Sample records for improved power system

  1. Sandia National Laboratories: Improved Power System Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicle TechnologiesImproved Power System Operations

  2. Improved refractories for IGCC power systems

    SciTech Connect (OSTI)

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennet, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-09-01T23:59:59.000Z

    Certain advantages make coal gasification a key element in the US Department of Energy's Vision 21 power system. However, issues of reliability and gasifier operation economics need to be resolved before gasification is widely adopted by the power generation industry.

  3. Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G. In this pa- per we investigate the coupling of a power assist system at the turbocharger shaft of a diesel representation of a diesel engine with a turbocharger power assist system. A turbocharger power assist system

  4. Improved refractories for slagging gasifiers in IGCC power systems

    SciTech Connect (OSTI)

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Chinn, Richard E.

    2004-01-01T23:59:59.000Z

    Most gasifiers are operated for refining, chemical production, and power generation. They are also considered a possible future source of H2 for future power systems under consideration. A gasifier fulfills these roles by acting as a containment vessel to react carbon-containing raw materials with oxygen and water using fluidized-bed, moving-bed, or entrained-flow systems to produce CO and H2, along with other gaseous by-products including CO2, CH4, SOx, HS, and/or NOx. The gasification process provides the opportunity to produce energy more efficiently and with less environmental impact than more conventional combustion processes. Because of these advantages, gasification is viewed as one of the key processes in the U.S. Department of Energy?s vision of an advanced power system for the 21st Century. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both enhanced reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous, trouble-free gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center (ARC) is to develop improved refractory liner materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction. Current generation refractory liners in slagging gasifiers are typically replaced every 3 to 18 months at costs ranging up to $1,000,000 or more, depending upon the size of the gasification vessel. Compounding materials and installation costs are the lost-opportunity costs for the time that the gasifier is off-line for refractory repair/exchange. The goal of this project is to develop new refractory materials or to extend the service life of refractory liner materials currently used to at least 3 years. Post-mortem analyses of refractory brick removed from slagging commercial gasifiers and of laboratory produced refractory materials has indicated that slag corrosion and structural spalling are the primary causes of refractory failure. Historically, refractory materials with chrome oxide content as high as 90 pct have been found necessary to achieve the best refractory service life. To meet project goals, an improved high chrome oxide refractory material containing phosphate additions was developed at ARC, produced commercially, and is undergoing gasifier plant trials. Early laboratory tests on the high chrome oxide material suggested that phosphate additions could double the service life of currently available high chromium oxide refractories, translating into a potential savings of millions of dollars in annual gasifier operating costs, as well a significant increase in gasifier on-line availability. The ARC is also researching the potential of no-chrome/low-chrome oxide refractory materials for use in gasifiers. Some of the driving forces for no-chrome/low-chrome oxide refractories include the high cost and manufacturing difficulties of chrome oxide refractories and the fact that they have not met the performance requirements of commercial gasifiers. Development of no/low chrome oxide refractories is taking place through an examination of historical research, through the evaluation of thermodynamics, and through the evaluation of phase diagram information. This work has been followed by cup tests in the laboratory to evaluate slag/refractory interactions. Preliminary results of plant trials and the results of ARC efforts to develop no-chrome/low chrome refractory materials will be presented.

  5. Reliability Improvement Programs in Steam Distribution and Power Generation Systems

    E-Print Network [OSTI]

    Atlas, R. D.

    improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all in stalled steam traps and 20% of certain types of valves n~ed ' some form of corrective action. The majority of all high backpressure... problems in condensate return systems are due to poor design criteria in expanding or retrofitting existing return systems. By instituting a maintenance management program,a 95% reliability can be gained with two to four annual maintenance cyc...

  6. Design a PV-AF system using V2G Technology to Improve Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    --PHEVs, PV-AF, Active filter, Battery scheme I. INTRODUCTION Plug in Hybrid Electrical Vehicles (PHEVsDesign a PV-AF system using V2G Technology to Improve Power Quality F. R. Islam, and H. R. Pota a photovoltaic shunt active filter (PV- AF) system to improve power quality of photovoltaic generation. A system

  7. V2G Technology for Designing Active Filter System to Improve Wind Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    V2G Technology for Designing Active Filter System to Improve Wind Power Quality F. R. Islam, H. R factor correction and harmonics current compensation. Index Terms--PHEVs, V2G, Wind Power, Battery Scheme to design active filter is proposed here to improve the quality of wind power output. Harmonics is one

  8. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  9. Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System

    E-Print Network [OSTI]

    , or for sporadic reasons, for example a power plant goes offline unexpectedly (e.g., due to an earthquake or stagnant winds to propel wind turbines). Dur- ing an episode, the power grid operators must contend1 Improved Power Grid Stability and Efficiency with a Building-Energy Cyber-Physical System Mary

  10. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01T23:59:59.000Z

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  11. Automated monitoring functions for improved power system operation and control

    E-Print Network [OSTI]

    process that is currently taking place between IEC 61850, IEC 61970 [2] and IEC 61968 [3]. This paper tracking · Automated analysis. The status tracking function provides additional level in the process such as Digital Fault Recorder (DFR) [7], Digital Protection Relay (DPR), Power Quality Meter (PQM) [8], Remote

  12. Initial Studies on Actionable Control for Improving Small Signal Stability in Interconnected Power Systems

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Huang, Zhenyu; Zhou, Ning; Guttromson, Ross T.; Jayantilal, Avnaesh

    2010-06-14T23:59:59.000Z

    Power consumption and demand continues to grow around the world. As the electric power grid continues to be put under more stress, the conditions of instability are more likely to occur. One cause of such instabilities is intearea oscillations, such as the oscillation that resulted in the August 10, 1996 blackout of the WECC. This paper explores different potential operations of different devices on the power system to improve the damping of these interarea oscillations using two different simulation models

  13. Reliability Improvement Programs in Steam Distribution and Power Generation Systems

    E-Print Network [OSTI]

    Petto, S.

    RELIABILITY IIIPROVEfWlT PROGRAMS IN STEAM DISTRIBUTION AND POVER GENERATION SYSTEItS Steve Petto Tech/Serv Corporation Blue Bell, PA Abstract This paper will present alternatives to costly corrective maintenance of the steam trap... In the reliability and efficiency of the system. Recent studies have shownt hat more than 40% of all In stalled steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems In condensate return...

  14. Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power

    E-Print Network [OSTI]

    Teodorescu, Remus

    . Possibilities to overcome this problem are to increase transmission capacities, demand side management approach to find two optimum energy storages (ESs) to build a hybrid system which is part of a virtual and the EU renewable directive [1] is even demanding for even higher rates of renewable power generation

  15. HVDC Control Strategies to Improve Transient Stability in Interconnected Power Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    HVDC Control Strategies to Improve Transient Stability in Interconnected Power Systems J. Hazra Dpt of Li`ege, Belgium, dernst@ulg.ac.be Abstract--This paper presents three HVDC modulation strate- gies flow settings through the HVDC-links. The proposed techniques are tested on the IEEE 24-Bus reliability

  16. An Optimal Power Flow (OPF) Method with Improved Power System Stability

    E-Print Network [OSTI]

    Chen, Zhe

    ) operating values, on-load tap changer (OLTC) positions and number of reactive power compensation equipments

  17. A control system for improved battery utilization in a PV-powered peak-shaving system

    SciTech Connect (OSTI)

    Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-08-01T23:59:59.000Z

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  18. The automatic reconfiguration of electric shipboard power systems is an important step toward improved

    E-Print Network [OSTI]

    Lai, Hong-jian

    are envisioned by redes- igning the electric power system and its controls. This research focuses on a new schemeABSTRACT The automatic reconfiguration of electric shipboard power systems is an important step answer for a decentralized energy management system of the electric shipboard power system is addressed

  19. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffery Birkel

    2007-12-31T23:59:59.000Z

    With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

  20. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  1. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1995-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  2. Development Of Algorithms For Improved Planning And Operation Of Deregulated Power Systems.

    E-Print Network [OSTI]

    Surendra, S

    2012-01-01T23:59:59.000Z

    ??Transmission pricing and congestion management are two important aspects of modern power sectors working under a deregulated environment or moving towards a deregulated system (open… (more)

  3. An approach to improving the power management system in electronic devices

    E-Print Network [OSTI]

    Lim, Jui Min

    2010-01-01T23:59:59.000Z

    The current power management technology baseline does not address the increasing gap between system charge performance and functionality needs in a smartphone. This gap can eventually inhibit further increases in functionality ...

  4. Power Factor Improvement

    E-Print Network [OSTI]

    Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

  5. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    SciTech Connect (OSTI)

    None

    2012-02-24T23:59:59.000Z

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  6. Improved measurement placement and topology processing in power system state estimation

    E-Print Network [OSTI]

    Wu, Yang

    2009-06-02T23:59:59.000Z

    and the branch power flow measurements. The advanced level design keeps the network observable under certain contingencies. To preserve as many substation measurements as possible and maintain the net-work observability, an advanced network topology processor...

  7. Cold side thermal energy storage system for improved operation of air cooled power plants

    E-Print Network [OSTI]

    Williams, Daniel David

    2012-01-01T23:59:59.000Z

    Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

  8. NAPS-2000, Waterloo, ON, October 2000 Stability Improvement Using TCSC in Radial Power Systems

    E-Print Network [OSTI]

    Cańizares, Claudio A.

    , load rejection, break resistors, fast-valving,capacitor bank or reactor switching, etc. More recently (hydro, gas) to majorload centers over longtransmission lines. Power sys- tems with these features

  9. New approaches to improve the performance of the PEM based fuel cell power systems

    E-Print Network [OSTI]

    Choi, Woojin

    2005-11-01T23:59:59.000Z

    Membrane Fuel Cell Stack (PEMFCS) is first proposed. This equivalent circuit model of the fuel cell stack is derived by a frequency response analysis (FRA) technique to evaluate the effects of the ripple current generated by the power-conditioning unit...

  10. Nanoengineered surfaces for improvements in energy systems : application to concentrated solar and geothermal power plants

    E-Print Network [OSTI]

    Rehn, Alexander W. (Alexander William)

    2012-01-01T23:59:59.000Z

    The main drawback to renewable energy systems is the higher cost of production compared to competitors such as fossil fuels. Thus, there is a need to increase the efficiency of renewable energy systems in an effort to make ...

  11. Variable-speed wind power system with improved energy capture via multilevel conversion

    DOE Patents [OSTI]

    Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay

    2005-05-31T23:59:59.000Z

    A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.

  12. Novel Processing of mo-si-b Intermetallics for improved efficiency of power systems

    SciTech Connect (OSTI)

    M.J. Kramer; O. Degirmen; A.J. Thom; M. Akinc

    2004-09-30T23:59:59.000Z

    Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing applications such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. Alloys based on the Mo{sub 5}Si{sub 3}B{sub x} phase (Tl phase) possess excellent oxidation resistance to at least 1600 C in synthetic air atmospheres. However, the ability of Tl-based alloys to resist aggressive combustion environments has not yet been determined. The present work seeks to investigate the resistance of these Mo-Si-B alloys to simulated combustion atmospheres. Material was pre-alloyed by combustion synthesis, and samples for testing were prepared by classic powder metallurgical processing techniques. Precursor material synthesized by self-heating-synthesis was sintered to densities exceeding 98% in an argon atmosphere at 1800 C. The approximate phase assemblage of the material was 57% Tl, 29% MoB, 14% MoSi{sub 2} (wt%). The alloy was oxidized from 1000-1100 C in flowing air containing water vapor at 18 Torr. At 1000 C the material achieved a steady state mass loss, and at 1100 C the material undergoes a steady state mass gain. The oxidation rate of these alloys in this temperature regime was accelerated by the presence of water vapor compared to oxidation in dry air. The results of microstructural analysis of the tested alloys will be discussed. Techniques and preliminary results for fabricating near-net-shaped parts will also be presented.

  13. PSO2004/FU5766 Improved wind power prediction

    E-Print Network [OSTI]

    PSO2004/FU5766 Improved wind power prediction Spatio-temporal modelling of short-term wind power of wind power generation in power systems. The quality of the forecast is very important, and a reliable estimate of the uncertainty of the forecast is known to be essential. Today the forecasts of wind power

  14. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02T23:59:59.000Z

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  15. Improvement of low speed induction generator performances and reducing the power of excitation and voltage control system

    SciTech Connect (OSTI)

    Budisan, N. [Politechnica Univ. of Timisoara (Romania); Hentea, T.; Mahil, S. [Purdue Univ. Calumet, Hammond, IN (United States); Madescu, G. [Romanian Academy, Timisoara (Romania)

    1996-12-31T23:59:59.000Z

    In this paper we present the results of our investigations concerning the utilization of induction generators at very low speed. It is shown that, by proper design, it is possible to obtain high efficiency and high power factor values. The optimized induction generators require lower reactive power resulting in lower size and price of the excitation control system. 4 refs., 2 figs.

  16. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, (J4800) Transmission Scheduling and...

  17. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  18. Guidelines for Power Factor Improvement Projects

    E-Print Network [OSTI]

    Massey, G. W.

    Power factor is an indication of electrical system efficiency. Low power factor, or low system efficiency, may be due to one or more causes, including lightly loaded transformers, oversized electric motors, and harmonic-generating non-linear loads...

  19. Method to improve reliability of a fuel cell system using low performance cell detection at low power operation

    DOE Patents [OSTI]

    Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.

    2013-04-16T23:59:59.000Z

    A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.

  20. Crowd-powered systems

    E-Print Network [OSTI]

    Bernstein, Michael Scott

    2012-01-01T23:59:59.000Z

    Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

  1. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  2. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  3. Power Systems Control Architecture

    SciTech Connect (OSTI)

    James Davidson

    2005-01-01T23:59:59.000Z

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  4. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09T23:59:59.000Z

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  5. NSTX Electrical Power Systems

    SciTech Connect (OSTI)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-12-16T23:59:59.000Z

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

  6. Wind power generating system

    SciTech Connect (OSTI)

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12T23:59:59.000Z

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  7. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a...

  8. INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

    E-Print Network [OSTI]

    is to improve the operation and sizing, the electrical and economic output of photovoltaic power systems#12;INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME TASK 2 ­ Performance, Reliability and Analysis of Photovoltaic Systems THE AVAILABILITY OF IRRADIATION DATA Report IEA-PVPS T2

  9. Power Quality Improvement in Microgrid Using Advanced Active Power Conditioner

    E-Print Network [OSTI]

    unknown authors

    Abstract:- Wind energy conversion systems are now occupying important space in the research of renewable energy sources with microgrid. The main challenge in wind power generation is power quality problem and their connection with the distribution network in microgrid. The main factor behind poor

  10. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  11. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    SciTech Connect (OSTI)

    Ray, C.; Huang, Z.

    2007-01-01T23:59:59.000Z

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  12. Power line detection system

    DOE Patents [OSTI]

    Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  13. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  14. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-05-01T23:59:59.000Z

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

  15. M-C Power`s product design and improvement

    SciTech Connect (OSTI)

    Scroppo, J.A.; Laurens, R.M.; Petraglia, V.J.

    1995-12-31T23:59:59.000Z

    The sole mission of M-C Power is the development and subsequent commercialization of molten carbonate fuel cell (MCFC) stacks. These MCFC stacks are based on the Internally Manifolded Heat EXchanger plate design developed by the Institute of Gas Technology. Integration of the MCFC stack into a commercially viable power plant is the mission of the IMHEX{sup {reg_sign}} team. The team is composed of leaders in the packaging and design of power generation equipment, including fuel cell technology, and includes Stewart & Stevenson, Bechtel, The Institute of Gas Technology and M-C Power. In an effort to succeed in their respective missions, M-C Power and the IMHEX{sup {reg_sign}} team have developed a commercialization program. At the present time, the team is making the transition from Phase I (Technology Development) to Phase II (Product Design & Improvement) of the program. Phase II`s objective is a commercially viable (cost effective and technologically reliable) MCFC power plant ready for market by the turn of the century.

  16. Power converter having improved EMI shielding

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-06-13T23:59:59.000Z

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  17. Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & BlogPostdocs, Power Systems Power

  18. PSO2004/FU5766 Improved wind power prediction

    E-Print Network [OSTI]

    PSO2004/FU5766 Improved wind power prediction Optimal combined wind power forecasts using exogenous prediction can be accomplished. The application of combining wind power forecasts for certain wind power

  19. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

    2000-01-01T23:59:59.000Z

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  20. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  1. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

    2008-02-19T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  2. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  3. Power converter having improved fluid cooling

    DOE Patents [OSTI]

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2007-03-06T23:59:59.000Z

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  4. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    1.18: Largest PV Power Plants……………………………………………………32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

  5. Dynamic Reactive Power Control of Isolated Power Systems

    E-Print Network [OSTI]

    Falahi, Milad

    2012-10-03T23:59:59.000Z

    This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

  6. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01T23:59:59.000Z

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  7. Hydrogen storage of energy for small power supply systems

    E-Print Network [OSTI]

    Monaghan, Rory F. D. (Rory Francis Desmond)

    2005-01-01T23:59:59.000Z

    Power supply systems for cell phone base stations using hydrogen energy storage, fuel cells or hydrogen-burning generators, and a backup generator could offer an improvement over current power supply systems. Two categories ...

  8. Southwestern Power System Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Evaluate Our Site PleaseŹ

  9. Main Injector power distribution system

    SciTech Connect (OSTI)

    Cezary Jach and Daniel Wolff

    2002-06-03T23:59:59.000Z

    The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

  10. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2004-04-30T23:59:59.000Z

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  11. HOUSEHOLD SOLAR POWER SYSTEM.

    E-Print Network [OSTI]

    Jiang, He

    2014-01-01T23:59:59.000Z

    ?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power… (more)

  12. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

  13. Heat and Power Systems Design

    E-Print Network [OSTI]

    Spriggs, H. D.; Shah, J. V.

    HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

  14. Fire alarm system improvement

    SciTech Connect (OSTI)

    Hodge, S.G.

    1994-10-01T23:59:59.000Z

    This document contains the Fire Alarm System Test Procedure for Building 234-5Z, 200-West Area on the Hanford Reservation, Richland, Washington. This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the modifications to the Fire Protection systems function as required by project criteria. The ATP will test the Fire Alarm Control Panels, Flow Alarm Pressure Switch, Heat Detectors, Smoke Detectors, Flow Switches, Manual Pull Stations, and Gong/Door by Pass Switches.

  15. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  16. Power transaction issues in deregulated power systems

    E-Print Network [OSTI]

    Roycourt, Henrik

    2000-01-01T23:59:59.000Z

    numbers Slack Bus IVI, 0 P;, Q; Gen. Bus Q 0 2, 3, 4, . . . , l+NPV Load Bus Pu Qi 2+NPV, 3+NPV, . . . , N Using the Kirchhoff's current law at a given node, the real and reactive power balance equations are written at each bus of the system: n P... ~ 822 821 827 9!, '7 Fig. 4. IEEE 30 bus system. 11 Figure 5 shows the bus dialog box for bus 13, where a 10MW increase in real power generation is entered. 1 IOIOOO 1QOtKMCO QOQINIO QOXCOO O'I OOXI -0 DDDOCO tg. . us ata. Step 1. Let us...

  17. Body powered thermoelectric systems

    E-Print Network [OSTI]

    Settaluri, Krishna Tej

    2012-01-01T23:59:59.000Z

    Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

  18. Tokamak power systems studies, FY 1985

    SciTech Connect (OSTI)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01T23:59:59.000Z

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  19. Power Electronics and Balance of System Hardware Technologies

    Broader source: Energy.gov [DOE]

    DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

  20. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, K.

    1983-08-09T23:59:59.000Z

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  1. Center for Power Electronics Systems 2014 ANNUAL REPORT

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Systems at Virginia Tech is a research center dedicated to improving electrical power pro- cessing- orative research and education for creating advanced electric power processing systems of the highestCenter for Power Electronics Systems 2014 ANNUAL REPORT VIRGINIA TECH · BLACKSBURG, VIRGINIA #12

  2. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA)

    1983-01-01T23:59:59.000Z

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  3. Multi-Megawatt Power System Trade Study

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01T23:59:59.000Z

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but do not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.

  4. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01T23:59:59.000Z

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  5. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect (OSTI)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31T23:59:59.000Z

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is dependent on the chemistry of the particle, it is possible to map chemically similar areas which can also be related to the viscosity of that compound at temperature. A second method was also developed to determine the elements associated with the organic matrix of the coals, which is currently determined by chemical fractionation. Mineral compositions and mineral densities can be determined for both included and excluded minerals, as well as the fraction of the ash that will be represented by that mineral on a frame-by-frame basis. The slag viscosity model was improved to provide improved predictions of slag viscosity and temperature of critical viscosity for representative Powder River Basin subbituminous and lignite coals.

  6. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  7. Superconductivity for electric power systems: Program overview

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

  8. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04T23:59:59.000Z

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  9. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    17 1.2.4 Reverse Osmosis…………………………………………………19 1.345 Chapter 2: Reverse Osmosis System…………………………………………………….46 2.1 Reverse Osmosis System Set Up…………………………………………….46 2.2

  10. Naturalistic Decision Making For Power System Operators

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Podmore, Robin; Robinson, Marck; Ey, Pamela

    2009-06-23T23:59:59.000Z

    Abstract: Motivation -- As indicated by the Blackout of 2003, the North American interconnected electric system is vulnerable to cascading outages and widespread blackouts. Investigations of large scale outages often attribute the causes to the three T’s: Trees, Training and Tools. A systematic approach has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The approach has been developed and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine naturalistic decision making (NDM) processes, transcripts of operator-to-operator conversations are analyzed to reveal and assess NDM-based performance criteria. Findings/Design -- The results of the study indicate that we can map the Situation Awareness Level of the operators at each point in the scenario. We can also identify clearly what mental models and mental simulations are being performed at different points in the scenario. As a result of this research we expect that we can identify improved training methods and improved analytical and visualization tools for power system operators. Originality/Value -- The research applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message -- The NDM approach provides an ideal framework for systematic training management and mitigation to accelerate learning in team-based training scenarios with high-fidelity power grid simulators.

  11. Subtask 3.12 - Small Power Systems

    SciTech Connect (OSTI)

    Sprynczynatyk, C.; Schmidt, L.; Kurz, M.D.; Mann, M.D.; Kjelden, M.

    1997-08-01T23:59:59.000Z

    The programmatic goal in advanced power systems is to develop small integrated waste treatment, water purification, and power systems in the range of 20 kW to 20 MW in cooperation with commercial vendors. These systems will be designed to incorporate the advanced technical capabilities of the Energy and Environmental Research Center (EERC) with the latest advancements in vendor-offered hardware and software. The primary objective for the work to be performed under this subtask is to develop a commercialization plan for small power systems, evaluate alternative design concepts, and select practical and economical designs for targeted development in upcoming years. A leading objective for the EERC will be to continue to form strong business partnerships with equipment manufacturers who can commercialize the selected power system and treatment design(s). FY95 activities were focused on collecting information from vendors and evaluating alternative design concepts. This year's activities began with the process of selecting one design for targeted development. A case study was performed to determine if the combination of water and waste treatment with power generation could improve the economics over a stand-alone power generation system.

  12. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    None

    2010-02-28T23:59:59.000Z

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  13. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilities will seek to reduce capital expenditures associated with installing andor upgrading peaking generation capacity and transmission and distribution system expansion....

  14. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    PEC and PV system. The energy and area requirements for arequires the least energy and area. A MED desalination plantcompare the energy consumption and area of devices needed,

  15. Power converter having improved terminal structure

    DOE Patents [OSTI]

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Phillips, Mark G.; Kaishian, Steven C.

    2007-03-06T23:59:59.000Z

    A terminal structure for power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  16. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01T23:59:59.000Z

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  17. Overview of M-C Power`s MCFC power generation system

    SciTech Connect (OSTI)

    Benjamin, T.G.; Woods, R.R.

    1993-11-01T23:59:59.000Z

    The IMHEX{reg_sign} fuel cell power generation system is a skid mounted power plant which efficiently generates electricity and useful thermal energy. The primary benefits are its high electric generation efficiency (50% or greater), modular capacities (500 kW to 3 MW per unit) and minimal environmental impacts (less than 1 ppM NO{sub x}). A cost effective, modular capacity fuel cell power plant provides the industry with an attractive alternative to large central station facilities, and its advantages have the potential to optimize the way electric power is generated and distributed to the users. Environmental issues are becoming the single most uncertain aspect of the power business. These issues may be manifested in air emissions permits or allowances for NO{sub x} or SO{sub 2}, energy taxes, CO{sub 2} limits, ``carbon taxes,`` etc. and may appear as siting permits for generation, transmission, or distribution facilities. Utilities are ``down-sizing`` with the goal of becoming the lowest cost supplier of electricity and are beginning to examine the concepts of ``energy service`` to improve their economic competitiveness. These issues are leading utilities to examine the benefits of distributed generation. Siting small capacity generation near the customer loads or at distribution substations can improve system efficiency and quality while reducing distribution system costs. The advantages that fuel cell power plants have over conventional technologies are critical to the success of these evolving opportunities in the power generation marketplace.

  18. Integration of wind power in deregulated power systems.

    E-Print Network [OSTI]

    Scorah, Hugh

    2010-01-01T23:59:59.000Z

    ??This thesis investigates the impact of integrating wind power into deregulated power systems. It includes a discussion of the history of deregulation and the development… (more)

  19. Demand Response For Power System Reliability: FAQ

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-12-01T23:59:59.000Z

    Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

  20. Novette pulse-power-system description

    SciTech Connect (OSTI)

    Gritton, D.G.; Christie, D.J.; Holloway, R.W.; Merritt, B.T.; Oicles, J.A.; Whitham, K.; Wilcox, R.B.

    1983-01-01T23:59:59.000Z

    This paper is a summary of the pulse power systems for Novette; the flashlamp power system, the pulsers for the various optical shutters and the pulse power control system.

  1. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24T23:59:59.000Z

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  2. Improving heat capture for power generation in coal gasification plants

    E-Print Network [OSTI]

    Botros, Barbara Brenda

    2011-01-01T23:59:59.000Z

    Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

  3. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

  4. Solar thermophotovoltaic space power system

    SciTech Connect (OSTI)

    Horne, W.E. (Boeing Aerospace Co., Seattle, WA); Day, A.C. (NASA, Marshall Space Flight Center, Huntsville, AL)

    1980-01-01T23:59:59.000Z

    A study has been performed on the technical feasibility and cost of a TPV system for an alternative space power supply. An analysis of six previous studies has been performed and a consistent optical, thermal, and electrical model developed. A search of the literature for materials data has been augmented by an experimental test program on materials and breadboard subsystems of the TPV. These data have been used in the model to determine the technical feasibility and the degree of performance that might be expected from such a system. A system design study was then conducted to optimize the launch configuration, the weight, and the cost of the TPV space power system. Results from this study were used to define a specific design which could be used in a detailed cost analysis. A cost analysis was then performed to determine the relative costs of the TPV power system. It appears that a system having a specific power greater than 150 W/kg can be produced for approximately 30 dollars per watt.

  5. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06T23:59:59.000Z

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  6. Transformer modeling in power systems

    SciTech Connect (OSTI)

    Ma, J.; Dawalibi, F.P. [Safe Engineering Services and Technologies Ltd., Montreal, Quebec (Canada)

    1999-11-01T23:59:59.000Z

    A practical and accurate method of modeling various transformers in power systems using a general circuit model approach is described in this paper. The advantage of the new approach is that it can model transformers along with a complex circuit network, while avoiding the use of symmetrical components, unlike other approaches. The transformer modeling technique introduced in this paper is very useful to accurately determine fault current distribution in a power system and electromagnetic interference on pipelines and communication lines installed in a right-of-way consisting of transmission lines operating at different voltages.

  7. ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF*

    E-Print Network [OSTI]

    ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF* C. E. Reece Thomas, CEBAF at Jefferson Lab has demonstrated its full capacity of sustained 800 kW beam power. All systems the energy reach of CEBAF, we began a program of processing all installed cryomodules. This processing has

  8. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

    2010-10-15T23:59:59.000Z

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

  9. OE Power Systems Engineering Research & Development Program Partnershi...

    Broader source: Energy.gov (indexed) [DOE]

    Mission Power Systems Engineering Research and Development OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research &...

  10. Joint transmission system projects to improve system reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    County PUD, 425-783-8444 Joint transmission system projects to improve system reliability First major regional electric grid improvements in decades prepare the area for the...

  11. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

  12. Strategic planning for power system restorations

    SciTech Connect (OSTI)

    Bent, Russell W [Los Alamos National Laboratory; Van Hententyck, Pascal [BROWN UNIV.; Coffrin, Carleton [BROWN UNIV.

    2010-10-12T23:59:59.000Z

    This paper considers the power system restoration planning problem (PSRPP) for disaster recovery, a fundamental problem faced by all populated areas. PSRPPs are complex stochastic optimization problems that combine resource allocation, warehouse location, and vehicle routing considerations. Furthermore, electrical power systems are complex systems whose behavior can only be determined by physics simulations. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This work is three fold: (1) it formalizes the specification of PSRPPs; (2) introduces a simple optimization-simulation hybridization necessary for solving PSRPPs; and (3) presents a complete restoration algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. This paper studied a novel problem in the field of humanitarian logistics, the Power System Restoration Problem (PSRPP). The PSRPP models the strategic planning process for post disaster power system recovery. The paper proposed a multi-stage stochastic hybrid optimization algorithm that yields high quality solutions to real-world benchmarks provided by Los Alamos National Laboratory (LANL). The algorithm uses a variety of technologies, including MIP, constraint programming, and large neighborhood search, to exploit the structure of each individual optimization subproblem. The experimental results on hurricane disaster benchmarks indicate that the algorithm is practical from a computational standpoint and produce significant improvements over existing relief delivery procedures.

  13. 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION

    E-Print Network [OSTI]

    Power Mix Fuel Type Net System Power Coal 15% Large Hydroelectric 23% Natural Gas 42% Nuclear 11CALIFORNIA ENERGY COMMISSION APRIL 2003 300-03-002 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER and report net system power, annually (Senate Bill 1305, Sher, Chapter 796, statue of 1997)1 . Net system

  14. 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT April 2005 CEC-300 on net system power [Senate Bill 1305, (Sher), Chapter 796, Statute of 1997]1 . Net system power in California. Net system power plays a role in California's retail disclosure program, which requires every

  15. Catalog of DC Appliances and Power Systems

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Shen, Hongxia

    2010-10-13T23:59:59.000Z

    This document catalogs the characteristics of current and potential future DC products and power systems.

  16. Naturalistic Decision Making for Power System Operators

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Podmore, Robin; Robinson, Marck; Ey, Pamela

    2010-02-01T23:59:59.000Z

    Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This study applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.

  17. Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems

    E-Print Network [OSTI]

    Essakiappan, Somasundaram

    2014-04-30T23:59:59.000Z

    and phase angle of the inverter cells is proposed. This improves differential power processing amongst cells while keeping the voltage and current ratings of the devices low. A battery energy storage system for the multilevel PV converter has also been...

  18. Advanced fenestration systems for improved daylight performance

    E-Print Network [OSTI]

    Selkowitz, S.; Lee, E.S.

    1998-01-01T23:59:59.000Z

    Systems for Improved Daylight Performance S. Selkowitz, E.S.Systems for Improved Daylight Performance S. Selkowitz, E.S.Introduction The use of daylight to replace or supplement

  19. Improvement of Power-Performance Efficiency for High-End Computing Rong Ge, Xizhou Feng, Kirk W. Cameron

    E-Print Network [OSTI]

    Freeh, Vincent

    . Earth Simulator requires 18 megawatts of power. Petaflop systems may require 100 megawatts of power[2], nearly the output of a small power plant (300 megawatts). At $100 per megawatt ($.10 per kilowatt), peakImprovement of Power-Performance Efficiency for High-End Computing Rong Ge, Xizhou Feng, Kirk W

  20. Distributed Power Delivery for Energy Efficient and Low Power Systems

    E-Print Network [OSTI]

    Friedman, Eby G.

    Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department are needed to determine the location of these on-chip power supplies and decoupling capacitors. In this paper, the optimal location of the power supplies and decoupling capacitors is determined for different size

  1. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01T23:59:59.000Z

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  2. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  3. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

  4. Intelligent wind power prediction systems final report

    E-Print Network [OSTI]

    Intelligent wind power prediction systems ­ final report ­ Henrik Aalborg Nielsen (han (FU 4101) Ens. journal number: 79029-0001 Project title: Intelligent wind power prediction systems #12;#12;Intelligent wind power prediction systems 1/36 Contents 1 Introduction 6 2 The Wind Power Prediction Tool 7 3

  5. 1220 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 18, NO. 3, AUGUST 2003 [2] L. L. Lai, J. T. Ma, R. Yokoyama, and M. Zhao, "Improved genetic al-

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad CatĂłlica de Chile)

    and contingent op- eration states," Elect. Power Energy Syst., vol. 19, no. 5, pp. 287­292, 1997. [3] Z Informatica Avanzada, Technical Rep., www.lania.mx/~coello/techre- ports/constraintreport.ps.gz, 1999. [5] J of the mathematical mechanical model and the electrical equivalent circuit models of the wind energy conver- sion

  6. Stochastic Modeling of a Power-Managed System: Construction and Optimization

    E-Print Network [OSTI]

    Qiu, Qinru

    Stochastic Modeling of a Power-Managed System: Construction and Optimization Qinru Qiu, Qing Wu of a power-managed electronic system. We formulate the problem of system-level power management improvements. Dynamic power management ­ which refers to selective shut-off or slow-down of system components

  7. Probing Signal Design for Power System Identification

    SciTech Connect (OSTI)

    Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

    2010-05-31T23:59:59.000Z

    This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

  8. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14T23:59:59.000Z

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  9. System and method for advanced power management

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

    2009-07-28T23:59:59.000Z

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  10. DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

  11. Impact of Power Generation Uncertainty on Power System Static Performance

    E-Print Network [OSTI]

    Liberzon, Daniel

    in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

  12. Uninterruptible power supply (UPS) systems

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user`s purpose. This document contains a fill-in-the-blanks guide specification for the procurement of uninterruptible power supply (UPS) systems greater than 10 kVA, organized as follows: Parts 1 through 7--technical requirements; Appendix A--technical requirements to be included in the proposal; Appendix B--UPS system data sheets to be completed by each bidder (Seller) and submitted with the proposal; Appendix C--general guidelines giving the specifier parameters for selecting a UPS system; it should be read before preparing an actual specification, and is not attached to the specification; Attachment 1--sketches prepared by the purchaser (Owner); Attachment 2--sample title page.

  13. Power Supply Rejection Improvement Techniques In Low Drop-Out Voltage Regulators

    E-Print Network [OSTI]

    Ganta, Saikrishna

    2011-10-21T23:59:59.000Z

    because of packaging and cooling requirements [1,2]. These aspects lead to breakthrough of power management IC design whose basic functionality is improving the systems power efficiency. A full on-chip power management unit (PMU) is highly desirable... components such as inductors and capacitors has to be reduced in order to reduce (BOM). There are two important blocks in a PMU namely DC-DC switched mode power supplies (SMPS) and Low Drop Out (LDO) voltage regulators. Both of these provide the basic...

  14. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  15. Direct conversion nuclear reactor space power systems

    SciTech Connect (OSTI)

    Britt, E.J.; Fitzpatrick, G.O.

    1982-08-01T23:59:59.000Z

    This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

  16. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

  17. A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment

    E-Print Network [OSTI]

    Kozman, T. A.; Reynolds, C. M.; Lee, J.

    2008-01-01T23:59:59.000Z

    Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power...

  18. Wind Power Systems 1.0 Overview

    E-Print Network [OSTI]

    Ding, Yu

    Wind Power Systems 1.0 Overview 2.0 Simulation model for wind farm operation 3.0 Research topics #12;Contents 1. Overview of wind power systems 2. Simulation model of wind farm operations 3. Research area of wind power systems 3.0 Overview 3.1 Economic dispatch 3.2 Correlation analysis 3.3 Energy

  19. 2007 NET SYSTEM POWER REPORT STAFFREPORT

    E-Print Network [OSTI]

    -2007.......................................................................5 Figure 3: Natural Gas and Coal Shares of Net System Power Mix Become Larger 1999-2007.....7 ListCALIFORNIA ENERGY COMMISSION 2007 NET SYSTEM POWER REPORT STAFFREPORT April 2008 CEC-200 .................................................................................................................. 1 Net System Power Findings

  20. Options for Affordable Fission Surface Power Systems

    SciTech Connect (OSTI)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise [NASA Marshall Space Flight Center, VP31, MSFC, AL 35812 (United States)

    2006-07-01T23:59:59.000Z

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  1. Analysis of Power System Dynamics Subject to Stochastic Power Injections

    E-Print Network [OSTI]

    DeVille, Lee

    to the computation of long-term power system state statistics; and to short-term probabilistic dynamic performance/reliability of renewable re- sources such as wind energy conversion systems (WECS) and photovoltaic energy conversion

  2. ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    M. Maniyar

    2004-06-22T23:59:59.000Z

    The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

  3. Process system optimization for life cycle improvement

    SciTech Connect (OSTI)

    Marano, J.J.; Rogers, S.

    1999-12-31T23:59:59.000Z

    Life Cycle Assessment (LCA) is an analytic tool for quantifying the environmental impacts of all processes used in converting raw materials into a final product. The LCA consists of three parts. Life cycle inventory quantifies all material and energy use, and environmental emissions for the entire product life cycle, while impact assessment evaluates actual and potential environmental and human health consequences of the activities identified in the inventory phase. Most importantly, life cycle improvement aims at reducing the risk of these consequences occurring to make the product more benign. when the LCA is performed in conjunction with a technoeconomic analysis, the total economic and environmental benefits and shortcomings of a product or process can be quantified. A methodology has been developed incorporating process performance, economics, and life cycle inventory data to synthesize process systems, which meet life cycle impact-improvement targets at least cost. The method relies on a systematic description of the product life cycle and utilizes successive Linear Programming to formulate and optimize the non-linear, constrained problem which results. The practicality and power of this approach have been demonstrated by examining options for the reduction of emissions of the greenhouse gas CO{sub 2} from petroleum-based fuels.

  4. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect (OSTI)

    Xu, B., E-mail: bin.xu09@imperial.ac.uk; Fobelets, K. [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, SW7 2BT London (United Kingdom)

    2014-06-07T23:59:59.000Z

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 ? cm resistivity n- and p-type bulk, converting ?4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  5. PROCESS FLOWCHARTING A POWERFUL TOOL FOR CONTINUOUS IMPROVEMENT

    E-Print Network [OSTI]

    Shapiro, Vadim

    PROCESS FLOWCHARTING A POWERFUL TOOL FOR CONTINUOUS IMPROVEMENT #12;P R O C E S S F L O W C H A R T I N G G U I D E - 2 - O F F I C E O F Q U A L I T Y I M P R O V E M E N T Process Flowcharting education, almost everything we do is part of a process. If a process is a series of steps aimed

  6. Accelerating the transformation of power systems

    E-Print Network [OSTI]

    Accelerating the transformation of power systems Ancillary Services Peer Exchange with India- to-peer consultation. The 21st Century Power Partnership aims to accelerate the global transformation consultative support Accelerating the transformation of power systems NREL/FS-6A20-61811 · May 2014 15013

  7. Integrated Retail & Wholesale Power System Operation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Integrated Retail & Wholesale Power System Operation with Smart-Grid Functionality PIs: Dionysios Retail/Wholesale Power System Operation with Smart-Grid Functionality Project PIs: Dionysios Aliprantis (open-source release): AMES Wholesale Power Market Testbed (ISU) + GridLAB-D distribution platform (DOE

  8. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Corren, Dean [Verdant Power, Inc.; Colby, Jonathan [Verdant Power, Inc.; Adonizio, Mary Ann [Verdant Power, Inc.

    2013-01-29T23:59:59.000Z

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  9. Nova power systems: status and operating experience

    SciTech Connect (OSTI)

    Whitham, K.; Merritt, B.T.; Gritton, D.G.; Smart, A.J.; Holloway, R.W.; Oicles, J.A.

    1983-11-28T23:59:59.000Z

    This paper describes the pulse power systems that are used in these lasers; the status and the operating experiences. The pulsed power system for the Nova Laser is comprised of several distinct technology areas. The large capacitor banks for driving flashlamps that excite the laser glass is one area, the fast pulsers that drive pockels cell shutters is another area, and the contol system for the pulsed power is a third. This paper discusses the capacitor banks and control systems.

  10. Power system with an integrated lubrication circuit

    DOE Patents [OSTI]

    Hoff, Brian D. (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL); Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Lane, William H. (Chillicothe, IL)

    2009-11-10T23:59:59.000Z

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  11. Improving pumping system efficiency at coal plants

    SciTech Connect (OSTI)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15T23:59:59.000Z

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  12. Performance tuned radioisotope thermophotovoltaic space power system

    SciTech Connect (OSTI)

    Horne, W.E.; Morgan, M.D.; Saban, S.B. [EDTEK, Inc., 7082 South 220th Street, Kent, Washington 98032-1910 (United States)

    1998-01-01T23:59:59.000Z

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1{percent} efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The baseline design, centered around components and measured parametric data developed by EDTEK, Inc., promised an overall thermal-to-electric system output of 23 W at a conversion efficiency of 19{percent}, 1.92 kg system weight, and a specific power of 13.3 W/kg. The improved design reported herein promises up to 37.6 W at 30.1{percent} efficiency, 1.5 kg system weight, up to 25 W/kg specific power, a six-fold reduction in thermal radiator size over the baseline design, as well as a lower isotope temperature for greater safety. The six-fold reduction in thermal radiator size removes one of the greatest obstacles to applying RTPV in space missions. {copyright} {ital 1998 American Institute of Physics.}

  13. The effect of high penetration of wind power on primary frequency control of power systems.

    E-Print Network [OSTI]

    Motamed, Bardia

    2013-01-01T23:59:59.000Z

    ??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine… (more)

  14. Accelerating the transformation of power systems

    E-Print Network [OSTI]

    -connected variable renewable energy (primarily, wind and solar). All power systems have some inherent level to achieve. Both wind and solar generation output vary significantly over the course of hours to days with wind energy in the system. Solar energy will cause qualitatively similar impacts on the power system

  15. Flexibility in 21st Century Power Systems

    SciTech Connect (OSTI)

    Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O'Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; Kujala, B.; Sommer, M.; Holttinen, H.; Kiviluoma, J.; Soonee, S. K.

    2014-05-01T23:59:59.000Z

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). This paper summarizes the analytic frameworks that have emerged to measure this characteristic and distills key principles of flexibility for policy makers.

  16. Optimization Online - Stochastic Optimization for Power System ...

    E-Print Network [OSTI]

    Ludwig Kuznia

    2011-02-17T23:59:59.000Z

    Feb 17, 2011 ... Stochastic Optimization for Power System Configuration with Renewable Energy in Remote Areas. Ludwig Kuznia(lkuznia ***at*** mail.usf.edu)

  17. Developing Secure Power Systems Professional Competence: Alignment...

    Broader source: Energy.gov (indexed) [DOE]

    workforce development resources that can aid in the accelerating need for Secure Power Systems Professionals, while at the same time identifying capabilities and competencies to...

  18. Neutral Beam Power System for TPX

    SciTech Connect (OSTI)

    Ramakrishnan, S.; Bowen, O.N.; O`Conner, T.; Edwards, J.; Fromm, N.; Hatcher, R.; Newman, R.; Rossi, G.; Stevenson, T.; von Halle, A.

    1993-11-01T23:59:59.000Z

    The Tokamak Physics Experiment (TPX) will utilize to the maximum extent the existing Tokamak Fusion Test Reactor (TFTR) equipment and facilities. This is particularly true for the TFTR Neutral Beam (NB) system. Most of the NB hardware, plant facilities, auxiliary sub-systems, power systems, service infrastructure, and control systems can be used as is. The major changes in the NB hardware are driven by the new operating duty cycle. The TFTR Neutral Beam was designed for operation of the Sources for 2 seconds every 150 seconds. The TPX requires operation for 1000 seconds every 4500 seconds. During the Conceptual Design Phase of TPX every component of the TFTR NB Electrical Power System was analyzed to verify whether the equipment can meet the new operational requirements with our without modifications. The Power System converts 13.8 kV prime power to controlled pulsed power required at the NB sources. The major equipment involved are circuit breakers, auto and rectifier transformers surge suppression components, power tetrodes, HV Decks, and HVDC power transmission to sources. Thermal models were developed for the power transformers to simulate the new operational requirements. Heat runs were conducted for the power tetrodes to verify capability. Other components were analyzed to verify their thermal limitations. This paper describes the details of the evaluation and redesign of the electrical power system components to meet the TPX operational requirements.

  19. Improving Industrial Refrigeration System Efficiency - Actual Applications

    E-Print Network [OSTI]

    White, T. L.

    1980-01-01T23:59:59.000Z

    cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system...

  20. ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM

    E-Print Network [OSTI]

    ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

  1. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  2. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    SciTech Connect (OSTI)

    Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

    2010-07-15T23:59:59.000Z

    In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

  4. Comparing rig power transmission systems

    SciTech Connect (OSTI)

    Gutsche, W.; Noevig, T.

    1989-04-01T23:59:59.000Z

    Installed power on drilling rigs has increased steadily since the inception of rotary drilling technology as a result of technical advances and the need to penetrate deeper horizons. Higher power levels for the pumps, rotary table and drawworks are also required for drilling deep wells within an economically reasonable period. Power initially available on a rig had been about 35 kW on average, whereas power values on modern rigs drilling ultra-deep wells are on the order of several thousand kW. The installed power values on modern drilling rigs, subdivided with respect to depth range, are shown. After safety, economic factors are of paramount importance to rig operators. Among these, which include low acquisition cost, long service life and ease of maintenance, a particularly decisive factor is high efficiency.

  5. Electronic power conditioning for dynamic power conversion in high-power space systems

    E-Print Network [OSTI]

    Hansen, James Michael

    1991-01-01T23:59:59.000Z

    require power levels above 10 kW, . For high energy levels of short duration, Chemical energy sources are effective choices. Utilizing magnetohydrodynamics (MHD), for example, these systems provide pulse power to their respective loads. And lastly, A...

  6. Modeling for ship power system emulation

    E-Print Network [OSTI]

    Leghorn, Jeremy T. (Jeremy Thomas)

    2009-01-01T23:59:59.000Z

    With the U.S. Navy's continued focus on Integrated Fight Thru Power (IFTP) there has been an ever increasing effort to ensure an electrical distribution system that maintains maximum capabilities in the event of system ...

  7. Consumers Power, Inc.- Solar Energy System Rebate

    Broader source: Energy.gov [DOE]

    Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The...

  8. Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

  9. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  10. The Unseen Elephant: What Blocks Judicial System Improvement?

    E-Print Network [OSTI]

    Sherwood, Robert M.

    2007-01-01T23:59:59.000Z

    The Unseen Elephant: What Blocks Judicial Systemsystem improvement. The elephant in the judicial system’s

  11. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22T23:59:59.000Z

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  12. Visualizing Power System Operationsin an Open Market

    E-Print Network [OSTI]

    Gross, George

    Visualizing Power System Operationsin an Open Market ThomasJ. Overbye',George Gross',Mark J power producers, financial traders, brokers/marketers, and public policy makers) into the industry. The package differs from an operator training simulator (OTS), which is used in many energy management systems

  13. Effect of Detailed Power System Models in Traditional and Voltage Stability Constrained

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    problems to improve the accuracy of the results. It is shown in [2] that reactive power limits play], [9], [10], it is demonstrated that reactive power limits play a significant role in voltage collapse of power systems. Therefore, particular attention is placed here to the modeling of reactive power limits

  14. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect (OSTI)

    Nozari, F.; Patel, H.S.

    1988-04-01T23:59:59.000Z

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  15. Heatpipe space power and propulsion systems

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-07-01T23:59:59.000Z

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems.

  16. Doublet III neutral beam power system

    SciTech Connect (OSTI)

    Nerem, A.; Beal, J.W.; Colleraine, A.P.; LeVine, F.H.; Pipkins, J.F.; Remsen, D.B. Jr.; Tooker, J.F.; Varga, H.J.; Franck, J.V.

    1981-01-01T23:59:59.000Z

    The Doublet III neutral beam power system supplies pulsed power to the neutral beam injectors for plasma heating experiments on the Doublet III tokamak. The power supply system is connected to an ion source where the power is converted to an 80 kV, 80A, 0.5 sec beam of hydrogen ions at maximum power output. These energetic ions undergo partial neutralization via charge exchange in the beamline. The energetic neutral hydrogen atoms pass through the Doublet III toroidal and poloidal magnet fields and deposit their energy in the confined plasma. The unneutralized ions are deflected into a water-cooled dump. The entire system is interfaced through the neutral beam computer instrumentation and control system.

  17. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

    2012-07-01T23:59:59.000Z

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  18. Submitted to 15th Power System Computation Conference (PSCC), August 2005, Lige, Belgium

    E-Print Network [OSTI]

    of the power grid is automated, this degree of automation is much lower than most people realize. HumanSubmitted to 15th Power System Computation Conference (PSCC), August 2005, Ličge, Belgium REDUCING THE RISK OF MAJOR BLACKOUTS THROUGH IMPROVED POWER SYSTEM VISUALIZATION Thomas J. Overbye Douglas A

  19. Project Profile: Solar Power Tower Improvements with the Potential to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartmentPower Generation |SystemModule |Reduce

  20. Techno-economic Appraisal of Concentrating Solar Power Systems (CSP).

    E-Print Network [OSTI]

    Gasti, Maria

    2013-01-01T23:59:59.000Z

    ?? The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This… (more)

  1. Advanced Power Systems and Controls Laboratory

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    photovoltaic generation facility. Solar panel output is in white, and the response of the XP DPR is in red Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

  2. Wind for Schools Project Power System Brief

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

  3. Method and apparatus for improved high power impulse magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre

    2013-11-05T23:59:59.000Z

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  4. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01T23:59:59.000Z

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  5. Adaptive excitation control in power systems

    E-Print Network [OSTI]

    Chiu, Pei-Chen

    2006-08-16T23:59:59.000Z

    This thesis presents an adaptive excitation controller of power systems. The control law is derived by using model reference adaptive control (MRAC) or adaptive pole placement control (APPC) and an equilibrium tracking mechanism is implemented...

  6. Energy Savings Through Improved Mechanical Systems and Building...

    Office of Environmental Management (EM)

    Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

  7. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Steam System Performance: A Sourcebook for Industry, Second Edition Improving Steam System Performance: A Sourcebook for Industry, Second Edition This sourcebook is...

  8. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >

  9. Variable pressure power cycle and control system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1984-11-27T23:59:59.000Z

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  10. Direct current power transmission systems

    SciTech Connect (OSTI)

    Padiyar, K.R.

    1991-01-01T23:59:59.000Z

    This book represents text on HVDC transmission available. It deals with the various aspects of the state of the art in HVDC transmission technology. This book presents many aspects of interactions of AC/DC systems. Modeling and analysis of DC systems are also discussed in detail.

  11. Progress in photovoltaic system and component improvements

    SciTech Connect (OSTI)

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  12. Electricity for road transport, flexible power systems and wind...

    Open Energy Info (EERE)

    Electricity for road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power...

  13. Space Power System Modeling with EBAL

    SciTech Connect (OSTI)

    Zillmer, Andrew; Hanks, David; Wen-Hsiung 'Tony' Tu [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue MC LA 13, PO Box 7922, Canoga Park, CA 91309 (United States)

    2006-07-01T23:59:59.000Z

    Pratt and Whitney Rocket dyne's Engine Balance (EBAL) thermal/fluid system code has been expanded to model nuclear power closed Brayton cycle (CBC) power conversion systems. EBAL was originally developed to perform design analysis of hypersonic vehicle propellant and thermal management systems analysis. Later, it was adapted to rocket engine cycles. The new version of EBAL includes detailed, physics-based models of all key CBC system components. Some component examples are turbo-alternators, heat exchangers, heat pipe radiators, and liquid metal pumps. A liquid metal cooled reactor is included and a gas cooled reactor model is in work. Both thermodynamic and structural analyses are performed for each component. EBAL performs steady-state design analysis with optimization as well as off-design performance analysis. Design optimization is performed both at the component level by the component models and on the system level with a global optimizer. The user has the option to manually drive the optimization process or run parametric analysis to better understand system trade-off. Although recent EBAL developments have focused on a CBC conversion system, the code is easily extendible to other power conversion cycles. This new, more powerful version of EBAL allows for rapid design analysis and optimization of space power systems. A notional example of EBAL's capabilities is included. (authors)

  14. Solar Power Systems Web Monitoring

    E-Print Network [OSTI]

    Kumar, Bimal Aklesh

    2011-01-01T23:59:59.000Z

    All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

  15. Fly ash system technology improves opacity

    SciTech Connect (OSTI)

    NONE

    2007-06-15T23:59:59.000Z

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  16. Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management

    E-Print Network [OSTI]

    Khadkikar, Vinod

    This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

  17. Active high-power RF switch and pulse compression system

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

    1998-01-01T23:59:59.000Z

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  18. Micro Hydro-Diesel Hybrid Power System

    E-Print Network [OSTI]

    Dhanalakshmi R; Palaniswami S

    This paper presents the design and analysis of Neuro-Fuzzy controller based on Adaptive Neuro-Fuzzy Inference System (ANFIS) architecture for Load frequency control of an isolated wind-micro hydro-diesel hybrid power system, to regulate the frequency deviation and power deviations. Due to the sudden load changes and intermittent wind power, large frequency fluctuation problem can occur. This newly developed control strategy combines the advantage of neural networks and fuzzy inference system and has simple structure that is easy to implement. So, in order to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to control the system. Simulations of the proposed ANFIS based Neuro-Fuzzy controller in an isolated wind-micro hydro-diesel hybrid power system with different load disturbances are performed. Also, a conventional proportional Integral (PI) controller and a fuzzy logic (FL) controller were designed separately to control the same hybrid power system for the performance comparison. The performance of the proposed controller is verified from simulations and comparisons. Simulation results show that the performance of the proposed ANFIS based Neuro-Fuzzy Controller damps out the frequency deviation and attains the steady state value with less settling time. The proposed ANFIS based Neuro-Fuzzy controller provides best control performance over a wide range of operating conditions.

  19. Multi Megawatt Power System Analysis Report

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Harvego, Edwin Allan; Schnitzler, Bruce Gordon; Seifert, Gary Dean; Sharpe, John Phillip; Verrill, Donald Alan; Watts, Kenneth Donald; Parks, Benjamin Travis

    2001-11-01T23:59:59.000Z

    Missions to the outer planets or to near-by planets requiring short times and/or increased payload carrying capability will benefit from nuclear power. A concept study was undertaken to evaluate options for a multi-megawatt power source for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Of the numerous options considered, two that appeared to have the greatest promise were a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and a molten lithium-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study examined the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. Though the gas-Brayton systems showed an apparent advantage in specific mass, differences in the degree of conservatism inherent in the models used suggests expectations for the two approaches may be similar. Brayton systems eliminate the need to deal with two-phase flows in the microgravity environment of space.

  20. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R. [President & CEO] [President & CEO; McEntee, Jarlath [VP Engineering & CTO] [VP Engineering & CTO

    2013-12-30T23:59:59.000Z

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

  1. Center for Power Electronics Systems CENTER PROGRAM SNAPSHOT

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Research OVERVIEW: Engineered Systems Integrated Motor Drive Systems Power Distribution Systems Sustainable for Power Electron- ics Systems (CPES) are working to make electric power processing more efficient and more electricity to the next step and develop power processing systems of the highest value to society. A SYSTEMS

  2. Improving particle confinement in inertial electrostatic fusion for spacecraft power and propulsion

    E-Print Network [OSTI]

    Dietrich, Carl, 1977-

    2007-01-01T23:59:59.000Z

    Fusion energy is attractive for use in future spacecraft because of improved fuel energy density and reduced radioactivity compared with fission power. Unfortunately, the most promising means of generating fusion power on ...

  3. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

    2008-01-01T23:59:59.000Z

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  4. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 FuelCell Energy, Inc., in...

  5. Development of an Advanced Combined Heat and Power (CHP) System...

    Broader source: Energy.gov (indexed) [DOE]

    an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

  6. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by...

  7. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

  8. Demonstration of a Variable Phase Turbine Power System for Low...

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Demonstration of a Variable Phase Turbine Power System for Low Temperature...

  9. Electricity storage for short term power system service (Smart...

    Open Energy Info (EERE)

    Electricity storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service...

  10. Utilizing the Traction Drive Power Electronics System to Provide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability...

  11. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...

    Energy Savers [EERE]

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in...

  12. SciTech Connect: Nuclear power reactor instrumentation systems...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

  13. Systems for Electrical Power from Coproduced and Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources...

  14. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

    2008-06-24T23:59:59.000Z

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  15. Multimedia Systems as Immune System to Improve Automotive Security?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Multimedia Systems as Immune System to Improve Automotive Security? Jana Dittmann1 , Tobias Hoppe1 and environment. Especially in the field of automotive security, producers are seek- ing cost efficient- using resources. Initially, working in automotive security, it was easy to see that a wide variety

  16. Coal Power Systems strategic multi-year program plans

    SciTech Connect (OSTI)

    None

    2001-02-01T23:59:59.000Z

    The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL).

  17. REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL

    E-Print Network [OSTI]

    Berning, Torsten

    REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL University Denmark ABSTRACT Solid oxide fuel cell (SOFC) is a promising technology for decentralized power be theoretically improved through integration in power cycles; the low emissions; and the pos- sibility of using

  18. Use of fuel cells for improving on-site emergency power availability and reliability ad nuclear power plants

    E-Print Network [OSTI]

    Akkaynak, Derya

    2005-01-01T23:59:59.000Z

    To assure safe shutdown of a nuclear power plant, there must always be reliable means of decay heat removal provided, in last resort, by an Emergency Core Cooling System (ECCS). Currently the majority of nuclear power ...

  19. Damping of a parallel ac-dc power system using PID power system stabilizers and rectifier current regulators

    SciTech Connect (OSTI)

    Hsu, Y.Y.; Wang, L. (Dept. of Electrical Engineering, National Taiwan Univ., Taipei (TW))

    1988-09-01T23:59:59.000Z

    A novel approach is presented to improve the dynamic stability of a parallel AC-DC power system. The developed scheme employs a proportional-integral-derivative (PID) power system stabilizer (PSS) and a PID rectifier current regulator (RCR) to enhance the damping for the electromagnetical mode of the system. The parameters of the proposed PID controllers are determined using a unified approach based on modal control theory. Eigenvalue analyses are performed for the system under various operating conditions in order to compare the damping effects provided by the two different control schemes. To demonstrate the effectiveness of the proposed damping schemes under disturbance conditions simulated dynamic response tests based on a nonlinear system model are also performed.

  20. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

    1992-01-01T23:59:59.000Z

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  1. Modeling Power System Operation with Intermittent Resources

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27T23:59:59.000Z

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  2. Centralized and Decentralized Generated Power Systems -A Comparison Approach

    E-Print Network [OSTI]

    Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach@howard.edu, 202-806-5350 Power Systems Engineering Research Center The Power Systems Engineering Research Center

  3. Issues in microwave power systems engineering

    SciTech Connect (OSTI)

    Dickinson, R.M. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1996-12-31T23:59:59.000Z

    The key issues in microwave power system engineering are beam safety, frequency allocation, and affordability. These major issues are presented, discussed, and suggestions for resolving them are offered. The issue of beam safety can be captured in the phrase ``Fear of Frying.`` Can a properly engineered beamed power safety system allay the public perception of microwave radiation dangers? Openness, visibility, and education may be keys to resolving this issue satisfactorily. ``Not in my Spectrum`` is a phrase that is frequently encountered in connection with the issue of where can the microwave power beam frequency be located. International cooperation may provide a part of the solution to this issue. ``Wow, that much?`` is a phrase encountered when dealing with the issue of economic affordability of large beamed power systems. A phased engineering approach for multiple uses even during construction is presented to aid in garnering revenue during the system build phase. Also, dual mode dc-RF converters are encouraged for bi-directional power flow utility and economies of scale in production.

  4. Power system security enhancement through effective allocation, control and integration of demand response program and FACTS devices.

    E-Print Network [OSTI]

    Yousefi, Ashkan

    2013-01-01T23:59:59.000Z

    ??This thesis is devoted to the development of a new approach for using the FACTS devices and demand response programs to improve the power system… (more)

  5. High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*

    E-Print Network [OSTI]

    Boyer, Edmond

    High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed* Grenoble wind power using a kite-based system, and the proposed structures *Corresponding author Mariam.AHMED@g2

  6. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    SciTech Connect (OSTI)

    M. L. Grossbeck J-P.A. Renier Tim Bigelow

    2003-09-30T23:59:59.000Z

    Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility and cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.

  7. Power System Equipment Module Test Project

    SciTech Connect (OSTI)

    Schilling, J.R.

    1980-12-01T23:59:59.000Z

    The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

  8. Efficiency Improvement in an Over the Road Diesel Powered Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and potential efficiency enhancement deer08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  9. Substrate-Enhanced Microbial Fuel Cells for Improved Remote Power

    E-Print Network [OSTI]

    . The maximum power generated using AQDS (9,- 10-anthraquinone-2,6-disulfonic acid) bound to the anode was 98 m

  10. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, Michael G.; Poston, David I.; Emrich, William J. Jr. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-15T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998.

  11. Heatpipe power system and heatpipe bimodal system development status

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I. [Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States); Emrich, W.J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35758 (United States)

    1998-01-01T23:59:59.000Z

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is underway, and testing should begin in early 1998. {copyright} {ital 1998 American Institute of Physics.}

  12. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An advanced exhaust aftertreatment system developed to meet EPA 2010 and final Tier 4 emission regulations show substantial improvements in system performance while reducing system...

  13. Stability-Constrained Optimal Power Flow and Its Application to Pricing Power System Stabilizers

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    locational marginal prices. A power system stabilizer (PSS) is then introduced in the test system, locational marginal prices, power system stabilizer, voltage stability. I. INTRODUCTION THE deregulation1 Stability-Constrained Optimal Power Flow and Its Application to Pricing Power System Stabilizers

  14. Communication Simulations for Power System Applications

    SciTech Connect (OSTI)

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

    2013-05-29T23:59:59.000Z

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

  15. LED lamp power management system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19T23:59:59.000Z

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  16. NASA's Marshall Space Flight Center Improves Cooling System Performanc...

    Broader source: Energy.gov (indexed) [DOE]

    Improves Cooling System Performance Case study details Marshall Space Flight Center's innovative technologies to improve water efficiency and cooling performance for one of its...

  17. Improvement and Simplification of Diesel Particulate Filter System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel...

  18. The Applied Mathematics for Power Systems (AMPS)

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory

    2012-07-24T23:59:59.000Z

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  19. Incorporating HVDC's into monitoring and power system analysis

    E-Print Network [OSTI]

    Krishnaswamy, Vikram

    2002-01-01T23:59:59.000Z

    This thesis attempts to study the effect of incorporating HVDC's into monitoring and power system analysis. Power system analysis, including load flow and stability studies, and monitoring defines a complete cycle of the impact of HVDC in a power...

  20. Smart Grid - Transforming Power System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28T23:59:59.000Z

    Abstract—Electric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER – generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  1. Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy

    E-Print Network [OSTI]

    Herr, Hugh

    Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy by Samuel Kwok-Wai Au LIBRARIES #12;#12;Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy by Samuel The human ankle provides a significant amount of net positive work during the stance period of walking

  2. Enhanced IGCC regulatory control and coordinated plant-wide control strategies for improving power ramp rates

    SciTech Connect (OSTI)

    Mahapatra, P.; Zitney, S.

    2012-01-01T23:59:59.000Z

    As part of ongoing R&D activities at the National Energy Technology Laboratory’s (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

  3. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  4. Crowd-Powered Systems Michael Scott Bernstein

    E-Print Network [OSTI]

    Pratt, Vaughan

    Crowd-Powered Systems by Michael Scott Bernstein S.M., Massachusetts Institute of Technology, 2008 Scott Bernstein Submitted to the Department of Electrical Engineering and Computer Science on May 23 and Rob Miller, always willing to listen to crazy ideas; · Terry Winograd, Scott Klemmer, Bj¨orn Hartmann

  5. TO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    , generator capability curves, maximum loadability, voltage stability, electrical energy markets, reactive- active power in electric power systems. Although there are other important reactive power sourcesTO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on Maximum

  6. Technology verification phase. Dynamic isotope power system. Final report

    SciTech Connect (OSTI)

    Halsey, D.G.

    1982-03-10T23:59:59.000Z

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  7. Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers

    E-Print Network [OSTI]

    Simunic, Tajana

    Rack PDU BackupMain Bus-type power network Utility Diesel Generator ATS PDU Server Rack Server RackDistributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power

  8. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01T23:59:59.000Z

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  9. TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS 1 Vulnerability Assessment of Cybersecurity for

    E-Print Network [OSTI]

    Manimaran, Govindarasu

    TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS 1 Vulnerability Assessment of Cybersecurity Govindarasu, Member, IEEE Abstract--Vulnerability assessment is a requirement of NERC's cybersecurity within the substation networks. Countermeasures are identified for improvement of the cybersecurity

  10. A Supply-Demand Model Based Scalable Energy Management System for Improved Energy

    E-Print Network [OSTI]

    Bhunia, Swarup

    the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization

  11. Powered Ankle–Foot Prosthesis Improves Walking Metabolic Economy

    E-Print Network [OSTI]

    Au, Samuel K.

    At moderate to fast walking speeds, the human ankle provides net positive work at high-mechanical-power output to propel the body upward and forward during the stance period. On the contrary, conventional ankle-foot ...

  12. Georgia Interfaith Power and Light- Energy Improvement Grants (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Interfaith Power and Light (GIPL) offers grants of up to $10,000 to congregations or faith-based communities, including faith-based schools. Grant funds may be used for energy conservation...

  13. Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

  14. Power Systems of the Future: A 21st Century Power Partnership Thought Leadership Report (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    Powerful trends in technology, policy environments, financing, and business models are driving change in power sectors globally. In light of these trends, the question is no longer whether power systems will be transformed, but rather how these transformations will occur. Power Systems of the Future, a thought leadership report from the 21st Century Power Partnership, explores these pathways explores actions that policymakers and regulators can take to encourage desired power system outcomes.

  15. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect (OSTI)

    Sovie, R.J.; Bozek, J.M.

    1994-09-01T23:59:59.000Z

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  16. Power Optimization and Management in Embedded Systems1 Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Power Optimization and Management in Embedded Systems1 Massoud Pedram University of Southern under contract number DAAB07-00-C-L516. Abstract Power-efficient design requires reducing power on the system performance and quality of service (QoS). Power-aware high-level language compilers, dynamic power

  17. Saft Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar PowerSaft Power Systems Jump to: navigation,

  18. Solar-powered turbocompressor heat pump system

    DOE Patents [OSTI]

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12T23:59:59.000Z

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  19. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30T23:59:59.000Z

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  20. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint

    SciTech Connect (OSTI)

    Ma, Z.; Turchi, C. S.

    2011-03-01T23:59:59.000Z

    The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

  1. Balancing of Wind Power - Optimization of power systems which include wind power systems.

    E-Print Network [OSTI]

    Ülker, Muhammed Akif

    2011-01-01T23:59:59.000Z

    ?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

  2. A new power combining and outphasing modulation system for high-efficiency power amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  3. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  4. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31T23:59:59.000Z

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  5. Power system identification toolbox: Phase two progress

    SciTech Connect (OSTI)

    Trudnowski, D.J.

    1994-08-01T23:59:59.000Z

    This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

  6. Computing GIC in large power systems

    SciTech Connect (OSTI)

    Prabhakara, F.S. (Power Technologies, Inc., Schenectady, NY (United States)); Ponder, J.Z.; Towle, J.N.

    1992-01-01T23:59:59.000Z

    On March 13, 1989, a severe geomagnetic disturbance affected power and communications systems in the North American continent. Since the geomagnetic disturbance, several other disturbances have occurred. The Pennsylvania, New Jersey, and Maryland (PJM) Interconnection system, its member companies, and some of the neighboring utilities experienced the geomagnetic induced current (GIC) effects on March 13, 1989, as well as during the subsequent geomagnetic disturbances. As a result, considerable effort is being focused on measurement, analysis, and mitigation of GIC in the PJM system. Some of the analytical and computational work completed so far is summarized in this article.

  7. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect (OSTI)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01T23:59:59.000Z

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  8. Test report : Princeton power systems prototype energy storage system.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

  9. SiC Power MOSFET with Improved Gate Dielectric

    SciTech Connect (OSTI)

    Sbrockey, Nick M; Tompa, Gary S; Spencer, Michael G; Chandrashekhar, Chandra MVS

    2010-08-23T23:59:59.000Z

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  10. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Water Power...

  11. Future Power Systems 20: The Smart Enterprise, its Objective...

    Broader source: Energy.gov (indexed) [DOE]

    0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. More Documents & Publications Future Power...

  12. A Solar Power System for High Altitude Airships.

    E-Print Network [OSTI]

    Mei, Qiang

    2011-01-01T23:59:59.000Z

    ??This research is intended to produce a power system suitable for an aerostat operating at 67,500 ft and powered only by solar energy. A battery… (more)

  13. Power Systems Engineering Research Center Dennis Ray Ward Jewell

    E-Print Network [OSTI]

    Power Systems Engineering Research Center Dennis Ray Ward Jewell Executive Director, Power Systems-Learjet Fellow Madison, WI 53706-1691 Director, Power Quality Laboratory djray@engr.wisc.edu Wichita State an overview of the Power Systems Engineering Research Center (PSERC), a National Science Foundation Industry

  14. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper The New Electric Power Business-tuned, economically efficient, and technically-reliable electric power system. The creation of new information system is outmoded and unprepared for the challenges of the new electric power business. A result

  15. A Survey of Architectural Techniques For Improving Cache Power Efficiency

    E-Print Network [OSTI]

    (complementary metal oxide semiconductor) technology gen- eration, there is a significant increase in the leakage for Semiconductors (ITRS); with technology scaling, leakage power consumption will become a major industry crisis [5]. Finally, to bridge the gap between the speed of processor and main memory, modern processors

  16. Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems

    E-Print Network [OSTI]

    Bianchini, Ricardo

    Dynamically Quantifying and Improving the Reliability of Distributed Storage Systems Rekha Bachwani-scale storage systems can be significantly improved by using bet- ter reliability metrics and more efficient on a distributed storage system based on erasure codes. We find that MinI improves relia- bility significantly

  17. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  18. Improving Pumping System Performance: A Sourcebook for Industry...

    Broader source: Energy.gov (indexed) [DOE]

    Pumping System Performance: A Sourcebook for Industry - Second Edition Improving Pumping System Performance: A Sourcebook for Industry - Second Edition This sourcebook is designed...

  19. Improving Process Heating System Performance: A Sourcebook for...

    Broader source: Energy.gov (indexed) [DOE]

    Process Heating System Performance: A Sourcebook for Industry, Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This...

  20. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

  1. Sun powers Libya cathodic-protection system

    SciTech Connect (OSTI)

    Currer, G.W.

    1982-03-22T23:59:59.000Z

    Well castings and part of the main 300-mile-long, 32-in diameter pipeline from Sarir to Tobruk are cathodically protected by solar power, which prevents galvanic action by applying an electric direct current of appropriate magnitude and polarity to the steel structures. They then act as cathodes and become the recipients of metallic ions. At each cathodic-protection station, the solar-generaor system consists of solar-panel arrays, electronic controls, and batteries.

  2. Innovative Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels Jump to:Power Systems Jump

  3. Analysis of Power System Dynamics Subject to Stochastic Power Injections

    E-Print Network [OSTI]

    Liberzon, Daniel

    Abstract--We propose a framework to study the impact of stochastic active/reactive power injections. In this framework the active/reactive power injections evolve according to a continuous-time Markov chain (CTMC) model. The DAE model is linearized around a nominal set of active/reactive power injections

  4. System Definition and Analysis: Power Plant Design and Layout

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

  5. Excise Tax Exemption for Solar- or Wind-Powered Systems

    Broader source: Energy.gov [DOE]

    Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

  6. Underwater nuclear power plants: improved safety, environmental compatibility and efficiency

    SciTech Connect (OSTI)

    Galustov, K.Z.; Abadjyan, K.A.; Pavlov, A.B.

    1991-01-01T23:59:59.000Z

    The further development of nuclear power engineering depends on the creation of a new generation of nuclear power plant (NPP) projects that have a high degree of safety. Decisions ensuring secure NPP exploitation must be based on the possibility of eliminating or localizing accidents. Using environmental properties to achieve secure NPP exploitation and accident elimination leads to suggest the construction of NPPs in water. An efficient way to provide energy to remote coastal areas is through use of floatable construction of prefabricated units. Floatable construction raises the quality of works, reduces expenditures on industrial facilities, and facilities building conditions in districts with extreme climatic conditions. A type of NPP that is situated on a shelf with the reactor compartment placed at the sea bottom is proposed. The underwater location of the reactor compartment on the fixed depth allows the natural water environment conditions of natural hydrostatic pressure, heat transfer and circulation to provide NPP safety. An example of new concept for power units with under-water localization of the reactor compartment is provided by the double-block NPP in a VVER reactor.

  7. Operating the Irish Power System with Increased Levels of Wind Power

    E-Print Network [OSTI]

    Operating the Irish Power System with Increased Levels of Wind Power Aidan Tuohy, Student Member-- This paper summarises some of the main impacts of large amounts of wind power installed in the island of Ireland. Using results from various studies performed on this system, it is shown that wind power

  8. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power

    E-Print Network [OSTI]

    Hu, Weihao

    @et.aau.dk, csu@et.aau.dk, zch@et.aau.dk Abstract ­ Grid connected wind turbines are fluctuating power sources due on the power system small signal stability of wind turbines based on fixed-speed induction generators, doubly two interconnected power systems [9]. The wind power fluctuations produced by grid connected variable

  9. E-Print Network 3.0 - autonomous power systems Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems Search Powered by Explorit Topic List Advanced Search Sample search results for: autonomous power systems...

  10. E-Print Network 3.0 - autonomous power system Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system Search Powered by Explorit Topic List Advanced Search Sample search results for: autonomous power system...

  11. System Study: Emergency Power System 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01T23:59:59.000Z

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. A statistically significant increasing trend was identified for unreliability (8 hour model) as a function of fiscal year. No statistically significant decreasing trend was identified in the EPS results.

  12. Energy management system functions in deregulated power systems

    E-Print Network [OSTI]

    Magnago, Fernando Hugo

    1997-01-01T23:59:59.000Z

    covariance matrix 8: E(uwr) = 8 = 0 0 . . cr This means that the measurement errors are independent with variances o;. As mentioned before, measurements are composed of power injections, power flows, and voltages. Vector h(z, ) represents the non linear..., nonetheless LAV reject INJ 4 if this injection measurement contains a bad data with 5 incident flows measurements. For INJ 10 in the 30-bus system, the cut oR' value is 16. 01 and again 24 Table II. IEEE 57-bus system: Variation of PS for INJ 13...

  13. Ris-R-1256(EN) Isolated Systems with Wind Power

    E-Print Network [OSTI]

    Risø-R-1256(EN) Isolated Systems with Wind Power Main Report Per Lundsager, Henrik Bindner, Niels 2001 #12;Abstract It is generally expected that wind power could contribute significantly for such applications of wind power has not yet materialised in any substantial scale. Wind power in isolated power

  14. Power Net Revenue Improvement Sounding Board (aboutpbl/financial)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > Financial Info >

  15. Reliability assessment of autonomous power systems incorporating HVDC interconnection links

    SciTech Connect (OSTI)

    Dialynas, E.N.; Koskolos, N.C. [National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering] [National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering; Agoris, D. [Public Power Corp., Athens (Greece)] [Public Power Corp., Athens (Greece)

    1996-01-01T23:59:59.000Z

    The objective of this paper is to present an improved computational method for the overall reliability assessment of autonomous power systems that may or may not contain HVdc interconnection links. This is a hybrid method based on a Monte-Carlo simulation sequential approach which incorporates an analytical approach for the reliability modeling of the HVdc transmission links. The developed models and techniques have been implemented into a computer program that can be used to simulate the operational practices and characteristics of the overall system under study efficiently and realistically. A set of reliability indices are calculated for each load-point of interest and the entire system while a set of additional indices is calculated for quantifying the reliability performance of the interconnection links under the specified operating requirements. The analysis of a practical system is also included for a number of studies representing its various operating and design characteristics.

  16. The Power Systems Development Facility -- Current status

    SciTech Connect (OSTI)

    Pinkston, T.E.; Maxwell, J.D.; Leonard, R.F.; Vimalchand, P.

    1995-11-01T23:59:59.000Z

    Southern Company Services, Inc. (SCS) has entered into a cooperative agreement with the US Department of Energy (DOE) to build and operate the Power Systems Development Facility (PSDF), currently under construction in Wilsonville, Alabama, 40 miles southeast of Birmingham. The objectives of the PSDF are to develop advanced coal-fired power generation technologies through testing and evaluation of hot gas cleanup systems and other major components at the pilot scale. The performance of components will be assessed and demonstrated in an integrated mode of operation and at a component size readily scaleable to commercial systems. The facility will initially contain five modules: (1) a transport reactor gasifier and combustor, (2) an advanced pressurized fluidized-bed combustion (APFBC) system, (3) a particulate control module, (4) an advanced burner-gas turbine module, and (5) a fuel cell. The five modules will initially be configured into two separate test trains, the transport reactor train (2 tons/hour of coal feed) and the APFBC train (3 tons/hour of coal feed). In addition to a project description, the project design and construction status, preparations for operations, and project test plans are reported in this paper.

  17. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01T23:59:59.000Z

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  18. ECE 461/2: Power Systems I Calculus and algebra

    E-Print Network [OSTI]

    Schumacher, Russ

    in a complex industrial load -Lab Experience with Power Electronic Motor Drives- Understands electric- or better Fields Power System Analysis Three-phase circuits Concepts: - Single and three phase electric with associated power Electronics drives Applications: - Employing PSSE to calculate power system flow, stability

  19. V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota Abstract an implementation of V2G technology is proposed here to improve the quality and stability of wind power output

  20. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  1. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31T23:59:59.000Z

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  2. Power factor correction of an electrical drive system based on multiphase machines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Power factor correction of an electrical drive system based on multiphase machines Khoudir MAROUANI_tabache@yahoo.com Abstract--This paper deals with the energy efficiency improvement of an electrical drive which can be used both in wind energy conversion or motor drive applications. A power factor (PF) control scheme

  3. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01T23:59:59.000Z

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  4. Business Process Management Systems enabling continuous improvement in industrial services

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Business Process Management Systems ­ enabling continuous improvement in industrial services Heikki that modern business process management systems (BPMS) provide in improving industrial service processes. A case study identifies improvement opportunities in the order-to- cash process in two service lines

  5. Load frequency control of interconnected power systems with system constraints

    E-Print Network [OSTI]

    Choudhury, Md Ershadul H

    1993-01-01T23:59:59.000Z

    Responses D. Generating Unit Characteristics E. The State Variable Representation of the Dynamic F. LFC System Data . 1. Power System Data 2. Controller Gains 3. The Reheat-turbine Prime-Mover Data Model . 6 7 8 10 11 12 15 15 18 23 23 25... 56 25 LFC system response with VSS control. Area 1 fails to respond for a load change of APnr ? 0, 01 p. u. 57 26 LFC system response with conventional controL Area 1 fails to respond for the same load disturbance as in Fig. 26. . . 58 27...

  6. Financing Home Energy and Renewable Energy Improvements with FHA PowerSaver Loans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01T23:59:59.000Z

    This fact sheet is a revision to the PowerSaver Loan Benefits fact sheet from April 2014. It describes how the U.S. Department of Housing and Urban Development (HUD) PowerSaver Loan Program offers borrowers low-cost FHA-insured loans to make energy-saving improvements to their homes.

  7. Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells

    E-Print Network [OSTI]

    Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis August 2014 Keywords: Microbial reverse electrodialysis cell Patterned membranes Integrated spacer Internal resistance a b s t r a c t Power production in microbial reverse-electrodialysis cells (MRCs) can

  8. Reactive power management of distribution networks with wind generation for improving voltage stability

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    -loadability Reactive power margin Wind turbine a b s t r a c t This paper proposes static and dynamic VAR planningReactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q

  9. Adaptive Power Control for Single and Multiuser Opportunistic Systems

    E-Print Network [OSTI]

    Nam, Sung Sik

    2010-07-14T23:59:59.000Z

    In this dissertation, adaptive power control for single and multiuser opportunistic systems is investigated. First, a new adaptive power-controlled diversity combining scheme for single user systems is proposed, upon which is extended...

  10. Analyses of power system vulnerability and total transfer capability

    E-Print Network [OSTI]

    Yu, Xingbin

    2006-04-12T23:59:59.000Z

    companies and the ISOs. An uninterrupted and high quality power is required for the sustainable development of a technological society. Power system blackouts generally result from cascading outages. Protection system hidden failures remain dormant when...

  11. Solid Oxide Fuel Cell and Power System Development at PNNL

    Broader source: Energy.gov (indexed) [DOE]

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials...

  12. A Survey of Wireless Communications for the Electric Power System

    SciTech Connect (OSTI)

    Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

    2010-01-27T23:59:59.000Z

    A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nation’s energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: • IEEE 802.16 d and e (WiMAX) • IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s • Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee • The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

  13. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect (OSTI)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25T23:59:59.000Z

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

  14. Power Systems Development Facility. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell.

  15. Deep Well #4 Backup Power Systems Project Closeout Report

    SciTech Connect (OSTI)

    Jeremy Westwood

    2010-04-01T23:59:59.000Z

    The project scope was to install a diesel generated power source to deep well 4 in addition to the existing commercial power source. The diesel power source and its fuel supply system shall be seismically qualified to withstand a Performance Category 4 (PC-4) seismic event. This diesel power source will permit the deep well to operate during a loss of commercial power. System design will incorporate the ability to select and transfer power between the new diesel power source and commercial power sources for the the deep well motor and TRA-672 building loads.

  16. Transient modeling of thermionic space nuclear power systems

    E-Print Network [OSTI]

    Berge, Francoise M

    1991-01-01T23:59:59.000Z

    elements convert the thermal power generated by the core into electrical power to be supplied to the load. Some recent designs ol' space nuclear reactors investi- gate single loop systems operating with direct in-core thermionic conversion. CENTAR... CHAPTER I INTRODUCTION . Objectives and Methodology . . Thesis Organization Literature Review II CENTAR SIMULATION CODE FOR SPACE NUCLEAR POWER SYSTEMS III TOPAZ II SPACE NUCLEAR POWER SYSTEM. . . . . System Layout. Nuclear Core...

  17. VRB Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrantEnergyVRB Power Systems

  18. Coal pulverizing systems for power generation

    SciTech Connect (OSTI)

    Sligar, J.

    1993-12-31T23:59:59.000Z

    The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

  19. Ris-R-1257(EN) Isolated Systems with Wind Power

    E-Print Network [OSTI]

    Risø-R-1257(EN) Isolated Systems with Wind Power An Implementation Guideline Niels-Erik Clausen energy in isolated communities. So far most studies of isolated systems with wind power have been case studies of isolated systems with wind power have mostly been case- oriented. Thus it has been difficult

  20. GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS for Certification of Combined Heat and Power Systems Pursuant to the Waste Heat and Carbon Emissions Reduction Act Heat and Power System Pursuant to the Waste Heat and Carbon Emissions Reduction Act, Public Utilities

  1. Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E-mail: judicael.aubry Abstract This paper examines the sizing energy storage system (ESS) for energy converter. Keywords: Energy Storage System (ESS), power smoothing, Direct Wave Energy Converter, Supercapacitor, Power

  2. Optimal Shipboard Power System Management via Mixed Integer Dynamic Programming

    E-Print Network [OSTI]

    Kwatny, Harry G.

    Optimal Shipboard Power System Management via Mixed Integer Dynamic Programming Harry G. Kwatny' power systems using a logical specification to define the transition dynamics of the discrete subsystem following component failure(s) is a central goal of power system management including electric shipboard

  3. The Application of Robust Optimization in Power Systems

    E-Print Network [OSTI]

    Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The.Hedman@asu.edu Power Systems Engineering Research Center The Power Systems Engineering Research Center (PSERC) is a multi-university Center con- ducting research on challenges facing the electric power industry

  4. Flexibility in 21st Century Power Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). Sources of flexibility exist--and can be enhanced--across all of the physical and institutional elements of the power system, including system operations and markets, demand side resources and storage; generation; and transmission networks. Accessing flexibility requires significant planning to optimize investments and ensure that both short- and long-time power system requirements are met.

  5. Smart Grid The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant Misra, Member, IEEE, Guoliang Xue, Fellow, IEEE,

    E-Print Network [OSTI]

    Misra, Satyajayant

    Smart Grid ­ The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant--The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely

  6. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    SciTech Connect (OSTI)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01T23:59:59.000Z

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  7. Distributed Robust Power System State Estimation

    E-Print Network [OSTI]

    Kekatos, Vassilis

    2012-01-01T23:59:59.000Z

    Deregulation of energy markets, penetration of renewables, advanced metering capabilities, and the urge for situational awareness, all call for system-wide power system state estimation (PSSE). Implementing a centralized estimator though is practically infeasible due to the complexity scale of an interconnection, the communication bottleneck in real-time monitoring, regional disclosure policies, and reliability issues. In this context, distributed PSSE methods are treated here under a unified and systematic framework. A novel algorithm is developed based on the alternating direction method of multipliers. It leverages existing PSSE solvers, respects privacy policies, exhibits low communication load, and its convergence to the centralized estimates is guaranteed even in the absence of local observability. Beyond the conventional least-squares based PSSE, the decentralized framework accommodates a robust state estimator. By exploiting interesting links to the compressive sampling advances, the latter jointly es...

  8. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    at its maximum power output for the given solar conditions.Solar Electric Incentive Programs. [38] Module power outputs,power output (a) and voltages (b) of PV modules satisfying the Guidelines for California’s Solar

  9. Direct current uninterruptible power supply method and system

    DOE Patents [OSTI]

    Sinha, Gautam

    2003-12-02T23:59:59.000Z

    A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

  10. Improvement of load-following capacity based on the flame radiation intensity signal in a power plant

    SciTech Connect (OSTI)

    Fei Wang; Qunxing Huang; Dong Liu; Jianhua Yan; Kefa Cen [Zhejiang University, Hangzhou (China). State Key Laboratory of Clean Energy Utilization

    2008-05-15T23:59:59.000Z

    The capability to perform fast load changes has been an important issue due to the increasing commercialization of the power market. In the traditional boiler control system, the feedback signals come from the variations of the steam pressure and the steam flow, which leads to a large time delay. Therefore, a new method for the boiler control system based on radiation intensity for improving the load-following capacity of a coal-fired power plant has been developed in this paper. The system is implemented by adding the radiation intensity of the flame to the existing boiler control system as a complement. The radiation intensity obtained by the sensor can directly reflect the input heat in the boiler, with a faster response and higher sensitivity. Field tests on a 300 MW coal-fired power plant reveal that the improved boiler control system increases the load-following capacity. At the same time, the steam pressure variations are smaller as compared with those of the existing control system. 14 refs., 19 figs., 1 tab.

  11. Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power

    E-Print Network [OSTI]

    Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Aidan a stochastic element due to the uncertainty of wind power forecasts. By explicitly taking into account the stochastic nature of wind power, it is expected that better schedules should be produced, thereby reducing

  12. LINEAR TIME PERIODIC MODELLING OF POWER ELECTRONIC DEVICES FOR POWER SYSTEM HARMONIC ANALYSIS AND SIMULATION

    E-Print Network [OSTI]

    Boyer, Edmond

    LINEAR TIME PERIODIC MODELLING OF POWER ELECTRONIC DEVICES FOR POWER SYSTEM HARMONIC ANALYSIS by simulation. 1. INTRODUCTION The variety and the wide spread use of power electronic devices in the power networks is due to their diverse and multiple functions: compensation, protection and interface

  13. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27T23:59:59.000Z

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  14. Enabling process improvements through systems thinking

    E-Print Network [OSTI]

    Dolak, Jessica

    2006-01-01T23:59:59.000Z

    Manufacturing organizations around the world strive to improve processes with varying degrees of realization. There is no right way or latest and greatest process that can guarantee success, therefore the approach, and not ...

  15. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect (OSTI)

    Tolbert, L.M.

    2005-12-21T23:59:59.000Z

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  16. Essential Power Systems Workshop - OEM Perspective

    SciTech Connect (OSTI)

    Bill Gouse

    2001-12-12T23:59:59.000Z

    In California, idling is largely done for climate control. This suggests that climate control devices alone could be used to reduce idling. Line-haul truck drivers surveyed require an average of 4-6 kW of power for a stereo, CB radio, light, refrigerator, and climate control found in the average truck. More power may likely be necessary for peak power demands. The amount of time line-haul trucks reported to have stopped is between 25 and 30 hours per week. It was not possible to accurately determine from the pilot survey the location, purpose, and duration of idling. Consulting driver logs or electronically monitoring trucks could yield more accurate data, including seasonal and geographic differences. Truck drivers were receptive to idling alternatives. Two-thirds of truck drivers surveyed support a program to reduce idling. Two-thirds of drivers reported they would purchase idling reduction technologies if the technology yielded a payback period of two years or less. Willingness to purchase auxiliary power units appears to be higher for owner-operators than for company drivers. With a 2-year payback period, 82% of owner- operators would be willing to buy an idle- reducing device, while 63% of company drivers thought their company would do the same. Contact with companies is necessary to discern whether this difference between owner- operators and companies is true or simply due to the perception of the company drivers. Truck stops appear to be a much more attractive option for electrification than rest areas by a 48% to 21% margin. Much of this discrepancy may be due to perceived safety problems with rest areas. This survey did not properly differentiate between using these areas for breaks or overnight. The next, full survey will quantify where the truck drivers are staying overnight, where they go for breaks, and the duration of time they spend at each place. The nationwide survey, which is in progress, will indicate how applicable the results are to the US in general. In addition to the survey, we believe data loggers and focus groups will be necessary to collect the idling duration and location data necessary to compare auxiliary power units to truck stop electrification. Focus groups are recommended to better understand the driver response to APUs and electrification. The appearance and perception of the new systems will need further clarification, which could be accomplished with a demonstration for truck drivers.

  17. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08T23:59:59.000Z

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

  18. Advanced fenestration systems for improved daylight performance

    E-Print Network [OSTI]

    Selkowitz, S.; Lee, E.S.

    1998-01-01T23:59:59.000Z

    daylighting designs is a lack of systems perspective that accounts for, and provides an integrated solution

  19. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

  20. Improving Motor and Drive System Performance - A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    motors and drives, as well as resources for additional information, tools, software, videos, and training opportunities. Improving Motor and Drive System Performance - A...

  1. Improving Pumping System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Prepared for the DOE Industrial Technologies Program, this sourcebook contains the practical guidelines and information manufacturers need to improve the efficiency of their pumping systems.

  2. PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau

    E-Print Network [OSTI]

    Ashley, Michael C. B.

    PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau the power generation and management system of PLATO. Two redundant arrays of solar panels and a multiply astronomical facilities on the Antarctic plateau, offering minimum environmental impact and requiring minimal

  3. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper What is Reactive Power? Peter W-Champaign September 16, 2003 Engineering talk Reactive power is a quantity that is normally only defined time). In that sense, these are pulsating quantities. Because of this, the power being transmitted down

  4. SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, FEBRUARY 2002 1 Human Factors Aspects of Power System

    E-Print Network [OSTI]

    either as numerical fields on one-line diagrams, or by tabular list displays. Additionally, in a utility with human factors aspects of utilizing color contours to visualize electric power system bus voltage the needs of a vertically integrated utility, with restructuring they are increasingly inadequate

  5. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01T23:59:59.000Z

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  6. Nonlinear modal interaction in HVDC/AC power systems with dc power modulation

    SciTech Connect (OSTI)

    Ni, Y.X. [Tsinghua Univ., Beijing (China)] [Tsinghua Univ., Beijing (China); Vittal, V.; Kliemann, W.; Fouad, A.A. [Iowa State Univ., Ames, IA (United States)] [Iowa State Univ., Ames, IA (United States)

    1996-11-01T23:59:59.000Z

    In this paper investigation of nonlinear modal interaction using the normal form of vector fields technique is extended to HVDC/AC power systems with dc power modulation. The ac-dc interface equations are solved to form a state space model with second order approximation. Using the normal form technique, the system`s nonlinear dynamic characteristics are obtained. The proposed approach is applied to a 4-generator HVDC/AC test power system, and compare with the time domain solution.

  7. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect (OSTI)

    Southern Company Services

    2008-12-01T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  8. Control system and method for a universal power conditioning system

    SciTech Connect (OSTI)

    Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang

    2014-09-02T23:59:59.000Z

    A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.

  9. Steam System Improvement: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Leigh, N.

    . For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

  10. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

  11. The future of GPS-based electric power system measurements, operation and control

    SciTech Connect (OSTI)

    Rizy, D.T. [Oak Ridge National Lab., TN (United States); Wilson, R.E. [Western Area Power Administration, Golden, CO (United States); Martin, K.E.; Litzenberger, W.H. [Bonneville Power Administration, Portland, OR (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Overholt, P.N. [Dept. of Energy, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1998-11-01T23:59:59.000Z

    Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

  12. Prefire identification for pulse power systems

    DOE Patents [OSTI]

    Longmire, Jerry L. (Los Alamos, NM); Thuot, Michael E. (Espanola, NM); Warren, David S. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  13. Prefire identification for pulse-power systems

    DOE Patents [OSTI]

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23T23:59:59.000Z

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  14. System-Wide Emissions Implications of Increased Wind Power Penetration

    E-Print Network [OSTI]

    Kemner, Ken

    and ramifications of wind power providing 20% of U.S. electricity by 2030.1 Wind energy is advantageous becauseSystem-Wide Emissions Implications of Increased Wind Power Penetration Lauren Valentino,, Viviana of incorporating wind energy into the electric power system. We present a detailed emissions analysis based

  15. Advanced PID type fuzzy logic power system stabilizer

    SciTech Connect (OSTI)

    Hiyama, Takashi; Kugimiya, Masahiko; Satoh, Hironori (Kumamoto Univ. (Japan). Dept. of Electrical Engineering and Computer Science)

    1994-09-01T23:59:59.000Z

    An advanced fuzzy logic control scheme has been proposed for a micro-computer based power system stabilizer to enhance the overall stability of power systems. The proposed control scheme utilizes the PID information of the generator speed. The input signal to the stabilizer is the real power output of a study unit. Simulations show the effectiveness of the advanced fuzzy logic control scheme.

  16. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B capital investment costs of renewable energy technologies. Specifically, wind power represents the most and small power systems. However, the variability due to the stochastic nature of the wind resource

  17. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper Power System Operations of Illinois at Urbana-Champaign September 10, 2003 Before the August 14th 2003 blackout most people gave little thought to the source of the power that comes out of the electric outlet. And why should they

  18. Phasor Measurement Unit Data in Power System State Estimation

    E-Print Network [OSTI]

    by supervisory control and data acquisition (SCADA) devices. The incorporation of PMU measurementsPhasor Measurement Unit Data in Power System State Estimation Intermediate Project Report Power Center since 1996 PSERC #12;Power Systems Engineering Research Center Phasor Measurement Unit Data

  19. Options for Bulgaria power system extension planning

    SciTech Connect (OSTI)

    Vassilev, C.; Christov, C.

    1998-07-01T23:59:59.000Z

    Under the existing transition to market economy in Bulgaria, the planning of development of electricity generation is among the priorities of the national policy of restructuring and renovation of electricity system in the country. Optimal plans for development of the generation capacity are worked out by means of optimization procedure part of ENPEP package (ELECTRIC module) based on the dynamic programming technique. The optimal plans study three main strategies for development of energy capacities, which have to do with the priority of some type of natural resources--Coal, Natural Gas and Nuclear Energy. The Hydro Power Plant construction and loading schedule for each scenario is different and it harmonized with the maneuverability of other capacities. Coal scenario emphasizes the opportunities for the maximizing of local coal mining, substitution of black coal (energy and coke) import by mining of local coal fields and implementation of efficient and environmentally sound technologies when constructing new thermal power plants. Gas scenario envisages natural gas consumption within the limit of existing capacities of the national and transit pipelines. In this connection, the share of the new generating capacities using combined cycle increases their share. Nuclear scenario assumes increased share of the nuclear units at the expense of local coal mining and natural gas. This is due to the rehabilitation of 1,000 MW units in NPP Kozloduy, completion of a 1,000 MW unit in new NPP and construction of 1--2 new units 600 MW after 2010. The data obtained outlines the perspectives for development of energy generation capacities in Bulgaria for the period 2000--2020, tendencies in the generation structure and the share of each different type of generation units in the structure of electricity generation system. Output information serves as a sound base for conclusions on the advantages and disadvantages of the three strategies.

  20. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  1. Production system improvement : floor area reduction and inventory optimization

    E-Print Network [OSTI]

    Yang, Tianying, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis shows improvements of a medical device production system. The demand at the Medical Device Manufacturing Company (MDMCą) is low for the occlusion system product and there is a need to introduce other production ...

  2. Evaluation of line focus solar central power systems. Volume I. Executive summary

    SciTech Connect (OSTI)

    Not Available

    1980-03-15T23:59:59.000Z

    An evaluation was completed to ascertain the applicability of line focus technologies to electrical power applications and to compare their performance and cost potential with point focus central receiver power systems. It was concluded that although the high temperature line focus (SRI) and fixed mirror line focus (GA) concepts duplicate the heat source characteristics and power conversion technology of the central receiver concepts these configurations do not offer a sufficient improvement in cost to warrant full scale development. The systems are, however, less complex than their point focus counterpart and should the central receiver system development falter they provide reasonable technology alternatives. This volume is an executive summary. (WHK)

  3. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    Cooling Heat and Power (CCHP) systems are being installed atand heating loads. These CCHP systems can also act as backupgenerators. In all cases the CCHP systems are rated at a

  4. EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

  5. Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage...

    Broader source: Energy.gov (indexed) [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage Princeton Power Systems (TRL 5 6...

  6. 1836 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 4, NOVEMBER 2008 Vulnerability Assessment of Cybersecurity

    E-Print Network [OSTI]

    Manimaran, Govindarasu

    of Cybersecurity for SCADA Systems Chee-Wooi Ten, Student Member, IEEE, Chen-Ching Liu, Fellow, IEEE's cybersecurity standards for electric power systems. The purpose is to study the impact of a cyber attack within the substation networks. Countermeasures are identified for improvement of the cybersecurity

  7. Power system design for the CSUN CubeSat.

    E-Print Network [OSTI]

    Keyawa, Matthew

    2015-01-01T23:59:59.000Z

    ??The California State University of Northridge CubeSat, code named CSUNSat, will test a new low-temperature capable, battery/ultra capacitor power system with a low voltage/low power… (more)

  8. IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    .9 kilowatt total) 14 #12;ENERGY IMPROVEMENT BENEFITS 15 #12;RETURN ON INVESTMENT: SOLAR PANELS 16 #12 of grid energy with solar panel arrays Long-term operations and maintenance costs were significantly.7 kilowatt total) 13 #12;GROUNDWATER SYSTEM ENERGY IMPROVEMENTS ­ Northern Solar Array: 56 panel system (10

  9. Conic optimization of electric power systems

    E-Print Network [OSTI]

    Taylor, Joshua Adam

    2011-01-01T23:59:59.000Z

    The electric power grid is recognized as an essential modern infrastructure that poses numerous canonical design and operational problems. Perhaps most critically, the inherently large scale of the power grid and similar ...

  10. Outphase power amplifiers in OFDM systems

    E-Print Network [OSTI]

    Ph?m, Anh D., 1974-

    2006-01-01T23:59:59.000Z

    A trade-off between linearity and efficiency exists in conventional power amplifiers. The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for linear ...

  11. Advance Three Phase Power Factor Correction Schemes for Utility Interface of Power Electronic Systems

    E-Print Network [OSTI]

    Albader, Mesaad

    2014-07-30T23:59:59.000Z

    systems, battery chargers and data centers etc. Also, high voltage DC (HVDC) systems employ rectifiers to convert ac input to DC output. HVDC is one example of the application of AC/DC conversion, in power system also, grid tie of two different power...

  12. Fuzzy modelling of power system optimal load flow

    SciTech Connect (OSTI)

    Miranda, V.; Saraiva, J.T. (FEUP, DEEC, Faculdade de Engenharia da Univ. do Porto, INESC, Inst. de Engenharia de Sistemas e Computadores, Lg de Mompilher 4000 Porto (PT))

    1992-05-01T23:59:59.000Z

    In this paper, a fuzzy model for power system operation is presented. Uncertainties in loads and generations are modeled as fuzzy numbers. System behavior under known (while uncertain) injections is dealt with by a DC fuzzy power flow model. System optimal (while uncertain) operation is calculated with linear programming procedures where the problem nature and structure allows some efficient techniques such as Dantzig Wolfe decomposition and dual simplex to be used. Among the results, one obtains a fuzzy cost value for system operation and possibility distributions for branch power flows and power generations. Some risk analysis is possible, as system robustness and exposure indices can be derived and hedging policies can be investigated.

  13. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution...

  14. Evaluation of line focus solar central power systems. Volume II. Systems evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-03-15T23:59:59.000Z

    An evaluation was completed to ascertain the applicability of line focus technologies to electrical power applications and to compare their performance and cost potential with point focus central receiver power systems. It was concluded that although the high temperature line focus (SRI) and fixed mirror line focus (GA) concepts duplicate the heat source characteristics and power conversion technology of the central receiver concepts these configurations do not offer a sufficient improvement in cost to warrant full scale development. The systems are, however, less complex than their point focus counterpart and should the central receiver system development falter they provide reasonable technology alternatives. The parabolic trough concept (BDM) was found to provide a low temperature technology alternative to the central receiver concept with promising performance and cost potential. Its continued development is recommended, with special emphasis on lower temperature (< 700/sup 0/F) applications. Finally, a variety of new promising line focus power system configurations were identified for a range of utility and industrial applications and recommendations were made on their implementation. This volume contains the detailed report. (WHK)

  15. Flex power perspectives of indirect power system control through dynamic

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdfFiskdale,Five447753°, -84.1124406°power

  16. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G. (Decision and Information Sciences); (Univ. of Illinois, Champaign/Urbana); (Georgia Institute of Technology)

    2012-01-01T23:59:59.000Z

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  17. Improving Energy Efficiency and Security for Disk Systems

    E-Print Network [OSTI]

    Qin, Xiao

    optimization with security services to enhance the security of energy-efficient large- scale storage systems, to conserve energy in secure storage systems. In this study we develop two ways of integrating confidentiality power consumption are crucial for large-scale data storage systems. Although a handful of studies have

  18. IEEE TRANSACTIONS ON POWER SYSTEMS (ACCEPTED NOVEMBER 8, 2014) 1 Stochastic Reactive Power Management

    E-Print Network [OSTI]

    Giannakis, Georgios

    response, and electric vehicles. Advances in photovoltaic (PV) inverters offer new opportunitiesIEEE TRANSACTIONS ON POWER SYSTEMS (ACCEPTED NOVEMBER 8, 2014) 1 Stochastic Reactive Power are being challenged by reverse power flows and voltage fluctuations due to renewable generation, demand

  19. Improving the Water Efficiency of Cooling Production System

    E-Print Network [OSTI]

    Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

    2010-01-01T23:59:59.000Z

    For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait...

  20. Improved Air Volume Control Logic for VAV Systems

    E-Print Network [OSTI]

    Wei, G.; Claridge, D. E.; Sakuri, Y.; M. Liu

    2000-01-01T23:59:59.000Z

    position of the terminal boxes. This method is called air volume control logic. Under this control logic, terminal box airflow requirements are met with reduced static pressure. Fan power consumption is minimized. However, the actual system performance also...

  1. An investigation of simple nonsmooth power system models

    SciTech Connect (OSTI)

    Mantri, R.; Venkatasubramanian, V.; Saberi, A. [Washington State Univ., Pullman, WA (United States)

    1994-12-31T23:59:59.000Z

    Recently new notions of solutions and equilibrium points have been proposed for analyzing nonsmooth system descriptions. This paper observes certain new phenomena in simple nonsmooth power system models presenting a preliminary analysis. The results include an investigation of new Hopf-like bifurcations related to the birth of limit cycles in two dimensional non-Lipschitzian power system models.

  2. Design of power systems for extensible surface mobility systems on the Moon and Mars

    E-Print Network [OSTI]

    Hong, SeungBum, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This thesis presents the power system model description and sample studies for extensible surface mobility systems on the Moon and Mars. The mathematical model of power systems for planetary vehicles was developed in order ...

  3. Hybrid robust predictive optimization method of power system dispatch

    DOE Patents [OSTI]

    Chandra, Ramu Sharat (Niskayuna, NY); Liu, Yan (Ballston Lake, NY); Bose, Sumit (Niskayuna, NY); de Bedout, Juan Manuel (West Glenville, NY)

    2011-08-02T23:59:59.000Z

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  4. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01T23:59:59.000Z

    Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

  5. Technological developments to improve combustion efficiency and pollution control in coal-fired power stations in Japan

    SciTech Connect (OSTI)

    Miyasaka, Tadahisa

    1993-12-31T23:59:59.000Z

    In 1975, approximately 60 percent of all power generating facilities in Japan were oil fired. The oil crisis in the 1970s, however, led Japanese power utilities to utilize alternatives to oil as energy sources, including nuclear power, coal, LNG, and others. As a result, by 1990, the percentage of oil-fired power generation facilities had declined to approximately 31 percent. On the other hand, coal-fired power generation, which accounted for 5.7 percent of all facilities in 1975, increased its share to 7.5 percent in 1990 and is anticipated to expand further to 13 percent by the year 2000. In order to increase the utilization of coal-fired power generation facilities in Japan, it is necessary to work out thorough measures to protect the environment, mainly to control air pollution. The technologies that are able to do this are already available. The second issue is how to improve efficiency. In this chapter, I would like to introduce technological developments that improve efficiency and that protect the environment which have been implemented in coal-fired power stations in Japan. Examples of the former, include the atmospheric fluidized bed combustion (AFBC) boiler, the pressurized fluidized bed combustion (PFBC) boiler, and the ultra super-critical (USC) steam condition turbine, and an example of the latter is the dry deSOx/deNOx. Although details are not provided in this paper, there are also ongoing projects focusing on the development of technology for integrated gasification combined cycle generation, fuel cells and other systems undertaken by the government, i.e., the Ministry of International Trade and Industry (MITI), which is committed to the New Energy and Industrial Technology Development Organization (NEDO).

  6. New Advanced System Utilizes Industrial Waste Heat to Power Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

  7. Combined Heat and Power System Enables 100% Reliability at Leading...

    Broader source: Energy.gov (indexed) [DOE]

    Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Thermal...

  8. Combined Heat and Power System Achieves Millions in Cost Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieves Millions in Cost Savings at Large University - Case Study, 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 2013...

  9. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    Germany) Jump to: navigation, search Project Name AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration Country Germany Coordinates...

  10. Low Cost High Concentration PV Systems for Utility Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop Practical...

  11. Visualization of Electric Power System Information: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Komomua, C.

    2013-01-01T23:59:59.000Z

    This report summarizes the workshop entitled: Visualization of Electric Power System Information. The workshop was held on September 11, 2012 on NREL's campus in Golden, Colorado.

  12. AFTER A Framework for electrical power sysTems vulnerability...

    Open Energy Info (EERE)

    Norway) Jump to: navigation, search Project Name AFTER A Framework for electrical power sysTems vulnerability identification, dEfense and Restoration Country Norway Coordinates...

  13. An integrated optimal design method for utility power distribution systems.

    E-Print Network [OSTI]

    Fehr, Ralph E

    2005-01-01T23:59:59.000Z

    ??This dissertation presents a comprehensive and integrated design methodology to optimize both the electrical and the economic performance of a utility power distribution system. The… (more)

  14. FERC Presendation: Demand Response as Power System Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

  15. GCTool: Design, Analyze and Compare Fuel Cell Systems and Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GCTool: Design, Analyze and Compare Fuel Cell Systems and Power Plants GCTool allows you to design, analyze, and compare different fuel cell configurations, including automotive,...

  16. Power Systems Integration Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Power Systems Integration Laboratory may include: * Manufacturers of distributed generation and...

  17. The system architecting process for a solar power satellite concept.

    E-Print Network [OSTI]

    Bidwell, Joseph Grady

    2006-01-01T23:59:59.000Z

    ??This thesis discusses the system architecting process for a Solar Power Satellite (SPS) concept.The heuristic approach allows a spectrum of concepts to be narrowed to… (more)

  18. Steam System Improvement: A Case Study

    E-Print Network [OSTI]

    Leigh, N.; Venkatesan, V. V.

    usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper...

  19. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  20. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  1. A CycloDissipativity Condition for Power Factor Improvement in Electrical Circuits

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    A Cyclo­Dissipativity Condition for Power Factor Improvement in Electrical Circuits Romeo Ortega compensation problem for electrical circuits. Namely, we prove that a necessary condition for a (shunt of the source are functions of time and are denoted by the column vectors vs, is Rq . The load is described

  2. The Economic Value of Improving the Reliability of Supply on a Bulk Power Transmission Network

    E-Print Network [OSTI]

    The Economic Value of Improving the Reliability of Supply on a Bulk Power Transmission Network Economics and Management and School of Electrical and Computer Engineering Cornell University Abstract, there is no established way of measuring the economic value of reliability, and as a result, regulators have adopted

  3. Brayton Cycle Baseload Power Tower CSP System

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  4. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    I. , and M Sagrillo, 2010 Wind Generator buyer's guide. HomePower magazine’s 2010 Wind Generator Buyer’s guide compares

  5. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

  6. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12T23:59:59.000Z

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  7. THE JET PULSE POWER SUPPLY SYSTEM J. B. HICKS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    between the two major components of the power supply (flywheel-generator-convertors (FGC) and transformer between the two possible components of the power supply, i. e. flywheel. generator-convertors and transformer-controlled-convertors. The proposed JET power supply system is described, together with an outline

  8. Optimal PMU Placement Evaluation for Power System Dynamic State Estimation

    SciTech Connect (OSTI)

    Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu

    2010-10-10T23:59:59.000Z

    Abstract - The synchronized phaor measurements unit (PMU), developed in the 1980s, is concidered to be one of the most important devices in the future of power systems. The recent development of PMU technology provides high-speed, precisely synchronized sensor data, which has been found to be usefule for dynamic, state estimation of power the power grid.

  9. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  10. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26T23:59:59.000Z

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  11. Refractory metal alloys and composites for space power systems

    SciTech Connect (OSTI)

    Stephens, J.R.; Petrasek, D.W.; Titran, R.H.

    1994-09-01T23:59:59.000Z

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900`s and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites will be discussed.

  12. Fuel Cell System Improvement for Model-Based Diagnosis Analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fuel Cell System Improvement for Model-Based Diagnosis Analysis Philippe Fiani & Michel Batteux of a model of a fuel cell system, in order to make it usable for model- based diagnosis methods. A fuel cell for the fuel cell stack but also for the system environment. In this paper, we present an adapted library which

  13. An Integrated Security-constrained Model-based Dynamic Power Management Approach for Isolated Microgrid Power Systems

    E-Print Network [OSTI]

    Mashayekh, Salman

    2013-11-22T23:59:59.000Z

    Prime Mover and Control GeneratorExcitation System and Control Shaft Power Field Current Voltage Speed / Power Speed Generating Unit Controls – Unit 1 Reactive Power and Voltage Control HVDC Transmission and Associated Controls System Generation...

  14. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    1997. [15] R DiPippo, Geothermal Power Plants: Principles,Kalina, "New Binary Geothermal Power System," in ProceedingsConference on Geothermal Power Engineering, Sochi, Russia,

  15. Improved Combustion System for Energy Conservation in Industry

    E-Print Network [OSTI]

    Thekdi, A. C.; Hemsath, K. H.

    1979-01-01T23:59:59.000Z

    into the furnace. This paper describes various types of burners, their applications, and field test results which illustrate that a properly designed and applied combustion system can reduce the energy consumption and improve the productivity by reducing...

  16. Rotary Mode Core Sample System availability improvement

    SciTech Connect (OSTI)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

    1995-02-28T23:59:59.000Z

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  17. Improvement of photovoltaic pumping systems based on standard frequency converters by means of programmable logic controllers

    SciTech Connect (OSTI)

    Fernandez-Ramos, Jose [Departamento de Electronica, Universidad de Malaga, Complejo Tecnologico de Teatinos (2.2.39), 29071 Malaga (Spain); Narvarte-Fernandez, Luis; Poza-Saura, Fernando [Instituto de Energia Solar, Universidad Politecnica de Madrid (IES-UPM), Avenida Complutense s/n (204), 28040 Madrid (Spain)

    2010-01-15T23:59:59.000Z

    Photovoltaic pumping systems (PVPS) based on standard frequency converters (SFCs) are currently experiencing a growing interest in pumping programmes implemented in remote areas because of their high performance in terms of component reliability, low cost, high power range and good availability of components virtually anywhere in the world. However, in practical applications there have appeared a number of problems related to the adaptation of the SFCs to the requirements of the photovoltaic pumping systems (PVPS). Another disadvantage of dedicated PVPS is the difficulty in implementing maximum power point tracking (MPPT). This paper shows that these problems can be solved through the addition of a basic industrial programmable logic controller (PLC) to the system. This PLC does not increase the cost and complexity of the system, but improves the adaptation of the SFC to the photovoltaic pumping system, and increases the overall performance of the system. (author)

  18. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] Emrich, William J., Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-01T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}

  19. Development status of the heatpipe power and bimodal systems

    SciTech Connect (OSTI)

    Poston, David I.; Houts, Michael G. [Nuclear Systems Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Emrich, William J. Jr. [NASA Marshall Spaceflight Center, PS05, Huntsville, Alabama 35738 (United States)

    1999-01-22T23:59:59.000Z

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  20. A Power Control System for a Paper Mill

    E-Print Network [OSTI]

    Richter, G. H.; Keenon, D.

    1979-01-01T23:59:59.000Z

    This paper describes the Power Demand Control System installed at the Lufkin Mill of Southland Division, St. Regis Paper Company. The system is based around a microprocessor unit that automatically changes the output of the generators to maintain a...

  1. Designing Optimal Heat and Power Systems for Industrial Processes

    E-Print Network [OSTI]

    Rutkowski, M. A.; Witherell, W. D.

    Industrial heat and power systems are complex and not fully understood as integrated systems. Within the context of the overall manufacturing process, they represent enormous capital investments and substantially contribute to the total operating...

  2. Photovoltaic-powered desalination system for remote Australian communities 

    E-Print Network [OSTI]

    Richards, B.S.; Schäfer, Andrea

    2003-01-01T23:59:59.000Z

    This paper reports on the design and successful field testing of a photovoltaic (PV)-powered desalination system. The system described here is intended for use in remote areas of the Australian outback, where fresh water is extremely limited...

  3. Model Abstraction Techniques for Large-Scale Power Systems

    E-Print Network [OSTI]

    Report on System Simulation using High Performance Computing Prepared by New Mexico Tech New Mexico: Application of High Performance Computing to Electric Power System Modeling, Simulation and Analysis Task Two

  4. STABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS

    E-Print Network [OSTI]

    STABILITY ANALYSIS OF INTERCONNECTED POWER SYSTEMS COUPLED WITH MARKET DYNAMICS F.L. Alvarado1 J of generators and network interconnections. This paper examines questions of stability in such coupled systems

  5. Shipboard condition based maintenance and integrated power system initiatives

    E-Print Network [OSTI]

    Barber, Darrin E. (Darrin Eugene)

    2011-01-01T23:59:59.000Z

    With the U.S. Navy's continued focus on developing and implementing a robust integrated power system aboard future combatants, there has been an ever increasing effort to guarantee an electrical distribution system that ...

  6. Design of control for efficiency of AUV power systems

    E-Print Network [OSTI]

    Ware, Laura M. (Laura Marie)

    2012-01-01T23:59:59.000Z

    The MIT Rapid Development Group designed and built an internal combustion hybrid recharging system for the REMUS 600 Autonomous Underwater Vehicle (AUV) in collaboration with the MIT Lincoln Laboratory. This power system ...

  7. COOLING FAN AND SYSTEM PERFORMANCE AND EFFICIENCY IMPROVEMENTS

    SciTech Connect (OSTI)

    Ronald Dupree

    2005-07-31T23:59:59.000Z

    Upcoming emissions regulations (Tiers 3, 4a and 4b) are imposing significantly higher heat loads on the cooling system than lesser regulated machines. This work was a suite of tasks aimed at reducing the parasitic losses of the cooling system, or improving the design process through six distinct tasks: 1. Develop an axial fan that will provide more airflow, with less input power and less noise. The initial plan was to use Genetic Algorithms to do an automated fan design, incorporating forward sweep for low noise. First and second generation concepts could not meet either performance or sound goals. An experienced turbomachinery designer, using a specialized CFD analysis program has taken over the design and has been able to demonstrate a 5% flow improvement (vs 10% goal) and 10% efficiency improvement (vs 10% goal) using blade twist only. 2. Fan shroud developments, using an 'aeroshroud' concept developed at Michigan State University. Performance testing at Michigan State University showed the design is capable of meeting the goal of a 10% increase in flow, but over a very narrow operating range of fan performance. The goal of 10% increase in fan efficiency was not met. Fan noise was reduced from 0 to 2dB, vs. a goal of 5dB at constant airflow. The narrow range of fan operating conditions affected by the aeroshroud makes this concept unattractive for further development at this time 3. Improved axial fan system modeling is needed to accommodate the numbers of cooling systems to be redesigned to meet lower emissions requirements. A CFD fan system modeling guide has been completed and transferred to design engineers. Current, uncontrolled modeling practices produce flow estimates in some cases within 5% of measured values, and in some cases within 25% of measured values. The techniques in the modeling guide reduced variability to the goal of + 5% for the case under study. 4. Demonstrate the performance and design versatility of a high performance fan. A 'swept blade mixed flow' fan was rapid prototyped from cast aluminum for a performance demonstration on a small construction machine. The fan was mounted directly in place of the conventional fan (relatively close to the engine). The goal was to provide equal airflow at constant fan speed, with 75% of the input power and 5 dB quieter than the conventional fan. The result was a significant loss in flow with the prototype due to its sensitivity to downstream blockage. This sensitivity to downstream blockage affects flow, efficiency, and noise all negatively, and further development was terminated. 5. Develop a high efficiency variable speed fan drive to replace existing slipping clutch style fan drives. The goal for this task was to provide a continuously variable speed fan drive with an efficiency of 95%+ at max speed, and losses no greater than at max speed as the fan speed would vary throughout its entire speed range. The process developed to quantify the fuel savings potential of a variable speed fan drive has produced a simple tool to predict the fuel savings of a variable speed drive, and has sparked significant interest in the use of variable speed fan drive for Tier 3 emissions compliant machines. The proposed dual ratio slipping clutch variable speed fan drive can provide a more efficient system than a conventional single ratio slipping clutch fan drive, but could not meet the established performance goals of this task, so this task was halted in a gate review prior to the start of detailed design. 6. Develop a cooling system air filtration device to allow the use of automotive style high performance heat exchangers currently in off road machines. The goal of this task was to provide a radiator air filtration system that could allow high fin density, louvered radiators to operate in a find dust application with the same resistance to fouling as a current production off-road radiator design. Initial sensitivity testing demonstrated that fan speed has a significant impact on the fouling of radiator cores due to fine dusts, so machines equipped with continuously variabl

  8. Green Scheduling: Scheduling of Control Systems for Peak Power Reduction

    E-Print Network [OSTI]

    Pappas, George J.

    approach to fine-grained coordination of energy demand by scheduling energy consuming control systems of the system variables only, control system execution (i.e. when energy is supplied to the system-Scheduling; Energy Systems; Peak Power Reduction; Load Balancing; I. INTRODUCTION During a major sporting event

  9. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01T23:59:59.000Z

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  10. Prognostic Control and Load Survivability in Shipboard Power Systems

    E-Print Network [OSTI]

    Thomas, Laurence J.

    2011-02-22T23:59:59.000Z

    ...............................................................................................9? 2.5? Reliability Centered Maintenance ........................................................10? 2.6? Power Distribution System Reliability .................................................13? 2.7? Summary... centered maintenance (RCM), and power distribution system reliability techniques are principles are mentioned as well. In chapter III, the modeling principles of structure functions and survivability are stated. The 3 problem formulation is also...

  11. Power System Security in Market Clearing and Dispatch Mechanisms

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    congestion" levels, which have a direct effect on market transactions and energy prices. Thus, when result in curtailment of power transactions and increased prices for most market participants. System1 Power System Security in Market Clearing and Dispatch Mechanisms Claudio A. Ca~nizares, Senior

  12. Reliability assessment of electrical power systems using genetic algorithms

    E-Print Network [OSTI]

    Samaan, Nader Amin Aziz

    2004-11-15T23:59:59.000Z

    of the dissertation, a GA based method for state sampling of composite generation-transmission power systems is introduced. Binary encoded GA is used as a state sampling tool for the composite power system network states. A linearized optimization load flow model...

  13. IBM Research -Ireland Polynomial Optimisation in Power Systems

    E-Print Network [OSTI]

    energy production: 17314000 MWh in 2009 · Production costs at $30 per MWh: $519B/year · Now: 80.9 %, fromIBM Research - Ireland Polynomial Optimisation in Power Systems at IBM Research Jakub Marecek Relaxations 4 Extensions #12;IBM Research - Ireland Optimisation in Power Systems: Motivation · World gross

  14. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  15. ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS

    E-Print Network [OSTI]

    and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

  16. iPower: An Energy Conservation System for

    E-Print Network [OSTI]

    Tseng, Yu-Chee

    iPower: An Energy Conservation System for Intelligent Buildings by Wireless Sensor Networks Lun. Exploiting the context-aware capability of WSN to achieve energy conservation in intelligent buildings is an attractive direction. We thus propose an iPower (intelligent and personalized energy-conservation system

  17. A New Methodology for Aircraft HVDC Power Systems design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A New Methodology for Aircraft HVDC Power Systems design D. Hernández, M. Sautreuil, N. Retière, D-mail: olivier.sename@gipsa-lab.inpg.fr Abstract ­ A new methodology for aircraft HVDC power systems design

  18. The dynamics of power system markets Fernando L. Alvarado

    E-Print Network [OSTI]

    The dynamics of power system markets Fernando L. Alvarado Department of Electrical and Computer describing the marketplace. Dynamic market equations provide additional insights into the behavior studies the impact of various policies on the dynamic behavior of power system markets. The impact

  19. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01T23:59:59.000Z

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  20. Thermoacoustic power systems for space applications

    SciTech Connect (OSTI)

    Backhaus, S. N. (Scott N.); Tward, E. (Emanual); Pedach, M. (Michael)

    2001-01-01T23:59:59.000Z

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (W/kg). Thermoacoustic engines can convert high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, these engines are low mass and promise to be highly reliable. Coupling a thermoacoustic engine to a low-mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Data will be presented on the first tests of a demonstration thermoacoustic engine designed for the 100-Watt power range.

  1. Combustion systems for power-MEMS applications

    E-Print Network [OSTI]

    Spadaccini, Christopher M. (Christopher Michael), 1974-

    2004-01-01T23:59:59.000Z

    As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this thesis presents the design, fabrication, experimental testing, and modeling of the combustion ...

  2. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    DC solar-powered DC air-conditioning heat pump produced byRoom Air Conditioners Geothermal Heat Pumps Lighting-efficiency of an air source electric heat-pump water heater

  3. Promethean Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows,ProgressiveandPromethean Power

  4. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    SciTech Connect (OSTI)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Wake Forest University, 501 Deacon Blvd., Winston Salem, North Carolina 27105 (United States)

    2014-05-14T23:59:59.000Z

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4??VK{sup ?1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50?K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  5. A portable power system using PEM fuel cells

    SciTech Connect (OSTI)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31T23:59:59.000Z

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  6. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher

    2014-07-21T23:59:59.000Z

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  7. Fault Current Issues for Market Driven Power Systems with Distributed Generation

    E-Print Network [OSTI]

    1 Fault Current Issues for Market Driven Power Systems with Distributed Generation Natthaphob of installing distributed generation (DG) to electric power systems. The proliferation of new generators creates Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault

  8. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-05-01T23:59:59.000Z

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  9. IEEE TRANSACTIONS ON POWER SYSTEMS 1 Economic Impact of Electricity Market Price

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    IEEE TRANSACTIONS ON POWER SYSTEMS 1 Economic Impact of Electricity Market Price Forecasting Errors to forecast electricity market prices and improve forecast accuracy. However, no studies have been reported, the application of electricity market price forecasts to short-term operation scheduling of two typical

  10. Bi-directional power control system for voltage converter

    DOE Patents [OSTI]

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11T23:59:59.000Z

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  11. Bi-directional power control system for voltage converter

    DOE Patents [OSTI]

    Garrigan, Neil Richard (Niskayuna, NY); King, Robert Dean (Schenectady, NY); Schwartz, James Edward (Slingerlands, NY)

    1999-01-01T23:59:59.000Z

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  12. Economic Benefits of Advanced Materials in Nuclear Power Systems

    SciTech Connect (OSTI)

    Busby, Jeremy T [ORNL

    2009-01-01T23:59:59.000Z

    One of the key obstacles for the commercial deployment of advanced fast reactors (for either transuranic element burning or power generation) is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors (ALWR). However, the cost estimates for a fast reactor come with a large uncertainty due to the fact that far fewer fast reactors have been built than LWR facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. For example, under the Gen IV program, the Japanese Sodium Fast Reactor (JSFR) has a capital cost estimate that is lower than current LWR s, and considerably lower than that for the PRISM design (which is arguably among the most mature of today s fast reactor designs). Further reductions in capital cost must be made in US fast reactor systems to be considered economically viable. Three key approaches for cost reduction can be pursued. These include design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. While it is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost, the economic benefit of advanced materials has not been quantitatively analyzed. The objective of this work is to examine the potential impact of advanced materials on the capital investment costs of fast nuclear reactors.

  13. Hybrid Control Network Intrusion Detection Systems for Automated Power Distribution Systems

    E-Print Network [OSTI]

    Parvania, Masood; Koutsandria, Georgia; Muthukumar, Vishak; Peisert, Sean; McParland, Chuck; Scaglione, Anna

    2014-01-01T23:59:59.000Z

    Security protocols against cyber attacks in the distributioncyber security weak- ness and system fragility of power distribution

  14. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18T23:59:59.000Z

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

  15. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    46 Table 22. Lead-acid battery models used in residential PVSolar [51] Because PV systems with battery backup includeno Battery Backup Typical Operation: Residential PV systems

  16. Power Systems Engineering Research Center Using Active Customer Participation

    E-Print Network [OSTI]

    Van Veen, Barry D.

    components and distribution system reliability. The time-varying nature of these resources will alter to improve distribution system reliability. An approach to manage the distribution system assets under are in the area of distribution system automation, reliability enhancement through smart distribution systems

  17. Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates

    SciTech Connect (OSTI)

    Mahapatra, P.; Zitney, S.

    2012-01-01T23:59:59.000Z

    As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

  18. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01T23:59:59.000Z

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  19. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)

    2011-01-01T23:59:59.000Z

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  20. Power Systems Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > PowerFederal

  1. Fourteenth Service Water System Reliability Improvement Seminar Proceedings

    SciTech Connect (OSTI)

    None

    2002-06-01T23:59:59.000Z

    This report contains information presented at the Fourteenth Service Water System Reliability Improvement (SWSRI) Seminar held June 24-25, 2002, in San Diego, California. The bi-annual seminar--sponsored by EPRI--provided an opportunity for participants to exchange technical information and experiences regarding the monitoring, repair, and replacement of service water system components.

  2. Method and system to provide thermal power for a power plant

    SciTech Connect (OSTI)

    Ostlie, L.D.

    1987-11-17T23:59:59.000Z

    A method for providing thermal power to generate electricity in a power plant is described comprising: delivering substantially uncut and untrimmed whole trees into a combustion chamber; burning the substantially whole trees in the combustion chamber to generate heat; and absorbing the heat of combustion of the trees in a device for providing power to an electrical power generator. A system for providing power to an electrical generating power plant is described comprising: means for defining a combustion chamber within which substantially uncut and untrimmed whole trees are received for burning; conveyor means for delivering the substantially whole trees for combustion into the combustion chamber; and heat absorbing means for absorbing the heat of combustion of the substantially whole trees, the heat absorbing means being adapted to be operatively connected to means for converting the absorbed heat into electrical power.

  3. Cathode power distribution system and method of using the same for power distribution

    DOE Patents [OSTI]

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11T23:59:59.000Z

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  4. Global Wind Power Conference September 18-21, 2006, Adelaide, Australia Design and Operation of Power Systems with Large Amounts of Wind Power, first

    E-Print Network [OSTI]

    Global Wind Power Conference September 18-21, 2006, Adelaide, Australia Design and Operation of Power Systems with Large Amounts of Wind Power, first results of IEA collaboration Hannele Holttinen1.holttinen@vtt.fi Abstract: An international forum for exchange of knowledge of power system impacts of wind power has been

  5. High power laser workover and completion tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28T23:59:59.000Z

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  6. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect (OSTI)

    Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  7. Power conditioning system for energy sources

    DOE Patents [OSTI]

    Mazumder, Sudip K. (Chicago, IL); Burra, Rajni K. (Chicago, IL); Acharya, Kaustuva (Chicago, IL)

    2008-05-13T23:59:59.000Z

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  8. Power Parks System Simulation Sandia National Laboratories

    E-Print Network [OSTI]

    at a steady rate to produce hydrogen, feeding a fuel cell stack to supply electricity to a transient load of a renewable energy source. Generation by photovoltaic collectors or wind turbines can be combined with energy storage technologies. Power parks provide an excellent opportunity for using hydrogen technologies

  9. NET SYSTEM POWER: A SMALL SHARE OF

    E-Print Network [OSTI]

    hydroelectricity. This report uses the same definition for small hydroelectric facilities, 30 megawatts or less, as is used under the state's Renewable Portfolio Standard,. Electricity from large hydroelectric facilities changes, because NW hydroelectric energy varies from year to year and because the power plant fleet within

  10. 2006 NET SYSTEM POWER REPORT COMMISSIONREPORT

    E-Print Network [OSTI]

    hydroelectricity. This report uses the same definition for small hydroelectric facilities, 30 megawatts or less, as is used under the state's Renewable Portfolio Standard,. Electricity from large hydroelectric facilities changes, because NW hydroelectric energy varies from year to year and because the power plant fleet within

  11. Power Systems Analysis ELEN4511 Spring 2013

    E-Print Network [OSTI]

    Lavaei, Javad

    be harnessed for real-time communications at all sub- networks of the power grid, i.e. generation, transmission and distribution networks. Introduction The Northeast blackout of 1965 was a significant disruption in the supply, New Hampshire, Rhode Island, Vermont, New York, and New Jersey in the United States. Over 30 million

  12. A. Pourmovahed1 Power Systems Research Department,

    E-Print Network [OSTI]

    Bahrami, Majid

    - wheel. A Rexroth variable-displacement pump/motor in com- bination with two foam-filled Parker piston in the accumulators when they were being charged. Ball valve No. 1 and an orifice isolated the power supply from is given by Baum (1987). The rest of the circuit consisted of two ball valves and a 38- liter (10-gallon

  13. Fuel cell systems for personal and portable power applications

    SciTech Connect (OSTI)

    Fateen, S. A. (Shaheerah A.)

    2001-01-01T23:59:59.000Z

    Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

  14. PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage Control in Distribution

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage) problem associated with reactive power and voltage control in distribution systems to minimize daily--Distribution systems, reactive power control, voltage control, optimal switching operations, mixed integer nonlinear

  15. Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships

    E-Print Network [OSTI]

    Jones, T.

    to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

  16. Power Quality Improvements in Lighting Systems Mr. Ashish Shrivastava

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    from early incandescent lamps to present generation light emitting diodes (LEDs). Incandescent light

  17. Power Systems Engineering Research Center ACCURACY IMPROVEMENT STRATEGIES FOR

    E-Print Network [OSTI]

    Tempe, AZ 85287-5706 Notice Concerning Copyright Material PSERC members are given permission to copy to this document as the source material. This report is available for downloading from the PSERC website. ©2005 Arizona State University. All rights reserved. #12;iii Executive Summary This research discuses several

  18. Important technology considerations for space nuclear power systems

    SciTech Connect (OSTI)

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01T23:59:59.000Z

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  19. INTEGRATED SAFETY MANAGEMENT SYSTEM SAFETY CULTURE IMPROVEMENT INITIATIVE

    SciTech Connect (OSTI)

    MCDONALD JA JR

    2009-01-16T23:59:59.000Z

    In 2007, the Department of Energy (DOE) identified safety culture as one of their top Integrated Safety Management System (ISMS) related priorities. A team was formed to address this issue. The team identified a consensus set of safety culture principles, along with implementation practices that could be used by DOE, NNSA, and their contractors. Documented improvement tools were identified and communicated to contractors participating in a year long pilot project. After a year, lessons learned will be collected and a path forward determined. The goal of this effort was to achieve improved safety and mission performance through ISMS continuous improvement. The focus of ISMS improvement was safety culture improvement building on operating experience from similar industries such as the domestic and international commercial nuclear and chemical industry.

  20. Study Shows Active Power Controls from Wind May Increase Revenues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability Study Shows Active Power Controls from Wind May Increase Revenues and Improve...

  1. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-12-19T23:59:59.000Z

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  2. Microcomputer-based information feedback system for improving tractor efficiency

    E-Print Network [OSTI]

    Grogan, Joseph

    1985-01-01T23:59:59.000Z

    ) used a gear oontrol system based on a customized version of the Motorola 6800 microprocessor. When used with heavy duty automatic transmissions in trucks and off highway equipment, improvements were seen in fuel efficiency, performanoe, reliability... in oil prices over the past deoade sparked more interest in determining tractor efficiency and in exploring ways to improve fuel economy. During the same time period, explosive growth in the eleotronics industry has made available very compact...

  3. Operational results from the Saudi Solar Village Photovoltaic power system

    SciTech Connect (OSTI)

    Huraib, F.; Al-Sani, A.; Khoshami, B.H.

    1982-08-01T23:59:59.000Z

    The world's largest photovoltaic power system was carried into the operation phase a few months ago. This system was developed and fabricated in the United States and it is providing electrical energy to three remote villages in Saudi Arabia. The facility includes a 350 kW photovoltaic array, 1-MW diesel powered generator, 1100 kWH lead acid batteries, a 300 KVA inverter and a solar weather data monitoring station. The photovoltaic power system is capable of completely automatic operation. It is designed to operate in stand-alone and cogeneration modes of operation.

  4. Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration: the

    E-Print Network [OSTI]

    Bak, Claus Leth

    the transient stability. In Denmark, the onshore and offshore wind farms are connected to distribution system and transmission system respectively. The control and protection methodologies of onshore and offshore wind farms definitely affect the transient stability of power system. In this paper, the onshore and offshore wind farms

  5. Power Quality/Harmonic Detection: Harmonic Control in Electric Power Systems for the Telecommunications Industry

    E-Print Network [OSTI]

    Felkner, L. J.; Waggoner, R. M.

    The control of harmonics in power systems continues to be a major concern in the telecommunications industry. AC/DC telecommunication conversion equipment has rarely been thought of as playing a major role in the harmonic interaction problem. Yet...

  6. HEMP emergency planning and operating procedures for electric power systems

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C. (Electrotek Concepts, Inc., Knoxville, TN (United States))

    1991-01-01T23:59:59.000Z

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E[sub 1] (steep-front pulse) component and the late time E[sub 3] (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council's regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  7. R&D ERL: High power RF systems

    SciTech Connect (OSTI)

    Zaltsman, A.

    2010-01-15T23:59:59.000Z

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2.5 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  8. High power RF systems for the BNL ERL project

    SciTech Connect (OSTI)

    Zaltsman, A.; Lambiase, R.

    2011-03-28T23:59:59.000Z

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  9. TWRS privatization phase 1 electrical power system

    SciTech Connect (OSTI)

    Singh, G.

    1997-05-30T23:59:59.000Z

    This document includes Conceptual Design Report (CDR) for a new 11 km (7 miles) 230 kV transmission line and a new 40 MVA substation (A6) which will be located east of Grout Facility in 200E Area tank farm. This substation will provide electrical power up to 20 MW each for two private contractor facilities for immobilization and disposal of low activity waste (LAW).

  10. Power generating system and method utilizing hydropyrolysis

    DOE Patents [OSTI]

    Tolman, R.

    1986-12-30T23:59:59.000Z

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  11. PowerGenix Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River EnergyCube Pvt Ltd

  12. Princeton Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, New Jersey: EnergyPrinceton

  13. INI Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformationRoadmapsGEOTHERMALINI Power

  14. PowerSystemsSimulation NSERC Industrial Research Chair in

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    an offshore wind power plant to an onshore grid. To develop a PSCAD/EMTDC simulation model of an offshore WPPPowerSystemsSimulation NSERC Industrial Research Chair in Legends: 1. Without negative sequence, Aalborg Univ. and Univ. of Manitoba, email:skc@et.aau.dk A 400MW offshore wind power plant has been

  15. Human Factors Aspects of Power System Flow Animation

    E-Print Network [OSTI]

    into utility control centers. For example, [1] and [2] describe the on-line usage of animated flows, voltageHuman Factors Aspects of Power System Flow Animation Douglas A. Wiegmann, Gavin R. Essenberg flow information, including transmission line MW flow and power transfer distribution factor (PTDF

  16. Concentrated Solar Power Generation Systems: The SAIC Dish

    E-Print Network [OSTI]

    Hemmers, Oliver

    Concentrated Solar Power Generation Systems: The SAIC Dish Center for Energy Research at UNLV #12;Concentrating Solar Dishes Work has been underway at UNLV's Center for Energy Research since 2001 in the use of concentrating solar dishes for electrical power generation. One of these solar dishes was marketed by Science

  17. Efficient Low Complexity Power Allocation Policies for Wireless Communication Systems

    E-Print Network [OSTI]

    Sharma, Vinod

    . Other benefits will be smaller diesel generators and batteries with longer life time. Thus, one of the primary challenges for Next Generation Networks (NGN) is to reduce energy consumption. In a BS the powerEfficient Low Complexity Power Allocation Policies for Wireless Communication Systems Guaranteeing

  18. Power Systems Engineering Research Center PSERC Background Paper

    E-Print Network [OSTI]

    Power Systems Engineering Research Center PSERC Background Paper Monitoring and Control of Power level control centers. However, there is little standardization of the monitoring process and data to the control center operators and security coordinators, or to the computers that can detect anomalous patterns

  19. Impact of Natural Gas Infrastructure on Electric Power Systems

    E-Print Network [OSTI]

    Fu, Yong

    Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

  20. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 Forschungsgemeinschaft. leads to a tremendous increase in the complex- ity of the traditional power optimization mod- els-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model