Powered by Deep Web Technologies
Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

2

Agent Technology to Improve Building Energy Efficiency and Occupant Comfort  

E-Print Network [OSTI]

, can further reduce energy consumption of buildings. This paper reviews Multi-Agent Intelligent Internet-mediated control strategies and combines the most useful insights into a new technology called Forgiving Agent Comfort Technology (FACT...

Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

2006-01-01T23:59:59.000Z

3

Lighter and Stronger: Improving Clean Energy Technologies Through...  

Office of Environmental Management (EM)

Technologies Through Advanced Composites February 26, 2014 - 3:02pm Addthis Pete Johnson inspects the blades of a wind turbine at the National Renewable Energy...

4

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

5

The Development of Improved Energy Efficient Housing for Thailand Utilizing Renewable Energy Technology  

E-Print Network [OSTI]

SimBuild 2004, IBPSA-USA National Conference, Boulder, CO, August 4-6th, 2004, p. 1 THE DEVELOPMENT OF IMPROVED ENERGY EFFICIENT 1 HOUSING FOR THAILAND UTILIZING RENEWABLE ENERGY TECHNOLOGY 2 3... The paper reports on the results of research to reduce energy consumption in residential buildings in a hot and humid climate region (Thailand) using efficient architectural building components, energy efficient building systems, and renewable energy...

Rasisuttha, S.; Haberl, J.

6

Saving energy and improving IAQ through application of advanced air cleaning technologies  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Fisk, W.J

2012-01-01T23:59:59.000Z

7

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Total Primary Energy Consumption World US China Californiaprimary energy consumption, compared to the world (39%), theFigure 3. Energy consumption by sector for the world, the

Price, Lynn

2008-01-01T23:59:59.000Z

8

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

60% of total primary energy consumption, compared to theShare of Total Primary Energy Consumption World US Chinaof industrial primary energy consumption in The Netherlands.

Price, Lynn

2008-01-01T23:59:59.000Z

9

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

technologies Conventional ammonia-based refrigeration systems Production growth through 2020 1%/year Specific energy consumption of base technologies (delivered) 0.008 kWh/lb. (electricity) Regional weighted average fossil fuel intensity of electricity... consumption and improve productivity by increasing the energy efficiency of industrial processes and systems. Therefore, the adoption of such technologies is important because they enable manufacturing plants to become both more competitive and productive...

Lung, R. B.; Masanet, E.; McKane, A.

2006-01-01T23:59:59.000Z

10

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect (OSTI)

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

11

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

40% of annual global primary energy use and is responsible40% of annual global primary energy use and is responsibleindustry’s share of global primary energy (which includes

Price, Lynn

2008-01-01T23:59:59.000Z

12

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Total Primary Energy Consumption World US China Californiaenergy consumption, compared to the world (39%), the US (3. Energy consumption by sector for the world, the US, China

Price, Lynn

2008-01-01T23:59:59.000Z

13

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

reducing energy consumption per unit of GDP by 20% betweena 20% reduction in energy use per unit of GDP by 2010 (Price

Price, Lynn

2008-01-01T23:59:59.000Z

14

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

Energy Efficiency and CO2 Emissions. Paris: IEA. KEMA, withrelated carbon dioxide (CO2) emissions. Many studies andconcurrently reducing CO2 emissions. With the support of

Price, Lynn

2008-01-01T23:59:59.000Z

15

DOE Outlines Research Needed to Improve Solar Energy Technologies |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclearThis fact sheetHeatDOE

16

Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

2014-03-01T23:59:59.000Z

17

New Technologies Improve WIPP Fleet Safety | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32DepartmentWells |of Energy New Steps toNew StudyMillionNew

18

Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

2014-03-01T23:59:59.000Z

19

Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies  

E-Print Network [OSTI]

Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies Table 1, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates pollutant sources than homes. This article describes the types of air cleaning systems that will be needed

20

The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful  

E-Print Network [OSTI]

The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful Jon Feldman Senior Consultant Hatch Consulting Mississauga, Ontario, Canada ABSTRACT Improvements... in technology certainly playa pivotal role in the quest for increased energy efficiency. However, sophisticated industrial energy users are increasingly learning that technology alone cannot drive long-tenn, sustainable reductions in energy cost. The role...

Feldman, J.

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement  

SciTech Connect (OSTI)

Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

Principal Investigator Kent Peaslee; Co-PIĂƒ ƒ Ă‚ Â˘Ăƒ ‚ Ă‚ € Ăƒ ‚ Ă‚ ™ s: Von Richards, Jeffrey Smith

2012-07-31T23:59:59.000Z

22

LED exit signs: Improved technology leads the way to energy savings  

SciTech Connect (OSTI)

Recent innovations in light-emitting diode (LED) exit signs may make LED signs the best choice among the energy efficient options available. In the past, LED signs have offered low power consumption, projected long lamp life, and low maintenance requirements. Now, the best of the LED signs also offer improved optical designs that reduce their already low power consumption while improving visibility and appearance, and even reduce their cost. LED exit signs are gaining market share, and E Source expects this technology to eventually dominate over incandescent, compact fluorescent, and electroluminescent signs. More research is needed, however, to confirm manufacturers` claims of 20-year operating lives for LED signs. Conservative estimates place the number of exit signs in US buildings at about 40 million. Although each sign represents a very small part of a building`s load, exit signs are ready targets for energy efficiency upgrades -- they operate continuously and most use inefficient incandescent sources. With an LED sign, annual energy and maintenance costs can be reduced by more than 90 percent compared to a typical incandescent sign. Low annual costs help to offset the LED sign`s relatively high first cost. More than 25 utilities offer DSM incentives for energy efficient exit signs, and efficient alternatives are becoming more readily available. Recent improvements in optical designs enable many LED signs to visually out perform other sources. In addition to these benefits, LED exit signs have lower life cycle cost than most other options. The biggest barrier to their success, however, is that their first cost has been considerably higher than competing technologies. LED sign prices are falling rapidly, though, because manufacturers are continually improving optical designs of the fixtures to use fewer LEDs and thus even less energy while providing better performance.

Sardinsky, R.; Hawthorne, S.

1994-12-31T23:59:59.000Z

23

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

z = specific primary energy consumption of RF dryer (Btu/and specific primary energy consumption (240 Btu/lb. ) of RFenergy consumption of base technologies in 2020 (primary)

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

24

Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three  

E-Print Network [OSTI]

Building owners and occupants expect more from their buildings today- both better IEQ and less energy consumption. Many facilities strive to design and commission a =smart building' - one that is healthy, environmentally conscious and operating...

Wiser, D.

2011-01-01T23:59:59.000Z

25

A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities  

SciTech Connect (OSTI)

Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

Hendrik Hamann, Levente Klein

2012-06-28T23:59:59.000Z

26

Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

2014-01-01T23:59:59.000Z

27

Energy Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Technologies Energy Technologies State, local, and tribal governments can use clean energy technologies to address increasing energy use and costs, economic investment and...

28

Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. Energy

29

Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition Information Waste

30

GeoEnergy technology  

SciTech Connect (OSTI)

The goal of the GeoEnergy Technology Program is to improve the understanding and efficiency of energy extraction and conversion from geologic resources, hence maintaining domestic production capability of fossil energy resources and expanding the usage of geothermal energy. The GeoEnergy Technology Program conducts projects for the Department of Energy in four resource areas--coal, oil and gas, synthetic fuels and geothermal energy. These projects, which are conducted collaboratively with private industry and DOE`s Energy Technology Centers, draw heavily on expertise derived from the nuclear weapons engineering capabilities of Sandia. The primary technologies utilized in the program are instrumentation development and application, geotechnical engineering, drilling and well completions, and chemical and physical process research. Studies in all four resource areas are described.

NONE

1980-12-31T23:59:59.000Z

31

Saving energy and improving IAQ through application of advanced air cleaning technologies  

SciTech Connect (OSTI)

In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

2011-03-01T23:59:59.000Z

32

Technology Demonstrations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

new building technologies can help meet our country's energy goals, stimulate U.S. manufacturing, create jobs, and improve the environment. However, many high-performing...

33

Energy efficiency in office technology  

E-Print Network [OSTI]

This thesis, directed toward a wide variety of persons interested in energy efficiency issues with office technology, explores several issues relating to reducing energy use and improving energy efficiency of office ...

Dandridge, Cyane Bemiss

1994-01-01T23:59:59.000Z

34

IMPROVED ROOF STABILIZATION TECHNOLOGIES  

SciTech Connect (OSTI)

Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

35

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

SciTech Connect (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

36

States & Emerging Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

operations and maintenance, and occupant impact, so not only trying to quantify building energy or technology energy performance, but also the impacts of that technology on users....

37

Energy Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy Storage & Battery

38

Distributed Energy Technology Characterization (Desiccant Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

39

Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)  

SciTech Connect (OSTI)

The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

Not Available

2010-01-01T23:59:59.000Z

40

Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts  

SciTech Connect (OSTI)

The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5"Âť from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).

David Schwam, PI; Xuejun Zhu, Sr. Research Associate

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Steam Cracker Furnace Energy Improvements  

E-Print Network [OSTI]

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

42

Sandia technology & entrepreneurs improve Lasik  

SciTech Connect (OSTI)

Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

Neal, Dan; Turner, Tim

2013-11-21T23:59:59.000Z

43

Sandia technology & entrepreneurs improve Lasik  

ScienceCinema (OSTI)

Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

Neal, Dan; Turner, Tim

2014-02-26T23:59:59.000Z

44

Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find...

45

Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 National Renewable Energy Laboratory 15013

46

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network [OSTI]

energy savings from switching to modulation control mode and reducing excess air in natural gas firedNational Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify

Kissock, Kelly

47

Economic Effect of Energy Price and Economic Feasibility and Potenhal of New Technology and Improved Management for Irrigation in Texas  

E-Print Network [OSTI]

changes, tenure and new technology. The model includes a Fortran sub-routine that adjusts irrigation factors each year based on the linear programming solution of the previous year. After calculating new pumping energy requirements, well yield, and pumping...

Lacewell, Ronald D.; Hardin, D. C.; Petty, J. A.; Whitson, R. E.

48

States & Emerging Energy Technologies  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

49

Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance  

E-Print Network [OSTI]

and P. Price, 2009. “Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

2011-01-01T23:59:59.000Z

50

States & Emerging Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

States & Emerging Energy Technologies August 15, 2013 DOE's State and Local Technical Assistance Program 2 DOE's Technical Assistance Program * Strategic Energy Planning * Program...

51

Department of Energy Technology  

E-Print Network [OSTI]

Reservoir Models 42 #12;Page 2.21. Energy Storage 43 2.22. Focusing Solar Collector 43 2.23. Digitizing technology towa^ls energy technology problems in general, at Risø and in the Depart- ment, was made manifestRisa-R-482 Department of Energy Technology Annual Progress Report 1 January - 31 December 1982 Ris

52

Morgantown Energy Technology Center, technology summary  

SciTech Connect (OSTI)

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

53

RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

2014-03-01T23:59:59.000Z

54

Energy Savings Through Improved Mechanical Systems and Building...  

Office of Environmental Management (EM)

Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

55

Prospects for Improved Carbon Capture Technology  

E-Print Network [OSTI]

Prospects for Improved Carbon Capture Technology Report to the Congressional Research Service Capture Technology i Table of Contents CHAPTER 1. EXECUTIVE SUMMARY ................................................................................................................ 7 CHAPTER 3. OVERVIEW OF CO2 CAPTURE TECHNOLOGIES

56

Energy Saving with Absorption Refrigeration Technologies  

E-Print Network [OSTI]

Absorption refrigeration technology can be an economical and cost effective means of reducing energy cost and/or improving the efficiency and output of your process. We believe the potential benefits of absorption refrigeration technology have...

Davis, R. C.

1984-01-01T23:59:59.000Z

57

Managing Energy Efficiency Improvement  

E-Print Network [OSTI]

efficiency opportunities as well as promote the use of energy efficient methodologies and technologies. If, as program results suggest, 15% to 20% of the gas that is now consumed at by plant operations can be saved through efficiencies, it would save $500...

Almaguer, J.

2006-01-01T23:59:59.000Z

58

Solar Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

59

Stimulating Energy Technology Innovation  

E-Print Network [OSTI]

The innovation system has interrelated components of invention, translation, adoption, and diffusion. Energy technology innovation has lagged that in other domains, and there is a compelling public interest in picking up ...

Moniz, Ernest J.

60

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Technology Deployment List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies Technology Deployment Technology Deployment List Technology Deployment List The Federal Energy Management Program's (FEMP) Technology Deployment List features...

62

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

63

Energy and technology review  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

Not Available

1984-03-01T23:59:59.000Z

64

Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006  

SciTech Connect (OSTI)

This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

2008-02-01T23:59:59.000Z

65

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

66

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

67

Energy and technology review  

SciTech Connect (OSTI)

The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P. (eds.)

1982-07-01T23:59:59.000Z

68

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Technology and Energy Management” Zement-Kalk-Gips 47 : 630-and Bezant, K.W. , 1990. “Energy Management in the UK Cementpotential for improved energy management practices exists.

Worrell, Ernst

2008-01-01T23:59:59.000Z

69

Molten carbonate fuel cell technology improvement  

SciTech Connect (OSTI)

This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

Not Available

1991-06-01T23:59:59.000Z

70

Energy and technology review  

SciTech Connect (OSTI)

Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

Brown, P.S. (ed.)

1983-06-01T23:59:59.000Z

71

Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility  

E-Print Network [OSTI]

Suncor Energy Inc. developed a long term plan to expand production from its oil sands operation north of Fort McMurray, Alberta up to 500,000 to 550,000 barrels/day in 2010-2012, while reducing the per barrel energy usage, emissions, and long term...

Booker, G.; Robinson, J.

72

Energy and technology review  

SciTech Connect (OSTI)

Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures. (GHT)

Not Available

1983-10-01T23:59:59.000Z

73

Emerging energy-efficient industrial technologies  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

74

Wind Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

75

Energy Efficiency and Industrial Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Energy Efficiency and Industrial Technology The Department conducts research for DOE, other...

76

Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling  

SciTech Connect (OSTI)

The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

Hadley, SW

2004-10-11T23:59:59.000Z

77

National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual Report This work wasTechnology

78

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

79

Review: Structuring an Energy Technology Revolution  

E-Print Network [OSTI]

Structuring an Energy Technology Revolution By Charles WeissB. Structuring an Energy Technology Revolution. Cambridge,increases in spending on energy technology and innovation,

Kunnas, Jan

2010-01-01T23:59:59.000Z

80

Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations  

SciTech Connect (OSTI)

The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

Rick Honaker; Gerald Luttrell

2007-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Quadrennial Technology Review Workshops | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Workshops Quadrennial Technology Review Workshops Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop Department of Energy Quadrennial...

82

Future of Wind Energy Technology in the United States  

SciTech Connect (OSTI)

This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

Thresher, R.; Robinson, M.; Veers, P.

2008-10-01T23:59:59.000Z

83

Continuous Improvement Energy Projects Reduce Energy Consumption  

E-Print Network [OSTI]

Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity...

Niemeyer, E.

2014-01-01T23:59:59.000Z

84

Stationary Applications of Energy Storage Technologies for Transit Systems  

E-Print Network [OSTI]

Stationary Applications of Energy Storage Technologies for Transit Systems Paul Radcliffe, James S, Ontario, Canada paul.radcliffe@utoronto.ca Abstract ­ Stationary energy storage technologies can improve the efficiency of transit systems. In this paper, three different demonstrations of energy storage technologies

Shu, Lily H.

85

Alternative Energy Technology Inc formerly The Alternative Energy...  

Open Energy Info (EERE)

The Alternative Energy Technology Center Inc Jump to: navigation, search Name: Alternative Energy Technology Inc (formerly The Alternative Energy Technology Center Inc) Place:...

86

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

87

District Energy Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district...

88

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to involve more explicit alignment with BPA's newest demand-side roadmap resource, the Demand Response Technology Roadmap. 1 Roadmap chapters have been arranged in stand-alone...

89

Innovative Energy Efficiency, Renewable Energy, and Grid Technology...  

Energy Savers [EERE]

Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update April 29, 2015 11:00AM to...

90

Improved Dark Energy Constraints  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATINGI _ _++, +++_+ +_ IUIM _

91

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

l d i n g D e s i g n E n v e l o p e R&D Program Summaries Effective, cost competitive solar shingles. Building-integrated photovoltaic (PV) technologies helps make solar power...

92

Wind Energy and Spatial Technology  

E-Print Network [OSTI]

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

Schweik, Charles M.

93

Industrial Energy Conservation Technology  

SciTech Connect (OSTI)

A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

Not Available

1980-01-01T23:59:59.000Z

94

Industrial energy conservation technology  

SciTech Connect (OSTI)

A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

Schmidt, P.S.; Williams, M.A. (eds.)

1980-01-01T23:59:59.000Z

95

Improving Access to Foundational Energy Performance Data  

SciTech Connect (OSTI)

Access to foundational energy performance data is key to improving the efficiency of the built environment. However, stakeholders often lack access to what they perceive as credible energy performance data. Therefore, even if a stakeholder determines that a product would increase efficiency, they often have difficulty convincing their management to move forward. Even when credible data do exist, such data are not always sufficient to support detailed energy performance analyses, or the development of robust business cases. One reason for this is that the data parameters that are provided are generally based on the respective industry norms. Thus, for mature industries with extensive testing standards, the data made available are often quite detailed. But for emerging technologies, or for industries with less well-developed testing standards, available data are generally insufficient to support robust analysis. However, even for mature technologies, there is no guarantee that the data being supplied are the same data needed to accurately evaluate a product?s energy performance. To address these challenges, the U.S. Department of Energy funded development of a free, publically accessible Web-based portal, the Technology Performance Exchange(TM), to facilitate the transparent identification, storage, and sharing of foundational energy performance data. The Technology Performance Exchange identifies the intrinsic, technology-specific parameters necessary for a user to perform a credible energy analysis and includes a robust database to store these data. End users can leverage stored data to evaluate the site-specific performance of various technologies, support financial analyses with greater confidence, and make better informed procurement decisions.

Studer, D.; Livingood, W.; Torcellini, P.

2014-08-01T23:59:59.000Z

96

Energy 101: Fuel Cell Technology  

SciTech Connect (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-03-11T23:59:59.000Z

97

Energy 101: Fuel Cell Technology  

ScienceCinema (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-06-06T23:59:59.000Z

98

Alternative Energy Technologies Solar Power  

E-Print Network [OSTI]

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

Scott, Christopher

99

Energy-Efficient Commercial Technologies  

Broader source: Energy.gov [DOE]

Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses energy-efficient technologies such as boilers, air conditioners, heat pumps, humidity controls, combined heat and power (CHP), and more.

100

Uncertainties in energy technology assessments  

E-Print Network [OSTI]

In order to make important contributions, energy technology assessments must be large, interdisciplinary projects, generally becoming very time consuming and expensive. This small project does not involve a large assessment, ...

Coate, David

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

E-Print Network [OSTI]

report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency

Xu, Tengfang

2011-01-01T23:59:59.000Z

102

Energy Technologies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.Double

103

Technology Transfer Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure...

104

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

Science & Innovation Clean Coal Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses...

105

Technology Deployment List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Deployment List Technology Deployment List Spreadsheet details new and underutilized technologies ranked for Federal deployment by the Federal Energy Management Program....

106

Improving energy storage devices | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planning experimental workImprovingImproving

107

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda  

E-Print Network [OSTI]

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda technology transfer. In addition, major incentives for using RE methods are discussed, along with ideas engineering; Technology transfer 1. Introduction In a 1993 evaluation of requirements engineering (RE

Leite, Julio Cesar Sampaio do Prado

108

Energy Systems and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

109

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

renewable generation, grid supply, energy storage, distribution, communication, demand control, and end uses. Workshop findings are pending as of March 2013. Lawrence...

110

Industrial Energy Efficiency Projects Improve Competitiveness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

111

The Energy Department's Geothermal Technologies Office Releases...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

112

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

113

High Impact Technology Catalyst | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies...

114

Independent Oversight Review, National Energy Technology Laboratory...  

Office of Environmental Management (EM)

Independent Oversight Review, National Energy Technology Laboratory - May 2014 Independent Oversight Review, National Energy Technology Laboratory - May 2014 May 2014 Review of the...

115

Energy and technology review  

SciTech Connect (OSTI)

This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.

1994-04-01T23:59:59.000Z

116

Energy & Technology Review, April 1994  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, other major programs have been added, including technology transfer, laser science, biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs in turn require research in basic scientific disciplines including chemistry, and materials science, computing science and technology, engineering and physics. This review highlights two R&D 100 award winning research topics: (1) The world`s fastest digitizer which captures 30 ps transient electrical events, and (2) the MACHO camera system which fully exploits the power of large format digital imagers and integrates into one package the taking and analysis of images at a prodigious rate and the storage and archiving of extensive amounts of data. (GHH)

Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D; McElroy, L.; Kroopnick, H. [eds.

1994-04-01T23:59:59.000Z

117

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network [OSTI]

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

118

Building Technologies | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudget byTechnologySecurity

119

Exhaust Gas Energy Recovery Technology Applications  

SciTech Connect (OSTI)

Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

120

Building Energy Efficiency Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudget byTechnology

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Greenbox Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump to:Greenbox Technology Jump to:

122

Audit Procedures for Improving Residential Building Energy Efficiency  

E-Print Network [OSTI]

Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

123

Flywheel Energy Storage technology workshop  

SciTech Connect (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

124

Energy efficiency improvements in Chinese compressed airsystems  

SciTech Connect (OSTI)

Industrial compressed air systems use more than 9 percent ofall electricity used in China. Experience in China and elsewhere hasshown that these systems can be much more energy efficient when viewed asa whole system and rather than as isolated components.This paper presentsa summary and analysis of several compressed air system assessments.Through these assessments, typical compressed air management practices inChina are analyzed. Recommendations are made concerning immediate actionsthat China s enterprises can make to improve compressed air systemefficiency using best available technology and managementstrategies.

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2007-06-01T23:59:59.000Z

125

Technology Forum | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENTTechnology Forum Technology Forum May 19, 2014

126

District Energy Technologies | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. DepartmentBaseloadCenturyDistribution: SonyaTechnologies

127

Vehicle Technologies Office: Improving Biodiesel and Other Fuels...  

Energy Savers [EERE]

Quality Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems....

128

Hydropower and Ocean Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

129

Vehicle Technologies Office | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Efficient Vehicle Technologies Secretary Moniz Announces 55 M to Advance Fuel Efficient Vehicle Technologies Energy Secretary Moniz spoke at the Washington Auto Show,...

130

PROGRESS OF WIND ENERGY TECHNOLOGY  

E-Print Network [OSTI]

This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

Bar?? Özerdem

131

Health risks of energy technologies  

SciTech Connect (OSTI)

This volume examines occupational, public health, and environmental risks of the coal fuel cycle, the nuclear fuel cycle, and unconventional energy technologies. The 6 chapters explore in detail the relationship between energy economics and risk analysis, assess the problems of applying traditional cost-benefit analysis to long-term environmental problems (such as global carbon dioxide levels), and consider questions about the public's perception and acceptance of risk. Also included is an examination of the global risks associated with current and proposed levels of energy production and comsumption from all major sources. A separate abstract was prepared for each of the 6 chapters; all are included in Energy Abstracts for Policy Analysis (EAPA) and four in Energy Research Abstracts (ERA).

Travis, C.C.; Etnier, E.L. (eds.)

1983-01-01T23:59:59.000Z

132

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

133

Requirements for a Concentration in Energy Technologies  

E-Print Network [OSTI]

Technologies ­ 4 cr ENG EC 417 ­ Electric Energy Systems: Adapting to Renewable Resources ­ 4 cr Additional* - Methods of Environmental Policy ­ 4 cr ENG ME 533 ­ Energy Conversion ­ 4 cr ENG EC/ME/SE 543Requirements for a Concentration in Energy Technologies The concentration in Energy Technologies

134

Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint  

SciTech Connect (OSTI)

Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

2010-08-01T23:59:59.000Z

135

2012 Nuclear Energy Enabling Technology Factsheet | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE)2012 Nuclear Energy Enabling Technology

136

Sustaining Performance Improvements in Energy Intensive Industries  

E-Print Network [OSTI]

Experience has shown that significant opportunity for performance improvements exists in energy intensive operations. Often, efforts to improve efficiency focus on vendor-led initiatives to improve operations of particular equipment. This approach...

Moore, D. A.

2005-01-01T23:59:59.000Z

137

Mainstreaming New Renewable Energy Technologies  

E-Print Network [OSTI]

, Germany, Source: Sustainable energy venture capital ETAP conference ”Financial instruments for sustainable innovations” Amsterdam 21-22.10 2004, Tarja Teppo Helsinki University of Technology, Finland and Rolf Wuestenhagen, University of St. Gallen... , local plans must frequently be revised , to allow for the location of wind or bioenergy plants. This creates uncertainty and costly delays for project developers, for European wind projects between 1.5 and 4.5 years (Admire Rebus, 2003, s ituation...

Neuhoff, Karsten; Sellers, Rick

138

Ardica Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass FacilityArdica Technologies Jump to: navigation, search

139

Property:EnergyTechnology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumedEnergyAccessYearInitiated JumpEnergyTechnology

140

Future Technologies to Enhance Geothermal Energy Recovery  

SciTech Connect (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ris Energy Report 4 Efficiency improvements Introduction  

E-Print Network [OSTI]

END ULTIMATE MEANS END-USE TRADE LINE Figure 9: The energy chain with the three levels of potential, to South Africa where the coal is mined. The further up the chain that efficiency is improved, the greaterRisø Energy Report 4 Efficiency improvements 6 Introduction Energy efficiency can be improved

142

Industrial Conservation Technology Energy Savings Monitoring System  

E-Print Network [OSTI]

A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

Crowell, J. J.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

143

ARRA Proposed Award: Energy Technology Assistance Program  

E-Print Network [OSTI]

ARRA Proposed Award: Energy Technology Assistance Program Statewide Program ­ covering Greater Sub contractors: California Lighting Technology Center California Labor Management Cooperation multiplier) Partnering Clean Energy Workforce Training Programs: Sacramento Employment Training Agency

144

Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)  

SciTech Connect (OSTI)

Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

Not Available

2009-07-01T23:59:59.000Z

145

Distributed Energy Technology Simulator: Microturbine Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural...

146

Current Renewable Energy Technologies and Future Projections  

SciTech Connect (OSTI)

The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

2007-05-01T23:59:59.000Z

147

ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect (OSTI)

This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

Kate Burke

2004-01-01T23:59:59.000Z

148

Innovative Energy Technologies: The Next Generation  

E-Print Network [OSTI]

Innovative Energy Technologies: The Next Generation T E C H N O L O G Y G U I D E #12;Our lifestyle is sustained by energy. Technologies developed at Carnegie Mellon have the ability to enhance energy generation of entering, the marketplace. These next generation technologies have been developed by undergraduate

Andrews, Peter B.

149

Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness  

E-Print Network [OSTI]

INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY..., WASHINGTON, D.C. ABSTRACT This paper describes the Department of Energy's industrial energy auditing program, its achievements to date, and future plans. The Energy Analysis and Diagnostic Center (EADC) Program provides no-cost energy audits to small...

Glaser, C.

150

Separations Technology for Clean Water and Energy  

SciTech Connect (OSTI)

Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

Jarvinen, Gordon D [Los Alamos National Laboratory

2012-06-22T23:59:59.000Z

151

Transportation Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa HowellTechnologies » Transportation

152

Management of Energy Technology for Sustainability: How to Fund Energy Technology R&D  

E-Print Network [OSTI]

Management of Energy Technology for Sustainability: How to Fund Energy Technology R&D (Authors public policy problem: energy technology R&D portfolio management under climate change. We apply a multi to cost reduction, other times leading to better environmental outcomes. Key words : energy technology, R

Massachusetts at Amherst, University of

153

Energy Efficiency Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y. |Technologies onDepartment of|

154

Sustainable Energy Technologies Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation, search Name: Sustainable Energy Technologies

155

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

156

Innovative EnergyTechnologies: The Next Generation  

E-Print Network [OSTI]

;ABOUT T H E C A R N EG IE MELLON UNIVERSITY Wilton E. Scott Institute for Energy Innovation OverInnovative EnergyTechnologies: The Next Generation T E C H N O L O G Y G U I D E #12;Our lifestyle is sustained by energy. Technologies developed at Carnegie Mellon have the ability to enhance energy generation

McGaughey, Alan

157

The London Accord 1 Dynamics of technological development in the energy sector  

E-Print Network [OSTI]

that drive technological improvement, and using extrapolations based on past and present performance dataThe London Accord 1 Dynamics of technological development in the energy sector J. Doyne Farmer the literature on trends of technological improvement, focusing on the energy sector. We discuss the extent

158

Molten carbonate fuel cell technology improvement. Final report  

SciTech Connect (OSTI)

This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, ``Molten Carbonate Fuel Cell Technology Improvement.`` This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

Not Available

1991-06-01T23:59:59.000Z

159

US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer  

SciTech Connect (OSTI)

Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

1997-12-31T23:59:59.000Z

160

Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price  

SciTech Connect (OSTI)

The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was

Burdis, Mark; Sbar, Neil

2012-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network [OSTI]

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

Banerjee, Rangan

162

Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality  

Broader source: Energy.gov [DOE]

For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems. The Vehicle Technologies Office has collaborated with industry to test biofuel samples and improve...

163

National Energy Technology Laboratory Technology Marketing Summaries -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy Innovation

164

Arctic Energy Technology Development Laboratory  

SciTech Connect (OSTI)

The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

2008-12-31T23:59:59.000Z

165

Renewable Energy Technology Opportunities: Responding to Global Energy Challenges (Presentation)  

SciTech Connect (OSTI)

Presentation by Dr. Dan Arvizu of the National Renewable Energy Laboratory (NREL) to the Clean-Tech Investors Summit on January 23, 2007 overviews renewable energy technology opportunities.

Arvizu, D.

2007-01-23T23:59:59.000Z

166

of Fossil Energy | National Energy Technology Laboratory | Purdue...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy | National Energy Technology Laboratory | Purdue University 2014 University tUrbine systems research Workshop october 21-23 , 2014 West Lafayette, in 2 TABLE OF CONTENTS...

167

Rural Business Energy Efficiency Improvement Loan Program  

Broader source: Energy.gov [DOE]

The Maryland Agricultural and Resource Based Industry Development Corporation (MARBIDCO) offers low interest loans for energy efficiency improvements to farms and rural businesses through the Rural...

168

Hydrogen Technology Park DTE Energy -Company Overview  

E-Print Network [OSTI]

Gas Production Detroit Edison Power Generation Energy Services* Energy Trading Biomass Energy Coal billion · 2.6 million customers · 11,000 MW of generation · 600 BCF natural gas delivery · 11,000 employees #12;3 Diversified Energy and Energy Technology Company * Energy Services: Coal Based Fuels

169

Energy saving potential of various roof technologies  

E-Print Network [OSTI]

Unconventional roof technologies such as cool roofs and green roofs have been shown to reduce building heating and cooling load. Although previous studies suggest potential for energy savings through such technologies, ...

Ray, Stephen D. (Stephen Douglas)

2010-01-01T23:59:59.000Z

170

New venture commercialization of clean energy technologies  

E-Print Network [OSTI]

Clean energy technologies lower harmful emissions associated with the generation and use of power (e.g. CO2) and many of these technologies have been shown to be cost effective and to provide significant benefits to adopters. ...

Miller, David S. (David Seth)

2007-01-01T23:59:59.000Z

171

Climate impact metrics for energy technology evaluation  

E-Print Network [OSTI]

The climate change mitigation potential of energy technologies depends on how their lifecycle greenhouse gas emissions compare to global climate stabilization goals. Current methods for comparing technologies, which assess ...

Edwards, Morgan Rae

2013-01-01T23:59:59.000Z

172

Austin Energy- Free Home Energy Improvements Program  

Broader source: Energy.gov [DOE]

'''Austin Energy is not accepting applications for this program currently. Austin Energy hopes to offer the program again in the future. Contact the utility for additional information. '''

173

Vortex Hydro Energy Develops Transformational Technology to Harness...  

Energy Savers [EERE]

Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water...

174

Nuclear Energy: Policies and Technology for the 21st Century...  

Broader source: Energy.gov (indexed) [DOE]

Energy: Policies and Technology for the 21st Century Nuclear Energy: Policies and Technology for the 21st Century The Department of Energy (DOE) Nuclear Energy Advisory Committee...

175

Energy Overview and A Perspective on Fuel Cell Technologies:...  

Energy Savers [EERE]

Energy Overview and A Perspective on Fuel Cell Technologies: 2010 Worldwide Energy Conference Energy Overview and A Perspective on Fuel Cell Technologies: 2010 Worldwide Energy...

176

Using Dashboards to Improve Energy and Comfort in Federal Buildings  

SciTech Connect (OSTI)

Federal agencies are taking many steps to improve the sustainability of their operations, including improving the energy efficiency of their buildings, promoting recycling and reuse of materials, encouraging carpooling and alternative transit schemes, and installing low flow water fixture units are just a few of the common examples. However, an often overlooked means of energy savings is to provide feedback to building users about their energy use through information dashboards connected to a building?s energy information system. An Energy Information System (EIS), broadly defined, is a package of performance monitoring software, data acquisition hardware, and communication systems that is used to collect, store, analyze, and display energy information. At a minimum, the EIS provides the whole-building energy-use information (Granderson 2009a). We define a ?dashboard? as a display and visualization tool that utilizes the EIS data and technology to provide critical information to users. This information can lead to actions resulting in energy savings, comfort improvements, efficient operations, and more. The tools to report analyzed information have existed in the information technology as business intelligence (Few 2006). The dashboard is distinguished from the EIS as a whole, which includes additional hardware and software components to collect and storage data, and analysis for resources and energy management (Granderson 2009b). EIS can be used for a variety of uses, including benchmarking, base-lining, anomaly detection, off-hours energy use evaluation, load shape optimization, energy rate analysis, retrofit and retro-commissioning savings (Granderson 2009a). The use of these EIS features depends on the specific users. For example, federal and other building managers may use anomaly detection to identify energy waste in a specific building, or to benchmark energy use in similar buildings to identify energy saving potential and reduce operational cost. There are several vendors of EIS technology that provide information on energy and other environmental variables in buildings.

Lawrence Berkeley National Laboratory; Marini, Kyle; Ghatikar, Girish; Diamond, Richard

2011-02-01T23:59:59.000Z

177

7AC Technologies, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

a wide range of energy technologies, including battery electrodes, petroleum catalysts, solar cell materials, and organisms for bio fuel growth. Integrated Dynamic Electron...

178

United States National Energy Technology Laboratory's (NETL)...  

Open Energy Info (EERE)

Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States National Energy Technology...

179

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any...

180

Rural Electrification with Renewable Energy: Technologies, quality...  

Open Energy Info (EERE)

standards and business models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Rural Electrification with Renewable Energy: Technologies, quality standards and business...

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Renewable Energy Technologies for Rural Electrification - The...  

Open Energy Info (EERE)

the Private Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies for Rural Electrification - The Role of the Private Sector Agency...

182

Buildings Technologies Deployment | Clean energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

183

Innovation in energy technology Andrew Blakers  

E-Print Network [OSTI]

for all low emission technologies, and should therefore pick a small number of low emission energy winners and wind energy have very small environmental impacts compared with fossil and nuclear energy 5. The MRET: photovoltaics (PV), solar thermal electricity (STE), solar heat, wind, wave, bio energy, hydro, ocean energy etc

184

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

185

Ris Energy Report 5 Innovation in energy technologies 21 Introduction  

E-Print Network [OSTI]

Risø Energy Report 5 Innovation in energy technologies 21 5 Introduction Innovation in energy in clean-energy research at the Us Department of Energy [1]. The European Union in its seventh Framework Pro- gramme is expected to increase energy R&D budgets, not only for reasons of energy and climate

186

Before the House Science and Technology Subcommittee on Energy...  

Office of Environmental Management (EM)

Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology...

187

Before the House Science and Technology, Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment Before the House Science and Technology,...

188

2012 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2012amr02.pdf More...

189

2012 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

2 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies...

190

2011 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2011amr02.pdf More...

191

2014 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers [EERE]

Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014amr02.pdf More...

192

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

Hong, Tianzhen

2014-01-01T23:59:59.000Z

193

Fossil energy waste management. Technology status report  

SciTech Connect (OSTI)

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

194

Scanning the Technology Energy Infrastructure Defense Systems  

E-Print Network [OSTI]

systems and to develop de- fense plans to protect the network against extreme contingencies causedScanning the Technology Energy Infrastructure Defense Systems MASSOUD AMIN, SENIOR MEMBER, IEEE Energy infrastructure faced with deregulation and coupled with interdependencies with other critical

Amin, S. Massoud

195

Potentials and policy implications of energy and material efficiency improvement  

SciTech Connect (OSTI)

There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

1997-01-01T23:59:59.000Z

196

Power Technologies Energy Data Book - Fourth Edition  

SciTech Connect (OSTI)

This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

Aabakken, J.

2006-08-01T23:59:59.000Z

197

Educational Technology Improves ECG Interpretation of Acute Myocardial Infarction among Medical Students and Emergency Medicine Residents  

E-Print Network [OSTI]

Technology Improves ECG Interpretation Education. AAMCheartdisease. 2. Ripa, MS. The ECG as decision support inEducational Technology Improves ECG Interpretation of Acute

Pourmand, Ali; Tanski, Mary; Davis, Steven; Shokoohi, Hamid; Lucas, Raymond; Zaver, Fareen

2015-01-01T23:59:59.000Z

198

Energy conservation potential of surface modification technologies  

SciTech Connect (OSTI)

This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

Le, H.K.; Horne, D.M.; Silberglitt, R.S.

1985-09-01T23:59:59.000Z

199

Evaluating Energy Efficiency Improvements in Manufacturing Processes  

E-Print Network [OSTI]

and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

Boyer, Edmond

200

Showing results, 3 Energy technology and energy planning  

E-Print Network [OSTI]

aspects of energy, industrial, and agricultural production Materials, 24 Materials and measuring materials, 8 Plasma and fluid dynamics, 9 ­ Energy planning, 10 Simulation and optimisation of energyShowing results, 3 Energy, 4 Energy technology and energy planning Environment, 12 Environmental

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy prices and the adoption of energy-saving technology  

E-Print Network [OSTI]

This paper investigates the link between factor prices, technology and factor demands. I estimate the effect of price-induced technology adoption on energy demand in the U.S. manufacturing sector, using plant data from the ...

Linn, Joshua

2006-01-01T23:59:59.000Z

202

Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

Not Available

2006-03-01T23:59:59.000Z

203

Paul S. Veers Wind Energy Technology Department  

E-Print Network [OSTI]

Paul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3 Y WIND ENERGY SEMINAR SERIES Wind energy is a growing electricity source around the world, providing. The rapid expansion of wind is largely due to its relative similarity in levelized cost of energy to fossil

Ginzel, Matthew

204

Educational Technology Improves ECG Interpretation of Acute Myocardial Infarction among Medical Students and Emergency Medicine Residents  

E-Print Network [OSTI]

Use of Educational Technology in Medical Volume XVI, NO .et al. Educational Technology Improves ECG Interpretationthe field of educational technology. Educ Technol. critical

Pourmand, Ali; Tanski, Mary; Davis, Steven; Shokoohi, Hamid; Lucas, Raymond; Zaver, Fareen

2015-01-01T23:59:59.000Z

205

High energy density capacitors using nano-structure multilayer technology  

SciTech Connect (OSTI)

Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1992-08-01T23:59:59.000Z

206

IllInoIs InstItute of technology's WInd energy research consortIum  

E-Print Network [OSTI]

IllInoIs InstItute of technology's WInd energy research consortIum Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U.S. Department of Energy has invested $8 Million in the IIT-led Wind Energy Consortium to improve wind generation

Heller, Barbara

207

Improving Energy Efficiency of Auxiliaries  

SciTech Connect (OSTI)

The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines.

Carl T. Vuk

2001-12-12T23:59:59.000Z

208

Deployment Effects of Marin Renewable Energy Technologies  

SciTech Connect (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

209

Tax Deduction for Home Energy Audits and Energy Efficiency Improvements  

Broader source: Energy.gov [DOE]

In July 2008, Missouri enacted legislation allowing homeowners to take an income tax deduction of the cost of home energy audits and associated energy efficiency improvements. The tax deduction is...

210

Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...  

Broader source: Energy.gov (indexed) [DOE]

achieved annual energy savings of approximately 45,000 MMBtu and improved the furnace's energy intensity by 11.1% between 2006 and 2007. With project costs of approximately...

211

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network [OSTI]

Energy-Efficiency Technologies and Benchmarking the EnergyEnvironmental Energy Technologies Division Lawrence BerkeleyIsfahan University of Technology Mohamad Abdolrazaghi,

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

212

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

Appropriate Energy Technology Resource Center .IX DOE Appropriate Energy Technology Pilot Program - PartIX DOE Appropriate Energy Technology Pilot Program - Part I;

Case, C.W.

2012-01-01T23:59:59.000Z

213

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network [OSTI]

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

214

Energy technology review, July--August 1991  

SciTech Connect (OSTI)

This issue of Energy Technology Review'' gives the annual review of the programs at Lawrence Livermore National Laboratory. This State of the Laboratory issue includes discussions of all major programs: Defense Systems; Laser Research; Magnetic Fusion Energy; Energy and Earth Sciences; Environmental Technology Program; Biomedical and Environmental Science; Engineering; Physics; Chemistry and Materials Science; Computations; and Administrative and Institutional Services. An index is also given of the 1991 achievements with contact names and telephone number.

Johnson, K.C. (ed.)

1991-01-01T23:59:59.000Z

215

Energy Conservation Improvements Property Tax Exemption  

Broader source: Energy.gov [DOE]

Qualifying energy-conservation improvements to homes are exempt from real property taxation to the extent that the addition would increase the value of the home. The exemption includes general...

216

Vehicle Technologies Office Merit Review 2013: Abuse Tolerance Improvements  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratory (SNL) at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on improving the tolerance of batteries for plug-in electric vehicles under abusive conditions.

217

In situ Remediation Technologies Associated with Sanitation Improvement  

E-Print Network [OSTI]

by poor levels of sanitation and inadequate water and wastewater management. Pressure from urban areas12 In situ Remediation Technologies Associated with Sanitation Improvement: An Opportunity, the implementation of sanitation infrastructure is also necessary. With the increase of the negative environmental

Paris-Sud XI, Université de

218

Transportation Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

natural gas, and propane-can help reduce reliance on imported oil while also reducing air pollution and improving the environment. DOE Resources: Alternative Fuels Data Center...

219

Improving Energy Efficiency for Energy Harvesting Embedded Systems*  

E-Print Network [OSTI]

of solar energy. The main control knobs in these problems are the voltage of charge transfer interconnect of charge migration problem [6] is to transfer energy internally from one EES bank to another, whileImproving Energy Efficiency for Energy Harvesting Embedded Systems* Yang Ge, Yukan Zhang and Qinru

Qiu, Qinru

220

Bioenergy technology balancing energy output with environmental  

E-Print Network [OSTI]

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Characterizing emerging industrial technologies in energy models  

SciTech Connect (OSTI)

Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-07-29T23:59:59.000Z

222

Industrial-energy-conservation technology  

SciTech Connect (OSTI)

Sixty-one papers presented at the meeting are included in this volume. A separate abstract was prepared for each paper for Energy Research Abstracts (ERA); nineteen were included in Energy Abstracts for Policy Analysis (EAPA). (LCL)

Not Available

1981-01-01T23:59:59.000Z

223

Geothermal energy technology program summary  

SciTech Connect (OSTI)

The progress to date of the geothermal energy program of the US Department of Energy is briefly summarized, including federal/industry cooperation, program focus, and a budget summary. (ACR)

Not Available

1985-05-01T23:59:59.000Z

224

Technologies for Energy Efficient Buildings  

E-Print Network [OSTI]

.4.2.3 Total electrical energy consumption 33 3.4.2.4 Consumer alert messages 33 3.5 Laboratory Testing of Electricity Delivery and Energy Reliability Under Award No. DE-FC26-06NT42847 Hawai`i Distributed Energy of work sponsored by an agency of the United States Government. Neither the United States Government nor

225

Energy-Efficiency Improvement Opportunities for the Textile Industry  

SciTech Connect (OSTI)

The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

China Energy Group; Hasanbeigi, Ali

2010-09-29T23:59:59.000Z

226

Refractory Lining Material Improves Gasifer Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water GASIFICATION CHAMBER the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Refractory Lining Material Improves Gasifier Performance Award Winning...

227

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

228

Technology Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhat typesOffice of

229

Study on Prompting Mechanism of Energy EFficiency Technology  

Office of Energy Efficiency and Renewable Energy (EERE)

Information on energy efficient technologies, the obstacles surrounding their implementation, and the methods for prompting use of these technologies.

230

UNEP Collaborating Centre on Energy and Environment Renewable Energy Technologies  

E-Print Network [OSTI]

(solar, bio-mass, hydro, etc), available technologies and their costs, commercial viability and financing costs, taxes (local and import), subsidies and energy prices Technical Lack of access to the technology of valuation of social and environmental benefits Policy Unfavourable energy sector policies and unwieldy

231

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

232

ARPA-E: Improving Military Energy Security  

SciTech Connect (OSTI)

The U.S. military has a vested interest in advancing microgrid technologies that can power forward operating bases. These technologies could not only help the military significantly reduce its energy demand both at home and abroad, but also they could reduce the number of fuel-supply convoys required on the battlefield and the number of troops killed in fuel-supply convoy attacks. This video highlights two ARPA-E projects that have formed strategic partnerships with the military to enable these microgrids at forward operating bases. Georgia Tech is developing an innovative absorption heat pump that utilizes exhaust heat to provide heating and cooling, which could cut the amount of energy used to heat and cool forward operating bases by 50%. Primus Power is developing a low-cost, energy-dense storage system that could store enough energy to operate a base for several days in the event of a disruption.

Willson, Bryan; Mahvi, Allison; Stepien, Tom; Wasco, Mick

2014-02-24T23:59:59.000Z

233

ARPA-E: Improving Military Energy Security  

ScienceCinema (OSTI)

The U.S. military has a vested interest in advancing microgrid technologies that can power forward operating bases. These technologies could not only help the military significantly reduce its energy demand both at home and abroad, but also they could reduce the number of fuel-supply convoys required on the battlefield and the number of troops killed in fuel-supply convoy attacks. This video highlights two ARPA-E projects that have formed strategic partnerships with the military to enable these microgrids at forward operating bases. Georgia Tech is developing an innovative absorption heat pump that utilizes exhaust heat to provide heating and cooling, which could cut the amount of energy used to heat and cool forward operating bases by 50%. Primus Power is developing a low-cost, energy-dense storage system that could store enough energy to operate a base for several days in the event of a disruption.

Willson, Bryan; Mahvi, Allison; Stepien, Tom; Wasco, Mick

2014-03-13T23:59:59.000Z

234

Understanding energy technology developments from an innovation system perspective  

E-Print Network [OSTI]

Understanding energy technology developments from an innovation system perspective Mads Borup1. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark for discussing the framework conditions for transition to sustainable energy technologies and strengths

235

MHK Technologies/CETO Wave Energy Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWEC < MHK< MHK Technologies Jump to:

236

Pihsiang Energy Technology PHET | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County, Nebraska: EnergyJump to:PHET Jump to:

237

Industrial-energy-conservation technology  

SciTech Connect (OSTI)

Fifty-nine papers presented at the meeting are included in this volume. A separate abstract was prepared for each, with all of the abstracts appearing in Energy Research Abstracts (ERA); 21 abstracts were selected for Energy Abstracts for Policy Analysis (EAPA). (LCL)

Not Available

1981-01-01T23:59:59.000Z

238

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

Singer, Brett C.

2010-01-01T23:59:59.000Z

239

Geo energy research and development: technology transfer  

SciTech Connect (OSTI)

Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

Traeger, R.K.

1982-03-01T23:59:59.000Z

240

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

efficiency improvement opportunities in electric motors in electric motors 31 When considering energy-efficiencyefficiency improvement opportunities in electric motors

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology  

SciTech Connect (OSTI)

This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

Harry Littleton; John Griffin

2011-07-31T23:59:59.000Z

242

Technology Deployment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidentialProducts & Technologies »

243

Cogeneration Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroupChoice Electric(CTI)Technologies Jump

244

Proceedings of the Hydrokinetic and Wave Energy Technologies...  

Office of Environmental Management (EM)

Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and...

245

Diversity in Science and Technology Advances National Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

246

Before the House Science and Technology Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Statement Before the Committee On...

247

Department of Energy Recovery Act Investment in Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

248

ENEA Italian National Agency for New Technologies Energy and...  

Open Energy Info (EERE)

ENEA Italian National Agency for New Technologies Energy and the Environment Jump to: navigation, search Name: ENEA (Italian National Agency for New Technologies, Energy and the...

249

Apply: Building Energy Efficiency Frontiers and Incubator Technologies...  

Energy Savers [EERE]

Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

250

ITP Metal Casting: Advanced Melting Technologies: Energy Saving...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

251

State Grid and Shenzhen Energy Group Biomass Engineering Technology...  

Open Energy Info (EERE)

Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre...

252

DOE Selects Contractor for California Energy Technology Engineering...  

Broader source: Energy.gov (indexed) [DOE]

California Energy Technology Engineering Center Cleanup DOE Selects Contractor for California Energy Technology Engineering Center Cleanup June 26, 2014 - 12:00pm Addthis Media...

253

Department of Energy Quadrennial Technology Review Framing Document...  

Energy Savers [EERE]

of Energy Quadrennial Technology Review Framing Document More Documents & Publications Slide 1 QTR Ex Parte Communications Department of Energy Quadrennial Technology Review...

254

U.S. Department of Energy Geothermal Electricity Technology Evaluation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar...

255

Department of Energy Quadrennial Technology Review Clean Electricity...  

Energy Savers [EERE]

Department of Energy Quadrennial Technology Review Clean Electricity Workshop Department of Energy Quadrennial Technology Review Clean Electricity Workshop Public release of the...

256

Fuel Cell Technologies Overview: March 2012 State Energy Advisory...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Overview: March 2012 State Energy Advisory Board Meeting Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Presentation by Sunita...

257

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

258

Silicon Nanostructure-based Technology for Next Generation Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

259

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

260

DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...  

Energy Savers [EERE]

Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview2.pdf...

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Profile: CSP Energy Storage Solutions - Multiple Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings,...

262

Sample Contract Language for Information Technology Using Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sample Contract Language for Information Technology Using Energy-Efficient Products Sample Contract Language for Information Technology Using Energy-Efficient Products Document...

263

Webinar: Energy Is Everywhere! Connecting with Science and Technology...  

Office of Environmental Management (EM)

Webinar: Energy Is Everywhere Connecting with Science and Technology Centers Webinar: Energy Is Everywhere Connecting with Science and Technology Centers March 19, 2015 3:00PM to...

264

Fuel Cell Technologies Overview: March 2012 State Energy Advisory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Presentation by...

265

GCL Solar Energy Technology Holdings formerly GCL Silicon aka...  

Open Energy Info (EERE)

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL...

266

Silicon Nanostructure-based Technology for Next Generation Energy...  

Broader source: Energy.gov (indexed) [DOE]

Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2012 DOE Hydrogen and Fuel Cells...

267

Energy Department Releases Roadmaps on HVAC Technologies, Water...  

Energy Savers [EERE]

Energy Department Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants Energy Department Releases Roadmaps on HVAC Technologies, Water...

268

2011 Annual Planning Summary for National Energy Technology Laboratory...  

Office of Environmental Management (EM)

National Energy Technology Laboratory (NETL) 2011 Annual Planning Summary for National Energy Technology Laboratory (NETL) The ongoing and projected Environmental Assessments and...

269

Energy & technology review, April 1995  

SciTech Connect (OSTI)

This publication presents research overviews on projects from the Lawrence Livermore laboratory. This issue provides information on microsphere targets for inertial confinement fusion experiments; laser fabrication of berllium components; and the kinetic energy interceptor.

Bookless, W.A.; Stull, S. [eds.

1995-04-01T23:59:59.000Z

270

Four Technologies to Save Energy  

E-Print Network [OSTI]

Sunwell Engineering has developed a new ice production system which has many advantages over other conventional ice making methods. A project jointly funded by Federal and Provincial Energy Ministries and Ontario Ministry of Industry and Tourism...

Goldstein, V.

1984-01-01T23:59:59.000Z

271

Renewable Energy Technologies Overview | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegionalReliability andEnergySeminar

272

Renewable Energy Technology Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegionalReliability andEnergySeminarRenewable

273

Nuclear Energy Enabling Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCutWorkersNiketaEfficiencyApril

274

Technology Roadmaps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServices »

275

Evince Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information EnergySolarEuropean Wind

276

Powerball Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River EnergyCube Pvt

277

JSA Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) |JMalucelli Energia Place: Curitiba,Morgan

278

Greenhouse Gas Return on Investment: A New Metric for Energy Technology  

E-Print Network [OSTI]

Gas INTRODUCTION Alternative energy technologies such asmotivations of alternative energy technologies: mitigatingaddresses the goal of alternative energy technology

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

279

Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storage technologies aretoSolutions,I. Use

280

Improving Department of Energy Capabilities for Mitigating Beyond...  

Broader source: Energy.gov (indexed) [DOE]

Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April...

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Better Buildings Challenge is Expanding, Improving Energy Efficiency...  

Energy Savers [EERE]

is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America December 5, 2013 - 4:36pm...

282

How This Administration's Clean Energy Tax Policies are Improving...  

Broader source: Energy.gov (indexed) [DOE]

How This Administration's Clean Energy Tax Policies are Improving the Markets How This Administration's Clean Energy Tax Policies are Improving the Markets October 19, 2010 -...

283

Erosion-Resistant Nanocoatings for Improved Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines...

284

Energy Center Center for Coal Technology Research  

E-Print Network [OSTI]

Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

Fernández-Juricic, Esteban

285

Director Leaving the National Energy Technology Laboratory  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy today announced that Carl O. Bauer is retiring from federal service and leaving the National Energy Technology Laboratory effective February 28, 2010, following a distinguished four-year tenure as the laboratory's director, completing an impressive federal civilian and military career.

286

Solar Energy Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServices ServicesRenewable Energy » Solar

287

National Energy Technology Laboratory | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof EnergyNapaInformationandLaboratory (NETL)

288

Wind Energy Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - Past

289

Lucid Energy Technologies GCK | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualeiGroupLuce

290

Green Energy Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood,

291

Energy Technology Centre | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy Sector ManagementCentre Jump to:

292

Advanced energy design and operation technologies  

SciTech Connect (OSTI)

Current practice in design of commercial buildings does not adequately consider the relationships between design decisions and energy performance. Estimates indicate that if energy criteria were integral to the design process, more than 15% of the energy used in new buildings could be conserved. This could be done using readily available energy-efficient design knowledge, without any increase in first costs. Furthermore, building design necessarily involves assumptions concerning use and operation of the building once it is built. Currently, operations practices intended by the designer are not adequately transferred during commissioning to building operators for use as guides during operation. Advanced technologies for overcoming these problems are described in this paper. The advanced energy design and operations technologies will consist of an intelligent automated design advisor that utilizes artificial intelligence and other advanced computer technologies to provide assistance to and encourage interaction among all participants in the design process. Assistance will be provided at all points in the building design process, especially in the early phases of design (e.g., during building programming) where decisions can have particularly significant impacts on energy consumption. The technology used for the design advisor will facilitate transfer of critical operation guidance to building operators and, coupled with monitoring technology, provide feedback on performance to the design process. 4 refs., 1 fig.

Brambley, M.R.; Crawley, D.B.

1988-09-01T23:59:59.000Z

293

MAK Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to: navigation, search Name: MAK

294

EPIR Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified as ASHRAEDuvalJustice webpageClass319EPIR Technologies

295

Viryd Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpenVerona,HamptonVinland,InformationViryd Technologies

296

Pavilion Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County isParadise, Nevada:Pavilion Technologies Jump

297

Evident Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, Ohio:Field Fromin theTechnologies

298

Improved Calculation of Thermal Fission Energy  

E-Print Network [OSTI]

Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

Ma, X B; Wang, L Z; Chen, Y X; Cao, J

2013-01-01T23:59:59.000Z

299

Energy efficiency improvement and cost saving opportunities forpetroleum refineries  

SciTech Connect (OSTI)

The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Worrell, Ernst; Galitsky, Christina

2005-02-15T23:59:59.000Z

300

Quantifying Energy Savings by Improving Boiler Operation  

E-Print Network [OSTI]

Dayton, OH ABSTRACT On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers... the accuracy of the methods. INTRODUCTION In our experience, common opportunities for improving boiler efficiency include switching from on/off to modulation control and reducing excess air. The decision about whether to pursue these opportunities...

Carpenter, K.; Kissock, J. K.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Greenward Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V790012°, -75.5982599°SouthGreenward

302

Greenwood Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V790012°,0300548°,Resources Address: 1500

303

Technology Benchmarking | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 | PEMEnergyRoll to

304

Technology Integration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOE Hydrogen and

305

Technology Validation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServicesThis form

306

Budasolar Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a villageBucyrus, North Dakota: Energy Resources

307

Energy Technology Data Exchange (ETDE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-upEnergy SystemsTrends and

308

NGP Energy Technology Partners | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurrInformation NAMA-ProgrammeNF Energy Saving CorpNGP

309

Energy Storage Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy Storage & Battery Leading theStorage

310

Geo Energy Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is a villageGentryGeo

311

KLD Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCountyKGRA Energy LLC Jump to:KLKLD

312

Clean Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:Clean AirGroupRancho

313

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Best Practices. Case Study–The Challenge: Improving Ventilation System Energy EfficiencyEnergy Efficiency & Renewable Energy (EERE), Office of Industrial Technologies. 2000. Best PracticesEnergy Efficiency Actions for Plant Personnel96   iii Appendix D: Assessing Energy Management Systems for Best Practices .

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

314

Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism  

SciTech Connect (OSTI)

As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

Richardson, J; Yuldashev, B; Labov, S; Knapp, R

2006-06-12T23:59:59.000Z

315

Energy & Technology Review, March 1994  

SciTech Connect (OSTI)

This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide better healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.

Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.; Van Dyke, P. [eds.

1994-03-01T23:59:59.000Z

316

Tax Credits for Home Energy Improvements (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the Department of Energy's tax credits for home energy improvements.

Not Available

2011-08-01T23:59:59.000Z

317

Improving Collision Induced Dissociation (CID), High Energy Collision...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collision Induced Dissociation (CID), High Energy Collision Dissociation (HCD), and Electron Transfer Dissociation Improving Collision Induced Dissociation (CID), High Energy...

318

Wind Energy Workforce Development: Engineering, Science, & Technology  

SciTech Connect (OSTI)

Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

2013-03-29T23:59:59.000Z

319

Geothermal Technologies Office - Webmaster | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)October 2011 |Technologies

320

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatThe Technology Transfer

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technology Transitions Facilities Database | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatThe TechnologyType*

322

Improving Project Management | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment ofDepartment of EnergyImproving Project

323

New Technology and Energy Alternatives  

E-Print Network [OSTI]

traditional electrical power. Equipment used and case histories, including economics of the industrial installations, are included. Sites range in size from 650 kW to 22.0 MW. AI I systems use reciprocating engine generators as prime movers. Introduct... I be discussed. Our focus is on industrial plants, but the same methods and equipment can be util ized to reduce energy costs at commercial, institutional, and nonprofit facilities. A brief review of electric util ity rate structures wil I...

Lamphere, F. J.

324

Fuel Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges An OEMLife10

325

Noveda Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)References ↑Information

326

LFG Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformationparticipants < LEDSGP‎ |featuresLEEDLFG

327

Apex Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy Co Ltd Jump to:Summaries

328

MHK Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM Communications Smart GridMCMHKMHK

329

Technology Reviews | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical

330

Precede Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder RiverPratt, Kansas:Preble County,

331

Wakonda Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside, NebraskaVolunteerWaitsfield,Wakonda

332

Transportation Energy Technology DivisionEnergy Technology Division --TribologyTribology  

E-Print Network [OSTI]

-frictionless carbon coatings to the components when appropriate · Develop and evaluate polymer composite materials to their prototype using Hitco C/C composite and anodized aluminum material combination. · Fabricated and evaluatedTransportation Materials Energy Technology DivisionEnergy Technology Division -- Tribology

333

Renewable Energy Technologies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSitingPresentation Remy:Renewable13423 |Renewable

334

Renewable Energy Technology Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatolia Jump to:Toolkit (Redirected from

335

Energy Technology Solutions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs andHVACEnergy Storage6|

336

Precision Energy Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder RiverPratt, Kansas:Preble

337

Energy Conservation Aspect of Energy Systems Technology Education Program  

E-Print Network [OSTI]

The primary purpose of this paper is to present a brief explanation of the Energy Systems Technology Education Program (ESTEP). This program is a system of continuing education that has been devised for the technical and supervisory personnel...

McBride, R. B.

1982-01-01T23:59:59.000Z

338

Energy and technology review, December 1991  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, we have added other major programs, including laser fusion and laser isotope separation, biomedical and environmental science, strategic defense, and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computer science and technology, engineering, and physics. Energy and Technology Review is published monthly to report on unclassified work in all our programs. Various topics concerning Desert Storm are presented in this issue: (1) The Oil/Gas Separator: A New Cap for Quenching Oil-Well Fires; (2) Airborne Detection of Buried Minefields; (3) Assessing the Hazardous Effects of Airborne Particles During and After Operation Desert Storm.

Sefcik, J.A.; de Vore, L.; Gleason, K.; Kroopnick, H.; McGregor, C.; Stanford, N.M. [eds.

1991-12-31T23:59:59.000Z

339

Assistive Technology | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » Alternative FuelNewsWashington AutoYourAppliance andAssistive

340

Fuels Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S.

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Konarka Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz eKodiak, Alaska:Konarka

342

Emerging Technologies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. Steven ChuEffect ofElectrifyingCaseEmerging

343

Albeo Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir(EC-LEDS) |Albatech srl

344

Ashman Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy CoClimateArtificial MuscleAshman

345

Gulfstream Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., It isOpenForestry,GulfGulfstream

346

Framing the Energy Technology Menu  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.Future of Coal and

347

Framing the Energy Technology Menu  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.Future of Coal

348

Auli Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspenAudubon, Pennsylvania:Augusta MountainsAuli

349

Industrial Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex and

350

Bioconversion Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form View source History ViewSystems

351

Minerals Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds JumpMilner Dam WindIIIPlace:

352

Supan Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside WindSolar Energy

353

Sibolu Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrub Oak, New York: EnergySibley County,Sibolu

354

Adura Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddison is aAdenaAdrian is a cityisAdura

355

Introduction to Renewable Energy Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponses to EngineeredADepartment of1999 PreparedMiniBooNEDatato

356

Raven Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton, New Mexico: EnergyRaven

357

Geothermal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal Heat Pumps

358

Alpha Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil Jump to:Information332Information 922Altair Energy JumpAlpha

359

Emerging Technologies | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the|Resources »Emerging

360

Briza Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JV JumpBraselco Jump to:British EnergyBriza

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Statpower Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.StanlyEnergyInformation Wister Area

362

NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

Gevorgian, V.

2014-09-01T23:59:59.000Z

363

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Broader source: Energy.gov [DOE]

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

364

Ocean Energy Technology Basics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArmsSpeedingSpeedingUnderOccupational HealthOcean Aerosols: The

365

National Energy Technology Laboratory | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9 CaseNatEl Jump to:NCPV

366

Solar Energy Technologies Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolarSolar Energy

367

American Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy SystemsAmerican Energy Systems Inc Place: Minnesota

368

Sunborne Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota:36052°, -97.6114217°SunEnergySunWare Solartechnik

369

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.energy efficiency improvements in healthcare buildings. A

Singer, Brett C.

2010-01-01T23:59:59.000Z

370

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

E-Print Network [OSTI]

For Energy Efficiency of Public Building -- GB 50189.communication on building energy efficiency policy in China.Improving energy efficiency in existing buildings. ASHRAE

Levine, Mark

2014-01-01T23:59:59.000Z

371

Energy efficiency improvements in Chinese compressed air systems  

E-Print Network [OSTI]

Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2008-01-01T23:59:59.000Z

372

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

Finishing Stenters, ADB Energy-efficiency Support Project.After Treatment Dryer. ? Energy-efficiency Bulletin (No.40).E. and Galitsky, C. , 2004. Energy-efficiency improvement

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

373

Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance  

SciTech Connect (OSTI)

In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

Not Available

2005-04-01T23:59:59.000Z

374

Hawaii Oceanic Technology Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridor | OpenOpen EnergyOpenOceanic Technology Inc

375

Nanowin Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator29NanoPVNanowin Technology Co

376

Micron Technology Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to:Michigan: Energy ResourcesMicrofieldMicron Technology

377

Energy Technology Division research summary - 1999.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

NONE

1999-03-31T23:59:59.000Z

378

High-energy electron beam technology  

SciTech Connect (OSTI)

A high-energy electron beam (HEEB) technology was developed under the US Department of Defense (DOD) charged-particle-beam (CPB) directed-energy program. The program's objective was advanced military weapon systems. For the past two decades, charged-particle-beam research focused on producing intense beams and the vehicles to deliver large amounts of electrical energy. The charged-particle beams of interest for weapon systems had particle energies up to 100 MeV, beam currents of tens of kiloamperes, and propagation distances in excess of 100 m. However, such high energy levels are not required for industrial uses of the technology. It is anticipated that these less-aggressive beams will provide an electrical heat source suitable for a variety of materials processing applications, including surface treatment, joining, shock hardening, phase-transformation hardening, peening, shock-wave compaction, and melting. Much more R and D is needed to transfer to industry the high-energy electron beam technology developed in the CPB program. For example, its power as a materials processing tool must be convincingly demonstrated. Also required are compact, reliable accelerators that are relatively simple to use and reasonably priced.

Danko, J.C.; Lundin, C.D. (Univ. of Tennessee, Knoxville, TN (United States)); Nolting, E.E. (Naval Surface Warfare Center, White Oak, MD (United States))

1994-09-01T23:59:59.000Z

379

Energy curable compositions having improved cure speeds  

DOE Patents [OSTI]

The composition and method provide improved physical properties and cure speed of polyurethane precursors, with or without free radical polymerizable monomers or oligomers present, by use of a two component catalyst system. The resin blend can be activated with a latent organometallic catalyst combined with an organic peroxide which can be a hydroperoxide or an acyl peroxide to decrease the cure time while increasing the break energy and tangent modulus of the system.

Halm, L.W.

1993-05-18T23:59:59.000Z

380

Improved energy recovery from geothermal reservoirs  

SciTech Connect (OSTI)

The behavior of a liquid-dominated geothermal reservoir in response to production from different horizons is studied using numerical simulation methods. The Olkaria geothermal field in Kenya is used as an example where a two-phase vapor-dominated zone overlies the main liquid-dominated reservoir. The possibility of improving energy recovery from vapor-dominated reservoirs by tapping deeper horizons is considered.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy and Technology Review, August--September  

SciTech Connect (OSTI)

This issue of Energy and Technology Review focuses on cooperative research and development agreements (CRADAs)-one of the Laboratory's most effective means of technology transfer. The first article chronicles the legislative evolution of these agreements. The second article examines the potential beneficial effects of CRADAs on the national economy and discusses their role in the development and marketing of Laboratory technologies. The third article provides information on how to initiate and develop CRADAs at LLNL, and the fourth and fifth articles describe the Laboratory's two most prominent technology transfer projects. One is a 30-month CRADA with General Motors to develop advanced lasers for cutting, welding, and heat-treating operations. The cover photograph shows this laser cutting through a piece of steel 1/16 of an inch thick. The other project is a three-year CRADA with Amoco, Chevron-Conoco, and Unocal to refine our oil shale retorting process.

Sefcik, J A [ed.

1992-01-01T23:59:59.000Z

382

Energy technology progress for sustainable development  

SciTech Connect (OSTI)

Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

Arvizu, D.E.; Drennen, T.E.

1997-03-01T23:59:59.000Z

383

Advanced Technology Planning for Energy Savings Performance Contracts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the implementation of energy efficiency and renewable energy technologies in federal agencies. The Federal Energy Management Program (FEMP) assists agencies in identifying and...

384

2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...  

Energy Savers [EERE]

Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and development merit review results 2010amr02.pdf More Documents...

385

Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

386

^ x>*/87ooo VS of Energy Technology  

E-Print Network [OSTI]

of Energy Technology 5 1.2. Section of Process Simulation 6 1.3. Heat Transfer and Combustion 8 1 Laboratory 22 2.8. Fundamental Combustion Research 23 2.9. Coal Combustion in a Circulating Fluidized Bed-dimensional Turbulent Gas/Particle Flows 26 2.12. MULTWO, Compositional Computer Model for Transient Oil/Gas Two

387

Anthony Cugini Named Director of DOE's National Energy Technology Laboratory  

Broader source: Energy.gov [DOE]

Anthony V. Cugini, a senior scientist with a range of research experience and interests over a wide cross section of energy and environmental technologies, has been named director of the U.S. Department of Energy's National Energy Technology Laboratory.

388

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

389

Fuel Cell Technologies Office | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNG Expansion, L.P.Fuel Cell Technologies

390

Geothermal Technologies Office Contacts | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies Office Contacts Geothermal

391

Geothermal Technology Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies Office ContactsRenewable

392

Efficiency Improvement Pathway | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday,Department ofNon-RoadTechnological

393

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

Ravi Prasad

2003-11-01T23:59:59.000Z

394

Energy Department Opens Job Search for Geothermal Technologies...  

Energy Savers [EERE]

Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal Technologies Office Director Position April 2, 2015 - 8:40am...

395

Energy Storage Technologies: State of Development for Stationary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony...

396

DoD, Energy Security and Technological Innovation  

Broader source: Energy.gov (indexed) [DOE]

DoD, Energy Security and Technological Innovation Dorothy Robyn Deputy Under Secretary of Defense (Installations & Environment) SunShot Grand Challenge Summit and Technology Forum...

397

Vehicle Technologies Office Merit Review 2014: High Energy Density...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems Vehicle Technologies Office Merit...

398

Energy and technology lessons since Rio  

SciTech Connect (OSTI)

The 1992 Framework Convention on Climate Change created the basic international architecture for addressing climate change. That treaty was negotiated at a time when the research literature examining emissions mitigation and the role of energy technology was relatively limited. In the two subsequent decades a great deal has been learned. The problem of stabilizing the concentration of greenhouse gases in the atmosphere has proved far more difficult than envisioned in 1992 and the role of technology appears even more important when emissions mitigation strategies are co-developed in the context of multiple competing ends.

Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Kyle, G. Page; Wise, Marshall A.

2012-11-01T23:59:59.000Z

399

DFC Technology Status | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners withof EnergyTechnology Status DFC Technology

400

Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint  

SciTech Connect (OSTI)

One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance  

E-Print Network [OSTI]

A Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance Alen Bardizbanyan, Chalmers University of Technology Magnus Sj¨alander, Florida State University David Whalley, Florida State University Per Larsson-Edefors, Chalmers University of Technology Conventional data filter

Whalley, David

402

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

403

On-Bill Financing for Energy Efficiency Improvements: A Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improvements: A Review of Current Program Challenges, Opportunities, and Best Practices On-Bill Financing for Energy Efficiency Improvements: A Review of Current Program...

404

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

405

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

s Office of Industrial Technology and Oak Ridge NationalGunnar Hovstadius of ITT Fluid Technology Corporation. 2002.of Demonstrated Energy Technologies (CADDET), Sittard, the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

406

Certificate of Specialization in Energy and Clean Technology Law (LLM)  

E-Print Network [OSTI]

Certificate of Specialization in Energy and Clean Technology Law (LLM) Requirements on a topic related to energy or clean technology law through one of the courses listed below that requires Science / Technology Finance & Energy Business · Energy Regulation & Environmen ergy (1) t (3

Kammen, Daniel M.

407

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This yearly technical progress report will summarize work accomplished for Phase 1 Program during the program year 2000/2001. In task 1, the lead material composition was modified to enable superior fluxes and its mechanical properties improved. In task 2, composite OTM elements were fabricated that enable oxygen production at the commercial target purity and 75% of the target flux. In task 3, manufacturing development demonstrated the technology to fabricate an OTM tube of the size required for the multi-tube tester. The work in task 4 has enabled a preferred composite architecture and process conditions to be predicted. In task 5, the multi-tube reactor is designed and fabrication almost complete.

Ravi Prasad

2001-10-01T23:59:59.000Z

408

Energy conversion device with improved seal  

DOE Patents [OSTI]

An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

Miller, Gerald R. (Salt Lake City, UT); Virkar, Anil V. (Midvale, UT)

1980-01-01T23:59:59.000Z

409

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

410

Comparison of technologies for new energy-efficient lamps  

SciTech Connect (OSTI)

Energy-efficient light bulbs are being developed to replace the incandescent lamp where they can satisfy the design criteria and be used in sockets that have long hours of annual use. The four technologies discussed here include the compact fluorescent lamp, coated-filament lamp, electrodeless fluorescent lamp, and compact high-intensity discharge lamp. The systems demonstrate efficacy improvements of two to four times that of their incandescent counterparts. These new lamps have required considerable advances in lamp technology. They offer the potential for achieving efficacies close to 80 lumens per watt. These new lamps will reduce the energy used annually by incandescent lamps (190 BkWh) by more than 50% in the 1990s, at which times they will be commonly employed.

Verderber, R.R.; Rubinstein, F.R.

1983-06-01T23:59:59.000Z

411

Comparison of technologies for new energy-efficient lamps  

SciTech Connect (OSTI)

Energy-efficient light bulbs are being developed to replace the incandescent lamp where they can satisfy the design criteria and be used in sockets that have long hours of annual use. The four technologies discussed include the compact fluorescent lamp, coated-filament lamp, electrodeless fluorescent lamp, and compact high-intensity discharge lamp. The systems demonstrate efficacy improvements of two to four times that of their incandescent counterparts. These new lamps have required considerable advances in lamp technology. They offer the potential for achieving efficacies close to 80 lm/W. These new lamps will reduce the energy used annually by incandescent lamps (190 billion kWh) by more than 50 percent in the 1990's, at which times they will be commonly employed.

Verderber, R.R.; Rubinstein, F.M.

1984-09-01T23:59:59.000Z

412

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower JumpBuilding Technologies

413

East Tennessee Technology Park | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit| Department of EnergyProgramMeeting atofEast Tennessee Technology

414

Paragon Airheater Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolarParagon Airheater Technologies Jump to:

415

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia|Indonesia:IndurTechnology

416

Property:Technology Description | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuelTechnology Description

417

Property:Technology Resource | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuelTechnology Property Type

418

Property:Technology Type | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuelTechnology Property

419

Advanced Materials Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator ReferencesalkaliAdvancedTechnology Marketing

420

Integrated Building Energy Systems Design Considering Storage Technologies  

SciTech Connect (OSTI)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

2009-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Current Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County,Curran, Illinois: EnergyCurrent Technologies

422

Technology Readiness Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical EvaluationTechnologyKeyEnergy

423

Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California  

SciTech Connect (OSTI)

Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by California Energy Commission (CEC) and managed by California Institute for Energy and Environment (CIEE). The project purpose is to characterize energy savings, technology costs, market potential, and economic viability of newly selected technologies applicable to California. In this report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency and additional benefits to California industries as well as in the U.S. industries, followed by detailed technology assessment on each targeted technology, with a focus on California applications. A total of eleven emerging or underutilized technologies applicable to California were selected and characterized with detailed information in this report. The outcomes essentially include a multi-page summary profile for each of the 11 emerging or underutilized technologies applicable to California industries, based on the formats used in the technology characterization reports (Xu et al. 2010; Martin et al. 2000).

Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

2010-12-15T23:59:59.000Z

424

Energy Technology Division research summary 1997.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

NONE

1997-10-21T23:59:59.000Z

425

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were: (1) Methods to improve the strength and stability of PSO1x were identified. (2) The O1 reactor was operated at target flux and target purity for 1000 hours. This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2002. In task 1 improvements to PSO1x have shown increased performance in strength and stability. In task 2, PSO1d and PSO1x elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours. In task 6 initial power recovery simulation has begun. In task 7, HYSIS models have been developed to optimize the process for a future demonstration unit.

Ravi Prasad

2003-03-01T23:59:59.000Z

426

Tiger Team Assessment, Energy Technology Engineering Center  

SciTech Connect (OSTI)

The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

Not Available

1991-04-01T23:59:59.000Z

427

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network [OSTI]

A. T. de Almeida, 2002. Energy- efficient Motor Systems: Ain the current age, as energy-efficient technologies oftenCouncil for an Energy-Efficient Economy, Washington, D.C.

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

428

Notice of Intent: Deploying Solutions to Improve the Energy Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Deploying Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings (FOA-0001168) Notice of Intent: Deploying Solutions to Improve the Energy Efficiency of U.S....

429

What Small Improvements Have Saved You Significant Energy and...  

Broader source: Energy.gov (indexed) [DOE]

Small Improvements Have Saved You Significant Energy and Money? What Small Improvements Have Saved You Significant Energy and Money? June 11, 2009 - 5:00am Addthis On Tuesday,...

430

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office  

E-Print Network [OSTI]

Storage Engineering Center of Excellence 2013 ·H2USA Launch DOE Fuel Cell Technologies ­ Recent History1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office

431

24M Technologies: Using Innovation to Solve the Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

24M Technologies: Using Innovation to Solve the Energy Storage Challenge 24M Technologies: Using Innovation to Solve the Energy Storage Challenge February 1, 2011 - 3:30pm Addthis...

432

Energy information systems (EIS): Technology costs, benefit, and best  

E-Print Network [OSTI]

LBNL-6476E 1 Energy information systems (EIS): Technology costs, benefit, and best practice uses, Lin, G, Piette, MA. Energy information systems (EIS): Technology costs, benefits, and best practice

433

Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update  

Broader source: Energy.gov [DOE]

This webinar will cover the latest developments in several different energy technologies and how to use them separately or in combination to realize the greatest benefit to tribal communities. The webinar is held from 11:00 a.m. to 12:30 p.m. Mountain Standard Time on April 29, 2015.

434

Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

Not Available

2009-10-01T23:59:59.000Z

435

Energy Technology Solutions: Public-Private Partnerships Transforming...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solutions: Public-Private Partnerships Transforming Industry, November 2010 Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010...

436

Before the House Science and Technology Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Energy Reliability before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives, July 23, 2009 Testimony Before the...

437

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE’s support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy Technology—New Zealand (WET-NZ) device.

438

Energy Department Announces $20 Million for New Tools and Technology...  

Energy Savers [EERE]

Energy (DOE) will require that award recipients collaborate with the energy sector to test the developed technologies so that they are best designed to meet the unique...

439

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Broader source: Energy.gov (indexed) [DOE]

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

440

Vehicle Technologies Office: Materials for Energy Recovery Systems...  

Energy Savers [EERE]

Energy Recovery Systems and Controlling Exhaust Gases Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases The typical internal...

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Before the House Science and Technology Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Kristina Johnson, Under Secretary of Energy Subject: Technology Research and Development Efforts Related to Energy and Water Linkage 7-9-09FinalTestimony(USJohnson).pdf More...

442

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

443

Before the House Science and Technology Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Strategic Center for Coal National Energy Technology Laboratory Subject: Biomass for Thermal Energy and Electricity 10-21-09FinalTestimony(Klara)(NETL).pdf More Documents...

444

U.S. Department of Energy’s Industrial Technologies Program and Its Impacts  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

Weakley, Steven A.; Brown, Scott A.

2011-05-20T23:59:59.000Z

445

U.S. Department of Energy’s Industrial Technology Program and Its Impacts  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

Weakley, Steven A.; Roop, Joseph M.

2010-05-15T23:59:59.000Z

446

IMPROVING THERMOELECTRIC TECHNOLOGY PERFORMANCE AND DURABILITY WITH AEROGEL  

E-Print Network [OSTI]

aerogel as an effective sublimation barrier for a wide range of thermoelectric technologies based on Si

Jeff Sakamoto; Thierry Caillat; Jean-pierre Fleurial; Steve Jones; Jong-ah Paik; Winny Dong

447

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

Renewable Energy Center California Off-shore Wind Technology Assessment #12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

California at Davis, University of

448

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

technology analysis Noon Lunch 1:15 California off-shore wind technology assessment 1:45 Technical assessmentRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

California at Davis, University of

449

Master Sustainable Energy Technology 2013 -2014 Thesis office  

E-Print Network [OSTI]

Master Sustainable Energy Technology 2013 - 2014 Thesis office Internship office Servicedesk Sustainable Energy Technology. Enrolment and un-enrolment +31(0)15 27 84249, csa@tudelft.nl, www-programme Sustainable Energy Technology. The MSc programme takes two years (120 ECTS). During that time, you will attend

450

Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

2008-01-01T23:59:59.000Z

451

Improving Energy and Process Efficiencies: A Case Study  

E-Print Network [OSTI]

IMPROVING ENERGY AND PROCESS EFFICIENCIES A CASE STUDY H. D. Spriggs, Ph.D., President, Matrix 2000, Leesburg, VA 22075 ABSTRACT Industrial companies and their energy suppliers have an opportunity to work together in new ways... process and energy efficiency improvements. The payoff for industry is substantially reduced costs, improved process designs, increased energy efficiencies, and a reduction in emissions. The energy suppliers establish new relationship...

Spriggs, H. D.; Smith, W. R.

452

Technology Investment Agreements | Department of Energy  

Office of Environmental Management (EM)

Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance...

453

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November...

454

Technology to Market | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology to Market Technology to Market The SunShot Initiative's Technology to Market subprogram builds on SunShot's record of enabling groundbreaking devices and concepts in...

455

Technology Integration Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti000smith2013o.pdf More Documents & Publications Technology Integration Overview Technology...

456

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant. Good progress has been made towards achieving the DOE-IGCC program objectives. Two promising candidates for OTM materials have been identified and extensive characterization will continue. New compositions are being produced and tested which will determine if the material can be further improved in terms of flux, thermo-mechanical and thermo-chemical properties. Process protocols for the composite OTM development of high quality films on porous supports continues to be optimized. Dense and uniform PSO1 films were successfully applied on porous disc and tubular substrates with good bonding between the films and substrates, and no damage to the substrates or films.

Ravi Prasad

2000-04-01T23:59:59.000Z

457

Diffusion of irreversible energy technologies under uncertainty  

SciTech Connect (OSTI)

This paper presents a model of technology diffusion is consistent with characteristics of participants in most energy markets. Whereas the models used most widely for empirical research are based on the assumption that the extended delays in adoption of cost-saving innovations are the result of either lack of knowledge about the new processes or heterogeneity across potential adopters, the model presented in this paper is based on the strategic behavior by firms. The strategic interdependence of the firms` decisions is rooted in spillover effects associated with an inability to exclude others from the learning-by-doing acquired when a firm implements a new technology. The model makes extensive use of recent developments in investment theory as it relates irreversible investments under uncertainty.

Cacallo, J.D.; Sutherland, R.J.

1993-09-01T23:59:59.000Z

458

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant.

Ravi Prasad

2000-04-01T23:59:59.000Z

459

Cross-domain comparison of quantitative technology improvement using patent derived characteristics  

E-Print Network [OSTI]

This thesis compares the performance improvement rates of 28 technological domains with characteristics derived from the patents of the domains, seeking to objectively test theories of how and why technologies change over ...

Benson, Christopher Lee

2014-01-01T23:59:59.000Z

460

A Review of Energy Storage Technologies for Marine Current Energy Systems A Review of Energy Storage Technologies for Marine Current Energy Systems  

E-Print Network [OSTI]

A Review of Energy Storage Technologies for Marine Current Energy Systems 1 A Review of Energy Storage Technologies for Marine Current Energy Systems Z. Zhoua,b,c , M.E.H. Benbouzida,* , J of fossil resources and the issue of environment lead to a global need for producing more clean energy from

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

462

Energy Innovation Portal: Linking Energy Technologies with Market Opportunities (Revised) (Fact Sheet)  

SciTech Connect (OSTI)

One page flyer that describes the EERE Energy Innovation Portal. Includes list of technology categories.

Not Available

2012-01-01T23:59:59.000Z

463

Do New Technologies Matter? | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDo New Technologies Matter? Do New

464

Office of Technology Transitions | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo FearOffice of Technology

465

Quadrennial Technology Review | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 2011 Publications Wood,Quadrennial Technology

466

Office of Technology Transitions | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring: InnovationISCNEPA Policy and ComplianceTechnology

467

Applied Technologies Company Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy Information the Army Permit:FilmsSolar Technologies

468

Sandia National Laboratories Technology Marketing Summaries - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02andTECHNOLOGY

469

MHK Technologies/Exim | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger < MHK Technologies Jump to:Exim <

470

Technology Deployment Case Studies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical EvaluationTechnology Deployment »

471

Technology Pathway Selection Effort | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical EvaluationTechnologyKey toDepartment

472

Marine & Hydrokinetic Technologies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMA EnergyMagna1983: StrategicMarginalTechnologies

473

MHK technologies include current energy conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission StatementCenterTri-PartyTechnologies |

474

Greenvest Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. ToGestionSolar IncGreenvest Technologies

475

AS Technology SRL | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind EnergyPublic UtilitiesTechnology SRL

476

NREL: Energy Analysis - Technology Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnology Systems

477

CarboPur Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur Technologies Jump to: navigation, search

478

Carbon Capture Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur Technologies Jump to: navigation,

479

Carbon Limiting Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur Technologies JumpJungle Jump to:Limiting

480

Membrane Technology Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small2011 DOEThe Bioenergy TechnologiesMembership

Note: This page contains sample records for the topic "improved energy technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The 2001 Power Plant Improvement Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

transferred 95 million from previously appropriated funding for the 1986-93 Clean Coal Technology Program. On February 6, 2001, the Energy Department issued a solicitation...

482

California's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative  

E-Print Network [OSTI]

and, more broadly, clean energy technology, may well be theCASE FOR A CLEAN ENERGY SCIENCE AND TECHNOLOGY INITIATIVECase for a Clean Energy Science and Technology Initiative

Sperling, Dan

2004-01-01T23:59:59.000Z

483

California 's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative  

E-Print Network [OSTI]

and, more broadly, clean energy technology, may well be theCase for a Clean Energy Science and Technology Initiativea major clean energy science and technology initiative.

Sperling, Dan

2004-01-01T23:59:59.000Z

484

Estimating Energy Efficiency Technology Adoption Curve Elasticity with Respect to Government and Utility Deployment Program Indicators  

E-Print Network [OSTI]

Energy Efficiency Technology Adoption Curve Elasticity withEnvironmental Energy Technologies Division Ernest OrlandoEnergy, Building Technologies Office under Contract no. DE-

Van Buskirk, Robert

2014-01-01T23:59:59.000Z

485

Greenhouse Gas Return on Investment: A New Metric for Energy Technology  

E-Print Network [OSTI]

to decision making beyond energy technology. ACKNOWLEDGMENTSA New Metric for Energy Technology Corinne Reich-Weiser ,INTRODUCTION Alternative energy technologies such as solar,

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

486

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

487

Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov (indexed) [DOE]

highway transportation technologies to reduce petroleum consumption, reducing operating cost, fuel consumption, environmental impact, and time to market * Approach: Through...

488

Protocol for Maximizing Energy Savings and Indoor Environmental Quality Improvements  

E-Print Network [OSTI]

and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U to retrofit existing homes for energy savings. The largest retrofit program is the Federal Weatherization Energy Research Program, Energy Related Environmental Research Program, through contract 50009022

489

Energy and technology review, June 1993  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then other major programs have been added, including laser fusion and laser isotope separation, biomedical and environmental science, strategic defense, and applied energy technology. These programs require basic research in chemistry, materials science, computer science, engineering and physics. This bulletin is published on a monthly basis to report on unclassified work in all of the programs. There are two articles in this issue. Herbert F. York reminisces about the early days in Livermore, emphasizing the legacy of E.O. Lawrence, and comments on the role of the Laboratory in the future. COG, a new,high-resolution code for modeling radiation transport is described. The code is a new Monte Carlo neutron/photon transport code that solves complex radiation shielding and nuclear criticality problems. It is now available for high-speed desktop workstations as well as mainframes.

Quirk, W.A.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.; Kroopnick, H.; McElroy, L.; Sanford, N.M.; Van Dyke, P.T. [eds.

1993-06-01T23:59:59.000Z

490

Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving...

491

Electrochemical Energy Storage Technologies and the Automotive Industry  

ScienceCinema (OSTI)

The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

Mark Verbrugge

2010-01-08T23:59:59.000Z

492

Low energy synthesis gas systems - New technology  

SciTech Connect (OSTI)

Natural gas steam reforming today covers more than 70% of synthesis gas production. The gas specific consumption has been largely improved during the last thirty years. It has now reached 32 GJ/metric ton of NH/sub 3/ on HHV, from 45 in the sixties. Ammonia is still the major user of synthesis gas. The successive improvements are: thermal energy recovery from the combustion gases at the outlet of the tubular reformer, where only 40% of the energy input is absorbed by the endothermal reaction; better quality of the reforming and conversion catalysts; better CO/sub 2/ removal processes; improved catalyst for ammonia and methanol synthesis and recovery of the H/sub 2/ from the purge gas. One of these processes has been successfully experimented. It involves the suppression of the tubular steam reforming, replaced by a simpler autothermal catalytic reactor and the new REGATE reheater of reactant gases to 1500/sup 0/C under pressure (air + steam for NH/sub 3/, recycled gas + steam for H/sub 2/ and CH/sub 3/OH). No oxygen is needed. The system is simpler, more efficient (27,0 GJ/metric ton of NH/sub 3/ HHV) and safer.

Julemont, V.; Ribesse, J.

1988-01-01T23:59:59.000Z

493

Power Technologies Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips ColorLoadingTechnologies Energy Data Book

494

Energy Efficiency and Renewable Energy Science and Technology Policy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y. |TechnologiesGranteeFellowships |

495

Beijing Jingneng Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergyJingneng Energy Technology Co Ltd Jump to: navigation,

496

Beijing Shenzhou Daxu Bio Energy Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergyJingneng Energy Technology Co Ltd JumpInformation

497

NREL: Technology Deployment - Net Zero Energy and Energy Security Measures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NRELIncorporatesTechnologiesEnergyLearned

498

Wind Energy Technologies Available for Licensing - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

499

Environmental data energy technology characterizations: coal  

SciTech Connect (OSTI)

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

500

Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

2003-09-01T23:59:59.000Z