Dye-Sensitized Solar Cells on Twitter Bookmark SunShot Initiative: Dye-Sensitized Solar Cells on Google Bookmark SunShot Initiative: Dye-Sensitized Solar Cells on Delicious Rank SunShot Initiative: Dye-Sensitized Solar Cells on Digg Find More places to share SunShot Initiative: Dye-Sensitized Solar Cells on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Dye-Sensitized Solar Cells Graphic showing the seven layers of a dye-sensitized PV cell: electrode, hole conductor, dope, TiO2, blocking layer, transparent conductive oxide, and glass.

176

Cascade solar cell having conductive interconnects  

SciTech Connect

Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

Borden, Peter G. (Menlo Park, CA); Saxena, Ram R. (Saratoga, CA)

1982-10-26T23:59:59.000Z

177

Heterojunction solar cell with passivated emitter surface  

DOE Patents (OSTI)

A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

Olson, J.M.; Kurtz, S.R.

1994-05-31T23:59:59.000Z

178

Heterojunction solar cell with passivated emitter surface  

DOE Patents (OSTI)

A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1994-01-01T23:59:59.000Z

179

Solar powered unitized regenerative fuel cell system  

Science Conference Proceedings (OSTI)

Solar hydrogen system is a unique power system that can meet the power requirement for the energy future demand, in such a system the hydrogen used to be the energy carrier which can produced through electrolysis by using the power from the PV during ... Keywords: electrolyzer, fuel cell, hydrogen, photovoltaic, regenerative, solar hydrogen system

Salwan S. Dihrab; , Kamaruzzaman Sopian; Nowshad Amin; M. M. Alghoul; Azami Zaharim

2008-02-01T23:59:59.000Z

180

Solar cell with a gallium nitride electrode  

DOE Patents (OSTI)

A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

Pankove, Jacques I. (Princeton, NJ)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LQ Energy LDK Solar Q Cells JV | Open Energy Information  

Open Energy Info (EERE)

LQ Energy LDK Solar Q Cells JV Jump to: navigation, search Name LQ Energy (LDK Solar & Q-Cells JV) Place Saxony-Anhalt, Germany Sector Solar Product Germany-based JV between LDK...

182

Indium oxide/n-silicon heterojunction solar cells  

DOE Patents (OSTI)

A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1982-12-28T23:59:59.000Z

183

Tianjin Jinneng Solar Cell Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Municipality, China Zip 300384 Sector Solar Product Chinese manufacturer of a-si Tandem thin-film solar cells and PV system integrator. References Tianjin Jinneng Solar Cell Co...

184

Organic-Based ("Excitonic") Solar Cells  

Science Conference Proceedings (OSTI)

The existing types of organic-based solar cells, including dye-sensitized solar cells (DSSCs), can be categorized by their photoconversion mechanism as excitonic solar cells, XSCs. Their distinguishing characteristic is that charge generation and separation are simultaneous and this occurs via exciton dissociation at a heterointerface. Electrons are photogenerated on one side of the interface and holes on the other. This results in fundamental differences between XSCs and conventional PV cells. For example, the open circuit photovoltage, Voc, in conventional cells is limited to less than the magnitude of the band bending, bi; however, Voc in XSCs is commonly greater than bi. A general theoretical description is employed to quantify the differences between conventional and excitonic cells. The key difference is the dominant importance, in XSCs, of the photoinduced chemical potential energy gradient, ..delta..hn, whereas ..delta..hn is unimportant, and therefore neglected, in theoretical descriptions of conventional PV cells. Several examples are provided.

Gregg. B.A.

2003-05-01T23:59:59.000Z

185

Dye-sensitized solar cells  

DOE Patents (OSTI)

A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

Skotheim, T.A.

1980-03-04T23:59:59.000Z

186

Dye-sensitized solar cells  

DOE Patents (OSTI)

A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

Skotheim, Terje A. (Berkeley, CA)

1980-01-01T23:59:59.000Z

187

High Aspect Ratio Semiconductor Heterojunction Solar Cells  

E-Print Network (OSTI)

High Aspect Ratio Semiconductor Heterojunction Solar Cells Haoting Shen Prof. Redwing's Research and in-situ dopant for Si nanowires Y. Ke, X.J. Weng, J.M. Redwing, C.M. Eichfeld, T.R. Swisher, S

Yener, Aylin

188

Texturization of multicrystalline silicon solar cells  

E-Print Network (OSTI)

A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create ...

Li, Dai-Yin

2010-01-01T23:59:59.000Z

189

Solar Cell Efficiency Tables (Version 39)  

Science Conference Proceedings (OSTI)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2011 are reviewed.

Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.

2012-01-01T23:59:59.000Z

190

Improving Air Quality with Solar Energy  

DOE Green Energy (OSTI)

This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

Not Available

2008-04-01T23:59:59.000Z

191

Improved Atmospheric Solar Radiation Budget Pyranometry  

Science Conference Proceedings (OSTI)

The solar radiation budget is investigated with seven pyranometers. Three of these instruments have horizontally aligned sensors. The sensors of the remaining four instruments are vertically aligned in such a way that their normals point to the ...

Gottfried Hänel; Karin Kastner

2000-07-01T23:59:59.000Z

192

Improving Air Quality with Solar Energy  

DOE R&D Accomplishments (OSTI)

This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

2008-04-00T23:59:59.000Z

193

Process for Fabrication of Efficient Solar Cells - Energy ...  

Ames Laboratory researchers have developed a process for fabrication of solar cells with increased efficiency.

194

DOE Outlines Research Needed to Improve Solar Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outlines Research Needed to Improve Solar Energy Technologies Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its full potential in the energy marketplace." The report resulted from a workshop of 200 scientists held earlier this year. "The tax credits contained in the historic energy bill signed by President Bush will greatly help expand the use of renewable energy," said Dr. Raymond L. Orbach, Director of DOE's Office of Science. "This research

195

Energy Level Alignment in PCDTBT:PC70BM Solar Cells: Solution Processed NiOx for Improved Hole Collection and Efficiency  

SciTech Connect

Solution-based NiO{sub x} outperforms PEDOT:PSS in device performance and stability when used as a hole-collection layer in bulk-heterojunction (BHJ) solar cells formed with poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and PC70BM. The origin of the enhancement is clarified by studying the interfacial energy level alignment between PCDTBT or the 1:4 blended heterojunctions and PEDOT:PSS or NiO{sub x} using ultraviolet and inverse photoemission spectroscopies. The 1.6 eV electronic gap of PEDOT:PSS and energy level alignment with the BHJ result in poor hole selectivity of PEDOT:PSS and allows electron recombination at the PEDOT:PSS/BHJ interface. Conversely, the large band gap (3.7 eV) of NiO{sub x} and interfacial dipole (0.6 eV) with the organic active layer leads to a hole-selective interface. This interfacial dipole yields enhanced electron blocking properties by increasing the barrier to electron injection. The presence of such a strong dipole is predicted to further promote hole collection from the organic layer into the oxide, resulting in increased fill factor and short circuit current. An overall decrease in recombination is manifested in an increase in open circuit voltage and power conversion efficiency of the device on NiO{sub x} versus PEDOT:PSS interlayers.

Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Armstrong, N. R.; Olson, D.; Kahn, A.

2012-05-01T23:59:59.000Z

196

Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer  

DOE Patents (OSTI)

An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

Carlson, David E. (Yardley, PA)

1982-01-01T23:59:59.000Z

197

Improved historical solar radiation gridded data for Australia  

Science Conference Proceedings (OSTI)

An improved blended data method was developed for preparation and generation of solar radiation gridded datasets for SILO; Queensland Government database containing point and gridded daily climate data for Australia from 1890 till present designed for ... Keywords: Gridded datasets, Oktas, Radiometer, Satellite observations, Solar radiation, Sunshine duration

Juliusz Zajaczkowski, Kenneth Wong, John Carter

2013-11-01T23:59:59.000Z

198

Studies of basic mechanisms influencing solar-cell efficiency for terrestrial applications  

DOE Green Energy (OSTI)

The research activities include determination of the basic mechanisms that control and limit solar-cell efficiency, engineering design of solar cells, and the improvement of cell design to increase the power conversion efficiency and to define the maximum efficiency expected from a given material technology. Experimental methods for determining the basic mechanisms in the highly-doped emitter region and for determining diffusion length and lifetime in the base region of p-n junction solar cells are discussed. The evolution of three different silicon solar cell structures proposed to yield efficiencies greater than 20% for illumination levels in the 25 to 100 sun range is discussed.

None

1978-01-01T23:59:59.000Z

199

Reducing the Cost of Solar Cells  

Science Conference Proceedings (OSTI)

Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament dec

Scanlon, B.

2012-04-01T23:59:59.000Z

200

Cheaper Silicon Found Effective for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cheaper Silicon Found Effective for Solar Cells Cheaper Silicon Found Effective for Solar Cells A research team from the University of California at Berkeley, Lawrence Berkeley National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory, using U.S. Department of Energy (DOE) synchrotron light sources, has successfully shown that inexpensive silicon has the potential to be used for photovoltaic (PV) devices, commonly known as solar cells. In a new approach-whose findings were published online in Nature Materials (August 14, 2005)-the researchers used nanodefect engineering to control transition metal contamination in order to produce impurity-rich, performance-enhanced multicrystalline silicon (mc-Si) material. "Solar energy is often touted as the most promising and secure energy

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network (OSTI)

by Dye-Sensitized Photovoltaic cells. Inorganic Chemistry,by Dye-Sensitized Photovoltaic Cells. Inorganic ChemistryThe characteristics of a photovoltaic cell. Generally,

Phuyal, Dibya

2012-01-01T23:59:59.000Z

202

Copper doped polycrystalline silicon solar cell  

DOE Patents (OSTI)

Photovoltaic cells having improved performance are fabricated from polycrystalline silicon containing copper segregated at the grain boundaries.

Lovelace, Alan M. Administrator of the National Aeronautics and Space (La Canada, CA); Koliwad, Krishna M. (La Canada, CA); Daud, Taher (La Crescenta, CA)

1981-01-01T23:59:59.000Z

203

High-efficiency solar cell and method for fabrication  

DOE Patents (OSTI)

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

Hou, Hong Q. (Albuquerque, NM); Reinhardt, Kitt C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

204

High-efficiency solar cell and method for fabrication  

DOE Patents (OSTI)

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

Hou, H.Q.; Reinhardt, K.C.

1999-08-31T23:59:59.000Z

205

Improved photovoltaic cells and electrodes  

DOE Patents (OSTI)

Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, T.A.

1983-06-29T23:59:59.000Z

206

Plastic Schottky-barrier solar cells  

DOE Patents (OSTI)

A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

Waldrop, J.R.; Cohen, M.J.

1981-12-30T23:59:59.000Z

207

Scientists Identify New Quaternary Materials for Solar Cell Absorbers...  

NLE Websites -- All DOE Office Websites (Extended Search)

insight for exploring use of Earth- abundant quaternary semiconductors for large-scale solar cell applications. For large-scale solar electricity generation, it is critical to...

208

Stress and Fracture of Silicon Solar Cells as Revealed by ...  

Science Conference Proceedings (OSTI)

Presentation Title, Stress and Fracture of Silicon Solar Cells as Revealed by ... thinner and thinner silicon in the solar photovoltaic (PV) technologies due to the ...

209

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs  

iency solar cells that leverage the well-established design and manufacturing technology of silicon cells while delivering the performance previously achievable only by far more complex and expensive tandem solar cells

210

High-efficiency concentrator silicon solar cells  

DOE Green Energy (OSTI)

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

211

Method of restoring degraded solar cells  

DOE Patents (OSTI)

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200 C for at least 30 minutes restores their efficiency. 2 figs.

Staebler, D.L.

1983-02-01T23:59:59.000Z

212

Liquid cooled, linear focus solar cell receiver  

DOE Patents (OSTI)

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, A.S.

1983-12-08T23:59:59.000Z

213

Method of restoring degraded solar cells  

DOE Patents (OSTI)

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200.degree. C. for at least 30 minutes restores their efficiency.

Staebler, David L. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

214

Liquid cooled, linear focus solar cell receiver  

DOE Patents (OSTI)

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, Aaron S. (Broomall, PA)

1985-01-01T23:59:59.000Z

215

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

for Improvement of Photovoltaic Solar Energy Converters,”drastic improvement in photovoltaic (PV) energy conversionwith photovoltaic devices to improve the energy conversion

Shao, Qinghui

2009-01-01T23:59:59.000Z

216

Optical system for determining physical characteristics of a solar cell  

DOE Patents (OSTI)

The invention provides an improved optical system for determining the physical characteristics of a solar cell. The system comprises a lamp means for projecting light in a wide solid-angle onto the surface of the cell; a chamber for receiving the light through an entrance port, the chamber having an interior light absorbing spherical surface, an exit port for receiving a beam of light reflected substantially normal to the cell, a cell support, and an lower aperture for releasing light into a light absorbing baffle; a means for dispersing the reflection into monochromatic components; a means for detecting an intensity of the components; and a means for reporting the determination.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

217

Method of fabricating a solar cell array  

DOE Patents (OSTI)

A first set of pre-tabbed solar cells are assembled in a predetermined array with at least part of each tab facing upward, each tab being fixed to a bonding pad on one cell and abutting a bonding pad on an adjacent cell. The cells are held in place with a first vacuum support. The array is then inverted onto a second vacuum support which holds the tabs firmly against the cell pads they abut. The cells are exposed to radiation to melt and reflow the solder pads for bonding the tab portions not already fixed to bonding pads to these pads.

Lazzery, Angelo G. (Oaklyn, NJ); Crouthamel, Marvin S. (Pennsauken, NJ); Coyle, Peter J. (Oaklyn, NJ)

1982-01-01T23:59:59.000Z

218

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

IBSC Tc = 300K Solar Concentration Ratio (suns) Fig. 3.25irradiation and solar cells The irradiance of the sun on thebetween Sun and Earth - is called the solar constant. The

Shao, Qinghui

2009-01-01T23:59:59.000Z

219

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

to lowering the cost of solar power and hence to making itefficiency of solar panels and power to weight ratio inimprove the solar cell power conversion efficiency and it is

Shao, Qinghui

2009-01-01T23:59:59.000Z

220

The Silicon Solar Cell Turns 50  

NLE Websites -- All DOE Office Websites (Extended Search)

Daryl Chapin, Calvin Fuller, and Gerald Daryl Chapin, Calvin Fuller, and Gerald Pearson likely never imagined inventing a solar cell that would revolutionize the photovoltaics industry. There wasn't even a photovoltaics industry to revolu- tionize in 1952. The three scientists were simply trying to solve problems within the Bell tele- phone system. Traditional dry cell batteries, which worked fine in mild climates, degraded too rapidly in the tropics and ceased to work when needed. The company therefore asked its famous research arm-Bell Laboratories-to explore alternative sources of freestand- ing power. Daryl Chapin got the assign- ment. At that time, his job was to test wind machines, thermoelectric gensets, and steam engines. Being a solar energy enthusiast, he suggested that the investi- gation include solar cells. His supervisor

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Local Option - Renewable Energy Financing District/Solar Energy Improvement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Renewable Energy Financing District/Solar Energy Local Option - Renewable Energy Financing District/Solar Energy Improvement Special Assessments Local Option - Renewable Energy Financing District/Solar Energy Improvement Special Assessments < Back Eligibility Commercial Residential Savings Category Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Start Date 07/01/2009 State New Mexico Program Type PACE Financing Provider New Mexico Energy, Minerals and Natural Resources Department '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been

222

Solar cell contact formation using laser ablation  

SciTech Connect

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David; Cousins, Peter

2012-12-04T23:59:59.000Z

223

High throughput solar cell ablation system  

SciTech Connect

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2012-09-11T23:59:59.000Z

224

Multi-junction solar cell device  

SciTech Connect

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

225

Flexible implementation of rigid solar cell technologies.  

Science Conference Proceedings (OSTI)

As a source of clean, remote energy, photovoltaic (PV) systems are an important area of research. The majority of solar cells are rigid materials with negligible flexibility. Flexible PV systems possess many advantages, such as being transportable and incorporable on diverse structures. Amorphous silicon and organic PV systems are flexible; however, they lack the efficiency and lifetime of rigid cells. There is also a need for PV systems that are light weight, especially in space and flight applications. We propose a solution to this problem by arranging rigid cells onto a flexible substrate creating efficient, light weight, and flexible devices. To date, we have created a working prototype of our design using the 1.1cm x 1cm Emcore cells. We have achieved a better power to weight ratio than commercially available PowerFilm{reg_sign}, which uses thin film silicon yielding .034W/gram. We have also tested our concept with other types of cells and verified that our methods are able to be adapted to any rigid solar cell technology. This allows us to use the highest efficiency devices despite their physical characteristics. Depending on the cell size we use, we can rival the curvature of most available flexible PV devices. We have shown how the benefits of rigid solar cells can be integrated into flexible applications, allowing performance that surpasses alternative technologies.

Hollowell, Andrew E.

2010-08-01T23:59:59.000Z

226

Semitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells and durabilityand durability  

E-Print Network (OSTI)

for Small Solar Photovoltaic (PV) Systems June 2012 First Edition #12;California Solar Permitting Guidebook2 California Solar Permitting Guidebook Improving Permit Review and Approval for Small Solar Photovoltaic (PV variety of permitting requirements for small solar photovoltaic (PV) installations throughout the state

Rollins, Andrew M.

227

Photovoltaic nanocrystal scintillators hybridized on Si solar cells  

E-Print Network (OSTI)

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated

Demir, Hilmi Volkan

228

Harmful Shunting Mechanisms Found in Silicon Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Scientists developed near-field optical microscopy for imaging electrical breakdown in solar cells and identified critical electrical breakdown mechanisms operating in industrial silicon and epitaxial silicon solar cells.

Not Available

2011-05-01T23:59:59.000Z

229

Ohmic contacts for solar cells by arc plasma spraying  

DOE Patents (OSTI)

The method of applying ohmic contacts to a semiconductor, such as a silicon body or wafer used in solar cells, by the use of arc plasma spraying, and solar cells resulting therefrom.

Narasimhan, Mandayam C. (Seekonk, MA); Roessler, Barton (Barrington, RI); Loferski, Joseph J. (Providence, RI)

1982-01-01T23:59:59.000Z

230

High temperature investigations of crystalline silicon solar cell materials  

E-Print Network (OSTI)

Crystalline silicon solar cells are a promising candidate to provide a sustainable, clean energy source for the future. In order to bring about widespread adoption of solar cells, much work is needed to reduce their cost. ...

Hudelson, George David Stephen, III

2009-01-01T23:59:59.000Z

231

Solar Cell Design for Manufacturing: Final Report, October 2005 - September 2007  

DOE Green Energy (OSTI)

GE Energy made progress in improving its solar cell process, developing its metal wrap-through process, and completing highly accelerated lifetime testing on elements of its roof-integrated module.

Rand, J. A.

2008-05-01T23:59:59.000Z

232

Unraveling the Role of Morphology on Organic Solar Cell Performance  

E-Print Network (OSTI)

Polymer based organic photovoltaic (OPV) technology offers a relatively inexpensive option for solar energy conversion provided its efficiency increases beyond the current level (6-7%) along with significant improvements in operational lifetime. The critical aspect of such solar cells is the complex morphology of distributed bulk heterojunctions, which plays the central role in the conversion of photo-generated excitons to electron-hole pairs. However, the fabrication conditions that can produce the optimal morphology are still unknown due to the lack of quantitative understanding of the effects of process variables on the cell morphology. In this article, we develop a unique process-device co-simulation framework based on phase-field model for phase separation coupled with self-consistent drift-diffusion transport to quantitatively explore the effects of the process conditions (e.g., annealing temperature, mixing ratio, anneal duration) on the organic solar cell performance. Our results explain experimentally observed trends of open circuit voltage and short circuit current that would otherwise be deemed anomalous from the perspective of conventional solar cells. In addition to providing an optimization framework for OPV technology, our morphology-aware modeling approach is ideally suited for a wide class of problems involving porous materials, block co-polymers, polymer colloids, OLED devices etc.

Biswajit Ray; Pradeep R. Nair; Muhammad A. Alam

2010-11-03T23:59:59.000Z

233

Metal electrode for amorphous silicon solar cells  

DOE Patents (OSTI)

An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

Williams, Richard (Princeton, NJ)

1983-01-01T23:59:59.000Z

234

Tandem junction amorphous silicon solar cells  

DOE Patents (OSTI)

An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

Hanak, Joseph J. (Lawrenceville, NJ)

1981-01-01T23:59:59.000Z

235

Plastic Schottky barrier solar cells  

SciTech Connect

A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

Waldrop, James R. (Thousand Oaks, CA); Cohen, Marshall J. (Thousand Oaks, CA)

1984-01-24T23:59:59.000Z

236

Next Generation Solar Cell Materials and Devices - Programmaster ...  

Science Conference Proceedings (OSTI)

Symposium, Next Generation Solar Cell Materials and Devices. Sponsorship. Organizer(s), Mark S. Goorsky, University of California, Los Angeles

237

Solar Cell Silicon: Production and Recyling - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon: Production and Recyling. Sponsorship, The Minerals ...

238

Alloys and Compounds for Thermoelectric and Solar Cell ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium, Alloys and Compounds for Thermoelectric and Solar Cell Applications II.

239

Solar Cell Technology Opportunities: Looking To a Bright ...  

Science Conference Proceedings (OSTI)

Solar Cell Technology Opportunities: Looking To a Bright, Sunny Future. From NIST Tech Beat: April 26, 2011. ...

2011-04-26T23:59:59.000Z

240

Enhanced light absorption of solar cells and photodetectors by ...  

Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are ...

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Simulation of dye solar cells: through and beyond one dimension  

Science Conference Proceedings (OSTI)

In this work we present a Computer Aided Design (CAD) software, called TiberCAD, to simulate Dye Sensitized Solar Cells (DSC). DSCs are particularly interesting devices due to their high efficiency (more than 11% on small area and 8% on large area) and ... Keywords: Drift diffusion, Dye sensitized solar cells, Electrochemistry, Finite element methods, Solar cells

Alessio Gagliardi; Matthias Auf Der Maur; Desiree Gentilini; Aldo Carlo

2011-12-01T23:59:59.000Z

243

EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques  

E-Print Network (OSTI)

1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser - Bozeman Screen Printed Solar Cells · Starting wafer is about 0.5 mm thick and 10 x 10 cm2. The wafer is p-type and lightly doped with Boron (1016/cm3) 2 Screen Printed Solar Cells · Saw Damage Etch ­ The starting wafer

Kaiser, Todd J.

244

Flexible thermal cycle test equipment for concentrator solar cells  

SciTech Connect

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

245

Energy Savings by Cell Design Improvements  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... Aluminum Reduction Technology: Energy Savings by Cell Design Improvements Sponsored by: The Minerals, Metals and Materials Society, ...

246

Light Trapping for High Efficiency Heterojunction Crystalline Si Solar Cells: Preprint  

DOE Green Energy (OSTI)

Light trapping plays an important role to achieve high short circuit current density (Jsc) and high efficiency for amorphous/crystalline Si heterojunction solar cells. Si heterojunction uses hydrogenated amorphous Si for emitter and back contact. This structure of solar cell posses highest open circuit voltage of 0.747 V at one sun for c-Si based solar cells. It also suggests that over 25% record-high efficiency is possible with further improvement of Jsc. Light trapping has two important tasks. The first one is to reduce the surface reflectance of light to zero for the solar spectrum that Si has a response. The second one is to increase the effective absorption length to capture all the photon. For Si heterojunction solar cell, surface texturing, anti-reflectance indium tin oxides (ITO) layer at the front and back are the key area to improve the light trapping.

Wang, Q.; Xu, Y.; Iwaniczko, E.; Page, M.

2011-04-01T23:59:59.000Z

247

Method of fabricating a solar cell with a tunnel dielectric layer  

SciTech Connect

Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.

Dennis, Tim; Harrington, Scott; Manning, Jane; Smith, David; Waldhauer, Ann

2012-12-18T23:59:59.000Z

248

An Upside-Down Solar Cell Achieves Record Efficiencies (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

by the Federal Laboratory Consortium. The cell's inventors pioneered a new class of solar cells with marked advantages in performance, engineering design, operation, and...

249

Device Physics of Nanoscale Interdigitated Solar Cells (Poster)  

Science Conference Proceedings (OSTI)

Nanoscale interdigitated solar cell device architectures are being investigated for organic and inorganic solar cell devices. Due to the inherent complexity of these device designs quantitative modeling is needed to understand the device physics. Theoretical concepts have been proposed that nanodomains of different phases may form in polycrystalline CIGS solar cells. These theories propose that the nanodomains may form complex 3D intertwined p-n networks that enhance device performance.Recent experimental evidence offers some support for the existence of nanodomains in CIGS thin films. This study utilizes CIGS solar cells to examine general and CIGS-specific concepts in nanoscale interdigitated solar cells.

Metzger, W.; Levi, D.

2008-05-01T23:59:59.000Z

250

Low cost manufacturing of light trapping features on multi-crystalline silicon solar cells : jet etching method and cost analysis  

E-Print Network (OSTI)

An experimental study was conducted in order to determine low cost methods to improve the light trapping ability of multi-crystalline solar cells. We focused our work on improving current wet etching methods to achieve the ...

Berrada Sounni, Amine

2010-01-01T23:59:59.000Z

251

SunShot Initiative: Solar Power Tower Improvements with the Potential to  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Tower Improvements Solar Power Tower Improvements with the Potential to Reduce Costs to someone by E-mail Share SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Facebook Tweet about SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Twitter Bookmark SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Google Bookmark SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Delicious Rank SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Digg Find More places to share SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on AddThis.com... Concentrating Solar Power

252

High Rate Laser Pitting Technique for Solar Cell Texturing  

SciTech Connect

High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a production tool and process. The developed technique will have an reducing impact on product pricing. As efficiency has a substantial impact on the economics of solar cell production due to the high material cost content; in essence, improved efficiency through cost-effective texturing reduces the material cost component since the product is priced in terms of $/W. The project is a collaboration between Fraunhofer USA, Inc. and a c-Si PV manufacturer.

Hans J. Herfurth; Henrikki Pantsar

2013-01-10T23:59:59.000Z

253

Overcoming the Efficiency-Limiting Mechanisms in Commercial Si Solar Cells  

DOE Green Energy (OSTI)

A brief review of performance-limiting processes in a commercial solar cell fabricated on low-cost substrate is given. Higher efficiencies require effective gettering of precipitated impurities present at the defect clusters, and improved cell and process designs. Overcoming these limitations is expected to lead to 18%-20% cell efficiencies.

Sopori, B.; Chen, W. (National Renewable Energy Laboratory); Tan, T.; Plekhanov, P. (Duke University, Raleigh, NC)

1998-11-19T23:59:59.000Z

254

Solar Cells in 2009 and Beyond Mike McGehee  

E-Print Network (OSTI)

Solar Cells in 2009 and Beyond Mike McGehee Materials Science and Engineering These slidesTunesU and Youtube. #12;To provide the world with 10 TW of solar electricity by 2030 · We need to grow the industry parity cost depends on location #12;Conventional p-n junction photovoltaic (solar) cell #12;Efficiency

McGehee, Michael

255

Sustainable Energy Science and Engineering Center Solar Cells  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Cells The objectives of this section #12;Sustainable Energy Science and Engineering Center Solar Cells - Future EVERY minute, the sun and vacuum chambers. As a result, solar energy costs roughly three to four times as much as electricity from

Krothapalli, Anjaneyulu

256

Transparent Conductors and Barrier Layers for Thin Film Solar Cells:  

DOE Green Energy (OSTI)

This report describes the research undertaken to increase the efficiency of thin-film solar cells based on amorphous silicon in the so-called''superstrate structure'' (glass front surface/transparent electrically conductive oxide (TCO)/pin amorphous silicon/metal back electrode). The TCO layer must meet many requirements: high optical transparency in the wavelength region from about 350 to 900 nm, low electrical sheet resistance, stability during handling and deposition of the subsequent layers and during use, a textured (rough) surface to enhance optical absorption of red and near-infrared light, and low-resistance electrical contact to the amorphous silicon p-layer. Fluorine-doped tin oxide has been the TCO used in most commercial superstrate amorphous silicon cells. Fluorine-doped zinc oxide (ZnO:F) was later shown to be even more transparent than fluorine-doped tin oxide, as well as being more resistant to the strongly reducing conditions encountered during the deposition of amorphous silicon. Solar cells based on ZnO:F showed the expected higher currents, but the fill factors were lower than standard cells grown on tin oxide, resulting in no consistent improvement in efficiency. This problem was recently mitigated by using a new proprietary p/buffer layer combination developed at BP Solar.

Gordon, R. G.; Broomhall-Dillard, R.; Liu, X.; Pang, D.; Barton, J.

2001-12-01T23:59:59.000Z

257

Innotech Solar AS formerly known as Solar Cell Repower | Open Energy  

Open Energy Info (EERE)

Innotech Solar AS formerly known as Solar Cell Repower Innotech Solar AS formerly known as Solar Cell Repower Jump to: navigation, search Name Innotech Solar AS (formerly known as Solar Cell Repower) Place Narvik, Norway Zip 8512 Sector Solar Product Norway-based developer of repowering technologies for solar cells. Coordinates 68.439515°, 17.43015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":68.439515,"lon":17.43015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Inverted amorphous silicon solar cell utilizing cermet layers  

DOE Patents (OSTI)

An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

Hanak, Joseph J. (Lawrenceville, NJ)

1979-01-01T23:59:59.000Z

259

Evaluation of concentration solar cells for terrestrial applications  

E-Print Network (OSTI)

Solar energy has become a hot prospect for the future replacement of fossil fuels, which have limited reserves and cause environmental problems. Solar cell is such a device to directly generate electricity from this clean ...

An, Tao, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

260

Defect behavior of polycrystalline solar cell silicon  

DOE Green Energy (OSTI)

The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P. [Arizona State Univ., Tempe, AZ (US). Center for Solid State Electronics Research

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar module having reflector between cells  

DOE Patents (OSTI)

A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.

Kardauskas, Michael J. (Billerica, MA)

1999-01-01T23:59:59.000Z

262

NIST Assists in Solar Stake-Out to Improve Space Weather ...  

Science Conference Proceedings (OSTI)

NIST Assists in Solar Stake-Out to Improve Space Weather Forecasts. For Immediate Release: July 9, 2008. ...

2011-10-26T23:59:59.000Z

263

Economical Pyrite-Based Solar Cells Vaccine for Prevention and ...  

Background The first generation of solar cells, used in 90% of today's cells, have a focus of high efficiency. These cells use a single p-n junction to extract ...

264

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

2010-09-01T23:59:59.000Z

265

High efficiency, radiation-hard solar cells  

DOE Green Energy (OSTI)

The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

Ager III, J.W.; Walukiewicz, W.

2004-10-22T23:59:59.000Z

266

Improving the Efficiency of Solar Cells  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Green Technologies for Materials Manufacturing and Processing IV.

267

Solar Cell Modules With Improved Backskin  

DOE Patents (OSTI)

The present invention relates to gas turbines and more particularly to a device for controlling the flow of cooling air through a flowpath in a turbine blade. The device can be inserted in the inlet opening of the blade flowpath and be retained therein. The device comprises a plug member for adjusting the flow of cooling air through the flowpath. The plug member comprises a retaining portion for retaining the plug member at the inlet opening of the flowpath and a blocking portion inserted within the flowpath for reducing the cross-sectional area of the inlet opening. Such a device is inexpensive and can be easily inserted in the inlet opening of a blade flowpath and retained therein.

Chevrefils, Andre (Chateauguay, CA); Grigore, Daniel Gheorghe (Pointe Claire, CA)

2001-01-23T23:59:59.000Z

268

Pokeberries Provide Boost for Solar Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pokeberries Provide Boost for Solar Cells Pokeberries Provide Boost for Solar Cells Pokeberries Provide Boost for Solar Cells May 20, 2010 - 2:41pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? When the red dye from the pokeberries is spread over solar cells, it acts as a light absorber, boosting the technology's efficiency by about seven percent. The dye helps the cell's fibers capture more sunlight to convert into power. A weed Civil War soldiers used to write letters home may hold the secret to cheaper and more efficient solar energy today. Researchers at Wake Forest University's Center for Nanotechnology and Molecular Materials in North Carolina have discovered that red dye from the pokeberry weed makes their low-cost, fiber-based solar cells even more

269

Solare Cell Roof Tile And Method Of Forming Same  

SciTech Connect

A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.

Hanoka, Jack I. (Brookline, MA); Real, Markus (Oberberg, CH)

1999-11-16T23:59:59.000Z

270

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

Borenstein, Severin

2005-01-01T23:59:59.000Z

271

High-Efficiency Amorphous Silicon and Nanocrystalline Silicon Based Solar Cells and Modules: Annual Technical Progress Report, 30 January 2006 - 29 January 29, 2007  

DOE Green Energy (OSTI)

United Solar used a-Si:H/a-SiGe:H/a-SiGe:H in two manufacturing plants and improved solar efficiency and reduced manufacturing cost by new deposition methods, optimized deposition parameters, and new materials and cell structures.

Guha, S.; Yang, J.

2007-07-01T23:59:59.000Z

272

EELE408 Photovoltaics Lecture 11: Solar Cell Parameters  

E-Print Network (OSTI)

1 EELE408 Photovoltaics Lecture 11: Solar Cell Parameters Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Solar Cell Parameters Light IL 3 Voltage Illluminating the cell adds to the "dark" current of the diode The IV curve shifts

Kaiser, Todd J.

273

Third-Generation Solar Cells Using Optical Rectenna  

compete with fossil fuels (Payback time of about 5-7 years). The second generation of solar cells focuses on low production costs using thin film cells, which resulted in much lower efficiency rates. The third generation of solar cells has not yet ...

274

Mono-Like Ingot/Wafers Made of Solar-Grade Silicon for Solar Cells ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Solar Cell Silicon. Presentation Title, Mono-Like Ingot/Wafers Made of ...

275

NREL Designs Promising New Oxides for Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

High-efficiency, thin-film solar cells require electrical contacts with high electrical conductivity, and the top contact must also have high optical transparency. This need is currently met by transparent conducting oxides (TCOs), which conduct electricity but are 90% transparent to visible light. Scientists at the National Renewable Energy Laboratory (NREL) have derived three key design principles for selecting promising materials for TCO contacts. NREL's application of these design principles has resulted in a 10,000-fold improvement in conductivity for one TCO material.

Not Available

2012-04-01T23:59:59.000Z

276

Method of removing the effects of electrical shorts and shunts created during the fabrication process of a solar cell  

DOE Patents (OSTI)

A method of removing the effects of electrical shorts and shunts created during the fabrication process and improving the performance of a solar cell with a thick film cermet electrode opposite to the incident surface by applying a reverse bias voltage of sufficient magnitude to burn out the electrical shorts and shunts but less than the break down voltage of the solar cell.

Nostrand, Gerald E. (Jamesburg, NJ); Hanak, Joseph J. (Lawrenceville, NJ)

1979-01-01T23:59:59.000Z

277

Wide band gap solar cells with high stabilized performance. Annual technical report, 15 July 1995--15 July 1996  

DOE Green Energy (OSTI)

This report describes work on an improved understanding of stability in materials and silicon solar cells. Topics include novel intrinsic materials optimization; solar cells optimized for p- and i-layer performance; novel p-type materials; interfaces; and device modeling.

Wronski, C.R.; Collins, R.W.; Fujiwara, H. [Pennsylvania State Univ., University Park, PA (United States)] [and others

1997-01-01T23:59:59.000Z

278

Computational Challenges for Nanostructure Solar Cells Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges for Challenges for Nanostructure Solar Cells Computational Challenges for Nanostructure Solar Cells ZZ2.jpg Key Challenges: Current nanostructure solar cells often have energy efficiencies well below that of traditional solar cells. To understand why, one must understand the complete photoelectron dynamics in a nanostructure - the photon absorption, exciton generation, exciton dissociation, carrier transport and carrier collection. However, the large number of surface states, the strong exciton binding energies, the nano-interfaces, the lack of doping, and the possibility of unintended internal electric fields make this a daunting task that requires a suite of techniques and computer codes offering different electronic structure methods and varying levels of

279

Alloys and Compounds for Thermoelectric and Solar Cell Applications  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... TMS: Energy Conversion and Storage Committee ... of the alloys and compounds used in the thermoelectric and solar cell devices. Materials of ...

280

Manufacturing-Friendly Advance Seen in CIGS Solar Cell Processing...  

NLE Websites -- All DOE Office Websites (Extended Search)

robust, high-performance IZO transparent contact for CIGS solar cells. The standard transparent conducting oxide (TCO) used as the top contact in NREL's record-efficient copper...

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL Measures IMM Solar Cell Performance for CPV (Fact Sheet...  

NLE Websites -- All DOE Office Websites (Extended Search)

New measurement capability supports the development of high-efficiency solar cells for concentrating photovoltaic (CPV) application. NREL scientists recently completed a set of...

282

Nanocone-Based Photovoltaic Solar Cells - Oak Ridge National ...  

Nanocone-Based Photovoltaic Solar Cells Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

283

Controlled Structure of Organic-Nanomaterial Solar Cells  

By controlling the molecular shape, structure, and pattern of the materials in organic, polymer-based solar cells, Alex Zettl and Jeffrey Grossman of Berkeley Lab ...

284

More Efficient Polymer Solar Cells by Doping with Ferroelectric ...  

Science Conference Proceedings (OSTI)

Presentation Title, More Efficient Polymer Solar Cells by Doping with ... Mixture for Predicting the Ideal Solubility of Thermally Stable and Unstable Compounds.

285

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

device technology that will help realize the intrinsic potential of these materials. Solar Panels To Go Photovoltaic cells are a key component of most visions of a...

286

High-Efficiency, Self-Concentrating Nanoscale Solar Cell  

While solar cells have the potential to provide clean energy for a large portion of the earth's population, no one technology has provided the right ...

287

High Efficiency Multiple-Junction Solar Cells - Energy ...  

Technology Marketing Summary Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific ...

288

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs  

Wladek Walukiewicz, Joel Ager, and Kin Man Yu of Berkeley Lab have developed high-efficiency solar cells that leverage the well-established design and ...

289

Simple Method Quantifies Recombination Pathways in Solar Cells (Fact Sheet)  

SciTech Connect

NREL's analytic equation uses open-circuit voltage data to determine how much recombination occurs via different channels in a solar cell.

Not Available

2013-09-01T23:59:59.000Z

290

Available Technologies: Highly Efficient Multigap Solar Cell Materials  

Scientists at Berkeley Lab have invented multiband gap semiconducting materials for developing solar cells that could achieve power conversion efficiencies of 50 ...

291

Air-stable Nanomaterials for Efficient OLEDs and Solar Cells  

Air-stable Nanomaterials for Efficient OLEDs and Solar Cells . IB-2044, IB-2231 . ... U.S. DEPARTMENT OF ENERGY • OFFICE OF SCIENCE • UNIVERSITY OF CALIFORNIA.

292

Thinner Film Silicon Solar Cells - Energy Innovation Portal  

Technology Marketing Summary Berkeley Lab scientists have designed a new approach to create thin film silicon solar cells with a potential increase in ...

293

CRADA Final Report: Process development for hybrid solar cells  

E-Print Network (OSTI)

III-Nitride Alloys for Solar Power Conversion. ” List ofsolar cells have the potential to reduce the cost of concentrator photovoltaic power

Ager, Joel W

2011-01-01T23:59:59.000Z

294

Anodization of Aluminum-Titanium Alloys for Solar Cell Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Anodization of Aluminum-Titanium Alloys for Solar Cell ... Migration of Nanotechnology from Laboratory to Market Place: Arci Experience.

295

NIST Measurements May Help Optimize Organic Solar Cells  

Science Conference Proceedings (OSTI)

... Organic solar cells may be a step closer to market because of measurements taken at the National Institute of Standards and Technology (NIST ...

2012-03-06T23:59:59.000Z

296

NREL Makes Substantial Progress in Developing CZTSe Solar Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

non-toxic, Earth-abundant elements. Recently, NREL demonstrated an 8.4%-efficient CZTSe solar cell produced using commercially acceptable manufacturing techniques. Scientists...

297

New Morphological Paradigm Uncovered in Organic Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models...

298

Diffraction: Enhanced Light Absorption of Solar Cells and ...  

Sandia National Laboratories Diffraction: Enhanced Light Absorption of Solar Cells and Photodetectors HTTPS://IP.SANDIA.GOV Sandia National Laboratories is a multi ...

299

Solar Photovoltaic Cell/Module Shipments Report 2011  

U.S. Energy Information Administration (EIA)

September 2012 U.S. Energy Information Administration | Solar Photovoltaic Cell/Module Shipments Report 2011 7 Table 2. Value, average price, and average efficiency ...

300

Device Physics of Nanoscale Interdigitated Solar Cells: Preprint  

DOE Green Energy (OSTI)

This paper uses multidimensional device simulation to explore the physics and solar cell performance of interdigitated p-n junctions for material parameters relevant to the postulated conditions.

Metzger, W. K.; Levi, D.

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Characterizing Solar Cells with Nanoscale Precision Using a ...  

Science Conference Proceedings (OSTI)

... The use of electron beam induced current to visualize ... Local electrical characterization of cadmium telluride solar cells using low-energy electron ...

2013-12-04T23:59:59.000Z

302

Coaxial silicon nanowires as solar cells and nanoelectronic power sources  

E-Print Network (OSTI)

(EERE) Fuel Cell Technologies Program (FCT) Solar Thermochemical Hydrogen Production R&D portfolioSANDIA REPORT SAND2011-3622 Unlimited Release Printed May 2011 Solar Thermochemical Hydrogen://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2011-3622 Unlimited Release Printed May 2011 Solar Thermochemical Hydrogen

Marcus, Charles

303

An Overview of Solar Cell Technology Mike McGehee  

E-Print Network (OSTI)

An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global Climate;Primary Photovoltaic (PV) Markets Residential Rooftop Commercial Rooftop Ground mounted (Usually 2Watt and Evergreen Solar went bankrupt Jon Stewart, The Daily Show Solyndra, SpectraWatt and Evergreen Solar went

McGehee, Michael

304

High efficiency, radiation-hard solar cells  

E-Print Network (OSTI)

x Ga x N alloys: a full-solar-spectrum photovoltaic materialto the useful part of the solar spectrum. In fact, current

Ager III, J.W.; Walukiewicz, W.

2004-01-01T23:59:59.000Z

305

Improved magnesium/manganese dioxide electrochemical cell  

SciTech Connect

A magnesium/manganese dioxide electrochemical cell, stored following partial usage, is improved by increasing the cathode moisture content at the time of making the cell to reduce the self-discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1988-11-10T23:59:59.000Z

306

Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery  

DOE Patents (OSTI)

A method of fabricating series-connected and tandem junction series-connected solar cells into a solar battery with laser scribing.

Hanak, Joseph J. (Lawrenceville, NJ)

1981-01-01T23:59:59.000Z

307

Laser beam apparatus and method for analyzing solar cells  

DOE Patents (OSTI)

A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

Staebler, David L. (Lawrenceville, NJ)

1980-01-01T23:59:59.000Z

308

Gallium arsenide-based ternary compounds and multi-band-gap solar cell research  

DOE Green Energy (OSTI)

Aim of this contract is the achievement of a high-efficiency, low-cost solar cell. The basic approach to the problem is centered upon the heteroepitaxial growth of a III-V compound material onto a single-crystal silicon wafer. The growth technique employed is metalorganic chemical vapor deposition. The silicon wafer may serve as a mechanical substrate and ohmic contact for a single-junction device, or may contain a p-n junction of its own and form the bottom cell of a two junction tandem solar cell structure. The III-V material for the single-junction case is GaAs and for the two-junction case is either GaAlAs or GaAsP, either material having the proper composition to yield a band gap of approximately 1.7 eV. Results achieved in this contract include the following: (1) a 17.6% efficient GaAs-on-Si solar cell; (2) an 18.5% efficient GaAs-on-Si concentrator solar cell at 400 suns; (3) a 24.8% efficient GaAs-on-GaAs solar cell; (4) a 28.7% efficient GaAs-on-GaAs concentrator solar cell at 200 suns; (5) measurement of the effects of dislocation density and emitter doping on GaAs cells; and (6) improvements in the growth process to achieve reproducible thin AlGaAs window layers with low recombination velocities and environmental stability.

Vernon, S. (Spire Corp., Bedford, MA (United States))

1993-02-01T23:59:59.000Z

309

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells  

E-Print Network (OSTI)

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells Michael D. Kelzenberg, Daniel B Single-nanowire solar cells were created by forming rectifying junctions in electrically contacted vapor-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response

Heaton, Thomas H.

310

Optical modeling of a-Si solar cells  

DOE Green Energy (OSTI)

The authors describe applications of PV Optics to analyze the behavior of a metallic back-reflector on an a-Si solar cell. The calculated results from PV Optics agree well with the measured data on solar cells. Several unexpected results obtained from these calculations are qualitatively explained.

Sopori, B.; Madjdpour, J.; Zhang, Y.; Chen, W.; Guha, S.; Yang, J.; Banerjee, A.; Hegedus, S.

1999-11-04T23:59:59.000Z

311

CRADA Final Report: Process development for hybrid solar cells  

Science Conference Proceedings (OSTI)

TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

Ager, Joel W

2011-02-14T23:59:59.000Z

312

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network (OSTI)

semiconductor nanowire solar cells by selective-area metal-and Y. Yang, “A polymer tandem solar cell with 10.6% powerbulk heterojunction plastic solar cells by screen printing,”

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

313

DIFFRA TION: ENHAN ED LIGHT A SORPTION OF SOLAR ELLS AND PHOTODETE ...  

POTENTIAL APPLI ATIONS Improved performance of thin For more information or Solar & renewable energy Photovoltaic Thin-film solar cells

314

Engineering Metal Impurities in Multicrystalline Silicon Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a variety of multicrystalline solar cells before and after processing. Their discovery that the size, spatial distribution, and chemical binding of metals within clusters is just as important as the total metal concentration in limiting the performance of multicrystalline silicon solar cells led to the concept of defect engineering by optimizing growth and processing sequences to trap metals in their least harmful state.

315

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

DOE Green Energy (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

316

Engineering Metal Impurities in Multicrystalline Silicon Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a variety of multicrystalline solar cells before and after processing. Their discovery that the size, spatial distribution, and chemical binding of metals within clusters is just as important as the total metal concentration in limiting the performance of multicrystalline silicon solar cells led to the concept of defect engineering by optimizing growth and processing sequences to trap metals in their least harmful state.

317

Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356  

DOE Green Energy (OSTI)

Nevada Nanotechnology Center and Si group at NREL will work together to develop a-Si based solar cells with nano-Si technique. We will explore the existing a-Si based film solar cell technology at NREL and nano scale Si technology at Nevada Nanotechnology Center. By exchanging information, we will come; up with some new cell structures using nano-Si. We expect the new a-Si based cells will have optical enhancement or better electronic or optical properties of absorber layer to improve solar cell performance.

Wang, Q.

2011-05-01T23:59:59.000Z

318

Analysis of Solar Cell Quality Using Voltage Metrics: Preprint  

DOE Green Energy (OSTI)

The highest efficiency solar cells provide both excellent voltage and current. Of these, the open-circuit voltage (Voc) is more frequently viewed as an indicator of the material quality. However, since the Voc also depends on the band gap of the material, the difference between the band gap and the Voc is a better metric for comparing material quality of unlike materials. To take this one step further, since Voc also depends on the shape of the absorption edge, we propose to use the ultimate metric: the difference between the measured Voc and the Voc calculated from the external quantum efficiency using a detailed balance approach. This metric is less sensitive to changes in cell design and definition of band gap. The paper defines how to implement this metric and demonstrates how it can be useful in tracking improvements in Voc, especially as Voc approaches its theoretical maximum.

Toberer, E. S.; Tamboli, A. C.; Steiner, M.; Kurtz, S.

2012-06-01T23:59:59.000Z

319

Performance of Hydrogenated a-Si:H Solar Cells with Downshifting Coating: Preprint  

DOE Green Energy (OSTI)

We apply a thin luminescent downshifting (LDS) coating to a hydrogenated amorphous Si (a-Si:H) solar cell and study the mechanism of possible current enhancement. The conversion material used in this study converts wavelengths below 400 nm to a narrow line around 615 nm. This material is coated on the front of the glass of the a-Si:H solar cell with a glass/TCO/p/i/n/Ag superstrate configuration. The initial efficiency of the solar cell without the LDS coating is above 9.0 % with open circuit voltage of 0.84 V. Typically, the spectral response below 400 nm of an a-Si:H solar cell is weaker than that at 615 nm. By converting ultraviolet (UV) light to red light, the solar cell will receive more red photons; therefore, solar cell performance is expected to improve. We observe evidence of downshifting in reflectance spectra. The cell Jsc decreases by 0.13 mA/cm2, and loss mechanisms are identified.

Nemeth, B.; Xu, Y.; Wang, H.; Sun, T.; Lee, B. G.; Duda, A.; Wang, Q.

2011-05-01T23:59:59.000Z

320

Solar cells incorporating light harvesting arrays  

DOE Patents (OSTI)

A solar cell incorporates a light harvesting array that comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2 ; and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC); Meyer, Gerald J. (Baltimore, MD)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

322

Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco AtlasTM .  

E-Print Network (OSTI)

??A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM software. The… (more)

Utsler, James

2006-01-01T23:59:59.000Z

323

Single-junction solar cells with the optimum band gap for ...  

A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown ...

324

Pennsylvania Company Develops Solar Cell Printing Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology April 15, 2010 - 4:20pm Addthis Joshua DeLung What does this project do? The technology uses Plextronics' conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper. This method is much less expensive than many others in terms of raw materials and manufacturing costs. Pittsburgh-based Plextronics, plans to commercialize low-cost solar power globally with its conductive ink technologies, a goal that has been helped by a government incubator program focused on finding marketable prototypes by 2012. "For any technology to be truly successful, you have to enable a new

325

Photo of the Week: Butterflies, Crystal Nanostructures and Solar Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Butterflies, Crystal Nanostructures and Solar Butterflies, Crystal Nanostructures and Solar Cell Research Photo of the Week: Butterflies, Crystal Nanostructures and Solar Cell Research October 26, 2012 - 11:44am Addthis What do butterflies and solar cell research have in common? Both have been developing tiny crystals that selectively reflect colors. Over millions of years of evolution, butterfly wings have developed the tiny crystal nanostructures that give butterflies their vivid colors. At Argonne National Laboratory, scientists are working to manufacture these crystals, which could one day be used to create "greener" and more efficient paints, fiber optics and solar cells. In this photo, the iridescent scales of an emerald-patched Cattleheart butterfly are magnified 20 times to highlight the crystals that selectively reflect green colors. | Photo courtesy of Argonne National Laboratory.

326

Multi-Layer Inkjet Printed Contacts for Si Solar Cells (Poster)  

DOE Green Energy (OSTI)

The objective of this report is to develop inkjet printing (including tools, inks, and processing conditions) for high-quality Ag contacts for Si solar cells. The conclusions are: (1) Tools and inks for the atmospheric inkjet printing of Ag metallization for Si solar cells have been developed. (2) Line widths, conductivities and thicknesses comparable to, or better than, those produced by screen printing. (3) A new fire-through ink and layered printing were found to decrease the processing temperature for contact formation to as low as 650 C and improve printed cell performance.

Curtis, C. J.; van hest, M. F. A. M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

2006-05-01T23:59:59.000Z

327

Amorphous-silicon thin-film heterojunction solar cells  

DOE Green Energy (OSTI)

The investigation of amorphous silicon materials at MTSEC has had two major thrusts: (1) to improve the amorphous material, i.e., obtain a low state density in the gap, improve the carrier collection depth and diminish non-radiative recombinations; and (2) to attempt to understand and improve on the limitations of the junction devices while evaluating the amorphous silicon materials. In the first of these efforts, the investigation has continued to examine the modifications to the a-Si(H) network by alloying silicon with other group IVA elements, either in binary or ternary compositions, and/or by replacing the hydrogenation for defect compensation with a combination of hydrogenation and alkylation or hydrogenation and halogenation. The doped junction layers are being examined in an attempt to determine the limiting characteristics of the junctions in solar cell devices of these amorphous materials. Amorphous alloys of Si-Ge, Si-C, Si-Sn were prepared as well as ternary compositions of Si-Ge-C and Si-Sn-C. In addition, Na vapor was added to the gas feed to deposit a-Si(Na, H) films, and to prepare Si-Sn, fluoride was added along with the tin by vapor additions of SnF/sub 4/ to the gas feed. The optical properties of these materials were measured, and structural and compositional information was obtained from the IR vibrational spectra using the scanning electron microscope and from analyses using scanning Auger microscopy. Electrical measurements have included the dark conductivity and the photo conductivity under room fluorescent light and at AM1 conditions. With alloys that displayed promising photoconductive properties n-i-p devices were prepared to assess the solar cell properties. Details are presented. (WHK)

Cretella, M. C.; Gregory, J. A.; Sandstrom, D. B.; Paul, W.

1981-01-01T23:59:59.000Z

328

Properties of High Efficiency CIGS Thin Film Solar Cells  

DOE Green Energy (OSTI)

We present experimental results in three areas. Solar cells with an efficiency of 19% have been fabricated with an absorber bandgap in the range of 1.1-1.2 eV. Properties of solar cells fabricated with and without an undoped ZnO layer were compared. The data show that high efficiency cells can be fabricated without using the high-resistivity or undoped ZnO layer. Properties of CIGS solar cells were fabricated from thin absorbers (1 {micro}m) deposited by the three-stage process and simultaneous co-deposition of all the elements. In both cases, solar cells with efficiencies of 16%-17% are obtained.

Ramanathan, K.; Keane, J.; Noufi, R.

2005-02-01T23:59:59.000Z

329

Accelerated aging of GaAs concentrator solar cells  

DOE Green Energy (OSTI)

An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

Gregory, P.E.

1982-04-01T23:59:59.000Z

330

Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells: Preprint  

DOE Green Energy (OSTI)

Post-deposition hydrogenation by remote plasma significantly improves performance of heteroepitaxial silicon solar cells. Heteroepitaxial deposition of thin crystal silicon on sapphire for photovoltaics (PV) is an excellent model system for the study and improvement of deposition on inexpensive Al2O3-coated (100) biaxially-textured metal foils. Without hydrogenation, PV conversion efficiencies are less than 1% on our model system. Performance is limited by carrier recombination at electrically active dislocations that result from lattice mismatch, and other defects. We find that low-temperature hydrogenation at 350 degrees C is more effective than hydrogenation at 610 degrees C. In this work, we use measurements such as spectral quantum efficiency, secondary ion mass spectrometry (SIMS), and vibrational Si-H spectroscopies to understand the effects of hydrogenation on the materials and devices. Quantum efficiency increases most at red and green wavelengths, indicating hydrogenation is affecting the bulk more than the surface of the cells. SIMS shows there are 100X more hydrogen atoms in our cells than dangling bonds along dislocations. Yet, Raman spectroscopy indicates that only low temperature hydrogenation creates Si-H bonds; trapped hydrogen does not stably passivate dangling-bond recombination sites at high temperatures.

Bolen, M. L.; Grover, S.; Teplin, C. W.; Bobela, D.; Branz, H. M.; Stradins, P.

2012-06-01T23:59:59.000Z

331

Solar Energy Materials & Solar Cells 91 (2007) 17261732 Optical and structural properties of Ta2O5CeO2 thin films  

E-Print Network (OSTI)

Solar Energy Materials & Solar Cells 91 (2007) 1726­1732 Optical and structural properties of Ta2O5

Thirumalai, Devarajan

332

Simulation of Device Parameters of High Efficiency Multicrystalline Silicon Solar Cells  

Science Conference Proceedings (OSTI)

The results of the simulation of the reported experimental results of high efficiency multicrystalline silicon (mc-Si) solar cells, using PC1D software, are reported in this study. Results obtained by various groups have been incorporated and compared in this study. The highest efficiency reported so far for mc-Si solar cells is 20{center_dot}4% and 17-18% by research laboratories and commercial houses, respectively. The efficiency can be further enhanced if passivation characteristics on both the front and back surface are improved. The role of back surface recombination has become more significant in light of the use of thin mc-Si wafers by the solar cell industry. Based on the passivation characteristics and considering the understanding of the past three decades of studies, the authors have proposed and simulated a structure for mc-Si solar cells to improve the performance of the same. The results of our modeled structure of mc-Si solar cell show an efficiency of 21{center_dot}88% with short-circuit current density, J{sub sc} = 39{center_dot}39 mA/cm2, and open circuit voltage, V{sub oc} = 0{center_dot}666 V.

Budhraja, V.; Misra, D.; Ravindra, N. M.

2011-11-01T23:59:59.000Z

333

A beta regression model for improved solar radiation predictions  

Science Conference Proceedings (OSTI)

Predicting global solar radiation is an integral part of much environmental modeling. There are several approaches for predicting global solar radiation at a site where no instrumentation exists. One popular approach uses the difference between ...

Randall Mullen; Lucy Marshall; Brian McGlynn

334

A Beta Regression Model for Improved Solar Radiation Predictions  

Science Conference Proceedings (OSTI)

Predicting global solar radiation is an integral part of much environmental modeling. There are several approaches for predicting global solar radiation at a site where no instrumentation exists. One popular approach uses the difference between ...

Randall Mullen; Lucy Marshall; Brian McGlynn

2013-08-01T23:59:59.000Z

335

Method for forming indium oxide/n-silicon heterojunction solar cells  

DOE Patents (OSTI)

A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1984-03-13T23:59:59.000Z

336

Current- and lattice-matched tandem solar cell  

DOE Patents (OSTI)

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

Olson, J.M.

1985-10-21T23:59:59.000Z

337

Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells  

DOE Patents (OSTI)

High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

Bhattacharya, Raghu N. (Littleton, CO); Contreras, Miguel A. (Golden, CO); Keane, James (Lakewood, CO); Tennant, Andrew L. (Denver, CO), Tuttle, John R. (Denver, CO); Ramanathan, Kannan (Lakewood, CO); Noufi, Rommel (Golden, CO)

1998-08-08T23:59:59.000Z

338

Dye-sensitized Schottky barrier solar cells  

DOE Patents (OSTI)

A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

Skotheim, Terje A. (Berkeley, CA)

1978-01-01T23:59:59.000Z

339

No Foolin': Iron Pyrite Solar Cells  

Science Conference Proceedings (OSTI)

Mar 17, 2009 ... News from the University of California, Berkeley ... Unlike silicon and other solar materials commonly used today, these alternatives are ...

340

TOPCAT Solar Cell Alignment & Energy Concentration Technology ...  

Patent 7,667,833: Alignment method for parabolic trough solar concentrators A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a ...

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network (OSTI)

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

342

Harmful Shunting Mechanisms Found in Silicon Solar Cells (Revised...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the degradation in open-circuit voltage and high dark currents in epitaxial silicon solar cells. The technique is also appli- cable to other PV technologies such as CIGS and...

343

Nanostructured architectures for colloidal quantum dot solar cells  

E-Print Network (OSTI)

This thesis introduces a novel ordered bulk heterojunction architecture for colloidal quantum dot (QD) solar cells. Quantum dots are solution-processed nanocrystals whose tunable bandgap energies make them a promising ...

Jean, Joel, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

344

Understanding the Chemistry of Dye Sensitized Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Chemistry of Dye Sensitized Solar Cells Speaker(s): Brian O'Regan Date: January 15, 2009 (All day) Location: 90-3122 Seminar HostPoint of Contact: Michael G Apte...

345

Light trapping limits in plasmonic solar cells: an analytical investigation  

E-Print Network (OSTI)

We analytically investigate the light trapping performance in plasmonic solar cells with Si/metallic structures. We consider absorption enhancements for surface plasmon polaritons (SPPs) at planar Si/metal interfaces and ...

Sheng, Xing

346

Iran Thomas Auditorium, 8600 Nano Carbon: From Solar Cells to...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 3, 2011 4:00 pm Iran Thomas Auditorium, 8600 Nano Carbon: From Solar Cells to Atomic Drums Paul McEuen Goldwin Smith Professor of Physics, Cornell University and Kavli...

347

Continuous On-Line Monitoring of Solar Cells  

Semiconductor wafers are used for a variety of purposes in the semiconductor, solar cell, transistor, and other industries. Wafer quality often depends on variables such as thickness and surface characteristics. Poor quality wafers may have uneven ...

348

Third-Generation Solar Cells Using Optical Rectenna Vaccine ...  

but resulted in a price too high to compete with fossil fuels (Payback time of about 5-7 years). The second generation of solar cells focuses on low production costs

349

2D monolayers could yield thinnest solar cells ever  

NLE Websites -- All DOE Office Websites (Extended Search)

us: how with just two layers of material it is possible to absorb 10 percent of the solar spectrum and have a cell that is 2 percent efficient as a result." NERSC...

350

Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

351

CIGS-Based Solar Cells Prepared from Electrodeposited Precursor...  

NLE Websites -- All DOE Office Websites (Extended Search)

CIGS absorbers using several techniques, including vacuum and non-vacuum technologies. Thin-film solar cell devices based on PVD CIGS have demonstrated an efficiency of 20.1%. 1...

352

High-Efficiency, Self-Concentrating Nanoscale Solar Cell - Energy ...  

While solar cells have the potential to provide clean energy for a large portion of the earth’s population, no one technology has provided the right combination of ...

353

New functional polymers for sensors, smart materials and solar cells  

E-Print Network (OSTI)

Organic polymers can be used as the active component of sensors, smart materials, chemical-delivery systems and the active layer of solar cells. The rational design and modification of the chemical structure of polymers ...

Lobez Comeras, Jose Miguel

2012-01-01T23:59:59.000Z

354

Recent technological advances in thin film solar cells  

DOE Green Energy (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

355

Approaches to Future Generation Photovoltaics and Solar Fuels: Quantum Dots, Arrays, and Quantum Dot Solar Cells  

Science Conference Proceedings (OSTI)

One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.

Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.

2012-01-01T23:59:59.000Z

356

Organic Solar Cells: Absolute Measurement of Domain Composition and  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Solar Cells: Absolute Organic Solar Cells: Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in Solar Cells Organic Solar Cells: Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in Solar Cells Print Tuesday, 22 January 2013 00:00 This front cover represents the morphology and resulting device dynamics in organic solar cell blend films of PTB7 and PC71BM, as revealed by combined resonant x-ray scattering and microscopy done at the Advanced Light Source. Harald Ade and co-workers find that the fullerene molecules (red) are miscible in the polymer (blue) up to 30 wt.%, above which they begin to agglomerate (bottom). This agglomeration is important for the optoelectronic processes within the device, but the agglomerates must be kept to small sizes by the solvent processing additive diiodooctane (DIO). Correlation of this morphology with the spectrally resolved quantum efficiency shows that the yellow excitons created upon photoabsorption must arrive at the agglomerate interface for charge separation to occur. The blue electrons and green holes can then percolate through appropriate molecules in the mixed matrix to the electrodes for harvesting of electrical energy. Article Link (PDF)

357

Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process  

DOE Patents (OSTI)

A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

Ruby, Douglas S. (Albuquerque, NM); Schubert, William K. (Albuquerque, NM); Gee, James M. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

358

Photo of the Week: Record-Breaking Solar Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of the Week: Record-Breaking Solar Cells Photo of the Week: Record-Breaking Solar Cells Photo of the Week: Record-Breaking Solar Cells December 7, 2012 - 2:27pm Addthis Solar Junction, in partnership with NREL, has developed solar cells that reach a record-breaking 44 percent efficiency -- meaning that more than 40 percent of the sunlight the solar cells are exposed to is converted into electrical energy. In this photo, an operator inspects a photolithography tool used to manufacture these solar cells. | Photo by Daniel Derkacs/SolarJunction. Solar Junction, in partnership with NREL, has developed solar cells that reach a record-breaking 44 percent efficiency -- meaning that more than 40 percent of the sunlight the solar cells are exposed to is converted into electrical energy. In this photo, an operator inspects a photolithography

359

Photo of the Week: Record-Breaking Solar Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Record-Breaking Solar Cells Record-Breaking Solar Cells Photo of the Week: Record-Breaking Solar Cells December 7, 2012 - 2:27pm Addthis Solar Junction, in partnership with NREL, has developed solar cells that reach a record-breaking 44 percent efficiency -- meaning that more than 40 percent of the sunlight the solar cells are exposed to is converted into electrical energy. In this photo, an operator inspects a photolithography tool used to manufacture these solar cells. | Photo by Daniel Derkacs/SolarJunction. Solar Junction, in partnership with NREL, has developed solar cells that reach a record-breaking 44 percent efficiency -- meaning that more than 40 percent of the sunlight the solar cells are exposed to is converted into electrical energy. In this photo, an operator inspects a photolithography

360

MIS and SIS solar cells on polycrystalline silicon  

DOE Green Energy (OSTI)

MIS and SIS structured solar cells are receiving much attention in the photovoltaic community. Seemingly, these cells could be a viable alternative to thermally diffused p-n junctions for use on thin-film polycrystalline silicon substrates. This review describes MIS/SIS structured solar cells and the possible advantages of these structures for use with thin-film polycrystalline silicon. The results of efficiency calculations are presented. Also addressed are lifetime stability and fabrication techniques amenable to large scale production. Finally, the relative advantages and disadvantages of these cells and the results obtained are presented.

Cheek, G.; Mertens, R.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Silicon solar cell process development, fabrication and analysis. Phase II. Annual report, 1 July 1979-30 June 1980  

DOE Green Energy (OSTI)

Solar cells were fabricated from EFG (RH) ribbons from multiple dies, silicon on ceramic (SOC), dendritic web, cast silicon by HEM, and semi-continuous CZ from both VARIAN and HAMCO. Baseline and improved solar cells were made from the sheets. Baseline solar cells processed in both Phase I and Phase II, involving cells from EFG, SOC, dendritic web, and HEM, indicated that no significant improvement in silicon sheet quality has been achieved in Phase II. Solar cells from semi-continuous CZ showed cell performance close to the conventional CZ control cells, although the cells from the semi-continuous CZ have shown wider performance range because of variation in crystalline perfection. Generally, process upgrading provided improvement in cell performance, the improvement depending on the process used and the quality of the sheet silicon. Study of the effect of grain size on solar cell performance suggested that the minimum grain size to make solar cells of 10% AMO efficiency is about 500 ..mu..m, which is expected to provide minimum module efficiency of 10% AMI. If other harmful impurities are added in the process of sheet growth, the minimum grain size must be increased. The BSF study showed that the higher the resistivity of the starting substrates, the greater the relative improvement in cell performance, probably because of greater shift in Fermi levels at the back L/H junction (pp+) and also because of the higher initial values of minority carrier diffusion length. This study also suggested that proper control of the back-surface field (BSF) process could minimize the junction shunting problems often introduced by the BSF processing.

Yoo, H.I.; Iles, P.A.; Ho, F.F.; Leung, D.C.

1980-01-01T23:59:59.000Z

362

Solar Cells, Wound Repair Winning GVC Technologies | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Cells, Wound Repair Winning GVC Technologies Solar Cells, Wound Repair Winning GVC Technologies March 26, 2010 Graduate student teams from the University of Arkansas and the University of Maryland earned first place in the energy and security categories at the 2010 GVC hosted by ORNL March 24-26. The competition, in its fourth year, attracts students developing new technologies and venture investors with expertise in the market. The first-prize winners each received $25,000. Douglas Hutchings, Stephen Ritterbush, and Seth Shumate from Arkansas won first place in the energy division for Silicon Solar Solutions. "Our method replaces the expensive top layer of solar cells with a thinner, large-grain polysilicon at lower temperatures, which reduces cost and is appealing to manufacturers," said Ritterbush.

363

Fabrication and Characterization of Organic Solar Cells  

E-Print Network (OSTI)

processable polymer photovoltaic cells by self?organization Photodiodes,  and  Photovoltaic  Cells.   Applied Physics F,  Heeger  AJ.   Polymer  Photovoltaic  Cells  ?  Enhanced 

Yengel, Emre

2010-01-01T23:59:59.000Z

364

Improved Solar Power Plant Efficiency: Low Cost Vaccine ...  

Background Photovoltaic (PV) systems are of great interest to the efforts of sustainable energy. Solar irradiance is a measure of the sun’s ...

365

Argonne CNM News: Luminescent Solar Concentrators Improved by...  

NLE Websites -- All DOE Office Websites (Extended Search)

intensification can exceed the equivalent of one hundred "suns" - the measurement of solar radiation on one spot. However, actual implementation has failed to produce such high...

366

High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995  

DOE Green Energy (OSTI)

The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

Maruska, P. [Spire Corp., Bedford, MA (United States)

1996-09-01T23:59:59.000Z

367

Molten carbonate fuel cell technology improvement  

DOE Green Energy (OSTI)

This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

Not Available

1991-06-01T23:59:59.000Z

368

Epitaxial silicon growth for solar cells. Final report  

DOE Green Energy (OSTI)

The objectives of this contract were: (1) to determine the feasibility of silicon epitaxial growth on low-cost silicon substrates for the development of silicon sheet capable of producing low-cost, high efficiency solar cells; (2) to achieve a goal of 12% (AM-0) efficient solar cells fabricated on thin epitaxial layers (<25 ..mu..m) grown on low-cost substrates; and (3) to evaluate the add-on cost for the epitaxial process and to develop low-cost epitaxial growth procedures for application in conjunction with low-cost silicon substrates. The basic epitaxial procedures and solar-cell fabrication and evaluation techniques are described, followed by a discussion of the development of baseline epitaxial solar-cell structures, grown on high-quality conventional silicon substrates. This work resulted in the definition of three basic structures which reproducibly yielded efficiencies in the range of 12 to 13.7%. These epitaxial growth procedures and baseline structures were then used to grow diagnostic layers and solar cells on four potentially low-cost silicon substrates. A description of the crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials is given. The major results were the achievement of cell efficiencies of 10.6 to 11.2% on multigrained substrates and approx. 13% on a low-cost single-crystal substrate. An advanced epitaxial reactor, the Rotary Disc, is described. The results of growing solar-cell structures of the baseline type and on low-cost substrates are given. The add-on cost for the epitaxial process is assessed. These cost estimates show a value of approx. 0.46/W using existing or near-term technologies and project an add-on cost of $0.10/W for future reactors.

D'Aiello, R.V.; Robinson, P.H.; Richman, D.

1979-04-01T23:59:59.000Z

369

Point-Contact Silicon Solar Cells  

Science Conference Proceedings (OSTI)

A new type of silicon photovoltaic cell called the point-contact cell is under development. This report describes the cell and an analytic model developed for use in design optimization. Necessary future cell development work is discussed.

1983-05-01T23:59:59.000Z

370

Fabrication and Characterization of Organic Solar Cells  

E-Print Network (OSTI)

treatment  of  indium  tin  oxide  for  organic solar JR.  Criteria for ITO (indium?tin?oxide) an organic  light expansive material, indium thin oxide (ITO) thin films, with

Yengel, Emre

2010-01-01T23:59:59.000Z

371

Scientists Identify New Quaternary Materials for Solar Cell Absorbers (Fact Sheet), NREL Highlights, Science  

DOE Green Energy (OSTI)

Research provides insight for exploring use of earth-abundant quaternary semiconductors for large-scale solar cell applications. For large-scale solar electricity generation, it is critical to find new material that is Earth abundant and easily manufactured. Previous experimental studies suggest that Cu{sub 2}ZnSnS{sub 4} could be a strong candidate absorber materials for large-scale thin-film solar cells due to its optimal bandgap, high adsorption coefficient, and ease of synthesis. However, due to the complicated nature of the quaternary compound, it is unclear whether other quaternary compounds have physical properties suitable for solar cell application. Researchers at the National Renewable Energy Laboratory (NREL), Fudan University, and University College London have performed systematic searches of quaternary semiconductors using a sequential cation mutation method in which the material properties of the quaternary compounds can be derived and understood through the evolution from the binary, to ternary, and to quaternary compounds. The searches revealed that in addition to Cu{sub 2}ZnSnS{sub 4}, Cu{sub 2}ZnGeSe{sub 4} and Cu{sub 2}ZnSnSe{sub 4} are also suitable quaternary materials for solar cell absorbers. Through the extensive study of defect and alloy properties of these materials, the researchers propose that to maximize solar cell performance, growth of Cu{sub 2}ZnSnS{sub 4} under Cu-poor/Zn-rich conditions will be optimal and the formation of Cu{sub 2}ZnSn(S,Se){sub 4} alloy will be beneficial in improving solar cell performance.

Not Available

2011-10-01T23:59:59.000Z

372

Real time intelligent process control system for thin film solar cell manufacturing  

SciTech Connect

This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

373

Method Of Making Solar Collectors By In-Situ Encapsulation Of Solar Cells  

DOE Patents (OSTI)

A method of making solar collectors by encapsulating photovoltaic cells within a base of an elongated solar collector wherein heat and pressure are applied to the cells in-situ, after an encapsulating material has been applied. A tool is fashioned having a bladder expandable under gas pressure, filling a region of the collector where the cells are mounted. At the same time, negative pressure is applied outside of the bladder, enhancing its expansion. The bladder presses against a platen which contacts the encapsulated cells, causing outgassing of the encapsulant, while heat cures the encapsulant. After curing, the bladder is deflated and the tool may be removed from the collector and base and reflective panels put into place, if not already there, thereby allowing the solar collector to be ready for use.

Carrie, Peter J. (Toronto, CA); Chen, Kingsley D. D. (Markham, CA)

2000-10-24T23:59:59.000Z

374

The ultra-thin solar cells that could generate power through windows  

E-Print Network (OSTI)

The ultra-thin solar cells that could generate power through windows By Claire Bates Last updated, generating enough electricity to power the GPS or air conditioning. Solar cells, which convert solar energy into tinted windows Page 1 of 3The ultra-thin solar cells that could generate power through windows | Mail

Rogers, John A.

375

Current NIST Research: Building Energy Efficiency Solar ...  

Science Conference Proceedings (OSTI)

... Characterize solar cells & modules => improve module ratings and computer models Page 16. ... PV accelerated weathering facility. ... usage, weather ...

2013-10-31T23:59:59.000Z

376

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents (OSTI)

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

Kaschmitter, J.L.

1996-07-23T23:59:59.000Z

377

Thermoelectric Field Effects in Low Dimensional Structure Solar Cells  

E-Print Network (OSTI)

Taking into account the temperature gradients in solar cells, it is shown that their efficiency can be increased beyond the Shockley- Queisser- limit [1]. The driving force for this gain is the temperature gradient between this region and its surroundings. A quantitative theory is given. Though the effect is found to be weak in conventional solar cells, it is argued that it can be substantially increased by proper choice of materials and design of the device. In particular, it is shown that the insertion of a quantum well can enhance the efficiency beyond the one of a single gap cell, due to the presence of temperature jumps at the heterojunctions.

Stefan Kettemann A; Jean-francois Guillemoles B

2002-01-01T23:59:59.000Z

378

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents (OSTI)

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

Kaschmitter, James L. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

379

Laminated photovoltaic modules using back-contact solar cells  

DOE Patents (OSTI)

Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

1999-09-14T23:59:59.000Z

380

Questions I will answer What is a solar cell?  

E-Print Network (OSTI)

used? · Where do they compete economically with coal-fired power plants? · How cells are safe and have few non-desirable environmental impacts. ·Solar cells can replace coal, which Source: Deutsche Bank, January 2011; Systems are global (i.e., blended across geographies) My source: R

McGehee, Michael

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Infrared NDT methods applied to solar cell and panel characterization  

DOE Green Energy (OSTI)

Infrared nondestructive testing (NDT) methods are described that have a good potential for providing valuable data concerning solar cell or panel characteristics without requiring contact with the photovoltaic device. Preliminary tests with cells and panels were conducted and the infrared NDT results are presented and discussed. (MHR)

Green, D. R.; Olsen, L. C.

1978-10-20T23:59:59.000Z

382

Multi-phase back contacts for CIS solar cells  

DOE Patents (OSTI)

Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe{sub 2} where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor. 15 figs.

Rockett, A.A.; Yang, L.C.

1995-12-19T23:59:59.000Z

383

Durable, Low Cost, Improved Fuel Cell Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Durable, Low-cost, Improved Durable, Low-cost, Improved Fuel Cell Membranes US Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies Kickoff Meeting, Washington DC, February 13, 2007 Michel Fouré Project Objectives z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80°C at low relative humidity (25-50%). z To develop a membrane capable of operating at 120°C for brief periods of time. z To elucidate membrane degradation and failure mechanisms. U:jen/slides/pres.07/FC kickoff Washington DC 2-13-07 2 Technical Barriers Addressed z Membrane Cost z Membrane Durability z Membrane capability to operate at low relative humidity. z Membrane capability to operate at 120ºC for brief period of times.

384

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network (OSTI)

LemonsR. A. ( 1990) Fuel Cells for Transportation. Jour- DC,M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinsolid tember. oxide fuel cell development. Journal of

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

385

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure of All-Polymer Solar Structure of All-Polymer Solar Cells Impedes Efficiency Structure of All-Polymer Solar Cells Impedes Efficiency Print Wednesday, 27 October 2010 00:00 Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

386

New Morphological Paradigm Uncovered in Organic Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

New Morphological Paradigm Uncovered in Organic Solar Cells Print New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on simplistic morphological assumptions, including discrete interfaces between pure electron donor and acceptor materials. In contrast, recent spectroscopy and scattering studies conducted by North Carolina State University and Cambridge University researchers at ALS Beamlines 5.3.2 and 7.3.3 found a substantial amount of molecular mixing between model materials (polymers and fullerenes) currently used in bulk heterojunction (BHJ) organic solar cells. This suggests that the amorphous portions of these devices do not have pure domains, and the paradigm of device operation may need to be refined to accommodate this newly discovered complexity.

387

New Morphological Paradigm Uncovered in Organic Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

New Morphological Paradigm Uncovered in Organic Solar Cells Print New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on simplistic morphological assumptions, including discrete interfaces between pure electron donor and acceptor materials. In contrast, recent spectroscopy and scattering studies conducted by North Carolina State University and Cambridge University researchers at ALS Beamlines 5.3.2 and 7.3.3 found a substantial amount of molecular mixing between model materials (polymers and fullerenes) currently used in bulk heterojunction (BHJ) organic solar cells. This suggests that the amorphous portions of these devices do not have pure domains, and the paradigm of device operation may need to be refined to accommodate this newly discovered complexity.

388

New Morphological Paradigm Uncovered in Organic Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

New Morphological Paradigm Uncovered in Organic Solar Cells Print New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on simplistic morphological assumptions, including discrete interfaces between pure electron donor and acceptor materials. In contrast, recent spectroscopy and scattering studies conducted by North Carolina State University and Cambridge University researchers at ALS Beamlines 5.3.2 and 7.3.3 found a substantial amount of molecular mixing between model materials (polymers and fullerenes) currently used in bulk heterojunction (BHJ) organic solar cells. This suggests that the amorphous portions of these devices do not have pure domains, and the paradigm of device operation may need to be refined to accommodate this newly discovered complexity.

389

New Morphological Paradigm Uncovered in Organic Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

New Morphological Paradigm New Morphological Paradigm Uncovered in Organic Solar Cells New Morphological Paradigm Uncovered in Organic Solar Cells Print Wednesday, 27 April 2011 00:00 Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on simplistic morphological assumptions, including discrete interfaces between pure electron donor and acceptor materials. In contrast, recent spectroscopy and scattering studies conducted by North Carolina State University and Cambridge University researchers at ALS Beamlines 5.3.2 and 7.3.3 found a substantial amount of molecular mixing between model materials (polymers and fullerenes) currently used in bulk heterojunction (BHJ) organic solar cells. This suggests that the amorphous portions of these devices do not have pure domains, and the paradigm of device operation may need to be refined to accommodate this newly discovered complexity.

390

Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)  

DOE Green Energy (OSTI)

The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

Not Available

2010-12-01T23:59:59.000Z

391

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network (OSTI)

as coal or oil. The photovoltaic cells which constitute mostand conventional inorganic photovoltaic cells is that lightand Characterization Photovoltaic (PV) cells convert solar

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

392

Optimization of interdigitated back contact silicon heterojunction solar cells by two-dimensional numerical simulation  

DOE Green Energy (OSTI)

In this paper, two-dimensional (2D) simulation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells is presented using Sentaurus Device, a software package of Synopsys TCAD. A model is established incorporating a distribution of trap states of amorphous-silicon material and thermionic emission across the amorphous-silicon / crystalline-silicon heterointerface. The 2D nature of IBC-SHJ device is evaluated and current density-voltage (J-V) curves are generated. Optimization of IBC-SHJ solar cells is then discussed through simulation. It is shown that the open circuit voltage (VOC) and short circuit current density (JSC) of IBC-SHJ solar cells increase with decreasing front surface recombination velocity. The JSC improves further with the increase of relative coverage of p-type emitter contacts, which is explained by the simulated and measured position dependent laser beam induced current (LBIC) line scan. The S-shaped J-V curves with low fill factor (FF) observed in experiments are also simulated, and three methods to improve FF by modifying the intrinsic a-Si buffer layer are suggested: (i) decreased thickness, (ii) increased conductivity, and (iii) reduced band gap. With all these optimizations, an efficiency of 26% for IBC-SHJ solar cells is potentially achievable.

Lu, Meijun; Das, Ujjwal; Bowden, Stuart; Hegedus, Steven; Birmire, Robert

2009-06-09T23:59:59.000Z

393

A model to determine financial indicators for organic solar cells  

Science Conference Proceedings (OSTI)

Organic solar cells are an emerging photovoltaic technology that is inexpensive and easy to manufacture, despite low efficiency and stability. A model, named TEEOS (Technical and Economic Evaluator for Organic Solar), is presented that evaluates organic solar cells for various solar energy applications in different geographic locations, in terms of two financial indicators, payback period and net present value (NPV). TEEOS uses SMARTS2 software to estimate broadband (280-4000 nm) spectral irradiance data and with the use of a cloud modification factor, predicts hourly irradiation in the absence of actual broadband irradiance data, which is scarce for most urban locations. By using the avoided cost of electricity, annual savings are calculated which produce the financial indicators. It is hoped that these financial indicators can help guide certain technical decisions regarding the direction of research for organic solar cells, for example, increasing efficiency or increasing the absorptive wavelength range. A sample calculation using solar hats is shown to be uneconomical, but a good example of large-scale organic PV production. (author)

Powell, Colin; Bender, Timothy; Lawryshyn, Yuri [Department of Chemical Engineering and Applied Chemistry, Faculty of Engineering and Applied Science, University of Toronto, 200 College Street, Toronto, Ont. (Canada)

2009-11-15T23:59:59.000Z

394

Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby  

DOE Patents (OSTI)

A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.

Gonzalez, Franklin N. (Gainesville, FL); Neugroschel, Arnost (Gainesville, FL)

1984-02-14T23:59:59.000Z

395

Method of making a back contacted solar cell  

DOE Patents (OSTI)

A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.

Gee, James M. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

396

Method of making a back contacted solar cell  

DOE Patents (OSTI)

A back-contacted solar cell is described having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell. 2 figs.

Gee, J.M.

1995-11-21T23:59:59.000Z

397

Semiconductor liquid-junction solar cell  

DOE Patents (OSTI)

A semiconductor liquid junction photocell in which the photocell is in the configuration of a light concentrator and in which the electrolytic solution both conducts current and facilitates the concentration of incident solar radiation onto the semiconductor. The photocell may be in the configuration of a non-imaging concentrator such as a compound parabolic concentrator, or an imaging concentrator such as a lens.

Parkinson, B.A.

1982-10-29T23:59:59.000Z

398

Quantum Dot Solar Cells with Multiple Exciton Generation  

DOE Green Energy (OSTI)

We have measured the quantum yield of the multiple exciton generation (MEG) process in quantum dots (QDs) of the lead-salt semiconductor family (PbSe, PbTe, and PbS) using fs pump-probe transient absorption measurements. Very high quantum yields (up to 300%) for charge carrier generation from MEG have been measured in all of the Pb-VI QDs. We have calculated the potential maximum performance of various MEG QD solar cells in the detailed balance limit. We examined a two-cell tandem PV device with singlet fission (SF), QD, and normal dye (N) absorbers in the nine possible series-connected combinations to compare the tandem combinations and identify the combinations with the highest theoretical efficiency. We also calculated the maximum efficiency of an idealized single-gap MEG QD solar cell with M multiplications and its performance under solar concentration.

Hanna, M. C.; Beard, M. C.; Johnson, J. C.; Murphy, J.; Ellingson, R. J.; Nozik, A. J.

2005-11-01T23:59:59.000Z

399

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

H.C. Maru; M. Farooque

2003-03-01T23:59:59.000Z

400

New approaches for high-efficiency solar cells. Final report  

DOE Green Energy (OSTI)

This report summarizes the activities carried out in this subcontract. These activities cover, first the atomic layer epitaxy (ALE) growth of GaAs, AlGaAs and InGaP at fairly low growth temperatures. This was followed by using ALE to achieve high levels of doping both n-type and p-type required for tunnel junctions (Tj) in the cascade solar cell structures. Then the authors studied the properties of AlGaAs/InGaP and AlGaAs/GaAs tunnel junctions and their performances at different growth conditions. This is followed by the use of these tunnel junctions in stacked solar cell structures. The effect of these tunnel junctions on the performance of stacked solar cells was studied at different temperatures and different solar fluences. Finally, the authors studied the effect of different types of black surface fields (BSF), both p/n and n/p GaInP solar cell structures, and their potential for window layer applications. Parts of these activities were carried in close cooperation with Dr. Mike Timmons of the Research Triangle Institute.

Bedair, S.M.; El-Masry, N.A. [North Carolina State Univ., Raleigh, NC (United States)

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Identifying Optimal Inorganic Nanomateirals for Hybrid Solar Cells  

DOE Green Energy (OSTI)

As a newly developed photovoltaic technology, organic-inorganic hybrid solar cells have attracted great interest because of the combined advantages from both components. An ideal inorganic acceptor should have a band gap of about 1.5 eV and energy levels of frontier orbitals matching those of the organic polymer in hybrid solar cells. Hybrid density functional calculations are performed to search for optimal inorganic nanomaterials for hybrid solar sells based on poly(3-hexylthiophene) (P3HT). Our results demonstrate that InSb quantum dots or quantum wires can have a band gap of about 1.5 eV and highest occupied molecular orbital level about 0.4 eV lower than P3HT, indicating that they are good candidates for use in hybrid solar cells. In addition, we predict that chalcopyrite MgSnSb{sub 2} quantum wire could be a low-cost material for realizing high-efficiency hybrid solar cells.

Xiang, H.; Wei, S. H.; Gong, X. G.

2009-01-01T23:59:59.000Z

402

Development of pulsed processes for the manufacture of solar cells. [Ion implantation and annealing process  

DOE Green Energy (OSTI)

This report describes the results of a 1-year program to develop the processes required for low-energy ion implantation for the automated production of silicon solar cells. The program included (1) demonstrating state-of-the-art ion implantation equipment and designing an automated ion implanter, (2) making efforts to improve the performance of ion-implanted solar cells to 16.5 percent AM1, (3) developing a model of the pulse annealing process used in solar cell production, and (4) preparing an economic analysis of the process costs of ion implantation. During the program, phosphorus ions at an energy of 10 keV and dose of 2 x 10/sup 15/ cm/sup -2/ were implanted in silicon solar cells to produce junctions, while boron ions at 25 keV and 5 x 10/sup 15/ cm/sup -2/ were implanted in the cells to produce effective back surface fields. An ion implantation facility with a beam current up to 4 mA and a production throughput of 300 wafers per hour was designed and installed. A design was prepared for a 100-mA, automated implanter with a production capacity of 100 MW/sub e/ per year. A Solar Array Manufacturing Industry Costing Standards (SAMICS) economic analysis of the automated process steps of ion implantation and pulse annealing indicated that junctions can be formed and annealed at a cost of less than 3 cents per watt. The efforts during this program represent a major advancement in developing the automated production of silicon solar cells with efficiencies greater than 16 percent AM1.

Minnucci, J.A.

1978-12-01T23:59:59.000Z

403

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

H.C. Maru; M. Farooque

2004-08-01T23:59:59.000Z

404

Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells  

DOE Green Energy (OSTI)

The objective of this work is to develop and optimize the new dye-sensitized solar cell technology. In view of the infancy of rutile material development for solar cells, the PV response of the dye-sensitized rutile-based solar cell is remarkably close to that of the anatase-based cell.

Park, N. G.; van de Lagemaat, J.; Frank, A. J.

2000-01-01T23:59:59.000Z

405

Solar cells: what you always wanted to know  

SciTech Connect

This book discusses the development in the photovoltaics field that has made it economically feasible to consider the use of solar cells as an alternative energy source. There are numerous ecological benefits to the use of solar cell generated electricity. Information is presented that can be used by homeowners, architects, and builders, both to develop do-it-yourself systems and as a guide when dealing with professional installers. A special appendix of exercises is provided to give the reader more practice in estimating system requirements.

Laws, R.J.

1983-01-01T23:59:59.000Z

406

Thin film solar cell including a spatially modulated intrinsic layer  

SciTech Connect

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

407

Numericl modeling of graded band gap CIGS solar cells  

DOE Green Energy (OSTI)

The high efficiency reported recently by NREL for CIGS solar cells demonstrates the potential of band gap grading in producing high efficiency thin film solar cells. In order to reap the full benefits of this design strategy, a clear understanding of the fundamental device physics of these structures is needed. The purpose of this paper is to examine the role grading of the band gap plays in achieving high conversion efficiencies. To aid in this examination, a detailed numerical device simulation program, ADEPT, is used.

Gray, J.L.; Lee, Youn Jung

1994-12-31T23:59:59.000Z

408

High-efficiency solar cells using HEM silicon  

DOE Green Energy (OSTI)

Developments in Heat Exchanger Method (HEM) technology for production of multicrystalline silicon ingot production have led to growth of larger ingots (55 cm square cross section) with lower costs and reliability in production. A single reusable crucible has been used to produce 18 multicrystalline 33 cm square cross section 40 kg ingots, and capability to produce 44 cm ingots has been demonstrated. Large area solar cells of 16.3% (42 cm{sup 2}) and 15.3% (100 cm{sup 2}) efficiency have been produced without optimization of the material production and the solar cell processing.

Khattak, C.P.; Schmid, F. [Crystal Systems, Inc., Salem, MA (United States); Schubert, W.K. [Sandia National Labs., Albuquerque, NM (United States)

1994-12-31T23:59:59.000Z

409

Process Development for High Voc CdTe Solar Cells  

DOE Green Energy (OSTI)

This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

Ferekides, C. S.; Morel, D. L.

2011-05-01T23:59:59.000Z

410

Improved Oceanic Cool-Skin Corrections Using a Refined Solar Penetration Model  

Science Conference Proceedings (OSTI)

The oceanic near-surface temperature profile must be accurately characterized to enable precise determination of air–sea heat exchange and satellite retrievals of sea surface temperature. An improved solar transmission parameterization is ...

Gary A. Wick; J. Carter Ohlmann; Christopher W. Fairall; Andrew T. Jessup

2005-11-01T23:59:59.000Z

411

Enhancing solar cells with plasmonic nanovoids  

E-Print Network (OSTI)

in rotation-to-electricity conversion efficiencies through careful 3 1. Introduction Plant type LCOE (c/kWh) Gas 6.6 Hydro 8.6 Coal 9.5 Wind - Onshore 9.7 Geothermal 10.2 Biomass 11.3 Nuclear 11.4 Coal with CCS 13.6 Solar PV 21.1 Wind - Offshore 24.3 Solar... bill. 2 § 1.1 Motivation and context Coal and Peat 40.5% Oil 5.1% Natural gas 21.4% Nuclear 13.4% Hydro 16.2% Other 3.3% Figure 1.1: World electricity generation by source of energy. ‘Other’ includes wind...

Lal, Niraj Narsey

2012-07-03T23:59:59.000Z

412

Substrate for thin silicon solar cells  

DOE Patents (OSTI)

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

Ciszek, Theodore F. (Evergreen, CO)

1995-01-01T23:59:59.000Z

413

Substrate for thin silicon solar cells  

DOE Patents (OSTI)

A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

Ciszek, T.F.

1995-03-28T23:59:59.000Z

414

SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Foundational Program to Solar Foundational Program to Advance Cell Efficiency to someone by E-mail Share SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Facebook Tweet about SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Twitter Bookmark SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Google Bookmark SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Delicious Rank SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Digg Find More places to share SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy

415

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC products development has been carried out under a joint public-private effort with DOE being the major contributor. Current funding is primarily under a Cooperative Agreement with DOE.

H. C. Maru; M. Farooque

2003-12-19T23:59:59.000Z

416

Solceller som energikälla och solskydd för tält; Solar cells as power source and solar protection roof for shelters.  

E-Print Network (OSTI)

?? This degree project is an investigation of solar cells and their ability to deliver electric power as well as reducing the need for cooling.… (more)

Lönn, Viktoria

2008-01-01T23:59:59.000Z

417

Scientists at ALS Find New Path to More Efficient Organic Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists at ALS Find New Path to Scientists at ALS Find New Path to More Efficient Organic Solar Cells Scientists at ALS Find New Path to More Efficient Organic Solar Cells Print Monday, 07 January 2013 00:00 Harald Ade, a physicist at North Carolina State University, led a study at the Advanced Light Source that revealed a second pathway to improved performances of polymer/organic solar cells. Whereas the first pathway demands crystals of ultrapure domains, the new pathway shows that impure domains if sufficiently small can also lead to improved photovoltaic performances. Also working on this project were Brian Collins, Zhe Li, John Tumbleston, Eliot Gann and Christopher McNeill. Read the News Release Molecular view of polymer/fullerene solar film showing an interface between acceptor and donor domains. Red dots are PC71BM molecules and blue lines represent PTB7 chains. Excitons are shown as yellow dots, purple dots are electrons and green dots represent holes

418

Molten carbonate fuel cell product design improvement  

DOE Green Energy (OSTI)

Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this test confirming the full-height stack basic design and with the completion of SCDP stacks post-test feedback, manufacture of the full-height stack representing the commercial prototype design has been completed and system demonstration is planned to start in the first quarter of 1999. These developments as well as manufacturing advances are discussed in this report.

P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

1998-12-20T23:59:59.000Z

419

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

420

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

422

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

423

Structure of All-Polymer Solar Cells Impedes Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

424

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

H.C. Maru; M. Farooque

2002-02-01T23:59:59.000Z

425

Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint  

DOE Green Energy (OSTI)

State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

2012-06-01T23:59:59.000Z

426

CAB-DWTM for 5 ÎĽm trace-width deposition of solar cell metallization top-contacts  

DOE Green Energy (OSTI)

This paper reviews methods for creating solar cell grid contacts and explores how cell efficiency can be increased using CAB-DW{trademark}. Specifically, the efficiency of p-i-n structure solar cells built in-house with 90 {micro}m sputtered lines and 5 {micro}m CAB-DW lines were compared. Preliminary results of the comparison show a marked improvement in solar cell efficiency using CAB-DW. In addition to this, a theoretical and experimental analysis of the dynamics of particle impaction on a substrate (i.e. whether particle stick or bounce) will be discussed including how this analysis may lead to further improvement of CAB-DW.

Justin Hoey; Drew Thompson; Matt Robinson; Zakaria Mahmud; Orven F. Swenson; Iskander S. Akhatov; Douglas L. Schulz

2009-06-08T23:59:59.000Z

427

Improved thermal storage module for solar dynamic receivers  

DOE Patents (OSTI)

This invention relates to a thermal storage apparatus and more particularly to an apparatus for use in conjunction with solar dynamic energy storage systems. The invention is comprised of a thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, R.L.; Lauf, R.J.

1990-12-31T23:59:59.000Z

428

Improved thermal storage module for solar dynamic receivers  

DOE Patents (OSTI)

This invention relates to a thermal storage apparatus and more particularly to an apparatus for use in conjunction with solar dynamic energy storage systems. The invention is comprised of a thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, R.L.; Lauf, R.J.

1990-01-01T23:59:59.000Z

429

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network (OSTI)

solar cells enable very high photovoltaic efficiencies by virtue of employing different band gap to increase the short circuit current and the photovoltaic efficiency of solar cells. INTRODUCTION Multi-junction solar cells based on III-V compound semiconductors are the most efficient photovoltaic devic- es

Heaton, Thomas H.

430

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility Project Eagle Phase 1 Direct Wafer/Cell Solar Facility 1366 Technologies Description of Proposed Action: The Department of Energy (DOE) proposed action is for the use of a federal loan guarantee by 1366 Technologies (1366) to support the renovation of an existing building, located at 159 Wells Avenue, Newton, Massachusetts, into a solar wafer production facility. The new facility would constitute Phase 1 of Project Eagle and accommodate 20 megawatts (MW) of multi crystalline silicon wafer production, laboratory areas, offices, and ancillary spaces. Phase 2 of Proje~y an existing DOE Categorical Exclusion and would occur at a site in _ _ _ _ . The Phase 1 facility in Newton, MA is an existing building of 50,600 square feet on a site approximately 4.7 acres. 1366 would renovate the interior of the facility to provide office

431

Simulation and process development for ion-implanted N-type silicon solar cells .  

E-Print Network (OSTI)

??As the efficiency potential for the industrial P-type Al-BSF silicon solar cell reaches its limit, new solar cell technologies are required to continue the pursuit… (more)

Ning, Steven

2013-01-01T23:59:59.000Z

432

Award-Winning Etching Process Cuts Solar Cell Costs (Revised) (Fact Sheet)  

DOE Green Energy (OSTI)

The NREL "black silicon" nanocatalytic wet-chemical etch is an inexpensive, one-step method to minimize reflections from crystalline silicon solar cells. The technology enables high-efficiency solar cells without the use of expensive antireflection coatings.

Not Available

2011-05-01T23:59:59.000Z

433

Development Efforts on Silicon Solar Cells  

Science Conference Proceedings (OSTI)

A stable, high-efficiency photovoltaic cell technology was developed for use in advanced systems that generate electricity from highly concentrated sunlight.

1992-02-01T23:59:59.000Z

434

Angular constraint on light-trapping absorption enhancement in solar cells  

E-Print Network (OSTI)

Light trapping for solar cells can reduce production cost and improve energy conversion efficiency. Understanding some of the basic theoretical constraints on light trapping is therefore of fundamental importance. Here, we develop a general angular constraint on the absorption enhancement in light trapping. We show that there is an upper limit for the angular integration of absorption enhancement factors. This limit is determined by the number of accessible resonances supported by an absorber.

Yu, Zongfu

2010-01-01T23:59:59.000Z

435

Modelling and fabrication of high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

Rohatgi, A.; Smith, A.W.; Salami, J. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering] [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering

1991-10-01T23:59:59.000Z

436

Negative Electrodes Improve Safety in Lithium Cells and Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost negativeelectrodes...

437

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the program period in the areas of technology, manufacturing processes, cost reduction and balance-of-plant equipment designs is discussed in this report.

H.C. Maru; M. Farooque

2005-03-01T23:59:59.000Z

438

Segmented dish concentrator design project. [For solar cells  

SciTech Connect

The module uses a non-imaging thermoformed reflector consisting of tiers of conical reflecting surfaces sealed to a curved window which seals the mirror surfaces and the solar cells from the environment. A reflective coating is applied after the module is formed to the inside of the curved surfaces. Coatings of aluminum, silver, and copper were used. The receiver is a hexagonal prism machined on the surface of a metal pipe with the hexagonal shape around the circumference. The receiver holds 18, 2x2 cm. 40X solar cells. Three cells are mounted on each face of the six faces and can be wired in series or series-parallel. The cells are individually soldered to molybdenum with a tab for the back electrical connection. The molybdenum-solar cell combination is mounted to the heat sink with silicon rubber impregnated with powdered silicon. This provides an electrically insulating medium with reasonable thermally conductive properties. The hexagonal heat sink is inserted into the module from the rear, extending far enough into the module to intercept the light reflected from the conical tiers. Each tier illuminates the entire cell surface with the 5 tiers adding together to yield 40X concentration. Water flows inside the heat sink to dissipate the heat generated by the module. Electrical leads, water lines, and thermocouple wires are fed through the back and sealed to prevent environmental interference with the inner surfaces of the module. The module was tested at The University of Arizona. For the silver coated module, an overall efficiency of 7.6% was obtained with an input of 346 watts. Solar cell surface temperature was 50/sup 0/C. The cells were wired in series-parallel and a V/sub oc/ = 4 volts and an I/sub sc/ = 9.2 A was obtained. Four modules were delivered to Sandia in March 1979.

Call, R.L.

1979-07-01T23:59:59.000Z

439

In-Line Crack and Stress Detection in Silicon Solar Cells Using Resonance Ultrasonic Vibrations  

SciTech Connect

Statement of Problem and Objectives. Wafer breakage in automated solar cell production lines is identified as a major technical problem and a barrier for further cost reduction of silicon solar module manufacturing. To the best of our knowledge, there are no commercial systems addressing critical needs for in-line inspection of the mechanical quality of solar wafers and cells. The principal objective of the SBIR program is to validate through experiments and computer modeling the applicability of the Resonance Ultrasonic Vibrations system, which ultimately can be used as a real-time in-line manufacturing quality control tool for fast detection of mechanically unstable silicon solar cells caused by cracks. The specific objective of Phase II is to move the technology of in-line crack detection from the laboratory level to commercial demonstration through development of a system prototype. The fragility of silicon wafers possessing low mechanical strength is attributed to peripheral and bulk millimeter-length cracks. The research program is based on feasibility results obtained during Phase I, which established that: (i) the Resonance Ultrasonic Vibrations method is applicable to as-cut, processed wafers and finished cells; (ii) the method sensitivity depends on the specific processing step; it is highest in as-cut wafers and lowest in wafers with metallization pattern and grid contacts; (iii) the system is capable of matching the 2.0 seconds per wafer throughput rate of state-of-art solar cell production lines; (iv) finite element modeling provides vibration mode analysis along with peak shift versus crack length and crack location dependence; (v) a high 91% crack rejection rate was confirmed through experimentation and statistical analysis. The Phase II project has the following specific tasks: (i) specify optimal configurations of the in-line system�¢����s component hardware and software; (ii) develop and justify a system prototype that meets major specifications for an in-line crack detection unit, such as high throughput rate, high level of stability, reproducibility of data acquisition and analysis, and high sensitivity with respect to crack length and crack location; (iii) design a system platform that allows easy integration within and adaptation to various solar cell belt-type production lines; (iv) develop a testing protocol providing quality certification of the production-grade system. Commercial Application of the proposed activity consists of bringing to the solar market a new high-tech product based on an innovative solution and patented methodology to contribute to cost reduction of silicon solar module production. The solar industry, with crystalline silicon as a dominant segment, shows outstanding performance, with approximately 25% yearly growth during the last years. Despite a slowdown with only 5.6 GW installations in 2009, solar module production for the 2010 and 2011 years was recovered. According to European Photonics Industry Consortium new solar PV installations grow by 56% compared to 2010 reached 64.7 GW in 2011. Revenues in the PV industry reached a record high of $93 billion in 2011, a 13.4 percent gain over 2010 â�� and 150 percent over 2009. This growth was forecasted to continue in 2013 with double digits growth. The solar industry is economically driven to make solar panels of the highest conversion efficiency and reliability at the lowest production cost. The Resonance Ultrasonic Vibration system addresses critical needs of the silicon-based solar industry by providing a quality control method and tool, which will improve productivity, increase reliability of products and reduce manufacturing cost of solar panels.

Ostapenko, Sergei

2013-04-03T23:59:59.000Z

440

Manufacturing-Friendly Advance Seen in CIGS Solar Cell Processing (Fact Sheet)  

SciTech Connect

Scientists developed a robust, high-performance amorphous InZnO transparent contact for CIGS solar cells.

Not Available

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Performance Limitations of mc-Si Solar Cells Caused by Defect Clusters: Preprint  

DOE Green Energy (OSTI)

This paper presents a combination of numerical and experimental methods used to characterize defect clusters in multicrystalline silicon solar cells.

Sopori, B.; Rupnowski, P.; Mehta, V.; Budhraja, V.; Johnston, S.; Call, N.; Moutinho, H.; Al-Jassim, M.; Shaikh, A /; Seacrist, M.; Carlson, D.

2009-02-01T23:59:59.000Z

442

Survey of Development of CZTS-based Thin Film Solar Cells  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Alloys and Compounds for Thermoelectric and Solar Cell Applications.

443

Molten Carbonate Fuel Cell Product Design Improvement  

DOE Green Energy (OSTI)

This annual report provides results of Energy Research Corporation`s technical approach to performing the program `Molten Carbonate Fuel Cell (MCFC) Product Design Improvement` covered under the DOE-ERC Cooperative Agreement DE-FC21-95MC31184. This work is supported by DOE/METC and DOD/DARPA as well as ERC Team funds. The objective of the DOE-sponsored program is to advance the direct carbonate fuel cell technology to a level suitable for commercial entry for civilian applications. The overall objective of the DOD/DARPA initiative is to adapt the civilian 2 MW-Class fuel cell power plant for dual fuel DOD applications. This program is designed to advance the carbonate fuel cell technology from the power plant demonstration status to the commercial entry early production unit design stage. The specific objectives which will allow attainment of these overall program goals are: (1) Provide environmental information to support DOE evaluation with respect to the National Environmental Policy Act (NEPA), (2) Define market-responsive power plant requirements and specifications, (3) Establish design for multifuel, low-cost, modular, market-responsive power plant, (4) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (5) Acquire capabilities to support developmental testing of 0370 stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness of the power plant for commercial entry.

NONE

1996-03-01T23:59:59.000Z

444

Solar cells conversion efficiency maximisation based on sol-gel method and front surface texturisation  

Science Conference Proceedings (OSTI)

This paper presents experiments and evaluations on a new silicon solar cell structure obtained by texturisation of the front surface using silicon micromachining technologies. The textured surface of the solar cell is made in order to reduce frontal ... Keywords: light trapping, micromachining, silicon, sol-gel method, solar cells, texturisation

Lucian Milea; Orest Oltu; Claudius Teodorescu; Verona Muntean; Marius Stoian

2008-07-01T23:59:59.000Z

445

Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes  

E-Print Network (OSTI)

Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 nanotubes can be effectively controlled for the suitable use for a hybrid solar cell by varying the diameter nanotubes to form hybrid solar cells. The open circuit voltage, short circuit current density, fill factor

Cao, Guozhong

446

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption  

E-Print Network (OSTI)

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption flat gallium arsenide solar cell, we show that it is possible to modify the flow of light and enhance above the solar cell. The incoupling element is lossless and, thus, has the advantage that no energy

Grandidier, Jonathan

447

SOLAR CELL BASED PYRANOMETERS: EVALUATION OF THE DIFFUSE RESPONSE Frank Vignola  

E-Print Network (OSTI)

260 SOLAR CELL BASED PYRANOMETERS: EVALUATION OF THE DIFFUSE RESPONSE Frank Vignola Department The responsivity to diffuse radiation of a solar cell based pyranometer is studied. Diffuse measurements are made of the LiCor pyranometer is presented. Implication of the spectral dependence of the solar cell based

Oregon, University of

448

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network (OSTI)

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant will provide a guideline for solar cell designers to fabricate various discrete components in a power converter-junction solar cells. Prof. Khan is the founder of the Power Engineering and Automation Research Lab (PEARL

Ellis, Randy

449

High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells  

E-Print Network (OSTI)

High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells Brian E soluble energy relay dyes with high molar extinction coefficients. KEYWORDS Solar cell, energy transfer-sensitized solar cells, the excited ERDs must be able to efficiently transfer energy to the sensitizing dyes

McGehee, Michael

450

Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

1999-06-01T23:59:59.000Z

451

Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer  

SciTech Connect

Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of a suitable low-bandgap polymer. Here, we demonstrate highly efficient single and tandem polymer solar cells featuring a low-bandgap conjugated polymer (PBDTT-DPP: bandgap, {approx}1.44 eV). A single-layer device based on the polymer provides a power conversion efficiency of {approx}6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which is, to the best of our knowledge, the highest certified efficiency for a polymer solar cell to date.

Dou, L.; You, J.; Yang, J.; Chen, C. C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y.

2012-03-01T23:59:59.000Z

452

Polycrystalline Thin-Film Multijunction Solar Cells  

DOE Green Energy (OSTI)

We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

2005-11-01T23:59:59.000Z

453

Cost-Effective Replacement for Iodide in Dye-Sensitized Solar Cells  

Dye-sensitized solar cells (DSSCs) are used to create electrical energy from sunlight. The cell has three components: the cathode, the photoanode, and ...

454

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network (OSTI)

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also,… (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

455

Real time intelligent process control system for thin film solar cell manufacturing  

DOE Green Energy (OSTI)

All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStrata’s fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process “on-the-fly” in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

456

Silicon materials task of the low-cost solar-array project. Effect of impurities and processing on silicon solar cells. Final report  

DOE Green Energy (OSTI)

The object of the program has been to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study has encompassed topics such as thermochemical (gettering) treatments, base-doping concentration, base-doping type (n vs. p), grain boundary-impurity interaction in polycrystalline devices, and long-term effects of impurities and impurity impacts on high-efficiency cells, as well as a preliminary evaluation of some potential low-cost silicon materials. The effects have been studied of various metallic impurities, introduced singly or in combination into Czochralski, float zone, and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The solar cell data indicate that impurity-induced performance loss is caused primarily by a reduction in base diffusion length. An analytical model based on this observation has been developed and verified experimentally for both n- and p-base material. Studies of polycrystalline ingots containing impurities indicate that solar cell behavior is species sensitive and that a fraction of the impurities are segregated to the grain boundaries. HCl and POCl gettering improve the performance of single-crystal solar cells containing Fe, Cr, and Ti. In contrast Mo-doped material is barely affected. The efficiencies of solar cells fabricated on impurity-doped wafers is lower when the front junction is formed by ion implantation than when conventional diffusion techniques are used. For most impurity-doped solar cells stability is expected for projected times beyond 20 years. Feedstock impurity concentrations below one part per million for elements like V, or 100 parts per million for more benign impurities like Cu or Ni, will be required.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Hanes, M.H.; Rai-Choudhury, P.; Mollenkopf, H.C.

1982-02-01T23:59:59.000Z

457

Current performance and potential improvements in solar thermal industrial heat  

DOE Green Energy (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m[sup 2] system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

458

Current performance and potential improvements in solar thermal industrial heat  

DOE Green Energy (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m{sup 2} system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

459

Improving the Ni I atomic model for solar and stellar atmospheric models  

E-Print Network (OSTI)

Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 A. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere considered only few levels of this species. Here we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model improves significantly the calculation of the solar spectral irradiance at near-UV wavelengths that are important for Earth atmo spheric studies, and particularly for ozone chemistry.

Vieytes, Mariela C

2013-01-01T23:59:59.000Z

460

Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge  

DOE Patents (OSTI)

A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO); Friedman, Daniel J. (Lakewood, CO)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved solar cells" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Group I-III-VI.sub.2 semiconductor films for solar cell application  

SciTech Connect

This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

1991-01-01T23:59:59.000Z

462

High efficiency thin film CdTe and a-Si based solar cells  

DOE Green Energy (OSTI)

This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10{sup {minus}5} torr) was beneficial for growing high-quality films from ITO targets.

Compaan, A. D.; Deng, X.; Bohn, R. G.

2000-01-04T23:59:59.000Z

463

Large-area Silicon-Film{trademark} panels and solar cells  

DOE Green Energy (OSTI)

This report describes AstroPower`s success in improving its material and processing capabilities during the first phase of this 3-year contract through the Photovoltaic Manufacturing Technology (PVMaT) program. Key results include the demonstration of a 14.6%-efficient Silicon-Film{trademark} solar cell. This laboratory result (1.0 cm{sup 2}) provides the direction needed to develop and optimize continuous, in-line production processes. The continuous nature of the Silicon-Film{trademark} sheet fabrication process is being extended into the solar-cell processing sequence. Plans are in place to make the wafer cleaning, gettering, and diffusion steps all continuous during the scope of this program.

Rand, J.A.; Barnett, A.M.; Checchi, J.C. [AstroPower, Inc., Newark, DE (United States)] [and others

1997-01-01T23:59:59.000Z

464

The effects of concentrated ultraviolet light on high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The importance of stability in the performance of solar cells is clearly recognized as fundamental. Some of the highest efficiency silicon solar cells demonstrated to date, such as the Point Contact solar cell and the Passivated Emitter solar cell, rely upon the passivation of cell surfaces in order to minimize recombination, which reduces cell power output. Recently, it has been shown that exposure to ultraviolet (UV) light of wavelengths present in the terrestrial solar spectrum can damage a passivating silicon-oxide interface and increase recombination. In this study, we compared the performance of Point Contact and Passivated Emitter solar cells after exposure to UV light. We also examined the effect of UV exposure on oxide-passivated silicon wafers. We found that current Passivated Emitter designs are stable at both one-sun and under concentrated sunlight. The evolution of Point Contact concentrator cell performance shows a clear trend towards more stable cells. 15 refs., 18 figs.

Ruby, D.S.; Schubert, W.K.

1991-01-01T23:59:59.000Z

465

Amorphous silicon cell array powered solar tracking apparatus  

DOE Patents (OSTI)

An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

Hanak, Joseph J. (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

466

Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?  

E-Print Network (OSTI)

Jenerette. 2010. Box 11: Two paths towards solar energy:Photovoltaic vs Solar Thermal. In: Planetary Stewardship.government betting on the wrong solar horse. Natural Gas &

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

467

Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells  

Office of Scientific and Technical Information (OSTI)

Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells Resources with Additional Information · Patents · Videos After receiving 'his physics Ph.D. at the University of California at Berkeley in 1961, [Alan J.] Heeger would spend the next 20 years teaching the subject at the University of Pennsylvania - while also designing and then launching one of the nation's premiere scientific think tanks: the Laboratory for Research on the Structure of Matter. Alan J. Heeger Courtesy of Randy Lamb, UCSB It was there in the Penn experimental lab, during the fall and early winter of 1976, that Heeger and two colleagues would first begin to explore the possibility of manipulating "long chains of polymers" with an eye to "altering their properties" so that they could be coaxed into conducting electricity.'1

468

Design for the fabrication of high efficiency solar cells  

DOE Patents (OSTI)

A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

Simmons, Joseph H. (Gainesville, FL)

1998-01-01T23:59:59.000Z

469

Lithographic antennas for enhancement of solar cell efficiency  

DOE Green Energy (OSTI)

This report documents proof-of-concept demonstration of the use of lithographic antennas for enhancement of solar-cell efficiency. A micro-sized lithographic antenna array was theoretically modeled, designed and fabricated. Experimental research was performed to validate the ability of the antenna array to concentrate infrared and visible energy onto photovoltaic (PV) materials. The research will serve as the basis for the design of a miniature power source for remote sensors.

Kotter, D.K. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Boreman, G. [Univ. of Central Florida, Orlando, FL (United States). Center for Research and Education in Optics and Lasers

1998-04-01T23:59:59.000Z

470

Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint  

Science Conference Proceedings (OSTI)

We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

2011-07-01T23:59:59.000Z

471

Gas fixation solar cell using gas diffusion semiconductor electrode  

SciTech Connect

A gas diffusion semiconductor electrode and solar cell and a process for gaseous fixation, such as nitrogen photoreduction, CO/sub 2/ photoreduction and fuel gas photo-oxidation are described. The gas diffusion photosensitive electrode has a central electrolyte porous matrix with an activated semiconductor material on one side adapted to be in contact with an electrolyte and a hydrophobic gas diffusion region on the opposite side adapted to be in contact with a supply of molecular gas.

Ang, P.G.; Sammells, A.F.

1980-12-23T23:59:59.000Z

472

On Quantum Coherence Effects in Photo and Solar Cells  

E-Print Network (OSTI)

We show that quantum coherence can increase the quantum efficiency of various thermodynamic systems. For example, we can enhance the quantum efficiency for a quantum dot photocell, a laser based solar cell and the photo-Carnot quantum heat engine. Our results are fully consistent with the laws of thermodynamics contrary to comments found in the paper of A.P. Kirk, Phys. Rev. Lett. 106, 048703 (2011).

Kimberly Chapin; Konstantin Dorfman; Anatoly Svidzinsky; Marlan Scully

2010-12-23T23:59:59.000Z

473

Encapsulant Material For Solar Cell Module And Laminated Glass Applications  

SciTech Connect

An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

Hanoka, Jack I. (Brookline, MA); Klemchuk, Peter P. (Watertown, CT)

2001-02-13T23:59:59.000Z

474

Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells  

E-Print Network (OSTI)

the centerpoint of the solar cell samples. At that distance, the intensity of the light source was mapped, the light source employed for this study was less energetic than solar energy fluxes, which are in the rangeN-coated and uncoated solar cells. We also thank Greg Parsons for the use of a light meter, Dale Bachelor for assistance

Velev, Orlin D.

475

Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes  

E-Print Network (OSTI)

Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes Gerald their communications and networking parameters to the available environmental energy harvested by the organic solar harvesting, organic solar cells, ultra-low-power com- munications, ultra-wideband impulse radio, energy

Carloni, Luca

476

Exact solution for excess electrons in quantum mechanically operating solar cells, under cumulative Auger effects  

Science Conference Proceedings (OSTI)

We derive excess carrier populations in quantum wells, embedded in the intrinsic region of p-i-n solar cells. In the process of the analysis, we (a) solve for photo-generated carriers in quantum wells and (b) determine explicit dependence on incident ... Keywords: Auger recombination, material growth, quantum photovoltaics, quantum wells, solar cells, solar spectrum

Argyrios Varonides; Robert Spalletta; Andrew Berger

2007-07-01T23:59:59.000Z

477

New Materials for Future Generations of III-V Solar Cells  

DOE Green Energy (OSTI)

Three- and four-junction III-V devices are proposed for ultrahigh-efficiency solar cells using a new 1-eV material lattice-matched to GaAs, namely, GaInNAs. We demonstrate working prototypes of a GaInNAs-based solar cell lattice-matched to GaAs with photoresponse down to 1 eV. Under the AM1.5 direct spectrum with all the light higher in energy than the GaAs band gap filtered out, the prototypes grown with base doping of about 10{sup 17} cm-3 have open-circuit voltages ranging from 0.35 to 0.44 V, short-circuit current densities of 1.8 mA/cm2, and fill factors from 61% to 66%. To improve on the current record-efficiency tandem GaInP/GaAs solar cell by adding a GaInNAs junction, the short-circuit current density of this 1-eV cell must be significantly increased. Because these low short-circuit current densities are due to short diffusion lengths, we have demonstrated a depletion-width-enhanced variation of one of the prototype devices that trades off decreased voltage for increased photocurrent, with a short-circuit current density of 7.4 mA/cm2 and an open-circuit voltage of 0.28 V.

Geisz, J. F.; Friedman, D. J.; Olson, J. M.; Kramer, C.; Kibbler, A.; Kurtz, S. R.

1998-10-06T23:59:59.000Z

478

GaNPAs Solar Cells that Can Be Lattice-Matched to Silicon  

DOE Green Energy (OSTI)

III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We have proposed the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct bandgaps in the range of 1.5 to 2.0 eV. We have demonstrated the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and shown improvements in material quality by reducing carbon and hydrogen impurities through optimization of growth conditions. We have achieved quantum efficiencies (QE) in these cells as high as 60% and PL lifetimes as high as 3.0 ns.

Geisz, J. F.; Friedman, D. J.; McMahon, W. E.; Ptak, A. J.; Kibbler, A. E.; Olson, J. M.; Kurtz, S.; Kramer, C.; Young, M.; Duda, A.; Reedy, R. C.; Keyes, B. M.; Dippo, P.; Metzger, W. K.

2003-05-01T23:59:59.000Z

479

RECOVERY ACT: MULTIMODAL IMAGING FOR SOLAR CELL MICROCRACK DETECTION  

DOE Green Energy (OSTI)

Undetected microcracks in solar cells are a principal cause of failure in service due to subsequent weather exposure, mechanical flexing or diurnal temperature cycles. Existing methods have not been able to detect cracks early enough in the production cycle to prevent inadvertent shipment to customers. This program, sponsored under the DOE Photovoltaic Supply Chain and Cross-Cutting Technologies program, studied the feasibility of quantifying surface micro-discontinuities by use of a novel technique, thermoreflectance imaging, to detect surface temperature gradients with very high spatial resolution, in combination with a suite of conventional imaging methods such as electroluminescence. The project carried out laboratory tests together with computational image analyses using sample solar cells with known defects supplied by industry sources or DOE National Labs. Quantitative comparisons between the effectiveness of the new technique and conventional methods were determin