Powered by Deep Web Technologies
Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Improved Refractories for IGCC Power Systems  

DOE Green Energy (OSTI)

The gasification of coal, petroleum residuals, and biomass provides the opportunity to produce energy more efficiently, and with significantly less environmental impact, than more-conventional combustion-based processes. In addition, the synthesis gas that is the product of the gasification process offers the gasifier operator the option of ''polygeneration'', i.e., the production of alternative products instead of power should it be economically favorable to do so. Because of these advantages, gasification is a key element in the U.S. Department of Energy?s Vision 21 power system. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both increased reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center is to develop improved materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction, and includes both the refractory lining that insulates the slagging gasifier, as well as the thermocouple assemblies that are utilized to monitor gasifier operating temperatures. Current generation refractory liners in slagging gasifiers are typically replaced every 10 to 18 months, at costs ranging up to $2,000,000. Compounding materials and installation costs are the lost-opportunity costs for the three to four weeks that the gasifier is off-line for the refractory exchange. Current generation thermocouple devices rarely survive the gasifier start-up process, leaving the operator with no real means of temperature measurement during gasifier operation. As a result, the goals of this project include the development of a refractory liner with a service life at least double that of current generation refractory materials, and the design of a thermocouple protection system that will allow accurate temperature monitoring for extended periods of time.

Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

2002-01-01T23:59:59.000Z

2

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

This paper will present alternatives to costly corrective maintenance of the steam trap and condensate return system, and the paybacks associated with instituting a program of planned maintenance management of that system. Energy costs can be reduced by 10% and maintenance costs by 20%, while achieving other tangible improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all installed steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems in condensate return systems are due to poor design criteria. in expandlng or retrofitting existing return systems. By instituting a maintenance management program, a 95% reliability can be gained within two to four annual maintenance cycles. The associated operational problems can be greatly reduced. The maintenance management concept involves: 1) centralized project management; 2) diagnostic and inspection expertise; 3) system troubleshooting; 4) data analysis, reporting and recommendations; 5) maintenance repairs and follow-up; and 6) software and data base management. Several case studies, in which the concept has been successfully applied, will be presented. Energy costs, which have been on the rise for the past ten years, have now leveled off due to global supply and demand issues. But that is not true of the costs to maintain capital equipment such as steam distribution and power generation systems. Those costs continue to rise. If the basic principles of maintenance management are applied, when upgrading poorly maintained steam systems, those upgraded systems can be a fast payback of savings in energy, manpower and inventory. Three major areas where the savings can be gained are the steam traps, valve and condensate return systems. Such systems can be found in power generation, steam distribution, and in all types of durable and non-durable industrial productions.

Petto, S.

1987-09-01T23:59:59.000Z

3

Neural network predictive control of UPFC for improving transient stability performance of power system  

Science Conference Proceedings (OSTI)

This paper presents a neural network predictive controller for the UPFC to improve the transient stability performance of the power system. A neural network model for the power system is trained using the backpropagation learning method employing the ... Keywords: Identification, Neural networks, Power system transient stability, Predictive control, Unified power flow controller (UPFC)

Sheela Tiwari; Ram Naresh; R. Jha

2011-12-01T23:59:59.000Z

4

Automated Monitoring Functions for Improved Power System Operation and Control  

E-Print Network (OSTI)

analysis of data collected in substations of an electric power system. The new functions are first defined and architecture of the integrated substation application is proposed. Database and user interfacing needs are also benefits to be drawn from the concept of substation data integration and information exchange. I

Kezunovic, Mladen

5

Automated monitoring functions for improved power system operation and control  

E-Print Network (OSTI)

collected in substations of an electric power system can be developed. The new functions are first defined and architecture of the integrated substation solution is proposed. Database and user interfacing needs are also benefits to be drawn from the concept of substation data integration and information exchange. I

6

Improved Refractory Materials for Slagging Gasifiers in IGCC Power Systems  

SciTech Connect

Gasifiers are the heart of Integrated Gasification Combined Cycle (IGCC) power system currently being developed as part of the DOE's Vision 21 Fossil Fuel Power Plant. A gasification chamber is a high pressure/high temperature reaction vessel used to contain a mixture of O2, H2O, and coal (or other carbon containing materials) while it is converted into thermal energy and chemicals (H2, CO, and CH4). IGCC systems are expected to play a dominant role in meeting the Nation's future energy needs. Gasifiers are also used to produce chemicals that serve as feedstock for other industrial processes, and are considered a potential source of H2 in applications such as fuel cells. A distinct advantage of gasifiers is their ability to meet or exceed current and anticipated future environmental emission regulations. Also, because gasification systems are part of a closed circuit, gasifiers are considered process ready to capture CO2 emissions for reuse or processing should that become necessary or economically feasible in the future. The service life of refractory liners for gasifiers has been identified by users as a critical barrier to IGC

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

7

Improved Refractory Materials for Slagging Gasifiers in IGCC Power Systems  

DOE Green Energy (OSTI)

Gasifiers are the heart of Integrated Gasification Combined Cycle (IGCC) power system currently being developed as part of the DOE's Vision 21 Fossil Fuel Power Plant. A gasification chamber is a high pressure/high temperature reaction vessel used to contain a mixture of O2, H2O, and coal (or other carbon containing materials) while it is converted into thermal energy and chemicals (H2, CO, and CH4). IGCC systems are expected to play a dominant role in meeting the Nation's future energy needs. Gasifiers are also used to produce chemicals that serve as feedstock for other industrial processes, and are considered a potential source of H2 in applications such as fuel cells. A distinct advantage of gasifiers is their ability to meet or exceed current and anticipated future environmental emission regulations. Also, because gasification systems are part of a closed circuit, gasifiers are considered process ready to capture CO2 emissions for reuse or processing should that become necessary or economically feasible in the future. The service life of refractory liners for gasifiers has been identified by users as a critical barrier to IGC

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

8

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green Lights and DOE's Motor Challenge, the Steam Power Partnership program will encourage industrial energy consumers to retrofit their steam plants wherever profitable. The Alliance has organized a "Steam Team" of trade associations, consulting engineering firms, and energy efficiency companies to help develop this public- private initiative.

Jones, T.

1997-04-01T23:59:59.000Z

9

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

This paper will present alternatives to costly corrective maintenance repairs of the steam trap and condensate return system, and the paybacks associated with instituting a program of planned and systematic maintenance management of that system. Energy costs can be reduced by 10% and maintenance costs by 20%, while achieving other tangible improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all installed steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems in condensate return systems are due to poor design criteria in expanding or retrofitting existing return systems. By instituting a maintenance management program, a 95% reliability can be gained with two to four annual maintenance cycles. The associated operational problems can be greatly reduced. The maintenance management concept involves: 1) centralized project management; 2) diagnostic and inspection expertise; 3) system troubleshooting; 4) data analysis, reporting and recommendations; 5) maintenance repairs and follow-up; and 6)software and data base management. Several case studies, in which the concept has been successfully applied, will be presented.

Atlas, R. D.

1986-06-01T23:59:59.000Z

10

HVDC Control Strategies to Improve Transient Stability in Interconnected Power Systems  

E-Print Network (OSTI)

This paper presents three HVDC modulation strategies to improve transient stability in an interconnected power system. AC variables such as rotor speeds, voltage phasors, and tieline power flows are used as input to the controller that modifies the power flow settings through the HVDC-links. The proposed techniques are tested on the IEEE 24-Bus reliability test system and critical clearing times obtained for several contingencies are analyzed. The paper shows that HVDC modulation can lead to substantial improvement in transient stability.

J. Hazra; Y. Phulpin; D. Ernst

2009-01-01T23:59:59.000Z

11

New technology can improve electric power system efficiency and ...  

U.S. Energy Information Administration (EIA)

The term "smart grid" covers a range of devices and systems that leverage recent advances in digital technology and communications to ... Developing methods for ...

12

Substation based data interpretation techniques for improved power system management  

Science Conference Proceedings (OSTI)

There is now considerable pressure on electric utilities to operate their systems in the most efficient manner possible and to provide increased quality of service to customers. This pressure, coupled with the decreasing availability of reserve margins dictates that there is a requirement for comprehensive system operation support through, among other things, the provision of quality information relating to the behavior of the primary and secondary systems. This paper will show how the data available within modern substation control and management systems can be exploited in a cost-effective manner, through the implementation of advanced substation functions in an open systems environment. Certain functions which are presently carried out at the control center could be distributed (or partially distributed) to the substation. These functions may provide the utility staff with quality information, which can in turn be used to satisfy the objectives of increasing quality and security of supply, in addition to optimizing the utility`s information, maintenance and asset management functions.

Booth, C.; McDonald, J.R. [Univ. of Strathclyde, Glasgow (United Kingdom). Centre for Electrical Power Engineering; Laycock, W.J.

1997-04-01T23:59:59.000Z

13

Space-Time Wind Speed Forecasting for Improved Power System Dispatch  

E-Print Network (OSTI)

In order to support large scale integration of wind power, state-of-the-art wind speed forecasting methods should provide accurate and adequate information to enable efficient scheduling of wind power in electric energy systems. In this article, space-time wind forecasts are incorporated into power system economic dispatch models. First, we proposed a new space-time wind forecasting model, which generalizes and improves upon a so-called regime-switching space-time model by allowing the forecast regimes to vary with the dominant wind direction and with the seasons. Then, results from the new wind forecasting model are implemented into a power system economic dispatch model, which takes into account both spatial and temporal wind speed correlations. This, in turn, leads to an overall more cost-effective scheduling of system-wide wind generation portfolio. The potential economic benefits arise in the system-wide generation cost savings and in the ancillary service cost savings. This is illustrated in a test system in the northwest region of the U.S. Compared with persistent and autoregressive models, our proposed method could lead to annual integration cost savings on the scale of tens of millions of dollars in regions with high wind penetration, such as Texas and the Northwest. Key words: Power system economic dispatch; Power system operation; Space-time statistical model; Wind data; Wind speed forecasting.

Xinxin Zhu; Marc G. Genton; Yingzhong Gu; Le Xie

2012-01-01T23:59:59.000Z

14

Analysis of an improved solar-powered cooling system utilizing open-cycle absorbent regeneration  

DOE Green Energy (OSTI)

A solar-powered cooling system which promises high system C.O.P.'s and low collector costs is analyzed. It consists of a desiccant and an absorption cooling system operating in series to both dry and cool the air. A common solution of lithium chloride is used as the absorbant. The lithium chloride solution is regenerated by evaporating the excess water to the atmosphere in an ''open'' collector. This collector consists merely of a blackened flat surface. The weak solution of lithium chloride is introduced at the top of the collector and then flows by gravity over the entire collector surface where it is subsequently heated and dried. The daily performance of this combined system is compared by computer simulation to that of either an absorption or desiccant system alone using actual weather data for five typical U.S. cities. The performance improvement of the combined system ranged from 25% to 95%, the greatest improvement being for humid, windy conditions.

Collier, R.K.

1978-01-01T23:59:59.000Z

15

New approaches to improve the performance of the PEM based fuel cell power systems  

E-Print Network (OSTI)

Fuel cells are expected to play an important role in future power generation. However, significant technical challenges remain and the commercial breakthrough of fuel cells is hindered by the high price of fuel cell components. As is well known, the fuel cells do not provide the robust source characteristics required to effectively follow the load during significant load steps and they have limited overload-handling capability. Further, the performance of the fuel cell is significantly degraded when the CO (Carbon Monoxide) is contained in the hydrogen fuel. In this thesis several new approaches to improve the performance of PEM based fuel cell power systems are discussed. In the first section an impedance model of the Proton Exchange Membrane Fuel Cell Stack (PEMFCS) is first proposed. This equivalent circuit model of the fuel cell stack is derived by a frequency response analysis (FRA) technique to evaluate the effects of the ripple current generated by the power-conditioning unit. Experimental results are presented to show the effects of the ripple currents. In the second section, a fuel cell powered UPS (Uninterruptible Power Supply) system is proposed. In this approach, two PEM Fuel Cell modules along with suitable DC/DC and DC/AC power electronic converter modules are employed. A Supercapacitor module is also employed to compensate for instantaneous power fluctuations including overload and to overcome the slow dynamics of the fuel processor such as reformers. A complete design example for a 1-kVA system is presented. In the third section, an advanced power converter topology is proposed to significantly improve the CO tolerance on PEM based fuel cell power systems. An additional two-stage dc-dc converter with a supercapacitor module is connected to the fuel cell to draw a low frequency (0.5Hz) pulsating current of the specific amplitude (20-30[A]) from the fuel cell stack. CO on the catalyst surface can be electro-oxidized by using this technique, and thereby the CO tolerance of the system can be significantly improved. Simulation and experimental results show the validity and feasibility of the proposed scheme.

Choi, Woojin

2004-08-01T23:59:59.000Z

16

A control system for improved battery utilization in a PV-powered peak-shaving system  

SciTech Connect

Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1996-08-01T23:59:59.000Z

17

An Optimal Power Flow (OPF) Method with Improved Power System Stability  

E-Print Network (OSTI)

Conditioning HVDC High-Voltage Direct Current IEA International Energy Agency IT Information Technology NETL Examples of software or systems Transmission enhancement Superconductors, FACTS, HVDC High-voltage direct current (HVDC). Advanced transformers: High-efficiency amorphous transformers, solid state transformers

Chen, Zhe

18

Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks  

DOE Green Energy (OSTI)

With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

Larry Slone; Jeffery Birkel

2007-12-31T23:59:59.000Z

19

Improved measurement placement and topology processing in power system state estimation  

E-Print Network (OSTI)

State estimation plays an important role in modern power system energy management systems. The network observability is a pre-requisite for the state estimation solution. Topological error in the network may cause the state estimation results to be seriously biased. This dissertation studies new schemes to improve the conventional state estimation in the above aspects. A new algorithm for cost minimization in the measurement placement design is proposed in this dissertation. The new algorithm reduces the cost of measurement installation and retains the network observability. Two levels of measurement place- ment designs are obtained: the basic level design guarantees the whole network to be observable using only the voltage magnitude measurement and the branch power flow measurements. The advanced level design keeps the network observable under certain contingencies. To preserve as many substation measurements as possible and maintain the net-work observability, an advanced network topology processor is introduced. A new method - the dynamic utilization of substation measurements (DUSM) - is presented. Instead of seeking the installation of new measurements in the system, this method dynamically calculates state estimation measurement values by applying the current law that regulates different measurement values implicitly. Its processing is at the substation level and, therefore, can be implemented independently in substations. This dissertation also presents a new way to verify circuit breaker status and identify topological errors. The new method improves topological error detection using the method of DUSM. It can be seen that without modifying the state estimator, the status of a circuit breaker may still be verified even without direct power flow measurements. Inferred measurements, calculated by DUSM, are used to help decide the CB status. To reduce future software code maintenance and to provide standard data ex- changes, the newly developed functions were developed in Java, with XML format input/output support. The effectiveness and applicability of these functions are ver-ified by various test cases.

Wu, Yang

2007-08-01T23:59:59.000Z

20

Method and apparatus for improving the performance of a steam driven power system by steam mixing  

SciTech Connect

A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method and apparatus for improving the performance of a steam driven power system by steam mixing  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

1998-01-01T23:59:59.000Z

22

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Major Demonstrations Power Plant Improvement Initiative (PPII) The Power Plant Improvement Initiative (PPII) was established in October 2000 to further the commercial-scale...

23

Distributed Hierarchical Control of Multi-Area Power Systems with Improved Primary Frequency Regulation  

SciTech Connect

The conventional distributed hierarchical control architecture for multi-area power systems is revisited. In this paper, a new distributed hierarchical control architecture is proposed. In the proposed architecture, pilot generators are selected in each area to be equipped with decentralized robust control as a supplementary to the conventional droop speed control. With the improved primary frequency control, the system frequency can be restored to the nominal value without the help of secondary frequency control, which reduces the burden of the automatic generation control for frequency restoration. Moreover, the low frequency inter-area electromechanical oscillations can also be effectively damped. The effectiveness of the proposed distributed hierarchical control architecture is validated through detailed simulations.

Lian, Jianming; Marinovici, Laurentiu D.; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

2012-12-12T23:59:59.000Z

24

Method and apparatus for improving the performance of a nuclear power electrical generation system  

SciTech Connect

A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1995-01-01T23:59:59.000Z

25

Method and apparatus for improving the performance of a nuclear power electrical generation system  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1995-01-01T23:59:59.000Z

26

IMPROVEMENTS IN POWER PLANT  

SciTech Connect

A power plant for nuclear reactors is designed for improved cycle efficiency. In addition to the usual heat exchanger for heat transfer from gaseous reactor coolant to water for vaporization, a second heat exchanger is provided between the first heat exchanger and a point betwveen the intermediate- pressure and low-pressure turbine stages. In this way, interstage reheating of the steam is obtained without passage of the steam back to the first heat exchanger. (D.L.C.) Research Reactors

Peters, M.C.

1961-10-11T23:59:59.000Z

27

Power system  

DOE Patents (OSTI)

A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

Hickam, Christopher Dale (Glasford, IL)

2008-03-18T23:59:59.000Z

28

An approach to improving the power management system in electronic devices  

E-Print Network (OSTI)

The current power management technology baseline does not address the increasing gap between system charge performance and functionality needs in a smartphone. This gap can eventually inhibit further increases in functionality ...

Lim, Jui Min

2010-01-01T23:59:59.000Z

29

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Performance Summaries Power Plant Improvement Initiative (PPII) Project Performance Summaries Project Performance Summaries are written after project completion. These...

30

Improving Performance of Power Systems with Large-scale Variable Generation Additions  

Science Conference Proceedings (OSTI)

A power system with large-scale renewable resources, like wind and solar generation, creates significant challenges to system control performance and reliability characteristics because of intermittency and uncertainties associated with variable generation. It is important to quantify these uncertainties, and then incorporate this information into decision-making processes and power system operations. This paper presents three approaches to evaluate the flexibility needed from conventional generators and other resources in the presence of variable generation as well as provide this flexibility from a non-traditional resource – wide area energy storage system. These approaches provide operators with much-needed information on the likelihood and magnitude of ramping and capacity problems, and the ability to dispatch available resources in response to such problems.

Makarov, Yuri V.; Etingov, Pavel V.; Samaan, Nader A.; Lu, Ning; Ma, Jian; Subbarao, Krishnappa; Du, Pengwei; Kannberg, Landis D.

2012-07-22T23:59:59.000Z

31

HVDC Control Strategies to Improve Transient Stability in Interconnected Power Systems  

E-Print Network (OSTI)

1 High Voltage DC Transmission 1.0 Introduction HVDC has been applied in electric power systems for many years now. Figure 1 illustrates worldwide many of the HVDC applications [1]. Fig. 1 Wikipedia [2] provides an extensive table of all HVDC projects worldwide which can be visualized using googlemaps

Ernst, Damien

32

Power Quality Improvement Methodology for Wires Companies  

Science Conference Proceedings (OSTI)

This report provides practical utility-side strategies for improving power quality. Much research has been done on the application of custom power devices to mitigate power quality events on transmission and distribution wires systems. However, these solutions can be costly and often benefit a limited number of customers. Many wires companies are looking for ways to improve the overall quality of their service using methods and equipment that are more traditional.

2003-02-11T23:59:59.000Z

33

Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization  

Science Conference Proceedings (OSTI)

GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

None

2012-02-24T23:59:59.000Z

34

A new algorithm for improved VDD assignment in low power dual VDD systems  

Science Conference Proceedings (OSTI)

We present the first in-depth study of the two existing algorithms, namely, Clustered Voltage Scaling (CVS) and Extended Clustered Voltage Scaling (ECVS), used for assigning the voltage supply to gates in integrated circuits having dual power supplies. ... Keywords: CVS, ECVS, dual VDD design, level converters, low power design algorithms

Sarvesh H. Kulkarni; Ashish N. Srivastava; Dennis Sylvester

2004-08-01T23:59:59.000Z

35

Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform  

Science Conference Proceedings (OSTI)

Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power ... Keywords: Hough transform, Knowledge-based system, Power line inspection system, Pulse coupled neural filter, Unmanned aerial vehicles (UAVs)

Zhengrong Li; Yuee Liu; Rodney Walker; Ross Hayward; Jinglan Zhang

2010-08-01T23:59:59.000Z

36

Cold side thermal energy storage system for improved operation of air cooled power plants  

E-Print Network (OSTI)

Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

Williams, Daniel David

2012-01-01T23:59:59.000Z

37

An adaptive network based fuzzy inference system-genetic algorithm clustering ensemble algorithm for performance assessment and improvement of conventional power plants  

Science Conference Proceedings (OSTI)

Performance measurement and assessment are fundamental to management planning and control activities of complex systems such as conventional power plants. They have received considerable attention by both management practitioners and theorists. There ... Keywords: Adaptive network based fuzzy inference system (ANFIS), Conventional power plants, Genetic algorithm clustering ensemble (GACE), Improvement, Performance assessment

A. Azadeh; M. Saberi; M. Anvari; A. Azaron; M. Mohammadi

2011-03-01T23:59:59.000Z

38

HVDC Control Strategies to Improve Transient Stability in Interconnected Power Systems  

E-Print Network (OSTI)

PHEV's Park as a Virtual Active Filter for HVDC Networks F. R. Islam, H. R. Pota and A. B. M.Nasiruzzaman@student.adfa.edu.au Abstract--The HVDC converters used for rectifying or in- verting operations absorb reactive power from produces harmonics in both sides of HVDC links. Passive and active filters are used to filter the harmonics

Paris-Sud XI, Université de

39

Nanoengineered surfaces for improvements in energy systems : application to concentrated solar and geothermal power plants  

E-Print Network (OSTI)

The main drawback to renewable energy systems is the higher cost of production compared to competitors such as fossil fuels. Thus, there is a need to increase the efficiency of renewable energy systems in an effort to make ...

Rehn, Alexander W. (Alexander William)

2012-01-01T23:59:59.000Z

40

TVA Tracks Bulk Power Transfers with TagNet to Improve Transmission System Reliability  

Science Conference Proceedings (OSTI)

The bubble diagram is especially useful. In the world of real-time operations, a picture is worth a thousand words. TagNet provides TVA with The ability to identify root causes for real-time system behavior Data for future reliability models for approximation of transfer biases A mechanism to monitor system conditions using a graphical toolset. 8212Armando Rodriguez, TVA.

2006-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Power management system  

DOE Patents (OSTI)

A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

2007-10-02T23:59:59.000Z

42

Cheng Power Systems | Open Energy Information  

Open Energy Info (EERE)

technology based on rotating frequency, that improves output, efficiency and emissions of power generating plants. References Cheng Power Systems1 LinkedIn Connections CrunchBase...

43

Enhanced Power Grid Efficiency through Improved Phasor ...  

Enhanced Power Grid Efficiency through Improved Phasor Measurement Cleaning ... existing power grids, but they are expected to play an even larger ...

44

Improving Power Output . . . Energy Scavengers  

E-Print Network (OSTI)

Given appropriate power conditioning and capacitive storage, devices made from piezoelectric materials can scavenge power from low-level ambient sources to effectively support networks of ultra-low-power, peerto-peer wireless nodes.

Shad Roundy; Eli S. Leland; Jessy Baker; Eric Carleton; Elizabeth Reilly; Elaine Lai; Brian Otis; Jan M. Rabaey; Paul K. Wright; V. Sundararajan

2005-01-01T23:59:59.000Z

45

Specifications to Improve Power Quality Immunity in Electronic Systems for Industrial Applications: Suggestions for Higher Quality a nd Lower Cost Production  

Science Conference Proceedings (OSTI)

The goal of the work described in this report is to provide suggestions for a specification language that will allow end-users to integrate successfully electronic industrial equipment with the existing electrical systems. Cost effective solutions to improve system reliability and performance are specifically addressed. The intention is to eliminate disruptions induced by power quality-related problems and incompatibilities between process equipment and the electrical environment. Most of these technique...

2000-11-02T23:59:59.000Z

46

EPRI Power System Dynamics Tutorial  

Science Conference Proceedings (OSTI)

Operation of today's increasingly complex power systems requires comprehensive training of system operators and operations engineers. By increasing their awareness and understanding of dynamic phenomena, the EPRI Power System Dynamics Tutorial can improve an operator's ability to take effective actioneither preventive or corrective. This latest version of the tutorial represents an update of key topics to reflect industry restructuring under the vision of the Federal Energy Regulatory Commission (FERC) a...

2009-07-27T23:59:59.000Z

47

NETL: Power Plant Improvement Initiative (PPII)  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Map Clean Coal Demonstrations Power Plant Improvement Initiative (PPII) Project Location Map Place mouse cursor over state for and select the project you are interested in....

48

International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability  

Science Conference Proceedings (OSTI)

This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

Not Available

1993-10-01T23:59:59.000Z

49

Crowd-powered systems  

E-Print Network (OSTI)

Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

Bernstein, Michael Scott

2012-01-01T23:59:59.000Z

50

IBM POWER7 systems  

Science Conference Proceedings (OSTI)

This paper describes the system architectures and designs of the IBM POWER7® servers. From the smallest single-processor socket blade to the largest 32-processor-socket 256-core enterprise rack server, each system is designed to fully ...

R. X. Arroyo; R. J. Harrington; S. P. Hartman; T. Nguyen

2011-05-01T23:59:59.000Z

51

Improved solar heating systems  

DOE Patents (OSTI)

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

52

Controller Design of Power Quality-Improving Appliances  

SciTech Connect

This paper presents an innovative solution to power quality problems -- using power quality improving (PQI) appliances to reduce harmonic currents and improve the power factor in buildings.

Hammerstrom, Donald J.; Zhou, Ning; Lu, Ning

2007-01-01T23:59:59.000Z

53

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

54

Investigation on the Benefits of Safety Margin Improvement in CANDU Nuclear Power Plant Using an FPGA-based Shutdown System.  

E-Print Network (OSTI)

??The relationship between response time and safety margin of CANadian Deuterium Uranium (CANDU) nuclear power plant (NPP) is investigated in this thesis. Implementation of safety… (more)

She, Jingke

2012-01-01T23:59:59.000Z

55

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

56

Flywheel Power Systems: Market Analysis  

Science Conference Proceedings (OSTI)

High speed flywheel power systems offer a new opportunity to provide power delivery systems. Such systems are very useful to mitigate power quality problems. This report focuses on the industrial market for flywheel storage systems.

1998-02-20T23:59:59.000Z

57

Solar powered desalination system  

E-Print Network (OSTI)

Desalination Systems Developers MIT BARC IMB Power Solar PVcells Solar PV cells 10 MW solar farm Solar pond FranciscoSolar Energy: PEC vs. PV Solar energy is just as important

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

58

Dynamic power management in environmentally powered systems  

Science Conference Proceedings (OSTI)

In this paper a framework for energy management in energy harvesting embedded systems is presented. As a possible example scenario, we focus on wireless sensor nodes which are powered by solar cells. We demonstrate that classical power management solutions ... Keywords: embedded systems, energy harvesting, model predictive control, power management, real-time scheduling, reward maximization

Clemens Moser; Jian-Jia Chen; Lothar Thiele

2010-01-01T23:59:59.000Z

59

Improved Conventional Testing of Power Plant Cables  

Science Conference Proceedings (OSTI)

Factors such as mechanical stress, dust and pollution accumulation, moisture, and thermal aging can cause deterioration and ultimately failure of power, control, and instrumentation cables. This report documents physical, chemical, and electrical tests performed on thermally aged power plant cable, with emphasis on improvements in two major electrical diagnostic techniques: low-frequency insulation analysis to probe the bulk condition of cable insulation and partial discharge testing to detect cracks and...

1996-03-14T23:59:59.000Z

60

Power Tower Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid...

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

GENERAL ELECTRIC POWER SYSTEMS  

E-Print Network (OSTI)

Since last year’s GTC Conference, a considerable number of significant events have occurred in the gasification technology marketplace. New IGCC projects have come on stream with commercial operation, other new IGCC projects have been announced and started in development, environmental issues have gained emphasis, and energy prices, notably natural gas, have escalated dramatically. Directionally, all of these events appear to have created a more favorable atmosphere for IGCC projects. Related to an ongoing IGCC project currently in development, a joint analysis has been performed by Global Energy, General Electric Power Systems, and Praxair to evaluate technical and economic elements for the performance of BGL Gasification Technology based on solid hydrocarbon fuel feed to an IGCC for power generation. Results of the analysis provide a picture of the relative economics in today’s environment for electrical power generation by conventional natural gas fired combined cycle power systems compared to using BGL Gasification Technology in an IGCC configuration. 2

Igcc Power Generation; Richard A. Olliver; John M. Wainwright; Raymond F. Drnevich Abstract

2000-01-01T23:59:59.000Z

62

Wind energy and power system interconnection, control, and operation for high penetration of wind power .  

E-Print Network (OSTI)

??High penetration of wind energy requires innovations in different areas of power engineering. Methods for improving wind energy and power system interconnection, control, and operation… (more)

Liang, Jiaqi

2012-01-01T23:59:59.000Z

63

COAL & POWER SYSTEMS  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL & POWER SYSTEMS COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM PLANS STRENGTH THROUGH SCIENCE... A "GREENER, SOONER" PHILOSOPHY Coal, natural gas, and oil fuel about 70 percent of the electricity generated in the United States. As promising as renewable and other alternative fuels are, it will be several decades before they can make significant energy contributions to the Nation's

64

Power Electronic Thermal System Performance and Integration (Presentation)  

DOE Green Energy (OSTI)

Thermal control is a critical factor in power electronics equipment. NREL aims to integrate and improve thermal system performance in power electronics.

Bennion, K.

2007-11-08T23:59:59.000Z

65

Improving Regional Air Quality with Wind Power  

Wind Powering America (EERE)

Improving Regional Air Quality with Improving Regional Air Quality with Wind Power National Renewable Energy Laboratory Improving Regional Air Quality with Wind Power National Renewable Energy Laboratory * Clean Air Act (CAA) framework * Air quality challenges * CAA policies as market drivers * Met. Wash. Council of Governments (MWCOG) case study * Environmental Protection Agency (EPA) guidance on State Implementation Plan (SIP) credit for EERE * Model SIP documentation for wind purchases * Related marketing innovations Overview Overview * CAA requires regional air quality plans (SIPs) * "Window of opportunity" - Revised SIPs required by 2006/2007 to meet new 8-hour ozone and PM standards - August 2004 EPA guidance and NREL model SIP documentation for wind purchases Clean Air Act Framework Clean Air Act Framework

66

Summary of collaborative photovoltaic industry work to proactively improve codes and standards for photovoltaic power system applications  

SciTech Connect

Several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have recently been completed with collaboration of participants from all sectors of the PV industry, utilities and the US Department of Energy`s National Photovoltaic Program. Codes and standards that have been proposed, written or modified include changes and additions for the 1999 National Electrical Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, component qualification, and utility interconnect. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for listing PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc. (UL), with the American Society for Testing and Materials (ASTM), and through critical input and review for international standards with the International Electrotechnical Commission (IEC) have resulted in domestic and international standards for PV. Work related to the codes and standards activities through the International Energy Agency (IEA) is also being supported by the PV industry and the US DOE. This paper will concentrate on and summarize the important new NEC proposals for PV systems and will also describe and show the bonds between the activities in other standards writing activities. The paper will also provide an analysis of changes and resulting impacts of selected proposed NEC changes on PV designs, installations and performance.

Bower, W.I.

1997-08-01T23:59:59.000Z

67

Power line detection system  

DOE Patents (OSTI)

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

Latorre, V.R.; Watwood, D.B.

1994-09-27T23:59:59.000Z

68

Power line detection system  

DOE Patents (OSTI)

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

1994-01-01T23:59:59.000Z

69

POWER SYSTEMS DEVELOPMENT FACILITY  

Science Conference Proceedings (OSTI)

This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

Unknown

2002-05-01T23:59:59.000Z

70

M-C Power`s product design and improvement  

DOE Green Energy (OSTI)

The sole mission of M-C Power is the development and subsequent commercialization of molten carbonate fuel cell (MCFC) stacks. These MCFC stacks are based on the Internally Manifolded Heat EXchanger plate design developed by the Institute of Gas Technology. Integration of the MCFC stack into a commercially viable power plant is the mission of the IMHEX{sup {reg_sign}} team. The team is composed of leaders in the packaging and design of power generation equipment, including fuel cell technology, and includes Stewart & Stevenson, Bechtel, The Institute of Gas Technology and M-C Power. In an effort to succeed in their respective missions, M-C Power and the IMHEX{sup {reg_sign}} team have developed a commercialization program. At the present time, the team is making the transition from Phase I (Technology Development) to Phase II (Product Design & Improvement) of the program. Phase II`s objective is a commercially viable (cost effective and technologically reliable) MCFC power plant ready for market by the turn of the century.

Scroppo, J.A.; Laurens, R.M.; Petraglia, V.J.

1995-12-31T23:59:59.000Z

71

Low-Maintenance Wind Power System  

E-Print Network (OSTI)

with widespread adoption of wind energy. The project hasProject: Low-Maintenance Wind Power System Summary of theImproved Vertical Axis Wind Turbine and Aerodynamic Control

Rasson, Joseph E

2010-01-01T23:59:59.000Z

72

Cyber security in power systems .  

E-Print Network (OSTI)

??Many automation and power control systems are integrated into the 'Smart Grid' concept for efficiently managing and delivering electric power. This integrated approach created several… (more)

Sridharan, Venkatraman

2012-01-01T23:59:59.000Z

73

Power System Electromagnetic Compatibility  

Science Conference Proceedings (OSTI)

The potential for man-made electromagnetic interference has existed since the construction of the first electric power system. As the use of electricity expanded during the first few decades of the twentieth century, the number of sources of electromagnetic interference, as well as the number of receptors, burgeoned. With the proliferation of sources and receptors, the engineering study of electromagnetic interference--sometimes called radio noise, electrical noise, or radio-frequency interference--becam...

2000-12-19T23:59:59.000Z

74

Specifications to Improve Power Quality Immunity in Electronic Systems for Industrial Applications -- A Downloadable Web Product: Su ggestions for Higher Quality and Lower Cost Production  

Science Conference Proceedings (OSTI)

To help improve power quality performance in electronic process equipment, this technical progress report is made available to users for download in PDF (192K). Key power quality issues are presented to provide a systematic approach to integrating electronic equipment into the industrial environment. As with the traditional hardcopy version (1000693), the goal is to provide suggestions for a specification language that will allow end-users to integrate electronic industrial equipment with the existing el...

2000-12-21T23:59:59.000Z

75

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

76

Solar powered desalination system  

E-Print Network (OSTI)

1.13: California Power Generation by Source……………………………………31for hydro- electric power generation would be reached inother end users include the power generation industry (4%),

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

77

Solar powered desalination system  

E-Print Network (OSTI)

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

78

Optimal state estimation for improved power measurements and model verification: Theory  

Science Conference Proceedings (OSTI)

To improve energy efficiency in computer systems and data centers, accurate models of the power consumption are needed for analysis and advanced control algorithms. Developing models requires deep understanding not only of the components themselves but ... Keywords: system level model analysis, energy efficiency, optimal state estimation, improved power measurement, computer systems, data centers, power consumption, mathematical methods, sensor fusion, data center powering structure, cooling system, parameter identifying estimator, model parameter

T. Malkamaki; S. J. Ovaska

2011-07-01T23:59:59.000Z

79

Power control system and method  

SciTech Connect

A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

Steigerwald, Robert Louis (Burnt Hills, NY); Anderson, Todd Alan (Niskayuna, NY)

2008-02-19T23:59:59.000Z

80

Portable battery powered system  

SciTech Connect

In an exemplary embodiment, a battery monitoring system includes sensors for monitoring battery parameters and a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle, and by monitoring battery current thereafter during operation, a relatively accurate measure of remaining battery capacity becomes available. The battery monitoring system may include programmed processor circuitry and may be secured to the battery so as to receive operating power therefrom during storage and handling; thus, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S.E.

1984-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

82

Communication architecture based power management for battery efficient system design  

Science Conference Proceedings (OSTI)

Communication-based power management (CBPM) is a new battery-driven system-level power management methodology in which the system-level communication architecture regulates the execution of various system components, with the aim of improving battery ... Keywords: battery efficiency, communication architectures, embedded systems, low power design, power management

Kanishka Lahiri; Sujit Dey; Anand Raghunathan

2002-06-01T23:59:59.000Z

83

Power Systems Development Facility  

DOE Green Energy (OSTI)

This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

None

2003-07-01T23:59:59.000Z

84

Flex power perspectives of indirect power system control through...  

Open Energy Info (EERE)

power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect...

85

Solar powered desalination system  

E-Print Network (OSTI)

photon capture area and electrical power consumption. Bothcapture area (m 2 ) Electrical power consumption (kWh/kg HType 2 Type 3 Type 4 Electrical power consumption for these

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

86

Autonomous wind power systems are economically competitive  

Science Conference Proceedings (OSTI)

Autonomous wind power systems, i.e. electric conversion systems utilizing the wind as the only energy source, are especially useful for isolated applications (telecommunications, measuring stations, pumps, ...) and for remote individual domestic applications (direct feed of electrical energy into household mains, space and water heating, ...) or in the farm (greenhouse heating, milk cooling, ...). The power rating of autonomous systems can range from a few 100 W to about 50 kW. Usually a storage is incorporated in the form of electric batteries or standard night storage heaters, improving considerably the ability of the system to sustain the average power and ameliorate the reliability.

Van Leuven, J.

1983-12-01T23:59:59.000Z

87

Hydrogen storage of energy for small power supply systems  

E-Print Network (OSTI)

Power supply systems for cell phone base stations using hydrogen energy storage, fuel cells or hydrogen-burning generators, and a backup generator could offer an improvement over current power supply systems. Two categories ...

Monaghan, Rory F. D. (Rory Francis Desmond)

2005-01-01T23:59:59.000Z

88

Third International Conference on Improved Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This international conference reviewed advances in materials, components, and designs for coal-fired power plants. Also showcased were results from the EPRI improved power plant project, similar collaborative European projects, and new power plants in Japan. The proceedings' 54 papers contribute to an improved international understanding of advanced coal-fired power plant technology.

1992-09-01T23:59:59.000Z

89

Body powered thermoelectric systems  

E-Print Network (OSTI)

Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

Settaluri, Krishna Tej

2012-01-01T23:59:59.000Z

90

OIT geothermal system improvements  

Science Conference Proceedings (OSTI)

Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

Lienau, P.J. [Geo-Heat Center, Klamath Falls, OR (United States)

1996-08-01T23:59:59.000Z

91

Power Conversion System Architectures  

Science Conference Proceedings (OSTI)

... of Transformers • Vacuum Pressure Impregnated (VPI) • Oil Immersed • Cast Coil Transformer Configurations • Single winding 5/24/2012 Power ...

2012-11-13T23:59:59.000Z

92

Fuel cell powered irrigation system  

SciTech Connect

Set out herein is a fuel cell power plant for use with irrigation systems wherein the fuel cell is utilized to generate electric current to drive a pump motor. This pump motor drives a first water pump which receives water for distribution through a traveling irrigation system, the output of the first pump first conveyed into a condenser heat exchanger connected to a steam engine or turbine cycle. The fuel cell itself is contained within a boiler assembly and the heat of production of the electric power is used to generate steam which is sent to the steam engine. In the course of cooling the condenser gases of the steam engine the irrigating water is passed through a second pump driven by the steam engine and it is through this second pump that the pressure is raised sufficiently to allow for the necessary spraying fans. To improve the condenser efficiency part of the condensate or the ullage thereof is connected to one of the spray heads on the irrigation system in a venturi nozzle which thereby lowers the back pressure thereof. The lower portion of the condenser or the liquid part thereof is fed back through yet another condenser pump to the boiler to be regenerated into steam.

Jacobi, E.F.; Madden, M.R.

1982-01-12T23:59:59.000Z

93

NREL: Water Power Research - Economic and Power System Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic and Power System Modeling and Analysis Economic and Power System Modeling and Analysis NREL has a long history of successful research to understand and improve the cost of renewable energy technologies, their possible deployment scenarios, and the economic impacts of this deployment. As a research laboratory, NREL is a neutral third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore renewable energy projects. Deployment and Economic Impact NREL's economic analysis team is working to provide stakeholders with the tools necessary to understand potential deployment scenarios of water power technologies and the economic impacts of this deployment. The team is working to improve the representation of marine and

94

Smart grid - the new and improved power grid: A survey  

E-Print Network (OSTI)

power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem. For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid. Index Terms—Smart grid, power grid, survey, energy, information, communications, management, protection, security, privacy. I.

Xi Fang; Student Member; Satyajayant Misra; Guoliang Xue; Dejun Yang; Student Member; Abstract—the Smart Grid

2011-01-01T23:59:59.000Z

95

Switching power pulse system  

DOE Patents (OSTI)

A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

Aaland, K.

1983-08-09T23:59:59.000Z

96

Uniform power plant identification system  

Science Conference Proceedings (OSTI)

In the seventies in the Federal Republic of Germany a uniform power plant identification system (Kraftwerks-Kennzeichen-System, KKS) was developed and introduced. It allows to keep the identification by all engineering disciplines from planning to waste management for any type of power plant. The paper explains the historical development, the structure and the application of this system.

Christiansen, W. (RWE Energie AG, Hauptverwaltung, Essen (DE)); Pannenbacker, K. (GABO mbH, Erlangen (DE)); Popp, H. (Siemens AG, Bereich Anlagentechnik, Erlangen (DE)); Seltmann, A. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

97

Productivity Improvement for Fossil Steam Power Plants, 2008  

Science Conference Proceedings (OSTI)

EPRI's Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these have been described in the other EPRI publications: Productivity Improvement for Fossil Steam Power Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fossil Steam Power Plants, 2006, (1014598), and Productivity Improvement for Fossil Steam Power Plants, 2007 (10154...

2008-12-24T23:59:59.000Z

98

Power system - Energy Innovation Portal  

The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include co ...

99

Switching power pulse system  

DOE Patents (OSTI)

A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

Aaland, Kristian (Livermore, CA)

1983-01-01T23:59:59.000Z

100

Georgia Power - Energy Efficiency Home Improvement Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Energy Efficiency Home Improvement Rebates Georgia Power - Energy Efficiency Home Improvement Rebates Georgia Power - Energy Efficiency Home Improvement Rebates < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate All Incentives: 50% of cost Whole House Improvements: $2,200 Individual Improvements: $700 Program Info Start Date 1/1/2011 Expiration Date 12/31/2012 State Georgia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: $100 BPI Assessment: $200 Whole House Improvements: 50% Air Sealing: $400 Attic Insulation: $300

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New Technologies and Methods to Improve Computational Speed and Robustness of Power Flow Analysis  

Science Conference Proceedings (OSTI)

The power flow problem consists of determining the steady-state operating point of an electrical transmission network under specific loading conditions. This report describes the development of power flow techniques designed to improve the efficiency and reliability of an electrical power network. Leveraging advancements in computing technologies, data processing, and sophisticated computational methods can improve the performance of power system analysis tools, specifically their accuracy, speed, ...

2013-12-20T23:59:59.000Z

102

Reactive Power Compensating System.  

DOE Patents (OSTI)

The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

1985-01-04T23:59:59.000Z

103

Reactive power compensating system  

DOE Patents (OSTI)

The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

1987-01-01T23:59:59.000Z

104

An Improved Tissue Culture System  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Improved Tissue Culture System for Embryogenic Callus Production and Plant Regeneration in Switchgrass (Panicum virgatum L.) Jason N. Burris & David G. J. Mann & Blake L. Joyce & C. Neal Stewart Jr. Published online: 10 October 2009 # Springer Science + Business Media, LLC. 2009 Abstract The increased emphasis on research of dedicated biomass and biofuel crops begs for biotechnology method improvements. For switchgrass (Panicum virgatum L.), one limitation is inefficient tissue culture and transformation systems. The objectives of this study were to investigate the utility of a new medium described here, LP9, for the production and maintenance of switchgrass callus and its regeneration, which also enables genetic transformation. LP9 medium is not based on Murashige and Skoog (MS) medium, the basal medium that all published switchgrass transformation has been

105

Productivity Improvement for Fossil Steam Power Plants, 2010  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fosiil Steam Power Plants 2006, (101459), Productivity Improvement for Fossil Steam Power Plants 2007 (1015445), Productivity Impro...

2011-01-31T23:59:59.000Z

106

Superconductivity for electric power systems: Program overview  

SciTech Connect

Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

Not Available

1995-02-01T23:59:59.000Z

107

Radioisotope Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

into finished metal shapes by extrusion, rolling, forming, machining, assembly, and welding. Nondestructive testing and quality systems are employed throughout the process to...

108

Solar powered desalination system  

E-Print Network (OSTI)

Fundamentals of Salt Water Desalination. New York: Elsevier,7. Lightbucket. Large scale desalination: is there enoughSystem for Seawater Desalination Plants. The Netherlands:

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

109

Power system failure analysis by using the discrete wavelet transform  

Science Conference Proceedings (OSTI)

Voltage variations are the most common power quality events that may result in corruption of different industrial processes. The electric power utility industry requires significant improvement in the quality of power provided to customers during faults ... Keywords: discrete wavelet transform, power system failure, wavelet entropy

Ismail Yilmazlar; Gulden Kokturk

2010-05-01T23:59:59.000Z

110

OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS  

Science Conference Proceedings (OSTI)

SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

Cutler, Roy I [ORNL; Peplov, Vladimir V [ORNL; Wezensky, Mark W [ORNL; Norris, Kevin Paul [ORNL; Barnett, William E [ORNL; Hicks, Jim [ORNL; Weaver, Joey T [ORNL; Moss, John [ORNL; Rust, Kenneth R [ORNL; Mize, Jeffery J [ORNL; Anderson, David E [ORNL

2011-01-01T23:59:59.000Z

111

Renewable Power Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Power Systems, LLC Place Averill Park, New York Zip 12018 Sector Solar Product Albany, New York-based solar systems installer. References Renewable Power Systems, LLC1...

112

Modeling power system load using intelligent methods.  

E-Print Network (OSTI)

??Modern power systems are integrated, complex, dynamic systems. Due to the complexity, power system operation and control need to be analyzed using numerical simulation. The… (more)

He, Shengyang

2011-01-01T23:59:59.000Z

113

Naturalistic Decision Making For Power System Operators  

Science Conference Proceedings (OSTI)

Abstract: Motivation -- As indicated by the Blackout of 2003, the North American interconnected electric system is vulnerable to cascading outages and widespread blackouts. Investigations of large scale outages often attribute the causes to the three T’s: Trees, Training and Tools. A systematic approach has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The approach has been developed and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine naturalistic decision making (NDM) processes, transcripts of operator-to-operator conversations are analyzed to reveal and assess NDM-based performance criteria. Findings/Design -- The results of the study indicate that we can map the Situation Awareness Level of the operators at each point in the scenario. We can also identify clearly what mental models and mental simulations are being performed at different points in the scenario. As a result of this research we expect that we can identify improved training methods and improved analytical and visualization tools for power system operators. Originality/Value -- The research applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message -- The NDM approach provides an ideal framework for systematic training management and mitigation to accelerate learning in team-based training scenarios with high-fidelity power grid simulators.

Greitzer, Frank L.; Podmore, Robin; Robinson, Marck; Ey, Pamela

2009-06-23T23:59:59.000Z

114

NETL: Turbine Projects - Advanced Coal Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Power Systems Turbine Projects Advanced Coal Power Systems SOFC Hybrid System for Distributed Power Generation DataFact Sheets SOFC Hybrid System PDF In-House FCT...

115

NETL: Coal and Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Technologies Coal and Power Systems Advancing our Nation's Portfolio of Coal RD&D Technologies - Rotating Images Advancing our Nation's Portfolio of Coal RD&D Technologies - Read More! Focus of NETL RD&D RD&D efforts in coal and power systems fall into three categories: Technologies that enable existing coal power plants to cost-effectively meet environmental requirements. NETL and its research partners are developing environmental control technologies for retrofitting existing power plants, with application to new plants as well. Key areas of research include cost-effective control of mercury, nitrogen oxides, sulfur dioxide, and fine particulate emissions; beneficial uses for coal utilization byproducts; and innovations to minimize the impact of

116

INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM  

Science Conference Proceedings (OSTI)

Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

None

2010-02-28T23:59:59.000Z

117

Power Systems Advanced Research  

DOE Green Energy (OSTI)

In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

California Institute of Technology

2007-03-31T23:59:59.000Z

118

Productivity Improvement for Fossil Steam Power Plants, 2009  

Science Conference Proceedings (OSTI)

This report assembles case studies on productivity improvement taken from the webside of Productivity Improvement Expert Reviews (PIER) on subjects spanning the power plant from the boiler to the steam turbine, and including the plant auxiliaries and the environmental control equipment. These studies have been critically assessed by technical experts who have discussed the improvements with the power plant staff and judged their potential for future use in the fossil industry. This 2009 report also looks...

2010-01-15T23:59:59.000Z

119

Power management system - Energy Innovation Portal  

A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in ...

120

Commissioning Building Systems for Improved Energy ...  

Science Conference Proceedings (OSTI)

Commissioning Building Systems for Improved Energy Performance Project. Summary: NIST will advance commercial building ...

2012-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NSR and the Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

SOURCE REVIEW (NSR) and the CLEAN COAL SOURCE REVIEW (NSR) and the CLEAN COAL POWER INITIATIVE (CCPI) Summary Changes which result in increases in emissions of air pollutants from existing industrial facilities, such as power plants, can invoke stringent and costly new regulations. However, it is not the intent of such requirements to present a barrier to the installation of environmentally beneficial pollution control projects, or to projects demonstrating new methods to burn coal cleanly under the DOE Clean Coal Technology Program. Special provisions are included in the Clean Air Act and its implementing regulations to address potential exemptions of such projects from new source review regulations. This paper provides a general review of those provisions, and encourages project managers to

122

The 2001 Power Plant Improvement Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2001 Power Plant Improvement Initiative 2001 Power Plant Improvement Initiative The 2001 Power Plant Improvement Initiative When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to issue "a general request for proposals for the commercial scale demonstration of technologies to assure the reliability of the nation's energy supply from existing and new electric generating facilities...." The Congress transferred $95 million from previously appropriated funding for the 1986-93 Clean Coal Technology Program. On February 6, 2001, the Energy Department issued a solicitation for proposals under the program it called the "Power Plant Improvement Initiative" (PPII). By the April 19, 2001, deadline, 24 candidate projects

123

Efficiency Improvements in Electronic Power Conversion Devices  

Science Conference Proceedings (OSTI)

This project studied the energy savings potential for six technologies that are currently unregulated. These technologies include kiosk and multimedia computers, home audio devices, induction cooking, power factor correction, adjustable-speed drives, and high-efficiency televisions. This report describes the advantages of each technology.BackgroundResidential plug loads continue to multiply across the country. As they do, these devices introduce new concerns ...

2013-12-23T23:59:59.000Z

124

Overview of M-C Power`s MCFC power generation system  

SciTech Connect

The IMHEX{reg_sign} fuel cell power generation system is a skid mounted power plant which efficiently generates electricity and useful thermal energy. The primary benefits are its high electric generation efficiency (50% or greater), modular capacities (500 kW to 3 MW per unit) and minimal environmental impacts (less than 1 ppM NO{sub x}). A cost effective, modular capacity fuel cell power plant provides the industry with an attractive alternative to large central station facilities, and its advantages have the potential to optimize the way electric power is generated and distributed to the users. Environmental issues are becoming the single most uncertain aspect of the power business. These issues may be manifested in air emissions permits or allowances for NO{sub x} or SO{sub 2}, energy taxes, CO{sub 2} limits, ``carbon taxes,`` etc. and may appear as siting permits for generation, transmission, or distribution facilities. Utilities are ``down-sizing`` with the goal of becoming the lowest cost supplier of electricity and are beginning to examine the concepts of ``energy service`` to improve their economic competitiveness. These issues are leading utilities to examine the benefits of distributed generation. Siting small capacity generation near the customer loads or at distribution substations can improve system efficiency and quality while reducing distribution system costs. The advantages that fuel cell power plants have over conventional technologies are critical to the success of these evolving opportunities in the power generation marketplace.

Benjamin, T.G.; Woods, R.R.

1993-11-01T23:59:59.000Z

125

Solar-powered cooling system  

SciTech Connect

A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

Farmer, Joseph C

2013-12-24T23:59:59.000Z

126

Demand Response For Power System Reliability: FAQ  

SciTech Connect

Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

Kirby, Brendan J [ORNL

2006-12-01T23:59:59.000Z

127

Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011  

DOE Green Energy (OSTI)

This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

Piwko, R.; Jordan, G.

2011-11-01T23:59:59.000Z

128

Dynamic modeling of power systems  

Science Conference Proceedings (OSTI)

Morgantown Energy Technology Center`s (METC) Process and Project Engineering (P&PE) personnel continue to refine and modify dynamic modeling or simulations for advanced power systems. P&PE, supported by Gilbert/Commonwealth, Inc. (G/C), has adapted PC/TRAX commercial dynamic software to include equipment found in advanced power systems. PC/TRAX`s software contains the equations that describe the operation of standard power plant equipment such as gas turbines, feedwater pumps, and steam turbines. The METC team has incorporated customized dynamic models using Advanced Continuous Simulation Language (ACSL) code for pressurized circulating fluidized-bed combustors, carbonizers, and other components that are found in Advanced Pressurized Fluidized-Bed Combustion (APFBC) systems. A dynamic model of a commercial-size APFBC power plant was constructed in order to determine representative operating characteristics of the plant and to gain some insight into the best type of control system design. The dynamic model contains both process and control model components. This presentation covers development of a model used to describe the commercial APFBC power plant. Results of exercising the model to simulate plant performance are described and illustrated. Information gained during the APFBC study was applied to a dynamic model of a 1-1/2 generation PFBC system. Some initial results from this study are also presented.

Reed, M.; White, J.

1995-12-01T23:59:59.000Z

129

Improved Collectors for High Power Gyrotrons  

Science Conference Proceedings (OSTI)

High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

R. Lawrence Ives, Amarjit Singh, Michael Read, Philipp Borchard, Jeff Neilson

2009-05-20T23:59:59.000Z

130

Productivity Improvement for Fossil Steam Power Plants, 2007  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098) and in Productivity Improvement for Fossil Steam Power Plants 2006 (1014598). Since then, further productivity improvement case studies have been reviewed on the Prod...

2007-12-21T23:59:59.000Z

131

Sathian Sun Power Systems | Open Energy Information  

Open Energy Info (EERE)

Sathian Sun Power Systems Jump to: navigation, search Name Sathian Sun Power Systems Place Salem, Andhra Pradesh, India Sector Solar Product Manufacturer of solar street lights and...

132

Brief paper: A power system nonlinear adaptive decentralized controller design  

Science Conference Proceedings (OSTI)

In this paper, a novel excitation control is designed for improvement of transient stability of power systems. The control algorithm is based on the adaptive backstepping method in a recursive way without linearizing the system model. Lyapunov function ... Keywords: Adaptive control, Backstepping design, Nonlinear decentralized control, Power systems, Transient stability

Rui Yan; ZhaoYang Dong; T. K. Saha; Rajat Majumder

2010-02-01T23:59:59.000Z

133

An improved system and method for networking electrochemical devices  

DOE Patents (OSTI)

An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices are disclosed, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. Improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

Williams, M.C.; Wimer, J.G.; Archer, D.H.

1993-12-31T23:59:59.000Z

134

Improved intake air filtration systems  

SciTech Connect

This report comprises the results of a project sponsored by the Pipeline Research Committee of the American Gas Association (Improved Intake Air Filtration Systems). The quality of the inlet air consumed by pipeline gas turbines plays a significant role in the performance, maintenance, and economy of turbine operations. The airborne contaminants may cause degradation of compressor blades and hot gas path components, primarily by erosion, corrosion, and fouling. Machines in the pipeline fleet have a typical average loss of 3.5% in output, chiefly caused by fouling of the gas turbine compressor. It also showed that: Air contamination could be significantly reduced by the use of more efficient air filtration systems, especially through the reduction of the quantity of smaller particles ingested.'' Filters which incorporated electrostatically charged fibers (achieved through the use of triboelectric [TE] effects) offered the most promising means for developing an improvement over paper media. The purpose of this program was to validate the use of new technology for self-cleaning air inlet filtration on gas turbine pumping applications. An approach utilizing triboelectrification of fabric filters was examined by testing to determine the penetration (efficiency), cleanability, pressure drop vs flow, and dust-holding capacity of seven pairs of filter cartridges: six fabric and one paper.

Lawson, C.C. (Lawson (Calvin C.), North Wildwood, NJ (United States))

1991-09-01T23:59:59.000Z

135

ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS  

SciTech Connect

The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

1998-09-01T23:59:59.000Z

136

ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS  

Science Conference Proceedings (OSTI)

The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

1998-09-01T23:59:59.000Z

137

Models for multimegawatt space power systems  

SciTech Connect

This report describes models for multimegawatt, space power systems which Sandia's Advanced Power Systems Division has constructed to help evaluate space power systems for SDI's Space Power Office. Five system models and models for associated components are presented for both open (power system waste products are exhausted into space) and closed (no waste products) systems: open, burst mode, hydrogen cooled nuclear reactor -- turboalternator system; open, hydrogen-oxygen combustion turboalternator system; closed, nuclear reactor powered Brayton cycle system; closed, liquid metal Rankine cycle system; and closed, in-core, reactor therminonic system. The models estimate performance and mass for the components in each of these systems. 17 refs., 8 figs., 15 tabs.

Edenburn, M.W.

1990-06-01T23:59:59.000Z

138

Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Interfaith Power and Light - Energy Improvement Grants Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) < Back Eligibility Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Solar Program Info Funding Source The Kendeda Fund State Georgia Program Type Non-Profit Grant Program Provider Georgia Interfaith Power and Light Georgia Interfaith Power and Light (GIPL) offers grants of up to $10,000 to congregations or faith-based communities, including faith-based schools.

139

Improving heat capture for power generation in coal gasification plants  

E-Print Network (OSTI)

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

140

Analysis and design of power conditioning systems  

E-Print Network (OSTI)

A combination of high prices of fossil fuels and the increased awareness of their negative environmental impact has influenced the development of new cleaner energy sources. Among various viable technologies, fuel cells have emerged as one of the most promising sources for both portable and stationary applications. Fuel cell stacks produce DC voltage with a 2:1 variation in output voltage from no load to full load conditions. Hence, to increase the utilization efficiency and system stability, a power conditioner consisting of DC-DC and DC-AC converters is required for load interface. The design of power conditioners is driven by the application. This dissertation presents several different solutions for applications ranging from low-power portable sources for small electronics and laptop computers to megawatt-power applications for fuel cell power plants. The design and analysis for each power conditioner is presented in detail and the performance is verified using simulations and prototypes. Special consideration is given to the role of supercapacitors who act as the additional energy storage elements. It is shown that the supercapacitor connected at the terminals of a fuel cell can contribute to increased steady state stability when powering constant power loads, improved transient stability against load transients, and increased fuel efficiency (i.e. reduced hydrogen consumption).

Harfman Todorovic, Maja

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

TPX power systems design overview  

SciTech Connect

The power systems for the Tokamak Physics Experiment (TPX) supply the Toroidal Field (TF). Poloidal Field (PF), Field Error Correction (FEC), and Fast Vertical Position Control (FVPC) coil systems, the Neutral Beam (NB), Ion Cyclotron (IC), Lower Hybrid (LH) and Electron Cyclotron (EC) heating and current drive systems, and all balance of plant loads. Existing equipment from the Tokamak Fusion Test Reactor (TFTR), including the motor-generator (MG) sets and the rectifiers, can be adapted for the supply of the TPX PF systems. A new TF power supply is required. A new substation is required for the heating and current drive systems (NB, IC, LH, and EC). The baseline TPX load can be taken directly from the grid without special provision, whereas if all upgrade options are undertaken, a modest amount of reactive compensation will be required. This paper describes the conceptual design of the power systems, with emphasis on the AC, TF, and PF Systems, and the quench protection of the superconducting coils.

Neumeyer, C. [Ebasco Services, Inc., New York, NY (United States); Bronner, G.; Lu, E.; Ramakrishnan, S. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Jackson, M. [Lawrence Livermore National Lab., CA (United States)

1993-11-01T23:59:59.000Z

142

Development and testing of improved statistical wind power forecasting methods.  

DOE Green Energy (OSTI)

Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

2011-12-06T23:59:59.000Z

143

Power Systems Development Facility: Test Results 2006  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for almost 9,150 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and coarse and fine ash removal. Using state-of-the-art data analysis and mode...

2006-12-11T23:59:59.000Z

144

A novel power block for CSP systems  

SciTech Connect

Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

2010-10-15T23:59:59.000Z

145

Catalog of DC Appliances and Power Systems  

SciTech Connect

This document catalogs the characteristics of current and potential future DC products and power systems.

Garbesi, Karina; Vossos, Vagelis; Shen, Hongxia

2010-10-13T23:59:59.000Z

146

2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION  

E-Print Network (OSTI)

System Power Net System Power 62% Specific Purchases 35% Self-generation 3% Wind 741 Solar 0 Small Hydro,777 Net System Power, GWh Wind 2,805 Solar 864 Small Hydro 1,157 Geothermal 7,692 Biomass 1,954 Nuclear 22CALIFORNIA ENERGY COMMISSION APRIL 2003 300-03-002 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER

147

Strategic planning for power system restorations  

SciTech Connect

This paper considers the power system restoration planning problem (PSRPP) for disaster recovery, a fundamental problem faced by all populated areas. PSRPPs are complex stochastic optimization problems that combine resource allocation, warehouse location, and vehicle routing considerations. Furthermore, electrical power systems are complex systems whose behavior can only be determined by physics simulations. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This work is three fold: (1) it formalizes the specification of PSRPPs; (2) introduces a simple optimization-simulation hybridization necessary for solving PSRPPs; and (3) presents a complete restoration algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. This paper studied a novel problem in the field of humanitarian logistics, the Power System Restoration Problem (PSRPP). The PSRPP models the strategic planning process for post disaster power system recovery. The paper proposed a multi-stage stochastic hybrid optimization algorithm that yields high quality solutions to real-world benchmarks provided by Los Alamos National Laboratory (LANL). The algorithm uses a variety of technologies, including MIP, constraint programming, and large neighborhood search, to exploit the structure of each individual optimization subproblem. The experimental results on hurricane disaster benchmarks indicate that the algorithm is practical from a computational standpoint and produce significant improvements over existing relief delivery procedures.

Bent, Russell W [Los Alamos National Laboratory; Van Hententyck, Pascal [BROWN UNIV.; Coffrin, Carleton [BROWN UNIV.

2010-10-12T23:59:59.000Z

148

Solar energy power generation system  

SciTech Connect

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

149

ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF*  

E-Print Network (OSTI)

ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF* C. E. Reece Thomas, CEBAF at Jefferson Lab has demonstrated its full capacity of sustained 800 kW beam power. All systems the energy reach of CEBAF, we began a program of processing all installed cryomodules. This processing has

150

Naturalistic Decision Making for Power System Operators  

Science Conference Proceedings (OSTI)

Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This study applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.

Greitzer, Frank L.; Podmore, Robin; Robinson, Marck; Ey, Pamela

2010-02-01T23:59:59.000Z

151

NIST Improving US Voting Systems  

Science Conference Proceedings (OSTI)

... they're setting standards for power plants and available ... out with a new kind of thermal printer, it's ... talking about, it's a risk management problem and ...

2010-10-07T23:59:59.000Z

152

Study the power flow control of a power system with unified power flow controller.  

E-Print Network (OSTI)

??Electrical power systems is a large interconnected network that requires a careful design to maintain the system with continuous power flow operation without any limitations.… (more)

Peesari, Vakula

2010-01-01T23:59:59.000Z

153

Nuclear Power - System Simulations and Operation  

E-Print Network (OSTI)

At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

154

Distributed Power Electronics for PV Systems (Presentation)  

DOE Green Energy (OSTI)

An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

Deline, C.

2011-12-01T23:59:59.000Z

155

2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT  

E-Print Network (OSTI)

System Power Self-Generation 5% Net System Power 31% Specific Purchases 64% Nuclear 34046 Wind 4090 Solar Specific Purchases 176,196 GWh Net System Power 85,288 GWh Wind 168 Solar 0 Small Hydro 958 Geothermal 2413 Power 31% Specific Purchases 64% Nuclear 34046 Wind 4090 Solar 743 Small Hydro 3711 Geothermal 11158

156

Memory exploration for low power, embedded systems  

Science Conference Proceedings (OSTI)

Keywords: cache simulator, design automation, low power design, low power embedded systems, memory exploration and optimization, memory hierarchy, off-chip data assignment

Wen-Tsong Shiue; Chaitali Chakrabarti

1999-06-01T23:59:59.000Z

157

Control system for cogenerative power plants  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, distribution management system, electric power systems, optimization, process control, real time systems, simulation

Florin Hartescu

2008-08-01T23:59:59.000Z

158

Modeling Power Systems as Complex Adaptive Systems  

Science Conference Proceedings (OSTI)

Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

2004-12-30T23:59:59.000Z

159

Guide for prioritizing power plant productivity improvement projects: handbook of availability improvement methodology  

SciTech Connect

As part of its program to help improve electrical power plant productivity, the Department of Energy (DOE) has developed a methodology for evaluating productivity improvement projects. This handbook presents a simplified version of this methodology called the Availability Improvement Methodology (AIM), which provides a systematic approach for prioritizing plant improvement projects. Also included in this handbook is a description of data taking requirements necessary to support the AIM methodology, benefit/cost analysis, and root cause analysis for tracing persistent power plant problems. In applying the AIM methodology, utility engineers should be mindful that replacement power costs are frequently greater for forced outages than for planned outages. Equivalent availability includes both. A cost-effective ranking of alternative plant improvement projects must discern between those projects which will reduce forced outages and those which might reduce planned outages. As is the case with any analytical procedure, engineering judgement must be exercised with respect to results of purely mathematical calculations.

Not Available

1981-09-15T23:59:59.000Z

160

Synergetic Power Systems | Open Energy Information  

Open Energy Info (EERE)

Synergetic Power Systems Synergetic Power Systems Jump to: navigation, search Name Synergetic Power Systems Place Cambridge, Massachusetts Sector Buildings, Solar Product Start-up planning to install parabolic concentrated solar collector systems on large flat-roofed buildings to power their HVAC systems, and provide back-up and peak demand power. References Synergetic Power Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Synergetic Power Systems is a company located in Cambridge, Massachusetts . References ↑ "Synergetic Power Systems" Retrieved from "http://en.openei.org/w/index.php?title=Synergetic_Power_Systems&oldid=351978" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High Power UV LED Industrial Curing Systems  

Science Conference Proceedings (OSTI)

UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

Karlicek, Robert, F., Jr; Sargent, Robert

2012-05-14T23:59:59.000Z

162

Probing Signal Design for Power System Identification  

Science Conference Proceedings (OSTI)

This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

2010-05-31T23:59:59.000Z

163

Title: “ENERGY MANAGEMENT OF MARINE ELECTRICAL POWER SYSTEMS – CONTROL OF INTEGRATED, AUTONOMOUS POWER SYSTEMS  

E-Print Network (OSTI)

Norpropeller. Electric propulsion will provide better vessel manouverability, system redundancy and higher flexibility with engine room arrangement, Ĺdnanes (2003). On vessels where there is a large variation in load demand reduced fuel consumption and optimal power/energy management may be regarded as advantages that are still not fully utilized. In that respect, the new equipment and modern control systems can provide new possibilities for improving present control strategies, performance, and utilization of the installation. It is also expected that an improved control system should provide overall higher level of safety and reliability. The present state of the art type of tools and methods for analyzing combined power systems does only to a limited extent utilize the possibilities for increased knowledge available in the more advanced models and methods developed and used within each of the machinery and electrical engineering disciplines. To be able to analyze increasingly more complex systems of interest, the ability to easily combine models and methods to develop more fundamental insight into the total systems behavior, its characteristics and limitations will be an advantage in design of new systems. According to that it is first necessary to design the power system simulation model which should include mathematical models of electrical and mechanical machinery components to the required level

unknown authors

2004-01-01T23:59:59.000Z

164

Transient Stability Analysis of Power Systems with Energy Storage.  

E-Print Network (OSTI)

??Power systems can effectively damp power system oscillations through appropriate management of real or reactive power. This thesis addresses some problems in power system stability… (more)

WENG, CHIYUAN

2013-01-01T23:59:59.000Z

165

Flex power perspectives of indirect power system control through dynamic  

Open Energy Info (EERE)

Flex power perspectives of indirect power system control through dynamic Flex power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect power system control through dynamic power price Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Technical and Economic Considerations for Power Quality Improvements  

Science Conference Proceedings (OSTI)

This report addresses technical application issues and analyzes economic cost payback for power quality mitigation solutions. The solutions described are targeted at improving the process uptime for end-use customer equipment. These solutions range from modification at the substation level to customer-specified ride-through of new equipment. The report focuses on the different solutions at each level and provides expectations in terms of the relative improvements gained if the solutions are implemented.

2001-11-14T23:59:59.000Z

167

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

168

An improved charge pump power factor correction electronic ballast  

SciTech Connect

An improved charge pump power factor correction (CPPFC) electronic ballast using the charge pump concept is proposed in this paper. Circuit derivation, principle of operation, and the conditions for achieving unity power factor are discussed. The proposed electronic ballast is implemented and tested with two 40-W fluorescent lamps. It is shown that 84% of overall efficiency and 1.6 of crest factor can be achieved with 200-V line input voltage. The measured line input current harmonics satisfy IEC 1000-3-2 Class C requirements. The lamp power variation range is automatically limited within {+-}15% for {+-}10% line input voltage variation without feedback control.

Qian, J.; Lee, F.C.; Yamauchi, T.

1999-11-01T23:59:59.000Z

169

Solar powered unitized regenerative fuel cell system  

Science Conference Proceedings (OSTI)

Solar hydrogen system is a unique power system that can meet the power requirement for the energy future demand, in such a system the hydrogen used to be the energy carrier which can produced through electrolysis by using the power from the PV during ... Keywords: electrolyzer, fuel cell, hydrogen, photovoltaic, regenerative, solar hydrogen system

Salwan S. Dihrab; , Kamaruzzaman Sopian; Nowshad Amin; M. M. Alghoul; Azami Zaharim

2008-02-01T23:59:59.000Z

170

System and method for advanced power management  

DOE Patents (OSTI)

A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

171

Improving power efficiency with compiler-assisted cache replacement  

Science Conference Proceedings (OSTI)

Data cache in embedded systems plays the roles of both speeding up program execution and reducing power consumption. However, a hardware-only cache management scheme usually results in unsatisfactory cache utilization. In several new architectures, cache ... Keywords: Compiler optimization, Intel XScale, cache management, knapsack problem, low power

Hongbo Yang; R. Govindarajan; Guang R. Gao; Ziang Hu

2005-12-01T23:59:59.000Z

172

Uninterruptible power supply (UPS) systems  

SciTech Connect

Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user`s purpose. This document contains a fill-in-the-blanks guide specification for the procurement of uninterruptible power supply (UPS) systems greater than 10 kVA, organized as follows: Parts 1 through 7--technical requirements; Appendix A--technical requirements to be included in the proposal; Appendix B--UPS system data sheets to be completed by each bidder (Seller) and submitted with the proposal; Appendix C--general guidelines giving the specifier parameters for selecting a UPS system; it should be read before preparing an actual specification, and is not attached to the specification; Attachment 1--sketches prepared by the purchaser (Owner); Attachment 2--sample title page.

NONE

1997-04-01T23:59:59.000Z

173

Wind Speed Forecasting for Power System Operation  

E-Print Network (OSTI)

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system operation in terms of the efficiency of the system. The goal of this dissertation is to develop advanced statistical wind speed predictive models to reduce the uncertainties in wind, especially the short-term future wind speed. Moreover, a criterion is proposed to evaluate the performance of models. Cost reduction in power system operation, as proposed, is more realistic than prevalent criteria, such as, root mean square error (RMSE) and absolute mean error (MAE). Two advanced space-time statistical models are introduced for short-term wind speed forecasting. One is a modified regime-switching, space-time wind speed fore- casting model, which allows the forecast regimes to vary according to the dominant wind direction and seasons. Thus, it avoids a subjective choice of regimes. The other one is a novel model that incorporates a new variable, geostrophic wind, which has strong influence on the surface wind, into one of the advanced space-time statistical forecasting models. This model is motivated by the lack of improvement in forecast accuracy when using air pressure and temperature directly. Using geostrophic wind in the model is not only critical, it also has a meaningful geophysical interpretation. The importance of model evaluation is emphasized in the dissertation as well. Rather than using RMSE or MAE, the performance of both wind forecasting models mentioned above are assessed by economic benefits with real wind farm data from Pacific Northwest of the U.S and West Texas. Wind forecasts are incorporated into power system economic dispatch models, and the power system operation cost is used as a loss measure for the performance of the forecasting models. From another perspective, the new criterion leads to cost-effective scheduling of system-wide wind generation with potential economic benefits arising from the system-wide generation of cost savings and ancillary services cost savings. As an illustration, the integrated forecasts and economic dispatch framework are applied to the Electric Reliability Council of Texas (ERCOT) equivalent 24- bus system. Compared with persistence and autoregressive models, the first model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars. For the second model, numerical simulations suggest that the overall generation cost can be reduced by up to 6.6% using look-ahead dispatch coupled with spatio-temporal wind forecast as compared with dispatch with persistent wind forecast model.

Zhu, Xinxin

2013-08-01T23:59:59.000Z

174

Research on Integrating of Wind Power and Power System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Impacts of Long-term Drought on Power Systems in the U.S. Southwest...

175

Power System Level Impacts of PHEVs  

Science Conference Proceedings (OSTI)

This paper presents investigations into various aspects of how plug-in hybrid electric vehicles (PHEVs) could impact the electric power system. The investigation is focused on impacts on the power system infrastructure and impacts on the primary fuel ...

2009-01-01T23:59:59.000Z

176

Ionic Power Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Ionic Power Systems Ltd Ionic Power Systems Ltd Jump to: navigation, search Name Ionic Power Systems Ltd. Place San Diego, California Zip 92126 Product Ionix Power Systems, Ltd. is a developer of new and innovative products and tools designed to aid in the development of next-generation energy technologies such as batteries, fuel cells, and advanced capacitors. References Ionic Power Systems Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ionic Power Systems Ltd. is a company located in San Diego, California . References ↑ "Ionic Power Systems Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Ionic_Power_Systems_Ltd&oldid=347099" Categories:

177

Power Systems Integration Laboratory (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

Not Available

2011-10-01T23:59:59.000Z

178

SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side activities of the subsurface facility will be provided at the South Portal by the Subsurface Electrical Distribution System. The Site Electrical Power System interfaces with the Off-Site Utility System for the receipt of power. The System interfaces with the Surface Operations Monitoring and Control System for monitoring and control. The System interfaces with MGR Site Layout System for the physical location of equipment and power distribution.

E.P. McCann

1999-04-16T23:59:59.000Z

179

Prognostic Watch of the Electric Power System  

E-Print Network (OSTI)

A prognostic watch of the electric power system is framed up for prognostics of a threat of thermalisation.

Stefanov, Stefan Z

2010-01-01T23:59:59.000Z

180

Efficient hybrid shunt active power filter for improvement of power factor and harmonic suppression using MATLAB  

Science Conference Proceedings (OSTI)

Power quality management is the main problem that the industry is facing today. This is mainly affected by the generation of harmonics. The growing use of electronic equipment produces a large amount of harmonics in distribution systems because of non-sinusoidal ... Keywords: MATLAB 7.6, harmonic suppression, hybrid filter, power quality, shunt active power filter, total harmonic distortion

Jarupula Somlal

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

M. Maniyar

2004-06-22T23:59:59.000Z

182

Power System Operational Planning: Challenges and Research Needs  

Science Conference Proceedings (OSTI)

The U.S.-Canada task force on the August 14, 2003 power system outage that affected 50 million people placed issues related to operational planning on the list of recommendations for improvement. This report documents the challenges that the electric power industry faces, as well as a preliminary set of research needs and a short-term action plan.

2004-12-13T23:59:59.000Z

183

Romanian power systems engineering towards EU integration  

Science Conference Proceedings (OSTI)

The evolution of electric power system analysis methods followed the present technical problems and business needs of electric utilities in Romania, before EU integration. Present technical requirements and the current stage of power system analysis ... Keywords: computer applications, computer simulation, fourier analysis, modelling, power systems, training

Stefania Popadiuc; Bogdan Popa; Frangiskos Topalis; Cristiana Geambasu

2007-05-01T23:59:59.000Z

184

Genetic algorithm based fuzzy logic power system stabilizers in multimachine power system  

Science Conference Proceedings (OSTI)

This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters ... Keywords: dynamic stability, fuzzy logic based power system stabilizer, genetic Algorithms, genetic based power system stabilizer, power system stabilizer

Manisha Dubey; Nikos E. Mastorakis

2009-07-01T23:59:59.000Z

185

Power System Dynamic Tutorial without Q/A Section  

Science Conference Proceedings (OSTI)

Operation of today's increasingly complex power systems requires comprehensive training of system dispatchers and operations engineers. By increasing awareness and understanding of dynamic phenomena, EPRI's Power System Dynamics Tutorial can improve an operator's ability to take effective preventive and corrective actions. This latest version of the tutorial represents a complete update of key topics to reflect industry restructuring under the vision of the Federal Energy Regulatory Commission (FERC) as ...

2009-03-01T23:59:59.000Z

186

Wind integration into hydro dominant Power System.  

E-Print Network (OSTI)

??The Icelandic Power System is a hydro dominant system where approximately 75 % of the electricity generation is hydro based. However due to transmission constraints… (more)

Thorleiksson, Johannes

2013-01-01T23:59:59.000Z

187

Burner Management System Maintenance Guide for Fossil Power Plant Personnel  

Science Conference Proceedings (OSTI)

Burner Management System Maintenance Guide for Fossil Power Plant Personnel provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist plant maintenance personnel in improving the reliability of and reducing the maintenance costs associated with the burner management system.

2008-03-25T23:59:59.000Z

188

Dynamic Reactive Power Control of Isolated Power Systems  

E-Print Network (OSTI)

This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally or due to a fault. Isolated power systems experience fast transients due to lack of an infinite bus capable of dictating the voltage and frequency reference. This dissertation only focuses on reactive control of islanded MicroGrids and AC/DC shipboard power systems. The problem is tackled using a Model Predictive Control (MPC) method, which uses a simplified model of the system to predict the voltage behavior of the system in future. The MPC method minimizes the voltage deviation of the predicted bus voltage; therefore, it is inherently robust and stable. In other words, this method can easily predict the behavior of the system and take necessary control actions to avoid instability. Further, this method is capable of reaching a smooth voltage profile and rejecting possible disturbances in the system. The studied MicroGrids in this dissertation integrate intermittent distributed energy resources such as wind and solar generators. These non-dispatchable sources add to the uncertainty of the system and make voltage and reactive control more challenging. The model predictive controller uses the capability of these sources and coordinates them dynamically to achieve the voltage goals of the controller. The MPC controller is implemented online in a closed control loop, which means it is self-correcting with the feedback it receives from the system.

Falahi, Milad

2012-12-01T23:59:59.000Z

189

EMERY BIOMASS GASIFICATION POWER SYSTEM  

DOE Green Energy (OSTI)

Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

Benjamin Phillips; Scott Hassett; Harry Gatley

2002-11-27T23:59:59.000Z

190

New Horizons Mission Powered by Space Radioisotope Power Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept of the New Horizons spacecraft during its planned encounter with Pluto and its moon, Charon. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments are run by the Department of Energy's Radioisotope Thermoelectric Generator (RTG). | Photo courtesy of Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI) Artist's concept of the New Horizons spacecraft during its planned encounter with Pluto and its moon, Charon. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space

191

New Horizons Mission Powered by Space Radioisotope Power Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept of the New Horizons spacecraft during its planned encounter with Pluto and its moon, Charon. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments are run by the Department of Energy's Radioisotope Thermoelectric Generator (RTG). | Photo courtesy of Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI) Artist's concept of the New Horizons spacecraft during its planned encounter with Pluto and its moon, Charon. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space

192

Electricity for road transport, flexible power systems and wind power  

Open Energy Info (EERE)

road transport, flexible power systems and wind power road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and wind power Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Electric Power System Asset Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL-430/061110 NETL-430/061110 March 7, 2011 430.01.03 Electric Power System Asset Optimization Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or

194

Monolithic Power Systems | Open Energy Information  

Open Energy Info (EERE)

Monolithic Power Systems Monolithic Power Systems Jump to: navigation, search Name Monolithic Power Systems Place San Jose, California Zip 95120 Product A California-based analog semiconductor company. References Monolithic Power Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Monolithic Power Systems is a company located in San Jose, California . References ↑ "Monolithic Power Systems" Retrieved from "http://en.openei.org/w/index.php?title=Monolithic_Power_Systems&oldid=348915" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

195

Space Power Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Space Power Systems Reactor Technologies » Space Power Systems Space Power Systems Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration. Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration. The Department of Energy (DOE) and its predecessors have provided radioisotope power systems that have safely enabled deep space exploration and national security missions for five decades. Radioisotope power systems (RPSs) convert the heat from the decay of the radioactive isotope plutonium-238 (Pu-238) into electricity. RPSs are capable of producing heat and electricity under the harsh conditions

196

PowerGenix Systems | Open Energy Information  

Open Energy Info (EERE)

PowerGenix Systems PowerGenix Systems Jump to: navigation, search Name PowerGenix Systems Place San Diego, California Zip 92131-1109 Product Develops high-discharge nickel-zinc rechargeable batteries. References PowerGenix Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PowerGenix Systems is a company located in San Diego, California . References ↑ "PowerGenix Systems" Retrieved from "http://en.openei.org/w/index.php?title=PowerGenix_Systems&oldid=349892" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

197

Renewable and Efficient Electric Power Systems  

E-Print Network (OSTI)

.8.1 Ideal Transformers 37 1.8.2 Magnetization Losses 40 Problems 44 2 Fundamentals of Electric Power 51 2Renewable and Efficient Electric Power Systems Gilbert M. Masters Stanford University A JOHN WILEY & SONS, INC., PUBLICATION #12;#12;Renewable and Efficient Electric Power Systems #12;#12;Renewable

Kammen, Daniel M.

198

Prony analysis for power system transient harmonics  

Science Conference Proceedings (OSTI)

Proliferation of nonlinear loads in power systems has increased harmonic pollution and deteriorated power quality. Not required to have prior knowledge of existing harmonics, Prony analysis detects frequencies, magnitudes, phases, and especially damping ...

Li Qi; Lewei Qian; Stephen Woodruff; David Cartes

2007-01-01T23:59:59.000Z

199

Modular Solar Electric Power (MSEP) Systems (Presentation)  

SciTech Connect

This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

Hassani, V.

2000-06-18T23:59:59.000Z

200

Power Quality Issues in a Hybrid Power System: Preprint  

DOE Green Energy (OSTI)

We analyzed a power system network, which consisted of two types of power generation: wind turbine generation and diesel generation. The power quality and the interaction of diesel generation, the wind turbine, and the local load were the subjects of investigation. From an energy-production point of view, it is desirable to have as much wind energy production as possible in order to save fuel consumption of the diesel engines and to reduce the level of pollution. From the customer point of view, it is desirable to have good power quality at the receiving end. The purpose of this paper is to show the impact of wind power plant in the entire system. Also, we discuss how the startup of the wind turbine and the transient condition during load changes affects the voltage and frequency in the system.

Muljadi, E.; McKenna, H. E.

2001-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The DOE/SCS Power Systems Development Facility  

Science Conference Proceedings (OSTI)

The use of coal for power generation has come under increasing environmental scrutiny over the past five years. Advances in coal-based power generation technology will continue to develop towards systems that have high efficiency, environmental superiority and lower or sustainable cost-of-electricity compared to current coal-based technology. Emerging power generation technologies that work toward these goals include integrated gasification combined-cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). One method for improving the efficiency and lowering the capital cost further for advanced power plants utilizing coal is by employing hot gas cleanup. Although hot gas cleanup has the potential for improving the viability of coal-based power generation, the removal of hot particulates from the gas stream has proven to be a challenging task. The demonstration of particulate control devices (PCDS) under realistic conditions for advanced power generation remains the single most important area for development. With the Southern Company`s commitment to be a major supplier of electricity worldwide and our continued use of coal as a primary fuel source, Southern Company Services (SCS) has entered into a cooperative effort with the Department of Energy (DOE) Morgantown Energy Technology Center (METC) to develop a facility where component and system integration tests can be carried out for advanced coal-based power plants. The Power Systems Development Facility (PSDF) is being designed to be a flexible facility that will address the development of the PCDs required for advanced coal-based power generation systems.

Haq, Z.U.; Pinkston, T.E.; Sears, R.E.; Vimalchand, P.

1993-12-31T23:59:59.000Z

202

Land Record System PIA, Bonneville Power Administration | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record System PIA, Bonneville Power Administration Land Record...

203

Northern Power Systems | Open Energy Information  

Open Energy Info (EERE)

Northern Power Systems Northern Power Systems Place Barre, VT Website http://www.northernpowersystem References Northern Power Systems[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type CRADA Partnering Center within NREL National Wind Technology Center Partnership Year 2000 Link to project description http://www.nrel.gov/news/press/2000/34three.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Northern Power Systems is a company located in Barre, VT. References ↑ "Northern Power Systems" Retrieved from "http://en.openei.org/w/index.php?title=Northern_Power_Systems&oldid=379254" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version

204

Optimization Online - Stochastic Optimization for Power System ...  

E-Print Network (OSTI)

Feb 17, 2011... for Power System Configuration with Renewable Energy in Remote ... type of problem in comparison to a state-of-the-art professional solver.

205

NETL: Coal & Power Systems Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Coal & Power Systems Reference Shelf Below are links to recent Strategic Center for Coal (SCC) related documents and reference materials. Each technology area...

206

Costs Drop for Photovoltaic Power Systems  

Science Conference Proceedings (OSTI)

Oct 23, 2009 ... The cost reduction over time was largest for smaller PV systems, such as those used to power individual households. Also, installed costs show ...

207

Advanced nonlinear control of complex power systems.  

E-Print Network (OSTI)

??Nowadays, advanced controller design is called upon to guarantee the secure and reliable operation of power systems. To meet this requirement, this work proposed three… (more)

Li, Hong Yin.

2008-01-01T23:59:59.000Z

208

Utility Grid-Connected Distributed Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 Asheville, NC April 1996 Donald E. OsbornDavid E. Collier Sacramento Municipal Utility...

209

Materials in Clean Power Systems VIII  

Science Conference Proceedings (OSTI)

Degradation modeling and lifetime prediction of materials used in clean and renewable power systems. Abstracts Due, 07/31/2012. Proceedings Plan, Planned: ...

210

Neutral Beam Power System for TPX  

SciTech Connect

The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements.

Ramakrishnan, S.; Bowen, O.N.; O`Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

1993-11-01T23:59:59.000Z

211

Satellite power system (SPS) public outreach experiment  

DOE Green Energy (OSTI)

To improve the results of the Satellite Power System (SPS) Concept Development and Evaluation Program, an outreach experiment was conducted. Three public interest groups participated: the L-5 Society (L-5), Citizen's Energy Project (CEP), and the Forum for the Advancement of Students in Science and Technology (FASST). Each group disseminated summary information about SPS to approximately 3000 constituents with a request for feedback on the SPS concept. The objectives of the outreach were to (1) determine the areas of major concern relative to the SPS concept, and (2) gain experience with an outreach process for use in future public involvement. Due to the combined efforts of all three groups, 9200 individuals/organizations received information about the SPS concept. Over 1500 receipients of this information provided feedback. The response to the outreach effort was positive for all three groups, suggesting that the effort extended by the SPS Project Division to encourage an information exchange with the public was well received. The general response to the SPS differed with each group. The L-5 position is very much in favor of SPS; CEP is very much opposed and FASST is relatively neutral. The responses are analyzed, and from the responses some questions and answers about the satellite power system are presented in the appendix. (WHK)

McNeal, S.R.

1980-12-01T23:59:59.000Z

212

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network (OSTI)

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine… (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

213

Acceptance test report: Backup power system  

SciTech Connect

Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control.

Cole, D.B. [Westinghouse Hanford Co., Richland, WA (United States)

1996-01-26T23:59:59.000Z

214

Power reduction techniques for microprocessor systems  

Science Conference Proceedings (OSTI)

Power consumption is a major factor that limits the performance of computers. We survey the “state of the art” in techniques that reduce the total power consumed by a microprocessor system over time. These techniques are applied at various ... Keywords: Energy dissipation, power reduction

Vasanth Venkatachalam; Michael Franz

2005-09-01T23:59:59.000Z

215

Solar thermal power systems. Program summary  

DOE Green Energy (OSTI)

Each of DOE's solar Thermal Power Systems projects funded and/or in existence during FY 1978 is described and the status as of September 30, 1978 is reflected. These projects are divided as follows: small thermal power applications, large thermal power applications, and advanced thermal technology. Also included are: 1978 project summary tables, bibliography, and an alphabetical index of contractors. (MHR)

Not Available

1978-12-01T23:59:59.000Z

216

Strategic stockpiling of power system supplies for disaster recovery  

SciTech Connect

This paper studies the Power System Stochastic Storage Problem (PSSSP), a novel application in power restoration which consists of deciding how to store power system components throughout a populated area to maximize the amount of power served after disaster restoration. The paper proposes an exact mixed-integer formulation for the linearized DC power flow model and a general column-generation approach. Both formulations were evaluated experimentally on benchmarks using the electrical power infrastructure of the United States and disaster scenarios generated by state-of-the-art hurricane simulation tools similar to those used by the National Hurricane Center. The results show that the column-generation algorithm produces near-optimal solutions quickly and produces orders of magnitude speedups over the exact formulation for large benchmarks. Moreover, both the exact and the column-generation formulations produce significant improvements over greedy approach and hence should yield significant benefits in practice.

Bent, Russell W [Los Alamos National Laboratory; Coffrein, Carleton [Los Alamos National Laboratory; Van Hentenryck, Pascal [BROWN UNIV

2010-11-23T23:59:59.000Z

217

SunShot Initiative: Solar Power Tower Improvements with the Potential to  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Tower Improvements Solar Power Tower Improvements with the Potential to Reduce Costs to someone by E-mail Share SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Facebook Tweet about SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Twitter Bookmark SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Google Bookmark SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Delicious Rank SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Digg Find More places to share SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on AddThis.com... Concentrating Solar Power

218

Satellite power system (SPS) public acceptance  

SciTech Connect

The purpose of this report is to develop a preliminary perspective on the public acceptability of the Solar Satellite Power System (SPS) Program, and a means to monitor it. A literature review and informal contacts with interest groups likely to take a position on the program reveal a number of concerns (anti-SPS arguments), as well as potential benefits (pro-SPS arguments). The concerns expressed include: environmental issues (microwaves, high altitude air pollution from space launches, land use), the program's cost in dollars, energy and other resources; communications interference; military implications; ownership and control of the system (particularly strengthening the power of utility monopolies); SPS as representing a centralized, high technology hard energy policy (rather than a decentralized smaller-scale soft approach); and the fear that SPS might dominate solar R and D budgets at the expense of decentralized solar technologies. Pro-SPS arguments stress its efficiency compared to terrestrial solar applications (i.e. virtually continuous exposure, no atmospheric attenuation). The program could be a major contributor to solving America's (and the world's) long-term energy crisis. It would improve our balance of payments; create many jobs both directly and through technology spinoffs; advance the space program; strengthen the U.S. position as a world leader in high technology; provide a great boost to American national pride; and would be environmentally preferable to alternative power generation technologies (e.g. coal, nuclear). Several key issues in SPS acceptability are: the outcome (and credibility) of future research into program environmental and non-environmental impacts, and the comparison of SPS impacts with those of alternative energy options. Recommendations for future research are given.

Bachrach, A.

1978-10-01T23:59:59.000Z

219

NREL: Water Power Research - Economic and Power System Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic and Power System Modeling and Analysis Economic and Power System Modeling and Analysis NREL's Economic Analysis and power system modeling integrates data from device deployment and programmatic research into deployment and scenario models to quantify the economic and societal benefits of developing cost-competitive marine and hydrokinetic systems. It also identifies policy mechanisms, market designs, and supply chain needs to support various deployment scenarios, provide information and training to potential members of the marine and hydrokinetic (MHK) industry and effectively collaborate with all associated stakeholders. JEDI Modeling NREL worked with industry members to develop and provide public access to an easy-to-use input-output model that estimates the jobs and economic development impacts (JEDI) of MHK projects in the United States. The JEDI

220

Power Systems Operation Planning Optimization.  

E-Print Network (OSTI)

??Optimal hydrothermal power dispatch on a multi-area network is a large-scale non-linear problem. Its objective is to find the optimal generation schedule of hydro and… (more)

FRAGOMENI, UMBERTO

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: Coal & Power Systems - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

412-386-6140 Office of Coal and Power Research and Development Office Director: Jared Ciferno 412-386-5862 Deputy Director: Robert Romanosky 304-285-4721 Technology Manager, Fuel...

222

Efficient Power Profiling for Battery-Driven Embedded System Design  

E-Print Network (OSTI)

The ability to efficiently and accurately estimate battery life under different design choices at the system level is an important aid in designing battery-efficient systems. Recently developed battery models help by estimating battery life under given profiles of the battery discharge current over time. However, existing techniques for energy (or average power) estimation do not provide sufficient information (such as time profiles of system power consumption) to drive battery-life estimation. Techniques that are capable of generating such profiles often lack the efficiency required to support exploration at the system level. In this paper, we describe techniques for efficient generation of system-level power profiles, for use in a battery-life estimation framework. Our power profiling technique allows a designer to experiment with: 1) the mapping of system tasks to a set of architectural components and 2) the mapping of system communications to a specified communication architecture, and efficiently generate system power profiles for each alternative. The resulting profiles can then be analyzed using existing battery models to estimate battery lifetime and capacity. Extensive experiments conducted on an IEEE 802.11 MAC processor design demonstrate that our power profiler offers orders of magnitude improvement in runtimes over state-of-the-art cosimulation-based power estimation techniques, while suffering minimal loss of accuracy (average profiling error was 3.8%).

Kanishka Lahiri; Anand Raghunathan; Senior Member; Sujit Dey

2004-01-01T23:59:59.000Z

223

Railway Power SCADA System Commissioning "Case Example"  

Science Conference Proceedings (OSTI)

The Mass Transit Railway Corporation Ltd., installed andcommissioned their first computer based Power RemoteControl System in late 1980's. The system wassuccessfully replaced in February 2000. This paperdescribes the methodology adopted to prepare andfacilitate ...

I. Hampton; K. Lam

2001-12-01T23:59:59.000Z

224

Investigation of the Technical and Economic Feasibility of Micro-Grid Based Power Systems  

Science Conference Proceedings (OSTI)

The power industry began as micro-grids, small power systems unconnected to a bulk power system. Today, because of the advent of new distributed resource technologies, better control systems, the need for improved distribution system performance, and various constraints associated with continued expansion of the traditional bulk power system, there is new interest in returning to micro-grid approaches for some applications. The new micro-grids of the 21st century can perform much better than the early 20...

2001-12-12T23:59:59.000Z

225

Bifurcation Analysis of Various Power System Models  

E-Print Network (OSTI)

Bifurcation Analysis of Various Power System Models William D. Rosehart Claudio A. Ca This paper presents the bifurcation analysis of a detailed power system model composed of an aggregated induction motor and impedance load supplied by an under-load tap-changer transformer and an equivalent

Cañizares, Claudio A.

226

2007 NET SYSTEM POWER REPORT STAFFREPORT  

E-Print Network (OSTI)

-2007.......................................................................5 Figure 3: Natural Gas and Coal Shares of Net System Power Mix Become Larger 1999-2007.....7 List technologies used to generate electricity. Fuel types include coal, natural gas, nuclear, and other fuels of "unclaimed" coal and natural gas generation. Figure 2 illustrates the decrease in net system power between

227

Automatic control in electric power systems  

Science Conference Proceedings (OSTI)

The recent progress in the application of automatic controls to electric power systems is outlined. After a brief review of present trends in power system planning and operation, the role of computers and of modern control methods and techniques in optimal ...

G. Quazza

1970-01-01T23:59:59.000Z

228

Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

This report is an update to "Technology Assessment of Residential Power Systems for Distributed Generation Markets" (EPRIsolutions report 1000772). That previous report dealt with fuel cells, stirling engine generators, and reciprocating engine generators; this current report focuses on polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cell (SOFC) power systems fueled with natural gas or propane and sized for residential loads.

2002-03-29T23:59:59.000Z

229

Green Island Power Authority Transmission Voltage Support System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Island Power Authority Transmission Voltage Support System Project Green Island Power Authority Transmission Voltage Support System Project Power point presentation...

230

Modal Analysis of Power Systems with Doubly Fed Induction Generators.  

E-Print Network (OSTI)

?? To ensure the reliable operation of the power system, stability analysis considering the interaction between wind power and power system must be understood. In this… (more)

Li, Jialin

2010-01-01T23:59:59.000Z

231

ProSteam- A Structured Approach to Steam System Improvement  

E-Print Network (OSTI)

Optimal operation of site utility systems is becoming an increasingly important part of any successful business strategy as environmental, legislative and commercial pressures grow. A reliable steam model allows a clear understanding of the system and of any operational constraints. It can also be used to determine the true cost of improvement projects, relating any changes in steam demand back to purchased utilities (fuel, power, and make-up water) at the site boundary. Example projects could include improved insulation, better condensate return, increased process integration, new steam turbines or even the installation of gas-turbine based cogeneration. This approach allows sites to develop a staged implementation plan for both operational and capital investment projects in the utility system. Steam system models can be taken one step further and linked to the site DCS data to provide real-time balances and improve the operation of the system, providing an inexpensive but very effective optimizer. Such a model ensures that the steam system is set in the optimum manner to react to current utility demands, emissions regulations, equipment availability, fuel and power costs, etc. This optimization approach typically reduces day-to-day utility system operating costs by between 1% and 5% at no capital cost.

Eastwood, A.

2002-04-01T23:59:59.000Z

232

Improving Industrial Refrigeration System Efficiency - Actual Applications  

E-Print Network (OSTI)

This paper discusses actual design and modifications for increased system efficiency and includes reduced chilled liquid flow during part load operation, reduced condensing and increased evaporator temperatures for reduced system head, thermosiphon cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system head and pumping energy, and using high efficiency motors.

White, T. L.

1980-01-01T23:59:59.000Z

233

PFBC perspectives at the Power Systems Development Facility  

Science Conference Proceedings (OSTI)

The use of coal for power generation has come under increasing environmental scrutiny over the past five years. Advances in coal-based power generation technology will develop systems that have high efficiency, environmental superiority and lower cost of electricity compared to current coal-based technology. Advanced pressurized-fluidized-bed combustion (APFBC) is one `of the promising emerging power generation technologies striving to achieve these goals. One method of improving the efficiency and lowering the capital cost further for advanced power plants utilizing coal is by employing hot gas cleanup. Although hot gas cleanup has the potential for improving the viability of coal-based power generation, the removal of hot particulates from the gas stream has proven to be a challenging task. The demonstration of APFBC technology and the particulate control devices (PCDs) under realistic conditions for advanced power generation remain important areas for development. The Power Systems Development Facility (PSDF) is being designed to be a flexible facility that will address the development of the PCDs and an advanced second-generation PFBC technology. With the progress made in the last decade, the basic concepts of PFBC technology can be achieved through a number of different flowsheets and reactor configurations. The choices made in developing the flowsheets and the choices made in designing the equipment in order to improve the reliability of operation may well dictate, along with the actual data from operation, the process efficiencies and the capital costs that can be achieved.

Moore, D.L.; Vimalchand, P.; Haq, Z.U. [Southern Co. Services, Inc., Birmingham, AL (United States); McClung, J.D. [Foster Wheeler Development Corp., Livingston, NJ (United States); Quandt, M.T. [Foster Wheeler Energy Corp., Clinton, NJ (United States)

1994-06-01T23:59:59.000Z

234

Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers  

Science Conference Proceedings (OSTI)

The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

1994-01-01T23:59:59.000Z

235

PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc.  

E-Print Network (OSTI)

represents a carbon cycle, where plants absorb carbon dioxide during growth, "recycling" the carbon released #12;Program ObjectivesProgram Objectives Integrated PEM Fuel Cell System Ethanol based Power Plant 10PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc. Thomas

236

Columbia Power System | Open Energy Information  

Open Energy Info (EERE)

System System Jump to: navigation, search Name Columbia Power System Place Tennessee Utility Id 3855 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL POWER RATE From 51 kW to 1,000 kW Commercial GENERAL POWER RATE Up to 50 kW Commercial GENERAL POWER RATE(Demand greater than 1,000 kW not exceeding 5000kW) Commercial General Power Rate(Demand 5001-15000kW) Commercial MANUFACTURING SERVICE POWER RATE DEMAND 5,001-15,000 kW Commercial OUTDOOR LIGHTING STREET, PARKS, & ATHLETIC FIELDS Lighting

237

Portland Company to Receive $1.3 Million to Improve Hydro Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies September 15, 2009 -...

238

Single-phase Converter-less Excitation Synchronous Stand-along Wind Power Generator System.  

E-Print Network (OSTI)

??In this thesis, a single-phase converter-less excitation synchronous stand-along wind power generator system is proposed. In order to simplify the system and improve the system… (more)

Lin, Chin-wei

2013-01-01T23:59:59.000Z

239

Power electronics in electric utilities: HVDC power transmission systems  

SciTech Connect

High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

Nozari, F.; Patel, H.S.

1988-04-01T23:59:59.000Z

240

Catalog of DC Appliances and Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalog of DC Appliances and Power Systems Catalog of DC Appliances and Power Systems Title Catalog of DC Appliances and Power Systems Publication Type Report LBNL Report Number LBNL-5364E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, and Hongxia Shen Document Number LBNL-5364E Date Published October Publisher Lawrence Berkeley National Laboratory Abstract This document catalogs the characteristics of current and potential future direct current (DC) products and power systems. It is part of a larger U.S. Department of Energy-funded project, "Direct-DC Power Systems for Energy Efficiency and Renewable Energy Integration with a Residential and Small Commercial Focus". That project is investigating the energy-savings potential, benefits, and barriers of using DC generated by on-site renewable energy systems directly in its DC form, rather than converting it first to alternating current (AC) for distribution to loads. Two related reports resulted from this work: this Catalog and a companion report that addresses direct-DC energy savings in U.S. residential buildings.Interest in 'direct-DC' is motivated by a combination of factors: the very rapid increase in residential and commercial photovoltaic (PV) power systems in the United States; the rapid expansion in the current and expected future use of energy efficient products that utilize DC power internally; the demonstrated energy savings of direct-DC in commercial data centers; and the current emergence of direct-DC power standards and products designed for grid-connected residential and commercial products. Based on an in-depth study of DC appliances and power systems, we assessed off-grid markets for DC appliances, the DC compatibility of mainstream electricity end-uses, and the emerging mainstream market for direct-DC appliances and power systems.

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Jadoo Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Jadoo Power Systems Inc Jadoo Power Systems Inc Jump to: navigation, search Name Jadoo Power Systems Inc Place Folsom, California Zip 95630 Product US-based fuel cell developer, Jadoo Power Systems Inc, produces high energy density power products for the law enforcement, military and electronic news gathering applications. Coordinates 39.474081°, -80.529699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.474081,"lon":-80.529699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Versa Power Systems | Open Energy Information  

Open Energy Info (EERE)

Power Systems Power Systems Jump to: navigation, search Logo: Versa Power Systems Name Versa Power Systems Address 8392 Continental Divide Road, Suite 101 Place Littleton, Colorado Zip 80127 Sector Hydrogen Product Developing solid oxide fuel cells Website http://www.versa-power.com/ Coordinates 39.5676518°, -105.1208444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5676518,"lon":-105.1208444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

The Power Systems Development Facility: Test Results 2005  

Science Conference Proceedings (OSTI)

The Transport Gasifier test facility at the Power Systems Development Facility (PSDF) has operated for over 7,750 hours, gasifying bituminous and sub-bituminous coals and lignites using air and oxygen as the oxidant. During this time plant reliability and performance has improved progressively and the high degree of process understanding developed has been used to improve designs for key equipment items, such as coal feeding and ash removal. Using state-of-the-art data analysis and modeling software, the...

2005-12-21T23:59:59.000Z

244

Duke Power Compact PHOCUS Boresonic System Evaluation  

Science Conference Proceedings (OSTI)

Reliable and repeatable boresonic inspection of turbine rotors and generators is critical for accurately predicting remaining life. EPRI's boresonic system evaluation program provides utilities with insight into commercial boresonic system performance capabilities. This report, one in a series of boresonic system evaluations, features an assessment of Duke Power Company's compact PHOCUS boresonic inspection system.

1994-05-07T23:59:59.000Z

245

NETL: Gasification Systems - Power Systems Development Facility (PSDF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems Development Facility (PSDF) Power Systems Development Facility (PSDF) Project No.: DE-FC21-90MC25140 Power Systems Development Facility (PSDF) Project ID: DE-FC21-90MC25140 NETL Contact: Morgan Mosser (304) 285-4723 Organization: Southern Company Services, Inc. - Birmingham, AL Project Timeline: Start: 09/14/1990 End: 01/31/2009 Power Systems Development Facility The objectives of the work at the Power Systems Development Facility (PSDF) are two-fold; development of the Transport Gasifier for a wide range of US coals from high sodium lignite to Midwestern bituminous and provide a test platform to test various critical components that are likely to appear in future advanced coal-based power facilities producing power and fuels such as hydrogen with zero emissions. With regard to the development of the

246

Saft Power Systems | Open Energy Information  

Open Energy Info (EERE)

Saft Power Systems Saft Power Systems Jump to: navigation, search Name Saft Power Systems Place Nanterre, France Zip 92004 Sector Solar Product French manufacturer of power supplies and systems, servicing the telecom and coal industries; in particular, manufacturers inverters and balance of systems for solar industry. Coordinates 48.88811°, 2.194915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.88811,"lon":2.194915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.  

E-Print Network (OSTI)

(thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact systems where the cost of conventional production is high. In recent years, the integration of wind energy is seen as an attractive alternative for fuel displacement. However, the intermittent nature of wind

Paris-Sud XI, Université de

248

Application of self-organizing systems in power systems control  

Science Conference Proceedings (OSTI)

The European electrical transmission network is operated increasingly close to its operational limits due to market integration and increased feed-in by renewable energies. For this reason, innovative solutions for a reliable, secure and efficient network ... Keywords: FACTS, multiagent systems, power flow control, power system control, self-organizing systems, smart grids

Sven C. Müller; Ulf Häger; Christian Rehtanz; Horst F. Wedde

2012-06-01T23:59:59.000Z

249

DOE Scientist Earns Chairman's Award from Propulsion and Power Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scientist Earns Chairman's Award from Propulsion and Power Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance DOE Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance October 2, 2009 - 1:00pm Addthis Washington, DC - A researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been presented with the Chairman's Award by the Propulsion and Power Systems Alliance (PPSA). Mary Anne Alvin, a physical scientist in NETL's Office of Research and Development, was recognized for her lead role in revitalizing the PPSA Materials Technical Area Team. This prestigious award is only given during a year when outstanding service is observed. The PPSA was formed in 1999 with the mission of improving coordination and collaboration among government agencies to better leverage existing federal

250

Wind for Schools Project Power System Brief  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

Not Available

2007-08-01T23:59:59.000Z

251

Southern Company Services Power Systems Development Facility  

E-Print Network (OSTI)

The Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, was established in 1995 to lead the United States ' effort to develop cost-competitive, environmentally acceptable, coal-based power plant technologies. The PSDF includes an engineering scale demonstration of key components of an Integrated Gasification

Roxann Leonard; Robert C. Lambrecht; Pannalal Vimalchand; Ruth Ann Yongue; Senior Engineer

2007-01-01T23:59:59.000Z

252

Advanced Power Systems and Controls Laboratory  

E-Print Network (OSTI)

. Conclusions As utility scale PV and rooftop solar PV become commonplace on our electric grid, battery energy Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

253

Power Systems Analysis ELEN4511 Spring 2013  

E-Print Network (OSTI)

infrastructure overlay: #12;Image from `Industrial Power Distribution:Introduction http://www.industrial-electricity of the communications systems overlay is to enable communication between grid nodes for Supervision, Control and Data for the Power Grid by Bukhosi Msimanga, EE `13 Abstract Before the advent of communication technology

Lavaei, Javad

254

Progress in photovoltaic system and component improvements  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

255

Progress in photovoltaic system and component improvements  

SciTech Connect

The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1998-08-01T23:59:59.000Z

256

Enhanced Power Grid Efficiency through Improved Phasor Measurement Cleaning  

Power suppliers must monitor the electricity levels within their power grids to ensure that the proper amount of electricity is being sent where it is needed. Power consumption levels are monitored using phasor measurement units (PMUs), which measure ...

257

Techno-economic Appraisal of Concentrating Solar Power Systems (CSP).  

E-Print Network (OSTI)

?? The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This… (more)

Gasti, Maria

2013-01-01T23:59:59.000Z

258

Cost Minimization in Power System Measurement Placement  

E-Print Network (OSTI)

, EMS: energy management system, PE: protection engineer, SC: substation control, IS: integrated system of substation automation systems, as reported in the March/April 2003 issue of IEEE Power & Energy Magazine fully automated while 1540-7977/04/$20.00©2004 IEEE figure 1. Layout of the typical substation equipment

Kezunovic, Mladen

259

Advanced Graphics for Power System Operation  

Science Conference Proceedings (OSTI)

The secure operation of an electric utility system with its many interconnections presents a complex problem, with large quantities of data to be processed at the system control center. EPRI investigators have developed a new graphical user interface that will enable power system operators to perform tasks more accurately and quickly.

1994-06-23T23:59:59.000Z

260

Power systems | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Power systems Power systems Subscribe to RSS - Power systems The systems, such as fusion power plants, that would generate electricity from fusion. Celebrating the 20th anniversary of the tritium shot heard around the world PPPL's historic experiment made global headlines and marked a milestone in the development of fusion energy Read more about Celebrating the 20th anniversary of the tritium shot heard around the world Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Promethean Power Systems | Open Energy Information  

Open Energy Info (EERE)

Promethean Power Systems Promethean Power Systems Jump to: navigation, search Name Promethean Power Systems Place Cambridge, Massachusetts Zip 2138 Product US-based developer of a solar-powered refrigeration system, specializing in off-grid and partially electrified applications. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Adaptive power management in energy harvesting systems  

Science Conference Proceedings (OSTI)

Recently, there has been a substantial interest in the design of systems that receive their energy from regenerative sources such as solar cells. In contrast to approaches that attempt to minimize the power consumption we are concerned with adapting ...

Clemens Moser; Lothar Thiele; Davide Brunelli; Luca Benini

2007-04-01T23:59:59.000Z

263

Keeping the lights on [power system reliability  

Science Conference Proceedings (OSTI)

Of all the energy conversion processes in existence, the US electric power system is the largest and most complex. Unlike industries such as communications and transportation, where a demand in excess of supply produces a “busy signal” ...

J. D. Mountford; R. R. Austria

1999-06-01T23:59:59.000Z

264

Husk Power Systems | Open Energy Information  

Open Energy Info (EERE)

Bihar, India Zip 800023 Sector Biomass Product India-based developer of mini biomass plants. References Husk Power Systems1 LinkedIn Connections CrunchBase Profile No...

265

Variable pressure power cycle and control system  

DOE Patents (OSTI)

A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

Goldsberry, Fred L. (Spring, TX)

1984-11-27T23:59:59.000Z

266

ELECTRIC POWER AND VENTILATION SYSTEM OF SILOE  

SciTech Connect

The 15-kv electric power of Siloe is supplied from a central substation, which serves all the laboratories in the Center. The substation transforms primary 3-phase power from 15 kv to 380 to 220 v. Control installations are supplied from sets of rectifiers and batteries with 127 and 48 v direct current. If the normal electric power supply fails, a 12000 kva diesel driven generator is automatically started and in a very short time supplies power. The ventilation system supplies the whole building with conditioned air, holds the shell in negative pressure, and exhausts radioactive effluents. (auth)

Mitault, G.; Faudou, J.-C.

1963-12-01T23:59:59.000Z

267

Preventing, Controlling and Mitigating Power System Separation  

Science Conference Proceedings (OSTI)

Large power system blackouts, although infrequent, may affect up to tens of millions of people and result in huge costs. A blackout is the result of a sequence of disturbances including initial events, consequent protective actions or additional failures, related vulnerability conditions, and accelerated cascading outages leading to the final blackout. Those disturbances may gradually weaken a power system's connections and result in growing angular oscillations between inter-connected control areas. If ...

2010-12-01T23:59:59.000Z

268

Solar thermal power systems. Summary report  

DOE Green Energy (OSTI)

The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

Not Available

1980-06-01T23:59:59.000Z

269

Adaptive stabilizing control of a power system through UPFC shunt and series converters  

Science Conference Proceedings (OSTI)

The dynamic performance of a power system can be improved by using additional controls in a unified power flow controller (UPFC). Self-tuning adaptive control of the voltage magnitude of the series converter and phase angle of shunt converter for stabilization ... Keywords: UPFC, adaptive control, on-line identification, pole - shifting control, power system stabilizing control

A. H. M. A. Rahim; E. P. Nowicki

2007-07-01T23:59:59.000Z

270

Power-Aware Operating Systems for Interactive Systems  

E-Print Network (OSTI)

Many portable systems deploy operating systems (OS) to support versatile functionality and to manage resources, including power. This paper presents a new approach for using OS to reduce the power consumption of IO devices in interactive systems. Low-power OS observes the relationship between hardware devices and processes. The OS kernel estimates the utilization of a device from each process. If a device is not used by any running process, the OS puts it into a low-power state. This paper also explains how scheduling can facilitate power management. When processes are properly scheduled, power reduction can be achieved without degrading performance. We implemented a prototype on Linux to control two devices; experimental results showed nearly 70% power saving on a network card and a hard disk drive.

Yung-Hsiang Lu; Luca Benini; Giovanni De Micheli

2002-01-01T23:59:59.000Z

271

Power System Transient Analysis Using Wavelet Transform  

E-Print Network (OSTI)

: This paper presents time-frequency multiresolution wavelet analysis on power system transients. Since it is difficult to analyze transients on-site due to a vast amount of data recorded from a digital transient recorder, it is imperative to develop an intelligent recorder which has the ability to detect and classify different types of power system transients. In order to develop a good approach for transient data capture and analysis, one of the important steps is to model transients, so that it is more efficient for computers to extract the features from power transients and recognize them automatically. Most of transient signals are aperiodic and short-term duration signals superimposed on the power frequency. The Fourier-based transforms have been proved valuable for periodic, time-invariant, or stationary signals, but they have problems with analyzing power transients due to the lack of multiple resolution in time-frequency domain. Wavelet analysis overcomes the limitations of t...

J. Chen

1999-01-01T23:59:59.000Z

272

Heavy Vehicle Essential Power Systems Workshop  

DOE Green Energy (OSTI)

Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road.

Susan Rogers

2001-12-12T23:59:59.000Z

273

Heavy Vehicle Essential Power Systems Workshop  

SciTech Connect

Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road.

Susan Rogers

2001-12-12T23:59:59.000Z

274

NETL: SECA - A Primer on SOFC Technology - SOFC Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Power Systems SOFC power generation applications can range from small (e.g., 3 to 10 kWe) power systems for the home or small business, or as auxiliary power units (APU's) for...

275

Advanced IGCC power systems for the United States  

SciTech Connect

Integrated coal gasification combined-cycle (IGCC) power systems offer the potential of superior efficiency and environmental performance over power plants using pulverized coal-fired boilers with scrubbers to generate electricity in the United States. The Cool Water plant is demonstrating the feasibility of an IGCC system using an entrained-bed gasifier and ''cold'' gas cleanup technology. Technology is now being developed to simplify the IGCC system, increase its efficiency and reduce its capital costs. Hot gas sulfur and particulate cleanup is the most promising technology option for the gas supply block. Improved performance is also available from the power island by use of high-efficiency aircraft derivative turbines. Progress in these technologies and the exceptional match of these IGCC systems to the projected needs of the utility industry is presented.

Wieber, P.R.; Halow, J.S.

1986-01-01T23:59:59.000Z

276

Automated Surface Observing System: Standby Power Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated Automated Surface Observing System Standby Options Power Automated Surface Observing System (ASOS) General System Description * Self contained group of sensors and data gathering equipment that produces an automated weather observation * Weather observations support aviation, climate data, non government weather operations, public consumption, etc. * Initial deployment began in 1991 and continued through 1997 * Located at 884 sites nationwide, normally at airports * System has two distinct subsystems: Field installed equipment (DCP & Sensor Group) and an indoor processor (ACU) with peripherals * Separate facility power for DCP & Sensors and ACU 1 * measure and collect data * Located on the airport * back up group for 10 minutes * Currently pl

277

Combustion powered thermophotovoltaic emitter system  

Science Conference Proceedings (OSTI)

The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

McHenry, R.S. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering

1995-07-01T23:59:59.000Z

278

Manzanita Hybrid Power system Project Final Report  

DOE Green Energy (OSTI)

The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit, and in 1995 the Tribe established the Manzanita Renewable Energy Office. Through the U.S. Department of Energy's Tribal Energy Program the Band received funds to install a hybrid renewable power system to provide electricity to one of the tribal community buildings, the Manzanita Activities Center (MAC building). The project began September 30, 1999 and was completed March 31, 2005. The system was designed and the equipment supplied by Northern Power Systems, Inc, an engineering company with expertise in renewable hybrid system design and development. Personnel of the National Renewable Energy Laboratory provided technical assistance in system design, and continued to provide technical assistance in system monitoring. The grid-connected renewable hybrid wind/photovoltaic system provides a demonstration of a solar/wind energy hybrid power-generating project on Manzanita Tribal land. During the system design phase, the National Renewable Energy Lab estimated that the wind turbine is expected to produce 10,000-kilowatt hours per year and the solar array 2,000-kilowatt hours per year. The hybrid system was designed to provide approximately 80 percent of the electricity used annually in the MAC building. The project proposed to demonstrate that this kind of a system design would provide highly reliable renewable power for community uses.

Trisha Frank

2005-03-31T23:59:59.000Z

279

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

Along with the shortage of conventional energy sources, efforts have been sought to use energy in a rational manner. Whereas the biggest energy consumption is in the industrial sector, various techniques to reduce energy have been searched. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy saving potential in industry. The optimization measures can be categorized into two methods, i.e. (1) no cost/low cost that can be done through a better maintenance and improvement of operating conditions, and (2) major improvement that requires a significant amount of investment, that includes the modification of process and major equipment. Since energy saving is an endless effort, new levels of energy efficiency standards are being set year after year. Therefore, repeated studies should be made to identify energy saving potential. Modern instruments allow the energy specialists to conduct an in-depth survey to identify energy performance. This paper highlights the findings of the study in a steam generation and distribution system of a crude oil stabilization unit. With the annual budget of $8.3 million, the unit is handling about 600,000 barrels crude oil per day from an offshore platform. The study identified an opportunity of annual saving amounting to $1,115,300. Though the finding is specific to a single site, the basics of steam system analysis are applicable to any steam system. The steam system should be reviewed year after year to identify more energy wastes and to improve efficiency of steam system, thus reducing the energy cost. At the same time this will also help save the environment.

Venkatesan, V. V.; Leigh, N.

1998-04-01T23:59:59.000Z

280

Advanced fenestration systems for improved daylight performance  

Science Conference Proceedings (OSTI)

The use of daylight to replace or supplement electric lighting in commercial buildings can result in significant energy and demand savings. High performance fenestration systems area necessary, but not sufficient, element of any successful daylighting design that reduces lighting energy use. However, these savings may be reduced if the fenestration systems impose adverse thermal loads. In this paper, we review the state of the art of several advanced fenestration systems which are designed to maximize the energy-saving potential of daylighting, while improving comfort and visual performance at an "affordable" cost. We first review the key performance issues that successful fenestration systems must address, and then review several classes of fenestration systems intended to meet those performance needs. The systems are reviewed in two categories: static and dynamic. Static systems include not only glazings, such as spectrally-selective and holographic glazings, but specialized designs of light-shelves and light-pipes, while dynamic systems cover automatically-operated Venetian blinds and electrochromic glazings. We include a discussion of the research directions in this area, and how these efforts might lead to static and dynamic hardware and system solutions that fulfill the multiple roles that these systems must play in terms of energy efficiency, comfort, visual performance, health, and amenity in future buildings.

Lee, E.S.; Selkowitz, S.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Adaptive HVDC Control System and Power Oscillation Damping Methods: Theoretical Developments  

Science Conference Proceedings (OSTI)

This report demonstrates the basic principles behind supplementary control of high-voltage direct-current (HVDC) links for improving system dynamic performance, through case studies using DIgSILENT’s PowerFactory software. Power oscillation damping control through HVDC links is reported alongside adaptive control of HVDC power to ensure secure operation of power systems. Simulation results on a simple four-generator, two-area test system are presented, with a view to benchmark the results and ...

2012-12-12T23:59:59.000Z

282

Photonic Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Power Systems Inc Power Systems Inc Jump to: navigation, search Name Photonic Power Systems Inc Place Cupertino, California Zip 95014-2305 Product Provider of GaAs and InP-based solutions for delivering electrical power over fibre for numerous electronic applications. Coordinates 37.31884°, -122.029244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.31884,"lon":-122.029244,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Princeton Power Systems | Open Energy Information  

Open Energy Info (EERE)

Power Systems Power Systems Jump to: navigation, search Name Princeton Power Systems Place Princeton, New Jersey Zip 8540 Product Focused on advanced power conversion technologies -controllers and inverters. Coordinates 43.85105°, -89.129909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.85105,"lon":-89.129909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Small geothermal electric systems for remote powering  

DOE Green Energy (OSTI)

This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

1994-08-08T23:59:59.000Z

285

Keeping an eye on power system dynamics  

SciTech Connect

An interconnected power system is one of the largest and most complex of human achievements. It is maintained in a stable dynamic state only by tight control and protection, plus intelligent and diligent operation. Operating details are taken for granted by the general public; only when some catastrophic failure takes place is power system stability seen as newsworthy. Faults occur on power systems, most often through natural phenomena beyond human control. However, a well designed system will, for the most common faults, recover automatically and continue power delivery with very little inconvenience to its customers. This level of performance is achieved at a high cost in terms of manpower and equipment. In the future, the market economy is likely to force power systems much closer to their limits of stable operation, and operating decisions will have to be based on accurate, online system information and simulations rather than the current practice of extensive offline simulation of a comprehensive set of possible system operating conditions.

Hauer, J.; Johnson, J. [Pacific Northwest National Lab., Richland, WA (United States); Mittelstadt, B.; Litzenberger, W. [Bonneville Power Administration, Portland, OR (United States); Trudnowski, D.; Rogers, G.

1997-10-01T23:59:59.000Z

286

Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration: the  

E-Print Network (OSTI)

: a danish study case," Int. Journal of Eletrical Power and Energy Systems, vol. 28, no. 1, pp 48-57, Oct on the transient fault behavior of the Nordic power system," Int. Journal of Eletrical Power and Energy Systems

Chen, Zhe

287

Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management  

E-Print Network (OSTI)

This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

Khadkikar, Vinod

288

Improved Refractory Materials for Slagging Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Fac Fac ts Materials Science contact Bryan Morreale Focus Area Leader (Acting) Materials Science Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15326 412-386-5929 bryan.morreale@netl.doe.gov Partner Harbison-Walker Refractories Company Improved Refractory Materials for Slagging Gasification Systems Advances in technology are often directly linked to materials development. For

289

Improved fuel cell system for transportation applications  

DOE Patents (OSTI)

This invention is comprised of a propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, M.K.

1991-12-31T23:59:59.000Z

290

TidGen Power System Commercialization Project  

SciTech Connect

ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

Sauer, Christopher R. [President & CEO; McEntee, Jarlath [VP Engineering & CTO

2013-12-30T23:59:59.000Z

291

Active high-power RF switch and pulse compression system  

DOE Patents (OSTI)

A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

1998-01-01T23:59:59.000Z

292

Electromechanical Oscillations in Hydro-Dominant Power Systems: An Application to the Colombian Power System.  

E-Print Network (OSTI)

??Power system modeling that captures the dynamic behavior of the different components interacting in an electric grid is useful in understanding some observed phenomena that… (more)

Villegas, Hugo N.

2011-01-01T23:59:59.000Z

293

The Power Systems Development Facility at Wilsonville, Alabama  

Science Conference Proceedings (OSTI)

One of the Morgantown Energy Technology Center`s (METC`s) goals is to: {open_quotes}Commercialize Advanced Power Systems with improved environmental performance, higher efficiency, and lower cost. {close_quotes} Advanced coal-based power generation systems include Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized- Bed Combustion (PFBC), and Integrated Gasification/Fuel Cell systems. The strategy for achieving this goal includes: (1) Show the improved performance and lower cost of Advanced Power Systems through successful Clean Coal Technology demonstration projects, (2) Build and operate Technology Integration Sites in partnership with U.S. Industry (these sites will resolve key technology issues and effect continuous product improvement, and these partnerships result in leveraging of research and development (R&D) funds), and (3) Set up partnerships with other agencies and organizations such as Electric Power Research Institute (EPRI) to leverage R&D funds and skills. Demonstration of practical high-temperature particulate control devices (PCD`s) is crucial to the evolution of advanced, high- efficiency coal-based power generation systems. There are stringent particulate requirements for the fuel gas for both turbines and fuel cells. In turbines, the particulates cause erosion and chemical attack of the blade surfaces. In fuel cells, the particulates cause blinding of the electrodes. Filtration of the incoming, hot, pressurized gas is required to protect these units. Although filtration can presently be performed by first cooling the gas, the system efficiency is reduced. Development of high temperature, high pressure filtration is necessary to achieve high efficiency and extend the lifetime of downstream components to acceptable levels.

Longanbach, J.R. [USDOE Morgantown Energy Technology Center, WV (United States); Pinkston, T.E. [Southern Company Services, Inc., Birmingham, AL (United States)

1995-03-01T23:59:59.000Z

294

POWER GENERATING NEUTRONIC REACTOR SYSTEM  

DOE Patents (OSTI)

This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.

Vernon, H.C.

1958-03-01T23:59:59.000Z

295

The Industrial Power Plant Management System - An Engineering Approach  

E-Print Network (OSTI)

Based on energy studies in over 70 plants in the forest products industry, experience has shown that, in addition to process improvements, the most important energy conservation measures in mill power departments are: - Load shedding and fuel allocation in such a manner that economically optimum conditions are achieved, taking into account purchased power supply. - Upgrading instrumentation for more accurate information and closer monitoring of plant operation. To achieve the maximum savings from these measures, a computerized energy management system is often required. This is because the optimum load allocation and best operating point must be determined through continuous energy balance calculations as the demand situation changes. The paper discusses the systems engineering approach to the design of a computerized energy management system. It is based on practical experience focusing on a tailored solution for any industrial power plant, resulting in a concept which is technically and economically feasible.

Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

1979-01-01T23:59:59.000Z

296

A study of power electronic building block (PEBB)-based integrated shipboard power systems during reconfiguration  

E-Print Network (OSTI)

The U.S. Navy has developed in their ships, and is continually improving, electric propulsion, ship service power, and electric loads. The latest topology under design is the integrated power system (IPS). The IPS entails the all electric ship concept with electric propulsion, direct current (DC) distribution, and modular technology. In the all electric ship concept, ship propulsion and ship service loads are powered by alternating current (AC) generation. For the IPS, power electronics conversion is to be utilized to convert alternating current (AC) generation to direct current (DC) distribution. As state-of-the-art power electronics, the Navy plans to use power electronic building blocks (PEBB) technology in its IPS. A U.S. naval shipboard power system is required to be a highly reconfigurable system to enhance its survivability and reliability. Reconfiguration is a change in the shipboard power system state for various reasons such as new topology, changing missions and emergencies. It was decided to study the behavior of a PEBB-based integrated shipboard power system during reconfiguration. Since no real time operation data was available, the problem was studied through the simulation of reconfiguration scenarios on a scaled-down computer model of an IPS in MATLAB. Reconfiguration scenarios were determined and staged, and an AC/DC power system stability assessment methodology was applied by decoupling the IPS test system around an intrazonal bus. The coupled system of the test IPS, consisted of two dynamic 4160 VAC generators, two rectifiers, two DC-DC converters between the rectifiers' output looped bus and the downstream intrazonal 775V busses, inverters, buck converters, AC loads and DC loads. There was modeling of excitation perturbations which introduced errors in the assessment of the stability requiring an approximation analysis. The study found that the DC bus of interest was stable for all nine reconfiguration scenarios staged, but it found that other busses were not stable for two of the scenarios. The study further found that lower stability margins occurred at lower frequencies of about 1Hz for stable scenarios. It concluded that there were tangible benefits to advancing the shipboard power system architecture to the IPS topology because of the good stability results.

Adediran, Adeoti Taiwo

2003-12-01T23:59:59.000Z

297

Coordination of reactive power scheduling in a multi-area power system operated by independent utilities.  

E-Print Network (OSTI)

??This thesis addresses the problem of reactive power scheduling in a power system with several areas controlled by independent transmission system operators (TSOs). To design… (more)

Phulpin, Yannick

298

Power-Invariant Magnetic System Modeling  

E-Print Network (OSTI)

In all energy systems, the parameters necessary to calculate power are the same in functionality: an effort or force needed to create a movement in an object and a flow or rate at which the object moves. Therefore, the power equation can generalized as a function of these two parameters: effort and flow, P = effort * flow. Analyzing various power transfer media this is true for at least three regimes: electrical, mechanical and hydraulic but not for magnetic. This implies that the conventional magnetic system model (the reluctance model) requires modifications in order to be consistent with other energy system models. Even further, performing a comprehensive comparison among the systems, each system's model includes an effort quantity, a flow quantity and three passive elements used to establish the amount of energy that is stored or dissipated as heat. After evaluating each one of them, it was clear that the conventional magnetic model did not follow the same pattern: the reluctance, as analogous to the electric resistance, should be a dissipative element instead it is an energy storage element. Furthermore, the two other elements are not defined. This difference has initiated a reevaluation of the conventional magnetic model. In this dissertation the fundamentals on electromagnetism and magnetic materials that supports the modifications proposed to the magnetic model are presented. Conceptual tests to a case study system were performed in order to figure out the network configuration that better represents its real behavior. Furthermore, analytical and numerical techniques were developed in MATLAB and Simulink in order to validate our model. Finally, the feasibility of a novel concept denominated magnetic transmission line was developed. This concept was introduced as an alternative to transmit power. In this case, the media of transport was a magnetic material. The richness of the power-invariant magnetic model and its similarities with the electric model enlighten us to apply concepts and calculation techniques new to the magnetic regime but common to the electric one, such as, net power, power factor, and efficiency, in order to evaluate the power transmission capabilities of a magnetic system. The fundamental contribution of this research is that it presents an alternative to model magnetic systems using a simpler, more physical approach. As the model is standard to other systems' models it allows the engineer or researcher to perform analogies among systems in order to gather insights and a clearer understanding of magnetic systems which up to now has been very complex and theoretical.

Gonzalez Dominguez, Guadalupe Giselle

2011-08-01T23:59:59.000Z

299

Prospects on fuel economy improvements for hydrogen powered vehicles.  

DOE Green Energy (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

300

Improved Power Modeling of DDR SDRAMs Karthik Chandrasekar  

E-Print Network (OSTI)

transitions to power-saving states, employs an SDRAM command trace to get the actual timings between consumed during the state transitions from any arbitrary SDRAM state to the power- down and self SDRAMs. The proposed power model takes into account all possible state transitions from any arbitrary

Epema, Dick H.J.

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Western Area Power Administration. Combined power system financial statements  

Science Conference Proceedings (OSTI)

This report presents the results of the independent certified public accountants` audit of the Western Area Power Administration`s combined power system statements of assets, Federal investment and liabilities, and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on Westerns internal control structure disclosed three new reportable conditions concerning the lack of: (1) a reconciliation of stores inventory from subsidiary ledgers to summary financial information, (2) communication of interest during construction and related adjustments to interest on Federal investment, and (3) a system to prevent and detect power billing errors. None of the conditions were considered to be material weaknesses. Western provided concurrence and corrective action plans. The auditors` report on Western`s compliance with laws and regulations also disclosed two new instances of noncompliance. Western failed to calculate nonreimbursable expenses in accordance with the Grand Canyon Protection Act and had an unexplained difference in gross Federal investment balances used to calculate interest on Federal investment. Western provided concurrence and corrective action plans for the instances.

NONE

1998-02-26T23:59:59.000Z

302

Multilevel converters for power system applications  

SciTech Connect

Multilevel converters are emerging as a new breed of power converter options for power system applications. These converters are most suitable for high voltage high power applications because they connect devices in series without the need for component matching. One of the major limitations of the multilevel converters is the voltage unbalance between different levels. To avoid voltage unbalance between different levels, several techniques have been proposed for different applications. Excluding magnetic-coupled converters, this paper introduces three multilevel voltage source converters: (1) diode-clamp, (2) flying-capacitors, and (3) cascaded inverters with separate dc sources. The operation principle, features, constraints, and potential applications of these converters will be discussed.

Lai, J.S.; Stovall, J.P. [Oak Ridge National Lab., TN (United States); Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

1995-09-01T23:59:59.000Z

303

Productivity Improvement for Fossil Steam Power Plants, 2006  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (EPRI report 1006315), now in its third edition, includes many descriptions of advanced techniques and products successfully applied and tested. Many of these were described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098). Since then, many productivity improvement case studies have been reviewed on the website of the Productivity Improvement User Group. These improvements have b...

2006-12-18T23:59:59.000Z

304

Power electronics system modeling and simulation  

SciTech Connect

This paper introduces control system design based softwares, SIMNON and MATLAB/SIMULINK, for power electronics system simulation. A complete power electronics system typically consists of a rectifier bridge along with its smoothing capacitor, an inverter, and a motor. The system components, featuring discrete or continuous, linear or nonlinear, are modeled in mathematical equations. Inverter control methods,such as pulse-width-modulation and hysteresis current control, are expressed in either computer algorithms or digital circuits. After describing component models and control methods, computer programs are then developed for complete systems simulation. Simulation results are mainly used for studying system performances, such as input and output current harmonics, torque ripples, and speed responses. Key computer programs and simulation results are demonstrated for educational purposes.

Lai, Jih-Sheng

1994-12-31T23:59:59.000Z

305

Control system for wind-powered generators  

DOE Green Energy (OSTI)

In a system of wind-powered generators, a reliable yet inexpensive control system is desirable. Such a system would be completely automatic so it could be left unattended for long periods. It would respond to electrical representations of data such as bearing temperature, vibration, wind velocity, turbine velocity, torque, or any other pertinent data. It would respond by starting or stopping the turbine, controlling the loading, or sounding an alarm. A microprocessor-based controller capable of these functions is described.

Kroth, G.J.

1977-05-01T23:59:59.000Z

306

Pages that link to "Next Generation Power Systems Inc" | Open...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Next Generation Power Systems Inc" Next Generation Power Systems Inc Jump to: navigation,...

307

Changes related to "Next Generation Power Systems Inc" | Open...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Next Generation Power Systems Inc" Next Generation Power Systems Inc Jump to: navigation,...

308

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

309

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

310

FERC Presendation: Demand Response as Power System Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy...

311

Electricity storage for short term power system service (Smart...  

Open Energy Info (EERE)

storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark...

312

Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer...

313

Future Power Systems 20: The Smart Enterprise, its Objective...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise,...

314

New optimization techniques for power system generation scheduling.  

E-Print Network (OSTI)

??Generation scheduling in restructured electric power systems is critical to maintain the stability and security of a power system and economical operation of the electricity… (more)

Sun, Wei

2011-01-01T23:59:59.000Z

315

GWPS Global Wind Power Systems | Open Energy Information  

Open Energy Info (EERE)

GWPS Global Wind Power Systems Jump to: navigation, search Name GWPS (Global Wind Power Systems) Place Hamburg, Germany Zip 20095 Sector Wind energy Product Company specialised in...

316

Systems and methods for an integrated electrical sub-system powered by wind energy  

DOE Patents (OSTI)

Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

2008-06-24T23:59:59.000Z

317

An enhanced load transfer scheme for power distribution systems connected with distributed generation sources  

Science Conference Proceedings (OSTI)

This paper presents an enhanced load transfer scheme for power distribution systems connected with distributed generation sources. Load transfer is an important approach to improve the reliability of power distribution systems. The proposed load transfer ... Keywords: distributed generation source, distribution feeder, distribution system, interconnection, load transfer

Wen-Chih Yang; Wei-Tzer Huang

2011-04-01T23:59:59.000Z

318

INI Power Systems | Open Energy Information  

Open Energy Info (EERE)

INI Power Systems INI Power Systems Jump to: navigation, search Name INI Power Systems Place Cary, North Carolina Zip 27513 Product Direct methanol fuel cells targeted at the portable electronics marketplace. Coordinates 35.78933°, -78.781169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.78933,"lon":-78.781169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Hex Power System | Open Energy Information  

Open Energy Info (EERE)

Hex Power System Hex Power System Jump to: navigation, search Name Hex Power System Place Seoul, Korea (Republic) Zip 152-780 Sector Solar Product Main business in manufacturing solar inverters. Coordinates 37.557121°, 126.977379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.557121,"lon":126.977379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Accelrate Power Systems | Open Energy Information  

Open Energy Info (EERE)

Accelrate Power Systems Accelrate Power Systems Jump to: navigation, search Name Accelrate Power Systems Place Vancouver, British Columbia, Canada Zip V6E 4G1 Product High Speed Battery Charger Technology. Coordinates 49.26044°, -123.114034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.26044,"lon":-123.114034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Radiation beam calorimetric power measurement system  

DOE Patents (OSTI)

A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

1992-01-01T23:59:59.000Z

322

Northern Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Northern Power Systems Inc Northern Power Systems Inc Place Waitsfield, Vermont Zip 5648 Sector Wind energy Product Vermont-based wind energy company that designs, builds, installs and maintains power generation systems. Coordinates 44.184296°, -72.838898° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.184296,"lon":-72.838898,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Modeling Power System Operation with Intermittent Resources  

Science Conference Proceedings (OSTI)

Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

2013-02-27T23:59:59.000Z

324

Improving particle confinement in inertial electrostatic fusion for spacecraft power and propulsion  

E-Print Network (OSTI)

Fusion energy is attractive for use in future spacecraft because of improved fuel energy density and reduced radioactivity compared with fission power. Unfortunately, the most promising means of generating fusion power on ...

Dietrich, Carl, 1977-

2007-01-01T23:59:59.000Z

325

Modeling of power electronics for simulation based analysis of power systems  

Science Conference Proceedings (OSTI)

Given the increased penetration of power electronic converters in power systems it is necessary to study their impact in the system operation. In order to achieve that goal the power converters must be appropriately modeled in simulation or analytical ... Keywords: hierarchy, interconnected power systems, power electronics, stability

S. Rosado; R. Burgos; S. Ahmed; F. Wang; D. Boroyevich

2007-07-01T23:59:59.000Z

326

Improvements in dependability and usability for a substation automation system with redundancy  

Science Conference Proceedings (OSTI)

Substation Automation Systems (SAS) are widely used for the purpose of control, protection, monitoring, communication etc. in substations to improve the reliability of the power supply. SASs adopting IT based solutions such as Ethernet LAN have recently ... Keywords: IEC 61850, SAS, availability, dependability, redundant system, reliability, substation automation system, system architecture

Hachidai Ito; Keiichi Kaneda; Koichi Hamamatsu; Tatsuji Tanaka; Koichi Nara

2008-10-01T23:59:59.000Z

327

Interconnected Power System Dynamics Tutorial: Dynamics of Interconnected Power Systems Tutorial: Second Edition  

Science Conference Proceedings (OSTI)

Thousands of readers in the power system community have benefited from the first edition of this tutorial as a training tool and reference document on power system operation and engineering. This edition substantially revises the earlier tutorial and incorporates many suggestions and requests offered by users.

1998-01-20T23:59:59.000Z

328

Power System Equipment Module Test Project  

DOE Green Energy (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

329

Coal Power Systems strategic multi-year program plans  

SciTech Connect

The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL).

None

2001-02-01T23:59:59.000Z

330

Maximizing efficiency of solar-powered systems by load matching  

Science Conference Proceedings (OSTI)

Solar power is an important source of renewable energy for many low-power systems. Matching the power consumption level with the supply level can make a great difference in the efficiency of power utilization. This paper proposes a source-tracking power ... Keywords: load matching, photovoltaics, power management, power model, solar energy, solar-aware

Dexin Li; Pai H. Chou

2004-08-01T23:59:59.000Z

331

Use of fuel cells for improving on-site emergency power availability and reliability ad nuclear power plants  

E-Print Network (OSTI)

To assure safe shutdown of a nuclear power plant, there must always be reliable means of decay heat removal provided, in last resort, by an Emergency Core Cooling System (ECCS). Currently the majority of nuclear power ...

Akkaynak, Derya

2005-01-01T23:59:59.000Z

332

Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors  

Science Conference Proceedings (OSTI)

Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility and cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.

M. L. Grossbeck J-P.A. Renier Tim Bigelow

2003-09-30T23:59:59.000Z

333

dc-to-ac power converter for fuel cell system  

SciTech Connect

As the interface between fuel cells and the utility line, a self-commutated inverter is preferred to a line-commutated inverter because of its easy controllability. Using the gate turn off (GTO) thyristors, this inverter can have high efficiency and simple circuit configurations. This paper describes the design features and test results of the dc-to-ac power converter, which is principally composed of four-phase transistor chopper and 12-pulse GTO inverter, for a 50kW experimental fuel cell power system. Furthermore, new GTO inverter which improves the circuit efficiency is presented. Special emphasis is placed on a detailed analysis and evaluation of this GTO inverter.

Kawabata, T.; Asaeda, T.; Hamasaki, Y.; Yutani, T.

1983-10-01T23:59:59.000Z

334

Continuing Efforts for Efficiency Improvements in Electronic Power Conversion Devices  

Science Conference Proceedings (OSTI)

Substantial progress has been made by several agencies between 2002 and 2004 in measuring and comparing the efficiencies of single-voltage, AC-to-DC external power supplies. After considering a dataset of measured efficiency values for more than 800 external power supplies, the U.S. EPA’s ENERGY STAR program and the China Center for Energy Conserving Products (CECP) have established joint energy-efficiency specifications and labeling programs for external power supplies. The California Energy ...

2012-12-31T23:59:59.000Z

335

InPower Systems | Open Energy Information  

Open Energy Info (EERE)

InPower Systems InPower Systems Jump to: navigation, search Name InPower Systems Place Carbondale, Colorado Zip 81623 Sector Geothermal energy, Solar Product InPower Systems designs, installs and maintains turn-key solar, solar thermal, geothermal and energy smart systems in homes and businesses in Colorado. Coordinates 41.573959°, -75.501361° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.573959,"lon":-75.501361,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Innovative Power Systems | Open Energy Information  

Open Energy Info (EERE)

Power Systems Power Systems Jump to: navigation, search Logo: Innovative Power Systems Name Innovative Power Systems Address 1413 Hunting Valley Road Place St. Paul, Minnesota Zip 55108 Sector Solar Product solar and wind electric systems Year founded 1991 Phone number 612-623-3246 Website http://www.ips-solar.com/Index Coordinates 44.98387°, -93.204646° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.98387,"lon":-93.204646,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Communication Simulations for Power System Applications  

SciTech Connect

New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

2013-05-29T23:59:59.000Z

338

Applications of superconductivity in electric power systems  

DOE Green Energy (OSTI)

Major applications of superconductivity to power systems are considered. The state of the art of materials and refrigeration developments that are necessary for these applications is reviewed. Specific applications including superconducting cables for power transmission and superconducting magnetics for MHD generators, for energy storage, and for magnetically-confined fusion power generation are discussed in terms of their advantages and the progress being made toward introducing the various devices into real situations. It is concluded that the feasibility of superconducting devices is assured, and that, although their performance, reliability, and cost effectiveness for use in power generation, transmission, and storage remain to be proven, it is reasonable to expect that superconductivity can make it in the real world. (LCL)

Keller, W.E.

1976-01-01T23:59:59.000Z

339

LED lamp power management system and method  

DOE Patents (OSTI)

An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

2013-03-19T23:59:59.000Z

340

Study of a Wind Farm Power System: Preprint  

Science Conference Proceedings (OSTI)

A wind power system differs from a conventional power system. In a conventional power plant, the operator can control the plant's output. The output of a wind farm cannot be controlled because the output fluctuates with the wind. In this paper, we investigate the power-system interaction resulting from power variations at wind farms using steady-state analysis.

Muljadi, E.; Wan, Y.; Butterfield, C. P.; Parsons, B.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Applied Mathematics for Power Systems (AMPS)  

SciTech Connect

Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

Chertkov, Michael [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

342

title Life Cycle Assessment of Electric Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment of Electric Power Systems Life Cycle Assessment of Electric Power Systems journal Annual Review of Environment and Resources volume year month abstract p The application of life cycle assessment LCA to electric power EP technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts While LCA is an evolving methodology with a number of barriers and challenges to its effective use LCA studies to date have clearly improved our understanding of the life cycle energy GHG emissions air pollutant emissions and water use implications of EP technologies With continued progress LCA offers promise for assessing and comparing EP technologies in an analytically thorough and environmentally holistic manner for more robust deployment

343

Improving monitoring, control and protection of power grid using wide area synchro-phasor measurements  

Science Conference Proceedings (OSTI)

When disturbances occur in power grid, monitoring, control and protection systems are required to stop the grid degradation, restore it to a normal state, and hence minimize their effects. However, in wide area power grid resulting from large extension ... Keywords: emergency control and optimization systems, phasor measurement units, power system, wide area protection system

Hamid Bentarzi

2010-05-01T23:59:59.000Z

344

Smart Grid - Transforming Power System Operations  

SciTech Connect

Abstract—Electric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER – generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

Widergren, Steven E.; Kirkham, Harold

2010-04-28T23:59:59.000Z

345

A case study of a system-level approach to power-aware computing  

Science Conference Proceedings (OSTI)

This paper introduces a systematic approach to power awareness in mobile, handheld computers. It describes experimental evaluations of several techniques for improving the energy efficiency of a system, ranging from the network level down to the physical ... Keywords: Power-aware, battery properties, dynamic power management, energy-aware, handheld computers, multihop wireless network

Thomas L. Martin; Daniel P. Siewiorek; Asim Smailagic; Matthew Bosworth; Matthew Ettus; Jolin Warren

2003-08-01T23:59:59.000Z

346

Princeton Plasma Physics Lab - Power systems  

NLE Websites -- All DOE Office Websites (Extended Search)

systems The systems, such as systems The systems, such as fusion power plants, that would generate electricity from fusion. en Celebrating the 20th anniversary of the tritium shot heard around the world http://www.pppl.gov/news/2013/12/celebrating-20th-anniversary-tritium-shot-heard-around-world-2

Tensions rose in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) as the seconds counted down. At stake was the first crucial test of a high-powered mixture of fuel for producing fusion energy. As the control-room clock reached "zero," a flash of light on a closed-circuit television monitor marked a historic achievement:

347

Life-Cycle Assessment of Electric Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Life-Cycle Assessment of Electric Power Systems Life-Cycle Assessment of Electric Power Systems Title Life-Cycle Assessment of Electric Power Systems Publication Type Journal Article Year of Publication 2013 Authors Masanet, Eric R., Yuan Chang, Anand R. Gopal, Peter H. Larsen, William R. Morrow, Roger Sathre, Arman Shehabi, and Pei Zhai Journal Annual Review of Environment and Resources Volume 38 Date Published 2013 Keywords electricity, energy policy, environmental analysis, life-cycle impact, life-cycle inventory Abstract The application of life-cycle assessment (LCA) to electric power (EP) technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts. While LCA is an evolving methodology with a number of barriers and challenges to its effective use, LCA studies to date have clearly improved our understanding of the life-cycle energy, GHG emissions, air pollutant emissions, and water use implications of EP technologies. With continued progress, LCA offers promise for assessing and comparing EP technologies in an analytically-thorough and environmentally-holistic manner for more robust deployment decisions. This article summarizes: (1) major challenges in applying LCA to EP technologies thus far, (2) LCA results to date on the various impacts of EP technologies, and (3) opportunities for improving LCAs as applied to EP technologies moving forward.

348

Improved accounting of emissions from utility energy storage system operation  

Science Conference Proceedings (OSTI)

Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO{sub 2} and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions 'accounting' might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation. 35 refs., 5 figs., 2 tabs.

Paul Denholm; Tracey Holloway [University of Wisconsin-Madison, Madison, WI (United States)

2005-12-01T23:59:59.000Z

349

Integration of Storage Devices into Power Systems  

E-Print Network (OSTI)

Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy Report Project Team George Gross, Project Leader Alejandro Dominguez-Garcia University of Illinois to copy without fee all or part of this publication for internal use if appropriate attribution is given

350

NET SYSTEM POWER: A SMALL SHARE OF  

E-Print Network (OSTI)

in-state generation and electricity imports by fuel type. Each year, the gross-system-power mix it was calculated and allocated to different fuel types and renewable energy technologies. In addition to generating used to generate it. Fuel types include coal, natural gas, nuclear, and other fuels, such as distillate

351

Wind Farm Power System Model Development: Preprint  

DOE Green Energy (OSTI)

In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

Muljadi, E.; Butterfield, C. P.

2004-07-01T23:59:59.000Z

352

Solar-powered environmental data collection system  

DOE Green Energy (OSTI)

A solar-powered system consisting of a multipurpose remote data collector, a radio data link, and a data receiving station has been designed to acquire data from various remote areas at the Savannah River Plant. A prototype system has been built to monitor gamma radiation at the plant perimeter. It is operating satisfactorily and will be installed to monitor gamma radiation or other environmental parameters at many remote locations on the plant.

Randolph, H.W.

1980-02-01T23:59:59.000Z

353

Design of isolated renewable hybrid power systems  

Science Conference Proceedings (OSTI)

Isolated electrical power generating units can be used as an economically viable alternative to electrify remote villages where grid extension is not feasible. One of the options for building isolated power systems is by hybridizing renewable power sources like wind, solar, micro-hydro, etc. along with appropriate energy storage. A method to optimally size and to evaluate the cost of energy produced by a renewable hybrid system is proposed in this paper. The proposed method, which is based on the design space approach, can be used to determine the conditions for which hybridization of the system is cost effective. The simple and novel methodology, proposed in this paper, is based on the principles of process integration. It finds the minimum battery capacity when the availability and ratings of various renewable resources as well as load demand are known. The battery sizing methodology is used to determine the sizing curve and thereby the feasible design space for the entire system. Chance constrained programming approach is used to account for the stochastic nature of the renewable energy resources and to arrive at the design space. The optimal system configuration in the entire design space is selected based on the lowest cost of energy, subject to a specified reliability criterion. The effects of variation of the specified system reliability and the coefficient of correlation between renewable sources on the design space, as well as the optimum configuration are also studied in this paper. The proposed method is demonstrated by designing an isolated power system for an Indian village utilizing wind-solar photovoltaic-battery system. (author)

Sreeraj, E.S.; Chatterjee, Kishore [Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Bandyopadhyay, Santanu [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

2010-07-15T23:59:59.000Z

354

West Oahu Solar Powered LED Lighting System  

Science Conference Proceedings (OSTI)

This report describes the design and construction of a solar powered lighting system on the island of Oahu that uses a new Light Emitting Diode (LED) lamp technology. With oil in limited supply and ever increasing energy costs, the construction of photovoltaic (PV) systems has the potential to reduce Hawaiis dependence on imported fossil fuels and help Hawaiian Electric Company (HECO) to meet Hawaiis Renewable Portfolio Standards (RPS).

2006-03-21T23:59:59.000Z

355

Center for Advanced Power Systems CAPS | Open Energy Information  

Open Energy Info (EERE)

on advanced power system technologies with emphasis on the needs of the future naval ship power systems and electricity supply grid of the US. References Center for Advanced Power...

356

Reliability Assessment of Power Systems with Wind Power Generation.  

E-Print Network (OSTI)

??Wind power generation, the most promising renewable energy, is increasingly attractive to power industry and the whole society and becomes more significant in the portfolio… (more)

Wang, Shu

2008-01-01T23:59:59.000Z

357

NREL: Concentrating Solar Power Research - Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Featured Resource Learn more about NREL's capabilities in modeling and analysis of CSP Systems. NREL and other national laboratories support U.S. Department of Energy (DOE) systems analysis activities to evaluate and validate the cost, performance, durability, and grid penetration impacts for concentrating solar power (CSP) technologies. DOE's systems analysis program focuses on the greatest opportunities for impact, based on estimates of the current and future costs of CSP plants, subsystems, and components. Opportunities and Potential Impact The DOE SunShot Initiative to reduce the installed cost of solar energy systems by 75% by the end of the decade will require low-cost configurations that are easy to integrate into the electric grid. Systems

358

Enhanced Power Grid Efficiency through Improved Phasor Measurement ...  

Patent Information U. S. provisional patent pending Foreign rights available ... The smart grid market is projected to reach $9.6 billion by 2015, and improved

359

Energy storage for hybrid remote power systems  

DOE Green Energy (OSTI)

Energy storage can be a cost-effective component of hybrid remote power systems. Storage serves the special role of taking advantage of intermittent renewable power sources. Traditionally this role has been played by lead-acid batteries, which have high life-cycle costs and pose special disposal problems. Hydrogen or zinc-air storage technologies can reduce life-cycle costs and environmental impacts. Using projected data for advanced energy storage technologies, LLNL ran an optimization for a hypothetical Arctic community with a reasonable wind resource (average wind speed 8 m/s). These simulations showed the life-cycle annualized cost of the total energy system (electric plus space heating) might be reduced by nearly 40% simply by adding wind power to the diesel system. An additional 20 to 40% of the wind-diesel cost might be saved by adding hydrogen storage or zinc-air fuel cells to the system. Hydrogen produced by electrolysis of water using intermittent, renewable power provides inexpensive long-term energy storage. Conversion back to electricity with fuel cells can be accomplished with available technology. The advantages of a hydrogen electrolysis/fuel cell system include low life-cycle costs for long term storage, no emissions of concern, quiet operation, high reliability with low maintenance, and flexibility to use hydrogen as a direct fuel (heating, transportation). Disadvantages include high capital costs, relatively low electrical turn-around efficiency, and lack of operating experience in utility settings. Zinc-air fuel cells can lower capital and life-cycle costs compared to hydrogen, with most of the same advantages. Like hydrogen systems, zinc-air technology promises a closed system for long-term storage of energy from intermittent sources. The turn around efficiency is expected to exceed 60%, while use of waste heat can potentially increase overall energy efficiency to over 80%.

Isherwood, W., LLNL

1998-03-01T23:59:59.000Z

360

Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)  

SciTech Connect

This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

Hodge, B. M.; Ela, E.; Milligan, M.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Balanced Decomposition for Power System Simulation on Parallel Computers  

E-Print Network (OSTI)

Balanced Decomposition for Power System Simulation on Parallel Computers Felipe Morales, Hugh parallelization strategy is tested in a Parsytec computer incorpo- rating two PowerXplorer systems, each one System. 1 Introduction Power system analysis is intensive in computational terms 1 . In fact, the power

Rudnick, Hugh

362

Incorporating HVDC's into monitoring and power system analysis  

E-Print Network (OSTI)

This thesis attempts to study the effect of incorporating HVDC's into monitoring and power system analysis. Power system analysis, including load flow and stability studies, and monitoring defines a complete cycle of the impact of HVDC in a power system network. Load flow calculates the bus voltage magnitude, phase angle, active and reactive power flows based on loads and generations that are already specified. In this regard, our work presents a better way of solving AC - DC load flow equations. In our work, the active and reactive power consumptions of the HVDC link are treated as a function of AC bus voltages and some specified DC parameters. It is then easier to combine the DC part with the AC system. Traditional methods in this regard may encounter convergence problems. We expect that the method used in our work does not encounter convergence problems and is easier to implement. Whereas load flow gives us the solution for bus voltage magnitudes and angles based on certain specified loads and generations, state estimation obtains an estimate of the bus voltage magnitudes and angles based on actual measurements. A state estimator also checks consistency of instrumentation data. In our work with the state estimation, we have presented a new method to design the measurement set of an AC - DC system and explained the choice of the state variables used. The state variables and the measurement set chosen are then used to estimate the state of an AC - DC system. To complete the cycle of the effects of inclusion of a HVDC line in an AC system, we study the impact of HVDC on power system stability in the case of a fault. It should be noted that the power flow through a HVDC link is highly controllable. Accordingly, we can expect the HVDC to improve system stability if it is controlled intelligently. However, if the control measure is not properly designed, HVDC can be detrimental to the system stability. A case has been studied where the HVDC tends to make the system unstable if the setting of the line is not changed during and after a fault. We then propose a control mechanism to strengthen the system stability. Two types of controllers, namely proportional control and proportional - integral control have been studied and compared. Also we have shown their effects on the system stability.

Krishnaswamy, Vikram

2002-01-01T23:59:59.000Z

363

Vehicle System Impacts of Fuel Cell System Power Response Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

- 01 - 1959 - 01 - 1959 Vehicle System Impacts of Fuel Cell System Power Response Capability Tony Markel and Keith Wipke National Renewable Energy Laboratory Doug Nelson Virginia Polytechnic University and State Institute Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7

364

Filter system cost comparison for IGCC and PFBC power systems  

SciTech Connect

A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

Dennis, R.A.; McDaniel, H.M.; Buchanan, T. [and others

1995-12-01T23:59:59.000Z

365

Remote-Controllable Power Outlet System for Home Power Management  

Science Conference Proceedings (OSTI)

In this paper we describe the Wireless Power-Controlled Outlet Module (WPCOM) with a scalable mechanism for home power management which we have developed. The WPCOM integrates the multiple AC power sockets and a simple low-power microcontroller into ...

Chia-Hung Lien; Ying-Wen Bai; Ming-Bo Lin

2007-11-01T23:59:59.000Z

366

Solid Oxide Fuel Cell Power Generation Systems  

Science Conference Proceedings (OSTI)

An increasing worldwide demand for premium power, emerging trend towards electric utility deregulation and distributed power generation, global environmental concerns and regulatory controls have accelerated the development of advanced fuel cell based power generation systems. Fuel cells convert chemical energy to electrical energy through electrochemical oxidation of gaseous and/or liquid fuels ranging from hydrogen to hydrocarbons. Electrochemical oxidation of fuels prevents the formation of Nox, while the higher efficiency of the systems reduces carbon dioxide emissions (kg/kWh). Among various fuel cell power generation systems currently being developed for stationary and mobile applications, solid oxide fuel cells (SOFC) offer higher efficiency (up to 80% overall efficiency in hybrid configurations), fuel flexibility, tolerance to CO poisoning, modularity, and use of non-noble construction materials of low strategic value. Tubular, planar, and monolithic cell and stack configurations are currently being developed for stationary and military applications. The current generation of fuel cells uses doped zirconia electrolyte, nickel cermet anode, doped Perovskite cathode electrodes and predominantly ceramic interconnection materials. Fuel cells and cell stacks operate in a temperature range of 800-1000 *C. Low cost ($400/kWe), modular (3-10kWe) SOFC technology development approach of the Solid State Energy Conversion Alliance (SECA) initiative of the USDOE will be presented and discussed. SOFC technology will be reviewed and future technology development needs will be addressed.

Singh, Prabhakar; Pederson, Larry R.; Simner, Steve P.; Stevenson, Jeffry W.; Viswanathan, Vish V.

2001-05-12T23:59:59.000Z

367

Solar-powered turbocompressor heat pump system  

DOE Patents (OSTI)

The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

1982-08-12T23:59:59.000Z

368

Use of a Power Fluidic Low Level Mixer to Improve the Efficacy ...  

Remote operation. Power Fluidics . TM. 11. Typical System Configurations. Charge Vessel adjacent to or inside tank ... Leak Detection & Handling . ...

369

Ballard Power Systems | Open Energy Information  

Open Energy Info (EERE)

Ballard Power Systems Ballard Power Systems Address Two Industrial Avenue Place Lowell, Massachusetts Zip 01851 Sector Hydrogen Product Designs and manufactures fuel cell systems Website http://www.ballard.com/ Coordinates 42.6148469°, -71.3226869° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6148469,"lon":-71.3226869,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Tri Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Logo: Tri Power Systems Inc Name Tri Power Systems Inc Address P.O. Box 1450 Place Idaho Springs, Colorado Zip 80452 Sector Solar Product Design and installation of solar and wind systems for residential and small business Website http://www.tripowersystems.com Coordinates 39.6904464°, -105.6412527° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6904464,"lon":-105.6412527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

The industrial sector consumes the largest share of the world's energy. The pulp and paper industry is one of the five most energy-intensive industries in the world. Therefore, optimum energy efficiency plays a pivotal role in the profitability of this sector. Also, energy cost accounts for a significant share in production cost in pulp and paper industries. This paper highlights the findings of a study done on the steam system of a paper mill (covering steam generation, steam distribution and steam usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper-making process at various pressure levels. This New England paper mill spends approximately $1.9 million every year on its steam system. The study identified an opportunity to save the plant steam costs in the amount of 12%. Among the identified saving measures, there are some measures that can be done through better maintenance and improvement of operating conditions. The average payback period to implement the identified saving measures is 12 months. In addition to this, upon the implementation of the proposed measures, the paper mill can reduce its carbon emissions in the amount of 500 tons per year and thus, can help save the environment as well.

Leigh, N.; Venkatesan, V. V.

1999-05-01T23:59:59.000Z

372

Power system identification toolbox: Phase two progress  

Science Conference Proceedings (OSTI)

This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

Trudnowski, D.J.

1994-08-01T23:59:59.000Z

373

Enhanced IGCC regulatory control and coordinated plant-wide control strategies for improving power ramp rates  

SciTech Connect

As part of ongoing R&D activities at the National Energy Technology Laboratory’s (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

Mahapatra, P.; Zitney, S.

2012-01-01T23:59:59.000Z

374

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers  

E-Print Network (OSTI)

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power.8% 99% 91.5% 84% Battery Configuration StudyBattery Configuration Study Goal: Improve the overall

Simunic, Tajana

375

Improved taguchi method based contracted capacity optimization for power consumer with self-owned generating units  

Science Conference Proceedings (OSTI)

The paper proposes an improved Taguchi method to determine the best capacity contracts and dispatch the power output of the self-owned generating units from almost infinite combinations. To be achieved are savings of total power expenses of the consumers ... Keywords: capacity contracts, improved Taguchi method, self-owned generating units

Hong-Tzer Yang; Pai-Chun Peng; Chung-His Huang

2007-05-01T23:59:59.000Z

376

Nuclear power systems for Lunar and Mars exploration  

SciTech Connect

Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

Sovie, R.J.; Bozek, J.M.

1994-09-01T23:59:59.000Z

377

HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program  

SciTech Connect

Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

1991-12-31T23:59:59.000Z

378

System aspects of a Space Nuclear Reactor Power System  

Science Conference Proceedings (OSTI)

Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

1988-01-01T23:59:59.000Z

379

STATUS OF THE NIF POWER CONDITIONING SYSTEM  

DOE Green Energy (OSTI)

The NIF Power Conditioning System provides the pulsed excitation required to drive flashlamps in the laser's optical amplifiers. Modular in design, each of the 192 Main Energy Storage Modules (MESMs) storage up to 2.2 MJ of electrical energy in its capacitor bank before delivering the energy to 20 pairs of flashlamps in a 400 {micro}s pulse (10% power points). The peak current of each MESM discharge is 0.5 MA. Production, installation, commissioning and operation of the NIF Power Conditioning continue to progress rapidly, with the goals of completing accelerated production in late 2007 and finishing commissioning by early 2008, all the while maintaining an aggressive operations schedule. To date, more than 80% of the required modules have been assembled, shipped and installed in the facility, representing more that 240 MJ of stored energy available for driving NIF flashlamps. The MESMs have displayed outstanding reliability during daily, multiple-shift operations.

Arnold, P; Hulsey, S; Ullery, G; Petersen, D; Pendleton, D; Ollis, C; Newton, M

2007-07-26T23:59:59.000Z

380

Power System Monitoring Using Petri Net Embeddings  

E-Print Network (OSTI)

A failure in a power transmission line causes a number of circuit breakers to activate in an eort to isolate the failure and prevent it from corrupting the rest of the power system. Based on information from these physically distributed protective devices, a central controller needs to quickly identify and locate the failure. The task becomes challenging due to the complexity of modern power transmission networks and due to the possibility of multiple sensor failures or incorrect operation of protective devices. In this paper we investigate a solution to this problem using Petri net models. Our approach is attractive because it allows concurrent/incremental processing of the information that arrives at the controller and because it requires only simple calculations (linear checks) during execution time. Most reasoning is implicitly performed at design time, which gives our method an important edge for real-time monitoring. Furthermore, these same techniques can potentially handle mult...

C. N. Hadjicostis; G. C. Verghese

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dual power, constant speed electric motor system  

DOE Patents (OSTI)

A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

Kirschbaum, Herbert S. (Asheville, NC)

1984-01-01T23:59:59.000Z

382

Dual power, constant speed electric motor system  

DOE Patents (OSTI)

A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

Kirschbaum, H.S.

1984-07-31T23:59:59.000Z

383

Test report : Princeton power systems prototype energy storage system.  

SciTech Connect

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

384

Exploring performance, power, and temperature characteristics of 3D systems with on-chip DRAM  

Science Conference Proceedings (OSTI)

3D integration enables stacking DRAM layers on processor cores within the same chip. On-chip memory has the potential to dramatically improve performance due to lower memory access latency and higher bandwidth. Higher core performance increases power ... Keywords: embedded systems, power characteristics, temperature characteristics, 3D systems, on-chip DRAM, 3D integration, on-chip memory

Jie Meng; Daniel Rossell; Ayse K. Coskun

2011-07-01T23:59:59.000Z

385

Damping of low frequency oscillations in power system network using swarm intelligence tuned fuzzy controller  

Science Conference Proceedings (OSTI)

In this paper, a particle swarm intelligent optimisation based optimal fuzzy scheme has been developed to design intelligent adaptive controllers for improving the dynamic and transient stability performance of multimachine power system. This concept ... Keywords: PSO, PSS, adaptive control, dynamic stability, fuzzy control, intelligent control, low frequency oscillations, neural networks, neuro-fuzzy logic, particle swarm optimisation, power system stabiliser

N. Albert Singh; K. A. Muraleedharan; K. Gomathy

2010-12-01T23:59:59.000Z

386

ERC product improvement activities for direct fuel cell power plants  

DOE Green Energy (OSTI)

This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

Maru, H.C.; Farooque, M.; Bentley, C. [and others

1995-12-01T23:59:59.000Z

387

Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint  

DOE Green Energy (OSTI)

The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

Ma, Z.; Turchi, C. S.

2011-03-01T23:59:59.000Z

388

Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems  

SciTech Connect

A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2008-09-30T23:59:59.000Z

389

Proton Power Systems Plc | Open Energy Information  

Open Energy Info (EERE)

Proton Power Systems Plc Proton Power Systems Plc Jump to: navigation, search Name Proton Power Systems Plc Place Starnberg, Bavaria, Germany Zip D-82319 Sector Hydro, Hydrogen Product UK-based parent company of Proton Motor GmbH, which operates in Germany. The Company is engaged in developing hydrogen fuel cells and fuel cell hybrid systems. Coordinates 47.99959°, 11.342172° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.99959,"lon":11.342172,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Independent System Operators and Biomass Power  

DOE Green Energy (OSTI)

Since the Federal Energy Regulatory Commission issued its landmark open access transmission rule in 1996, the idea of creating and establishing independent system operators (ISOs) has gained momentum. ISOs may help combine individual utility transmission systems into more regional transmission networks, which ultimately will allow biomass companies to transmit power over longer distances while paying a single transmission rate. To the extent that ISOs are combined or operated with power exchanges, however, biomass companies will likely face even more competitive market pressures. Few operators have experience with ISOs and power exchanges, but preliminary results show that short-term electricity market prices are probably too low for most biomass companies to compete against. Without policy measures, biomass companies may have to pursue strategic opportunities with short-term, spot-market sales; direct bilateral sales to customers; alternative power exchanges; and perhaps a ''green'' pow er market and sales to ancillary service markets. In addition, prices will likely be more volatile in a restructured market so biomass generators should be selling during those times.

Porter, K. L.

1999-03-25T23:59:59.000Z

391

The IMET (Improved Meteorology) Ship and Buoy Systems  

Science Conference Proceedings (OSTI)

The recently developed IMET (improved meteorology) system for ships and buoys and the key elements of the program that led to its development are described. The system improves the ability to measure mean meteorological variables, including wind ...

David S. Hosom; Robert A. Weller; Richard E. Payne; Kenneth E. Prada

1995-06-01T23:59:59.000Z

392

Engineering Guide for Integration of Distributed Generation and Storage into Power Distribution Systems  

Science Conference Proceedings (OSTI)

Distributed resources (DR) hold great promise for improving the efficiency and reliability of electric power systems. The work described in this report focuses on distributed generation and storage, a subset of the larger family of DR technologies.

2000-12-11T23:59:59.000Z

393

Load Sharing in a Hybrid Power System with a PV Panel and a PEM Fuel-Cell  

E-Print Network (OSTI)

varies with the time of the day. In order to improve the reliability of PV energy and at the same timeLoad Sharing in a Hybrid Power System with a PV Panel and a PEM Fuel-Cell Dachuan Yu S. Yuvarajan power system with PV panels and a PEM fuel cell is described. The system draws the maximum power

Yuvarajan, Subbaraya

394

NETL: Coal & Power Systems - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Systems & Power Systems RD&D Clean Coal Program Vision An energy-secure United States that can tap the full potential of all its energy resources, including coal. Mission Ensure the availability of ultra-clean (near-zero emissions), abundant, low cost domestic energy from coal to fuel economic prosperity, strengthen energy security, and enhance environmental quality. NETL manages an RD&D portfolio that is designed to remove environmental concerns over the future use of coal by developing revolutionary, near-zero-emissions coal technology. In partnership with the private sector, technology developments are focused on maximizing efficiency and environmental performance while driving down the cost for these new technologies. RD&D efforts focus on near-term developments to enhance the capabilities of

395

Advanced fenestration systems for improved daylight performance  

E-Print Network (OSTI)

system efficacy of a daylighting system will vary with theupon the specifics of daylighting system. Skylighted systemsabove, we believe that daylighting systems continue to have

Selkowitz, S.; Lee, E.S.

1998-01-01T23:59:59.000Z

396

Modelling and stability analysis of aircraft power systems.  

E-Print Network (OSTI)

??The more-electric aircraft concept is a major trend in aircraft electrical power system engineering and results in an increase in electrical loads based on power… (more)

Areerak, Kongpan

2009-01-01T23:59:59.000Z

397

Comments by the American Electric Power System on Proposed Coordinatio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments by the American Electric Power System on Proposed Coordination of Federal Authorizations for Electric Transmission Facilities Comments by the American Electric Power...

398

Dish/Engine Systems for Concentrating Solar Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DishEngine Systems for Concentrating Solar Power DishEngine Systems for Concentrating Solar Power August 20, 2013 - 5:02pm Addthis The dishengine system is a concentrating solar...

399

Rough neural fault classification for hvdc power systems  

Science Conference Proceedings (OSTI)

This Ph.D. thesis proposes an approach to classify faults that commonly occur in a High Voltage Direct Current (HVDC) power system. These faults are distributed throughout the entire HVDC system. The most recently published techniques for power system ...

Liting Han

2008-01-01T23:59:59.000Z

400

Power Systems Development Facility progress report  

Science Conference Proceedings (OSTI)

This is a report on the progress in design and construction of the Power Systems Development Facility. The topics of the report include background information, descriptions of the advanced gasifier, advanced PFBC, particulate control devices, and fuel cell. The major activities during the past year have been the final stages of design, procurement of major equipment and bulk items, construction of the facility, and the preparation for the operation of the Facility in late 1995.

Rush, R.E.; Hendrix, H.L.; Moore, D.L.; Pinkston, T.E.; Vimalchand, P.; Wheeldon, J.M.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Power Systems Development Facility: Test Results 2007  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) established the Power Systems Development Facility (PSDF) to fulfill two major objectives. The first was to develop a gasifier able to process low-rank fuels more efficiently and cost-effectively than currently available designs. This work resulted in the Transport Gasifier for which two commercial projects have been announced. The second objective was to develop high-temperature, high-pressure (HTHP) filtration to facilitate high-temperature syngas cleanup and, thereb...

2007-12-19T23:59:59.000Z

402

Transfer function identification in power system applications  

Science Conference Proceedings (OSTI)

This paper presents an introduction to concepts and applications of transfer function identification in power systems. The paper begins with a brief introduction to transfer function identification methods using least-squares approaches and then discusses applications which include SVC's, model validation applications, and software validation. A comparison is also made between eigenvalues obtained from transfer function identification and small signal analysis. Methods for testing the validity of identified transfer functions are also discussed.

Smith, J.R.; Fatehi, F.; Woods, C.S. (Montana State Univ., Bozeman, MT (United States)); Hauer, J.F. (Bonneville Power Administration, Portland, OR (United States)); Trudnowski, D.J. (Battelle Pacific Northwest Labs., Richland, WA (United States))

1993-08-01T23:59:59.000Z

403

Quality assurance program for isotopic power systems  

DOE Green Energy (OSTI)

This report summarizes the Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators. The program has been implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described in the report and examples of program decumentation are presented.

Hannigan, R.L.; Harnar, R.R.

1982-12-01T23:59:59.000Z

404

Power Systems Development Facility: Test Results 2008  

Science Conference Proceedings (OSTI)

The United States Department of Energy (US DOE) established the Power Systems Development Facility (PSDF) to fulfill two major objectives. The first was to develop a gasifier able to process low-rank fuels more efficiently and cost-effectively than currently available designs. This work resulted in the Transport Gasifier for which two commercial projects have been announced. The second objective was to develop high-temperature, high-pressure (HTHP) filtration to facilitate high-temperature syngas cleanup...

2008-12-23T23:59:59.000Z

405

Energy Basics: Power Tower Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

406

SunPower Corporation Systems formerly PowerLight | Open Energy Information  

Open Energy Info (EERE)

Corporation Systems formerly PowerLight Corporation Systems formerly PowerLight Jump to: navigation, search Name SunPower Corporation, Systems (formerly PowerLight) Place Berkeley, California Zip 94702 Sector Efficiency, Services, Solar Product US-based designer, manufacturer and installer of grid-connected solar electric systems and energy efficiency services, including solar tracking devices, in the US. References SunPower Corporation, Systems (formerly PowerLight)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SunPower Corporation, Systems (formerly PowerLight) is a company located in Berkeley, California . References ↑ "SunPower Corporation, Systems (formerly PowerLight)" Retrieved from

407

VirtualPower: Coordinated Power Management in Virtualized Enterprise Systems  

E-Print Network (OSTI)

are nor- malized by the rate that requires the highest (i.e., 3.2GHz) power state on our Pentium 4 machine of the hardware power states for which their policies are de- signed. The resulting technical challenge is to appropri- ately map VM-level updates made to soft power states to actual changes in the states

Yang, Junfeng

408

Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor  

Science Conference Proceedings (OSTI)

The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed.

Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

1993-11-01T23:59:59.000Z

409

Wind to Power Systems | Open Energy Information  

Open Energy Info (EERE)

Wind to Power Systems Wind to Power Systems Place Madrid, Spain Zip 28108 Sector Wind energy Product Wind to Power Systems designs, supplies and installs a device designed for use in wind turbines to provide fault ride-through capability, enabling wind turbines to maintain grid connection during periods of transmission line faults and voltage dips. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Proe Power Systems | Open Energy Information  

Open Energy Info (EERE)

Proe Power Systems Proe Power Systems Jump to: navigation, search Name Proe Power Systems Address 5072 Morning Song Dr Place Medina, Ohio Zip 44256-6747 Sector Biofuels, Biomass, Carbon, Renewable Energy Product Research and development;Retail product sales and distribution Phone number 800-315-0084 Website http://www.proepowersystems.co Coordinates 41.18062°, -81.8691039° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.18062,"lon":-81.8691039,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

IPS- Industrial Power Systems | Open Energy Information  

Open Energy Info (EERE)

IPS- Industrial Power Systems IPS- Industrial Power Systems Jump to: navigation, search Name IPS- Industrial Power Systems Address 1650 Indianwood Circle Place Maumee, Ohio Zip 43537 Sector Biofuels, Biomass, Buildings, Carbon, Efficiency, Hydro, Solar, Vehicles, Wind energy Product Engineering/architectural/design;Installation; Maintenance and repair; Other:Construction Phone number 419-531-3121 Website http://www.IPSContractor.com Coordinates 41.5867081°, -83.6797736° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5867081,"lon":-83.6797736,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

MSE Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

MSE Power Systems Inc MSE Power Systems Inc Jump to: navigation, search Name MSE Power Systems Inc Place Albany, New York Zip NY 12205 Sector Services Product Albany-based privately held company active in engineering, procurement, construction management, commissioning and testing services. The firm offers these services to clean energy projects. Coordinates 42.707237°, -89.436378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.707237,"lon":-89.436378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Evaluation of pulse power devices in electric vehicle propulsion systems  

DOE Green Energy (OSTI)

The application of pulse power devices in electric vehicle propulsion systems to load level the main energy storage battery has been studied. Both high energy density capacitors (ultracapacitors) and high power density, bipolar batteries are considered. Computer simulations of vehicle operation with hybrid (two power source) powertrains indicated the energy storage capacities of the pulse power devices required to load level the main battery are 300 to 500 Wh for the capacitors and 5 to 10 Ah for the bipolar batteries can be reduced from 79 W/kg to about 40 W/kg depending on the vehicle gradeability (speed, percent grade, and length of grade) desired. Evaluation of the status of the technology for the pulse power devices indicated that for both devices, improvements in technology are needed before the devices can be used in EV applications. In the case of the ultracapacitor, the energy density of present devices are 1 to 2 Wh/kg. A minimum energy density of about 5 Wh/kg is needed for electric vehicle applications. Progress in increasing the energy density of ultracapacitors has been rapid in recent years and the prospects for meeting the 5 Wh/kg requirement for EVs appear to be good. For bipolar batteries, a minimum power density of 500 W/kg is needed and the internal resistance must be reduced by about a factor of ten from that found in present designs.

Burke, A.F. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Dowgiallo, E.J. (USDOE, Washington, DC (USA))

1990-01-01T23:59:59.000Z

414

Novel Power Cycle for Combined-Cycle Systems and Utility Power Plants  

E-Print Network (OSTI)

The description of a new power cycle, based on the use of a multicomponent working fluid, was published earlier. A thermodynamic analysis of this cycle has demonstrated its superiority over the currently used Rankine Cycle, and a distribution of losses in the subsystems of this cycle has been established. A new, improved variant of the cycle, which provides 10% efficiency improvement over the initial variant, has been developed. The new variant employs a cooling of the working fluid between turbine stages and a recuperation of the released heat for supplementation of the boiler heat supply. Analysis shows that with this new, improved cycle efficiencies of up to 52% for a combined-cycle system employing standard turbines, and of up to 55% when modern high-temperature gas turbines are employed, can be achieved. The same cycle can be utilized to retrofit existing direct-fired power plants, providing an efficiency of up to 42%. The possible implications off such a cycle implementation are briefly discussed. The Electric Power Research Institute (EPRI) is now conducting a study of this cycle.

Kalina, A. L.

1986-06-01T23:59:59.000Z

415

Specification for Brayton Isotope Power System (BIPS) electrical output power characteristics  

SciTech Connect

The specification defines the Brayton Isotope Power System (BIPS) standards and characteristics for electrical power generation required to be maintained at utilizing equipments power-input terminals during generation and distribution.

Post, P

1976-06-20T23:59:59.000Z

416

MAximum Multicore POwer (MAMPO): an automatic multithreaded synthetic power virus generation framework for multicore systems  

Science Conference Proceedings (OSTI)

The practically attainable worst case power consumption for a computer system is a significant design parameter and it is a very tedious process to determine it by manually writing high power consuming code snippets called power viruses. Previous research ...

Karthik Ganesan; Lizy K. John

2011-11-01T23:59:59.000Z

417

Weld Overlay Material Options for Power Systems  

Science Conference Proceedings (OSTI)

The primary applications are for coal fired power plants, but nuclear power .... for Extending Plant Lives in Power Generation, Refinery & Petrochemical, and ...

418

Catalog of DC Appliances and Power Systems  

E-Print Network (OSTI)

Audio with Standby/Low Power Mode VCRs with Standby/Low Power Mode ..conversion efficiency for computers with standby/low power

Garbesi, Karina

2012-01-01T23:59:59.000Z

419

IMPROVEMENTS IN OR RELATING TO STEAM-OPERATED POWER PLANT  

SciTech Connect

A nuclear power plant is designed in which the reactor is steam-cooled and radioactivity is removed from the steam before entering the turbine. The plant has a steam circuit in which the steam from the reactor is passed through one flow path of a heat exchanger and then part of this steam is passed through contact washing equipment before being reheated in a second flow path of the heat exchanger and being led to the turbine. (D.L.C.)

Bauer, S.G.; Kendon, M.H.

1962-09-19T23:59:59.000Z

420

System Definition and Analysis: Power Plant Design and Layout  

SciTech Connect

This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

System-level max power (SYMPO): a systematic approach for escalating system-level power consumption using synthetic benchmarks  

Science Conference Proceedings (OSTI)

To effectively design a computer system for the worst case power consumption scenario, system architects often use hand-crafted maximum power consuming benchmarks at the assembly language level. These stressmarks, also called power viruses, are very ... Keywords: synthetic benchmark, system-level power virus, thermal design point

Karthik Ganesan; Jungho Jo; W. Lloyd Bircher; Dimitris Kaseridis; Zhibin Yu; Lizy K. John

2010-09-01T23:59:59.000Z

422

Analysis and design of high frequency link power conversion systems for fuel cell power conditioning  

E-Print Network (OSTI)

In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a new soft switching technique for the phase-shift controlled bi-directional dc-dc converter. The described dc-dc converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. The proposed new soft switching technique guarantees soft switching over wide range from no load to full load without any additional circuit components. The load range for proposed soft switching technique is analyzed by mathematical approach with equivalent circuits and verified by experiments. The second study describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from the fuel cell is proposed, and a new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented. The performance of the proposed scheme is verified by the various simulations and experiments, and their trade-offs are described in detail using mathematical evaluation approach. The third study proposes a current-fed high frequency link direct dc-ac converter suitable for residential fuel cell power systems. The high frequency full-bridge inverter at the primary generates sinusoidally PWM modulated current pulses with zero current switching (ZCS), and the cycloconverter at the secondary which consists of only two bidirectional switches and output filter capacitors produces sinusoidally modulated 60Hz split single phase output voltage waveforms with near zero current switching. The active harmonic filter connected to the input terminal compensates the low order input current harmonics drawn from the fuel cell without long-term energy storage devices such as batteries and super capacitors.

Song, Yu Jin

2004-08-01T23:59:59.000Z

423

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

424

WIND ENERGY POWER CONVERSION SYSTEM REDUCING GEARBOX STRESS ...  

A wind energy power conversion system includes a gearbox, a generator, an AC to DC power converter, a DC link, and a DC to AC power converter, and at least one ...

425

Excise Tax Exemption for Solar- or Wind-Powered Systems  

Energy.gov (U.S. Department of Energy (DOE))

Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

426

Advanced fenestration systems for improved daylight performance  

E-Print Network (OSTI)

S.E. Selkowitz. “Advanced Optical Daylighting Systems: LightAdvanced Fenestration Systems Based on the analysis presented above, we believe that daylighting systems

Selkowitz, S.; Lee, E.S.

1998-01-01T23:59:59.000Z

427

The Power Systems Development Facility -- Current status  

Science Conference Proceedings (OSTI)

Southern Company Services, Inc. (SCS) has entered into a cooperative agreement with the US Department of Energy (DOE) to build and operate the Power Systems Development Facility (PSDF), currently under construction in Wilsonville, Alabama, 40 miles southeast of Birmingham. The objectives of the PSDF are to develop advanced coal-fired power generation technologies through testing and evaluation of hot gas cleanup systems and other major components at the pilot scale. The performance of components will be assessed and demonstrated in an integrated mode of operation and at a component size readily scaleable to commercial systems. The facility will initially contain five modules: (1) a transport reactor gasifier and combustor, (2) an advanced pressurized fluidized-bed combustion (APFBC) system, (3) a particulate control module, (4) an advanced burner-gas turbine module, and (5) a fuel cell. The five modules will initially be configured into two separate test trains, the transport reactor train (2 tons/hour of coal feed) and the APFBC train (3 tons/hour of coal feed). In addition to a project description, the project design and construction status, preparations for operations, and project test plans are reported in this paper.

Pinkston, T.E.; Maxwell, J.D.; Leonard, R.F.; Vimalchand, P.

1995-11-01T23:59:59.000Z

428

Improved Solar Power Plant Efficiency: Low Cost Vaccine ...  

Background Photovoltaic (PV) systems are of great interest to the efforts of sustainable energy. Solar irradiance is a measure of the sun’s ...

429

Georgia Interfaith Power and Light - Energy Improvement Grants...  

Open Energy Info (EERE)

MeasuresWhole Building, CustomOthers pending approval, Doors, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Furnaces, Heat pumps,...

430

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

431

Power Systems Life Cycle Analysis Tool (Power L-CAT).  

SciTech Connect

The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

Andruski, Joel; Drennen, Thomas E.

2011-01-01T23:59:59.000Z

432

Building Technologies Office: System Performance Improvements  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvements, were presented in the following sessions: Air Sealing Ventilation (Day 1) Space Conditioning Distribution Foundation Insulation High-R Enclosures Ventilation (Day...

433

Low-Power Design for Real-Time Systems  

Science Conference Proceedings (OSTI)

Real-time Systems often are located in the special environments where the power consumption is a big concern. Upon presence of timing constraints, the low power design on the real-time systems has significant impact on the performance as well as the ... Keywords: embedded system, instruction set, low power design, real time operating system, real time scheduling

Sheng-Tzong Cheng; Chia-Mei Chen; Jing-Wen Hwang

1998-09-01T23:59:59.000Z

434

An intelligent power system stabilizer based hybrid fuzzy learning algorithm  

Science Conference Proceedings (OSTI)

This work aims to develop two adaptive fuzzy control techniques applied on excitation control system for turbo- Alternators, to simulate an Automatic Voltage Regulator and Power Systems Stabilizer (AVR-PSS) in transient stability power system analysis: ... Keywords: ANFIS, AVR - PSS, PID control, fuzzy controller, hybrid learning algorithm, power system stability and robustness, turbo-alternators and excitation

Abdellatif Naceri; Ahmed Massoum; Mohamed Abid

2011-09-01T23:59:59.000Z

435

Multi-Area Power System Reliability and Production Costing  

Science Conference Proceedings (OSTI)

Multi-area power system operation can reduce costs without jeopardizing service reliability, but the interconnection of systems requires new means for estimating costs and reliability. This report describes methods for evaluating production costs and power system reliability in multi-area power systems.

1990-08-28T23:59:59.000Z

436

Fuel Cell/Turbine Ultra High Efficiency Power System  

DOE Green Energy (OSTI)

FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

Hossein, Ghezel-Ayagh

2001-11-06T23:59:59.000Z

437

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

438

Fuzzy system approach to power purchases in a power pool of a deregulated power system  

Science Conference Proceedings (OSTI)

Fuzzy Logic is known for its applicability in modelling uncertainty and has been applied extensively to model various types of uncertainty in engineering sector. The main objective of this paper is to present a fuzzy approach to power purchases in a ...

Ajoy Kumar Chakraborty; Tulika Bhattacharjee

2012-07-01T23:59:59.000Z

439

Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program  

Science Conference Proceedings (OSTI)

A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

1993-01-01T23:59:59.000Z

440

Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series  

Wind Powering America (EERE)

Powering America Fact Sheet Series Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(tm) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document. The local power cooperative or utility should be an integral part of

Note: This page contains sample records for the topic "improved power system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Study on Relay Protection Coordination in Complex Auxiliary Power System  

Science Conference Proceedings (OSTI)

In many large-scale power plants, the structure of its auxiliary power system are complex, and the coordination of its relay protections is difficult. The Three Gorges Hydropower Plant is the largest installed capacity of power plants with complex auxiliary ... Keywords: auxiliary power system, relay protection, coordination

Yawen Yi; Jun Xie; Na Yi

2010-06-01T23:59:59.000Z

442

Event-Driven Power Management of Portable Systems  

E-Print Network (OSTI)

in modeling real- life systems where transition times between power states are not geometrically distributed. State transitions are controlled by commands issued by a power manager (PM) that observes the workload of the system and decides the when and how to force power state transitions. We call power management policy

Simunic, Tajana

443

Reliability assessment of autonomous power systems incorporating HVDC interconnection links  

SciTech Connect

The objective of this paper is to present an improved computational method for the overall reliability assessment of autonomous power systems that may or may not contain HVdc interconnection links. This is a hybrid method based on a Monte-Carlo simulation sequential approach which incorporates an analytical approach for the reliability modeling of the HVdc transmission links. The developed models and techniques have been implemented into a computer program that can be used to simulate the operational practices and characteristics of the overall system under study efficiently and realistically. A set of reliability indices are calculated for each load-point of interest and the entire system while a set of additional indices is calculated for quantifying the reliability performance of the interconnection links under the specified operating requirements. The analysis of a practical system is also included for a number of studies representing its various operating and design characteristics.

Dialynas, E.N.; Koskolos, N.C. [National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering; Agoris, D. [Public Power Corp., Athens (Greece)

1996-01-01T23:59:59.000Z

444

Wind Fins: Novel Lower-Cost Wind Power System  

DOE Green Energy (OSTI)

This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

David C. Morris; Dr. Will D. Swearingen

2007-10-08T23:59:59.000Z

445

Improving Power Density Of A Class Of Piezoelectic Power Harvesters Through Proof Mass Optimization.  

E-Print Network (OSTI)

??This thesis presents a method to optimize the proof mass of the cantilever piezoelectric power harvester. With this novel proof mass, a lower fundamental frequency… (more)

Li, Wen G.

2009-01-01T23:59:59.000Z

446

Dynamic Performance Validation in the Western Power System  

Science Conference Proceedings (OSTI)

Information, in all its forms, is the key to the reliable and economic performance of large power systems. This paper describes the efforts underway to meet the dynamic information needs of the western power transmission system.

Hauer, John F.; Beshir, Mo; Mittelstadt, Bill

2000-09-30T23:59:59.000Z

447

Battery Park Industries Inc formerly Moltech Power Systems Inc | Open  

Open Energy Info (EERE)

Battery Park Industries Inc formerly Moltech Power Systems Inc Battery Park Industries Inc formerly Moltech Power Systems Inc Jump to: navigation, search Name Battery Park Industries Inc (formerly Moltech Power Systems, Inc) Place Gainesville, Florida Product Bundled rechargeable battery manufacturing assets of Moltech Power Systems, following that company's bankruptcy. References Battery Park Industries Inc (formerly Moltech Power Systems, Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Battery Park Industries Inc (formerly Moltech Power Systems, Inc) is a company located in Gainesville, Florida . References ↑ "Battery Park Industries Inc (formerly Moltech Power Systems, Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Battery_Park_Industries_Inc_formerly_Moltech_Power_Systems_Inc&oldid=342547"

448

Photo of the Week: Improving Power Plant Technology... in 3-D | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Power Plant Technology... in 3-D Improving Power Plant Technology... in 3-D Photo of the Week: Improving Power Plant Technology... in 3-D June 6, 2013 - 12:58pm Addthis This week, Secretary Ernest Moniz experienced the 3-D visualizations at the Consortium for the Advanced Simulation of Light Water Reactors (CASL), one of the Department's Energy Innovation Hubs. The facility, located at Oak Ridge National Laboratory, develops computer models that simulate nuclear power plant operations. The researchers at CASL are developing technology that could accelerate upgrades at existing nuclear plants while improving the plants' reliability and safety. Check out more photos from Secretary Moniz's visit to CASL. | Photo courtesy of Oak Ridge National Laboratory.

449

Improving Existing Fossil-Fired Power Plants Volume 1: Highlights of Industry Discussions  

Science Conference Proceedings (OSTI)

This project identified and evaluated ideas for improving both the capacity and capacity factor of existing fossil power plants through intensive interviews with experts at EPRI, universities, DOE, and vendors.

1998-05-19T23:59:59.000Z

450

Improving Existing Fossil-Fired Power Plants Volume 2: Details of Industry Discussions  

Science Conference Proceedings (OSTI)

This project identified and evaluated ideas for improving both the capacity and capacity factor of existing fossil power plants through intensive interviews with experts at EPRI, universities, DOE, and vendors.

1998-05-19T23:59:59.000Z

451

Improving PbS Quantum Dot Solar Cell Power Conversion Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

research team developed a new process that improves the efficiency of PbS quantum dot solar power conversion. Key Result By using a transition metal oxide in the quantum dot...

452

Portland Company to Receive $1.3 Million to Improve Hydro Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Company to Receive $1.3 Million to Improve Hydro Power Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies September 15, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu today awarded more than $1.3 million to Ocean Renewable Power Company in Portland, Maine to improve the efficiency, flexibility, and environmental performance of hydroelectric energy. T