Powered by Deep Web Technologies
Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Report on the feasibility study for improving electric motor service centers in Ghana  

Science Conference Proceedings (OSTI)

On March 3 and 4, 1998, a visit was made to Oak Ridge National Laboratory (ORNL) by two officials from Ghana: Mr. I.K. Mintah, Acting Executive Director, Technical Wing, Ministry of Mines and Energy (MOME) and Dr. A.K. Ofosu-Ahenkorah, Coordinator, Energy Efficiency and Conservation Program, MOME. As a result of this visit, Dr. John S. Hsu of ORNL was invited by MOME to visit the Republic of Ghana in order to study the feasibility of improving electric motor service centers in Ghana.

Hsu, J.S.; Jallouk, P.A.; Staunton, R.H.

1999-12-10T23:59:59.000Z

2

Electricity Restructuring and Value-Added Services  

E-Print Network (OSTI)

LBNL-46069 Electricity Restructuring and Value- Added Services: Beyond the Hype William Golove under Contract No. DE-AC03- 76SF00098. #12;Electricity Restructuring and Value-Added Services: Beyond with non- residential electricity service customers who have chosen to take service from a retail electric

3

EA-200 American Electric Power Service Corporation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

200 American Electric Power Service Corporation EA-200 American Electric Power Service Corporation Order authorizing American Electric Power Service Corporation to export electric...

4

EA-200-A American Electric Power Service Corporation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A American Electric Power Service Corporation EA-200-A American Electric Power Service Corporation Order authorizing American Electric Power Service Corporation to export electric...

5

EA-200-B American Electric Power Service Corporation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B American Electric Power Service Corporation EA-200-B American Electric Power Service Corporation Order authorizing American Electric Power Service Corporation to export electric...

6

EA-236-A American Electric Power Service Corporation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6-A American Electric Power Service Corporation EA-236-A American Electric Power Service Corporation Order authorizing American Electric Power Service Corporation to export...

7

Bristol Tennessee Electric Service - Energy Savings Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Bristol Tennessee Electric Service - Energy Savings Loan Program Bristol Tennessee Electric Service - Energy Savings Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate $10,000 Program Info State Tennessee Program Type Utility Loan Program Rebate Amount up to $10,000 Provider Bristol Tennessee Electric Service Bristol Tennessee Electric Service (BTES) offers financing to its residential customers to help pay for energy efficient home improvements through the Energy Savings Loan Program. Eligible customers may borrow up to $10,000 for a maximum of 10 years. Eligible items include:

8

Major Energy Electric Services | Open Energy Information  

Open Energy Info (EERE)

Electric Services Electric Services Jump to: navigation, search Name Major Energy Electric Services Place New York Utility Id 56504 Utility Location Yes Ownership R NERC Location NPCC ISO NY Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0967/kWh Commercial: $0.1070/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Major_Energy_Electric_Services&oldid=411033" Categories: EIA Utility Companies and Aliases

9

Butler Rural Electric Cooperative - Energy Efficiency Improvement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Improvement Loan Program Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program Eligibility Residential Savings For Home Weatherization...

10

Bear Valley Electric Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Name Bear Valley Electric Service Place California Utility Id 17612 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-1 General Service, less than 20 kW A-1 General Service, less than 20 kW - Direct Access Commercial A-2 General Service, 20 to 50 kW A-2 General Service, 20 to 50 kW - Direct Access A-3 General Service, more than 50 kW Commercial

11

Nashville Electric Service NES | Open Energy Information  

Open Energy Info (EERE)

Service NES Service NES Jump to: navigation, search Name Nashville Electric Service (NES) Place Nashville, Tennessee Zip 37246 Product Nashville Electric Service (NES), the 12th largest public utility in the US, distributes electrical energy to customers located in the greater Nashville area of middle Tennessee. Coordinates 36.167783°, -86.778365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.167783,"lon":-86.778365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

General Order Ensuring Reliable Electric Service (Louisiana) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Order Ensuring Reliable Electric Service (Louisiana) General Order Ensuring Reliable Electric Service (Louisiana) General Order Ensuring Reliable Electric Service (Louisiana) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Safety and Operational Guidelines Provider Louisiana Public Service Commission The standards set forth herein have been developed to provide consumers, the Louisiana Public Service Commission, and jurisdictional electric utilities with a uniform method of ensuring reliable electric service. The standards shall be applicable to the distribution systems of all electric utilities under the jurisdiction of the Louisiana Public Service

13

Virginia Tech Electric Service | Open Energy Information  

Open Energy Info (EERE)

Electric Service Electric Service Jump to: navigation, search Name Virginia Tech Electric Service Place Virginia Utility Id 19882 Utility Location Yes Ownership S NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Industrial Medium General Commercial Residential Residential Sanctuary Commercial Small General Commercial Average Rates Residential: $0.0971/kWh Commercial: $0.0832/kWh Industrial: $0.0765/kWh The following table contains monthly sales and revenue data for Virginia

14

Nashville Electric Service | Open Energy Information  

Open Energy Info (EERE)

Nashville Electric Service Nashville Electric Service Jump to: navigation, search Name Nashville Electric Service Place Tennessee Utility Id 13216 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 5-Minute Response Commercial 60-Minute Response Commercial GENERAL POWER RATE--SCHEDULE GSB Industrial GENERAL POWER RATE--SCHEDULE GSC Industrial GENERAL POWER RATE--SCHEDULE GSD Commercial GENERAL POWER RATE--SCHEDULE SGSB Industrial GENERAL POWER RATE--SCHEDULE SGSC Industrial

15

The Demand Component of Electric Service: Linkages to Service Reliability and Need for Transparency  

Science Conference Proceedings (OSTI)

This white paper distinguishes the demand component of electric service (measured in kilowatts)distinct from the energy component (measured in kilowatthours)and emphasizes the need for power demand cost transparency. Customers' experience with electric service reliability is described in terms of continuity of electric service, availability of service, and restoration time after service interruption. The paper discusses the connection between power demand and electric service reliability, as experienced ...

2012-08-03T23:59:59.000Z

16

Electricity storage for short term power system service (Smart...  

Open Energy Info (EERE)

storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark...

17

An Overview of Ecosystem Services: Considerations for Electric Power Companies  

Science Conference Proceedings (OSTI)

This topical brief provides an overview of ecosystem services and discusses how electric power companies may leverage these services to increase corporate value and reduce risk.

2012-06-29T23:59:59.000Z

18

Improving employment services management using IPA technique  

Science Conference Proceedings (OSTI)

This study is intended to build a management mechanism that continuously improves Public Employment Services (PESs), using the Importance-Performance Analysis (IPA). First of all, experts were consulted to create indicators and questionnaires for the ... Keywords: Employment service, Importance-Performance Analysis, Management mechanism, Quality indicator

Chi-Cheng Chang

2013-12-01T23:59:59.000Z

19

Electric Transit Service for the City of Manhattan, Kansas  

Science Conference Proceedings (OSTI)

This report details results of an EPRI-commissioned study from the Santa Barbara Electric Transportation Institute (SBETI) relating to electric transit service for the City of Manhattan, Kansas.

2001-09-13T23:59:59.000Z

20

United Parcel Service Evaluates Hybrid Electric Delivery Vans...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel economy than comparable conventional vans. United Parcel Service Evaluates Hybrid Electric Delivery Vans Advanced Vehicle Testing This project is part of a series of...

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIS-0445: American Electric Power Service Corporation's Mountaineer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American...

22

Bristol Tennessee Electric Service - Energy Savings Loan Program...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Bristol Tennessee Electric Service - Energy Savings Loan Program (Tennessee) This is the approved revision of this page, as...

23

Electricity Suppliers' Service Area Assignments (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Suppliers' Service Area Assignments (Indiana) Electricity Suppliers&#039; Service Area Assignments (Indiana) Electricity Suppliers' Service Area Assignments (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Utility Regulatory Commission To promote efficiency and avoid waste and duplication, rural and

24

Improving the Reliability and Resiliency of the US Electric Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Improving the Reliability and Resiliency of the US Electric...

25

Electric utilities broaden their vision, again, and move beyond energy services...to communications services  

SciTech Connect

Energy production and delivery will be tightly coupled with telecommunications and information services for the foreseeable future. In order to control access to the customer and prevent erosion of their customer bases, utilities will be driven to become more aggressive in deploying both supply-side information technologies for improved operation of their generation, transmission, and distribution facilities; and demand side Energy Information Service (EIS). Those information services will enable utilities to provide higher quality services at lower cost with lower environmental impact, and to give their ratepayers better control over their power usage. Utilities have important assets that will be valuable in deploying telecommunications networks that support EIS and other value-added information services. Electric power utilities have the potential to become significant players in the National Information Infrastructure, providing commercial EIS, non-energy value-added services, and telecommunications services. Utility entry into telecommunications markets would bring more competition to those markets and contribute toward universal service goals. Regulatory restrictions on utility entry into telecommunications markets are inconsistent with more recent government policies promoting competition. Joint ventures and other forms of partnering will be necessary to build utility networks, and partnering with telecommunications companies will be especially important to utilities. Pivotal business alliances and regulatory policies that will shape the business environment for both industries are likely to be decided int the next few years. Utilities face a brief window of necessity and opportunity: the necessity to assess the EIS and telecommunications capabilities they will need to support their core business in the future; and the opportunity to consider what new sources of revenue could be opened up by those capabilities.

Mann, M. [Electric Power Research Institutes, Palo Alto, CA (United States)

1995-12-01T23:59:59.000Z

26

Improving thermocouple service life in slagging gasifiers  

SciTech Connect

The measurement of temperature within slagging gasifiers for long periods of time is difficult/impossible because of sensor failure or blockage of inputs used to monitor gasifier temperature. One of the most common means of temperature measurement in a gasifier is physically, through the use of thermocouples in a gasifier sidewall. These units can fail during startup, standby, or during the first 40-90 days of gasifier service. Failure can be caused by a number of issues; including thermocouple design, construction, placement in the gasifier, gasifier operation, and molten slag attack of the materials used in a thermocouple assembly. Lack of temperature control in a gasifier can lead to improper preheating, slag buildup on gasifier sidewalls, slag attack of gasifier refractories used to line a gasifier, or changes in desired gas output from a gasifier. A general outline of thermocouple failure issues and attempts by the Albany Research Center to improve the service life of thermocouples will be discussed.

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

27

Public Service Electric & Gas | Open Energy Information  

Open Energy Info (EERE)

NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

28

EIS-0445: American Electric Power Service Corporation's Mountaineer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer 5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia Summary This EIS evaluates the environmental impacts of a proposal to provide financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale

29

United Parcel Service Evaluates Hybrid Electric Delivery Vans (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes how the National Renewable Energy Laboratory's Fleet Test and Evaluation team evaluated the 12-month, in-service performance of six Class 4 hybrid electric delivery vans - fueled by regular diesel - and six comparable conventional diesel vans operated by the United Parcel Service.

Not Available

2010-02-01T23:59:59.000Z

30

76SF00098. Electricity Restructuring and Value-Added Services:  

E-Print Network (OSTI)

This paper presents the results of a series of interviews that were conducted with nonresidential electricity service customers who have chosen to take service from a retail electric service provider (RESP). The interviews explored customer attitudes towards and experiences with the process of purchasing electricity and, in some cases, value-added services in the competitive market. Key findings include: (1) our sample of large commercial/industrial customers believe that they are benefiting significantly more from commodity savings arising from direct access than from the value-added services that they are receiving; (2) there is high customer interest in billing, energy information, and energy efficiency services, as well as some (lesser) interest in newer services, such as facility management and outsourcing (although customers remain uncertain of the value of these services); (3) there is no established preference among the majority of customers with respect to choice of suppliers (RESP, utility or other) for value-added services, although there are limited preferences for the RESP to provide billing, energy information and green power, and for a third party provider to deliver energy efficiency.

William Golove; Rodrigo Prudencio; Ryan Wiser; Charles Goldman; Beyond The Hype; William Golove

2000-01-01T23:59:59.000Z

31

Smarter Meters Help Customers Budget Electric Service Costs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tri-State Smart Grid Investment Grant Tri-State Smart Grid Investment Grant 1 Tri-State's service area includes parts of Fannin County, Georgia; Polk County, Tennessee; and Cherokee County, North Carolina. Smarter Meters Help Customers Budget Electric Service Costs Tri-State Electric Membership Cooperative (Tri-State) is a distribution rural electric cooperative that primarily serves more than 12,000 rural customers, many of whom have low-incomes living at or near poverty level across a multi-state region (see map). Under their smart grid project, Tri-State has replaced conventional electromechanical meters with solid-state smart meters and implemented advanced electricity service programs in order to give customers greater control over their energy use and costs.

32

Ancillary-service costs for 12 US electric utilities  

Science Conference Proceedings (OSTI)

Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintain the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.

Kirby, B.; Hirst, E.

1996-03-01T23:59:59.000Z

33

Methods for Characterizing Customer Preferences for Electric Service Plans  

Science Conference Proceedings (OSTI)

The electricity sector is undergoing profound changes as the result of technological developments in advanced metering infrastructure not only because they create opportunities to improve the physical performance of the electricity system but also because they provide the means to encourage and induce more efficient patterns of electricity consumption. Combined with changes in how electricity is supplied and delivered (including weather-sensitive, renewable technologies such as wind and solar and ...

2013-01-22T23:59:59.000Z

34

New Service Opportunities for Electric Utilities  

Science Conference Proceedings (OSTI)

Faced with intensifying competitive pressures, many utilities are offering non-traditional services that provide new revenue sources. This report provides an overview of utility experience with diversification into non-traditional areas and identifies meaningful utility opportunities in several areas. This report is available only to funders of Program 101A or 101.001. Funders may download this report at http://my.primen.com/Applications/DE/Community/index.asp .

1994-10-08T23:59:59.000Z

35

Unbundling generation and transmission services for competitive electricity markets  

SciTech Connect

Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

Hirst, E.; Kirby, B.

1998-01-01T23:59:59.000Z

36

Developing and Implementing a Company-Wide Waste Accounting System at Public Service Electric & Gas  

Science Conference Proceedings (OSTI)

Waste accounting systems will enable utilities to track their recycling, reuse, and prevention efforts. This manual describes the implementation of EPRI's waste accounting method in support of Public Service Electric & Gas Company's pollution prevention efforts. This method provided a means for organizing information from many facilities, transmitting regular performance reports to facility personnel and management, and identifying opportunities for improving pollution prevention performance.

1998-05-04T23:59:59.000Z

37

Pee Dee Electric Cooperative - Energy Efficient Home Improvement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Home Improvement Loan Program Pee Dee Electric Cooperative - Energy Efficient Home Improvement Loan Program Eligibility Residential Savings For Home Weatherization...

38

Distribution System Reliability Practices: Noteworthy Practices at Nashville Electric Service  

Science Conference Proceedings (OSTI)

In 2010, EPRI initiated a multiyear effort to identify and illustrate noteworthy practices that utilities are using to meet the service reliability expectations of their customers. EPRI research focused on four host utilities: Ameren Corporation, Central Hudson Gas & Electric Corporation, Alabama Power Company, and We Energies. In 2011, EPRI completed research at American Electric Power Company (AEP) and initiated research with Memphis Light, Gas and Water (MLGW) and Duke Energy. In 2012, EPRI ...

2013-10-29T23:59:59.000Z

39

Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Ice Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Delicious Rank Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Digg Find More places to share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on AddThis.com... Sept. 14, 2013

40

CENTERS FOR MEDICARE & MEDICAID SERVICES CLINICAL LABORATORY IMPROVEMENT AMENDMENTS  

E-Print Network (OSTI)

~~~~~~~~~~~~~ ~IF I I~~. CENTERS FOR MEDICARE & MEDICAID SERVICES · CLINICAL LABORATORY IMPROVEMENT DIRECTOR EXPIRATION DATE ALAN PESTRONK 08/24/2011 Punuant to Section 353 ofthe Public Health Services Act. Yost, Director · ~Irl.;ll Division of Laboratory Services Survey and Certification Group Ifyou

Baloh, Bob

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alliant Energy Alliant Energy Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit Energy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

42

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alpena Power Co Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit En ergy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

43

Improvement of Electrical Resistivity by Inserting the Graphene Film ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improvement of Electrical Resistivity by Inserting the Graphene Film between Al doped ZnO Thin Films. Author(s), Jeong Do Yang, Dong-Hee...

44

Fourteenth Service Water System Reliability Improvement Seminar Proceedings  

Science Conference Proceedings (OSTI)

This report contains information presented at the Fourteenth Service Water System Reliability Improvement (SWSRI) Seminar held June 24-25, 2002, in San Diego, California. The bi-annual seminar -- sponsored by EPRI -- provided an opportunity for participants to exchange technical information and experiences regarding the monitoring, repair, and replacement of service water system components.

2002-07-24T23:59:59.000Z

45

Electricity storage for short term power system service (Smart Grid  

Open Energy Info (EERE)

storage for short term power system service (Smart Grid storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

SciTech Connect

Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.

Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh

2009-06-01T23:59:59.000Z

47

Electricity and Natural Gas Efficiency Improvements for Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S....

48

First Electric Cooperative - Home Improvement Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Electric Cooperative - Home Improvement Loans First Electric Cooperative - Home Improvement Loans First Electric Cooperative - Home Improvement Loans < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $15,000 Program Info State Arkansas Program Type Utility Loan Program Rebate Amount $500 - $15,000 Provider First Electric Cooperative First Electric Cooperative, a Touchstone Energy® Cooperative, serves over 85,000 member accounts throughout parts of seventeen counties in central and southeast Arkansas. The Home Improvement Loan Program allows members to borrow between $500 and $15,000 for energy efficiency home improvements

49

Public Service Electric and Gas (PSEG) Services Corporation - Comments to the 2012 Congestion Study.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David K. Richter David K. Richter Assistant General Regulatory Counsel Regulatory Department 80 Park Plaza, T5C, Newark, NJ 07102-4194 tel: 973.430.6451 fax: 973.802.1267 email: david.richter@pseg.com January 31, 2012 VIA ELECTRONIC FILING David Meyer Office of Electricity Delivery and Energy Reliability OE-20, Attention: Congestion Study Comments U.S. Department of Energy, 1000 Independence Avenue, SW. Washington, DC 20585 Dear Mr. Meyer, Public Service Electric and Gas Company ("PSE&G"), PSEG Power LLC ("PSEG Power") and PSEG Energy Resources & Trade LLC ("PSEG ER&T") (collectively referred to herein as the "PSEG Companies") respectfully submit the

50

Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Butler Rural Electric Cooperative - Energy Efficiency Improvement Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $25,000 Program Info State Ohio Program Type Utility Loan Program Rebate Amount up to $25,000 Provider Butler Rural Electric Cooperative, Inc. Butler Rural Electric Cooperative, Inc. provides low interest loans (3%) for members to make energy efficiency improvements in eligible homes. There is a $15 application fee for all loans plus additional closing costs

51

How to Estimate the Value of Service Reliability Improvements  

Science Conference Proceedings (OSTI)

A robust methodology for estimating the value of service reliability improvements is presented. Although econometric models for estimating value of service (interruption costs) have been established and widely accepted, analysts often resort to applying relatively crude interruption cost estimation techniques in assessing the economic impacts of transmission and distribution investments. This paper first shows how the use of these techniques can substantially impact the estimated value of service improvements. A simple yet robust methodology that does not rely heavily on simplifying assumptions is presented. When a smart grid investment is proposed, reliability improvement is one of the most frequently cited benefits. Using the best methodology for estimating the value of this benefit is imperative. By providing directions on how to implement this methodology, this paper sends a practical, usable message to the industry.

Sullivan, Michael J.; Mercurio, Matthew G.; Schellenberg, Josh A.; Eto, Joseph H.

2010-06-08T23:59:59.000Z

52

Ecosystem Services Decision Tree: A Decision-Support Tool for Consideration of Ecosystem Services in the Electric Power Industry  

Science Conference Proceedings (OSTI)

To support the electric power industry in more structured consideration of ecosystem services, EPRI has developed this Decision Tree to determine why, when, and how to consider ecosystem services. EPRI anticipates that this Decision Tree will facilitate more efficient decision-making and action relating to ecosystem services.

2012-12-31T23:59:59.000Z

53

Specifications for and Design of an Electric Service Plan Portfolio Management System  

Science Conference Proceedings (OSTI)

Changes in the structure and technology of the electric power industry will ultimately lead to profound changes in the electric service plans that are offered to customers. Given the value of electricity to state and local economies, the design and mix of the electric service plans offered by electricity utilities and competitive retailers may have large impacts on both direct stakeholders and the overall economy. For customers and utilities to benefit from these changes, it is essential that they ...

2013-12-31T23:59:59.000Z

54

IMPROVING ELECTRIC FRAUD DETECTION USING CLASS IMBALANCE STRATEGIES  

E-Print Network (OSTI)

. Analysis over consumers historical kWh load profile data from Uruguayan Elec- tric Company (UTE) showsIMPROVING ELECTRIC FRAUD DETECTION USING CLASS IMBALANCE STRATEGIES Mat´ias Di Martino, Federico, jmolinelli}@gmail.com Keywords: Electricity theft, Support vector machine, Optimum path forest, Unbalance

55

Pee Dee Electric Cooperative- Energy Efficient Home Improvement Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Pee Dee Electric Cooperative offers financing for members through the Energy Efficient Home Improvement Loan Program. Loans of up to $5,000, with repayment periods up to 72 months, can be used for...

56

Report on Customer Service Performance Measures in UK Network SQUEEZING HARD TO IMPROVE QUALITY  

E-Print Network (OSTI)

....................................................... Page 4 2.0 ELECTRICITY: SUPPLY, DISTRIBUTION & TRANSMISSION DISTRIBUTION ..................................... Page 23 2.3 ELECTRICITY TRANSMISSION ­ The National Grid measures, as imposed by the economic regulators of water and sewerage services, electricity (supply

Feigon, Brooke

57

United Electric Coop Service Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name United Electric Coop Service Inc Place Texas Utility Id 19490 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area and Street Light-175 w Mercury Vapor Lighting Area and Street Light-400 w Mercury Vapor Lighting Area and Street Light-Dark Sky Complaint-100 w HPS Lighting Area and Street Light-Dark Sky Complaint-250 w HPS Lighting Area and Street Light-Standard-100 w HPS Lighting Area and Street Light-Standard-1000 w HPS Directional Lighting

58

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

59

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

60

Letter from Pepco Holdings Regarding the Reliability of Electric Service in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from Pepco Holdings Regarding the Reliability of Electric from Pepco Holdings Regarding the Reliability of Electric Service in the District of Columbia Letter from Pepco Holdings Regarding the Reliability of Electric Service in the District of Columbia Docket No. EO-05-01: I am writing to alert you to our concerns regarding the reliability of electricity service for the Nation's Capital in light of the recent shutdown of the Potomac River Generating Station in Alexandria, Virginia. The plant shutdown has removed a redundancy which is critical to assuring the reliable supply of electricity. Accordingly, we believe that immediate resumption of plant operations, in a manner that balances environmental and electricity reliability concerns, is critical to ensuring reliable electric service to the Nation's Capital.

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coming Full Circle in Florida: Improving Electric Grid Reliability and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coming Full Circle in Florida: Improving Electric Grid Reliability Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency Coming Full Circle in Florida: Improving Electric Grid Reliability and Resiliency May 2, 2013 - 11:16am Addthis Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light. In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama announced the launch of the $3.4 billion Smart Grid Investment Grant program. In 2009, at the DeSoto Next Generation Solar Energy Center, President Obama announced the launch of the $3.4 billion Smart Grid Investment Grant program. Inside Florida Power & Light's Transmission Performance Diagnostic Center. | Photo courtesy of Florida Power & Light.

62

Six Sigma Approach to Improve Quality in E-Services: An Empirical Study in Jordan  

Science Conference Proceedings (OSTI)

This paper investigates the application of the Six Sigma approach to improve quality in electronic services e-services as more countries are adopting e-services as a means of providing services to their people through the Web. This paper presents a case ... Keywords: Customer Service, E-Service, Information Quality, Personalization, Quality, Reliability, Responsiveness, Six Sigma, System Quality, Website Design

Sitalakshmi Venkatraman; Salah Alhyari; Moutaz Alazab; Mamoun Alazab; Ammar Alazab

2012-04-01T23:59:59.000Z

63

Smarter Meters Help Customers Budget Electric Service Costs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1) two-way communications which allow customers to monitor their electricity consumption and take steps to better manage their electric bills; 2) a voluntary, pre-payment...

64

Abstract--Load serving entities (LSE) and holders of default service obligations, in restructured electricity markets, provide  

E-Print Network (OSTI)

, in restructured electricity markets, provide electricity service at regulated or contracted fixed prices while standard forward contracts and commodity derivatives. Keywords: Electricity Markets, Risk Management, Volumetric hedging, I. INTRODUCTION The introduction of competitive wholesale markets in the electricity

Oren, Shmuel S.

65

VEE-0044 - In the Matter of Public Service Electric and Gas Company (New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

44 - In the Matter of Public Service Electric and Gas Company 44 - In the Matter of Public Service Electric and Gas Company (New Jersey) VEE-0044 - In the Matter of Public Service Electric and Gas Company (New Jersey) On July 14, 1997, the Office of Hearings and Appeals received from the Energy Information Administration (EIA) a "letter of appeal" that had been filed with the EIA by the Public Service Electric and Gas Company of New Jersey (PSE&G). In the letter, PSE&G requested confidential treatment of several items of information that it provides to the EIA on Form EIA-860, "Annual Electric Generator Report." For each electrical generator of each generating plant that PSE&G operates, the items of information are: (1) the unit heat rate; (2) the winter and summer net capabilities; and (3) the unit retirement date. During the lengthy

66

Electric motor systems in developing countries: Opportunities for efficiency improvement  

SciTech Connect

This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

1993-08-01T23:59:59.000Z

67

Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)  

Reports and Publications (EIA)

Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use

Information Center

2007-03-11T23:59:59.000Z

68

Combining Financial Double Call Options with Real Options for Early Curtailment of Electricity Service  

E-Print Network (OSTI)

Combining Financial Double Call Options with Real Options for Early Curtailment of Electricity@IEOR.Berkeley.edu Abstract In a competitive electricity market traditional demand side management options offering customers curtailable service at reduced rates are replaced by voluntary customer responses to electricity spot prices

69

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

70

Professional Services Provided By Texas Education Service Centers To Promote Improvement In Texas Public Schools-A Descriptive Study  

E-Print Network (OSTI)

This descriptive study of the twenty regional Education Service Centers in Texas is an exploratory analysis of programs and services that promote school improvement. Data collected from each service center website enabled the researcher to determine which programs and services are available to school districts and also allowed the researcher to analyze the similarities and differences of the programs and services among the twenty ESCs. The study also compared the numbers of programs provided by each service center along with the number of school districts, schools, and students served by Education Service Centers. The data revealed that Education Service Centers serve different numbers of students and districts and they assist schools through a variety of special program support, state and federal funding issues, educator certification programs, and professional development training that are designed to support the teaching and learning process in school districts. Although the number of programs and services vary among the twenty Education Service Centers, they do provide similar programs and services that are effective and provide sustainable systemic support for school improvement throughout their region particularly when it comes to statewide initiatives and areas of federal and state compliance issues and the improvement of student achievement. Throughout the state, Education Service Centers prove to be a valuable resource to school districts seeking solutions from knowledgeable and experienced educational professionals. In conclusion, Education Service centers provide a variety of professional services that can assist superintendents, principals, teachers, paraprofessionals, and other district staff in assisting students throughout their district in achieving the highest possible levels of success in every aspect of the school day. However, it is highly critical that both school leaders and Education Service Centers communicate effectively with each other about the needs of the districts and the services that are available to promote school improvement.

Ausburn, Jerry Paul

2010-08-01T23:59:59.000Z

71

Potential Benefits from Improved Energy Efficiency of Key Electrical Products:  

NLE Websites -- All DOE Office Websites (Extended Search)

8254 8254 Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India Michael McNeil, Maithili Iyer, Stephen Meyers, Virginie Letschert, James E. McMahon Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA December 2005 This work was supported by the International Copper Association through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 2 ABSTRACT The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These

72

Commercial & Industrial Demand Response Within Hawaiian Electric Company Service Territory  

Science Conference Proceedings (OSTI)

By reducing power usage during peak demand periods, demand response (DR) programs can help utilities manage power loads and complement energy efficiency activities while providing ratepayers an opportunity to substantially reduce their electric bills. This project assessed the costs and benefits of potential DR programs for Hawaiian Electric Company's (HECO's) commercial and industrial (CI) customers.

2007-06-04T23:59:59.000Z

73

OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS  

Science Conference Proceedings (OSTI)

SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

Cutler, Roy I [ORNL; Peplov, Vladimir V [ORNL; Wezensky, Mark W [ORNL; Norris, Kevin Paul [ORNL; Barnett, William E [ORNL; Hicks, Jim [ORNL; Weaver, Joey T [ORNL; Moss, John [ORNL; Rust, Kenneth R [ORNL; Mize, Jeffery J [ORNL; Anderson, David E [ORNL

2011-01-01T23:59:59.000Z

74

Adapting state and national electricity consumption forecasting methods to utility service areas. Final report  

SciTech Connect

This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

Swift, M.A.

1984-07-01T23:59:59.000Z

75

Demonstration and Evaluation of U.S. Postal Service ELectric...  

NLE Websites -- All DOE Office Websites (Extended Search)

2000 AQMD CONTRACT 00192 Project Number: TC-00-0101 Report Number: TC-00-0101-TR01 Electric Vehicle Technical Center Prepared by: Ricardo Solares Juan C. Argueta Charles J. Kim...

76

Optimal Transmission Switching in Electric Networks for Improved Economic Operations1  

E-Print Network (OSTI)

1 Optimal Transmission Switching in Electric Networks for Improved Economic Operations1 Emily. Abstract Growing demand for electric power seems to necessitate new transmission lines, but obstacles" bulk electric grid, one that is more controllable and flexible. Optimal transmission switching

Ferris, Michael C.

77

A software development tool for improving quality of service in distributed database systems  

Science Conference Proceedings (OSTI)

The Distributed Database Management Systems (DDBMS) are measured by their Quality of Service (QoS) improvements on the real world applications. To analyze the behavior of the distributed database system and to measure its quality of service performance, ...

Ismail Omar Hababeh

2009-12-01T23:59:59.000Z

78

Survey of Technologies and Cost Estimates for Residential Electricity Services Jason W. Black, Marija Ilic, IEEE Fellow  

E-Print Network (OSTI)

Survey of Technologies and Cost Estimates for Residential Electricity Services Jason W. Black This survey contains a sample of the available technologies for implementing residential electricity services understanding of the potential for implementation of residential services. The estimation of the costs

Ilic, Marija D.

79

Office Buildings: Market Analysis for Electricity Service Providers  

Science Conference Proceedings (OSTI)

Office buildings nationwide account for the greatest floor space and energy use of all commercial building types. To best serve and retain the loyalty of this important market, electric utilities need to understand the energy uses, priorities, and decision-making approaches of commercial building managers. This report assesses the office building energy market to provide a basic reference for utility program planners, marketing managers, and field representatives.

1997-04-16T23:59:59.000Z

80

Potential Benefits from Improved Energy Efficiency of Key Electrical...  

NLE Websites -- All DOE Office Websites (Extended Search)

the electricity costs paid by the consumer or, in the case of transformers, the costs of electricity generation. The price of the electricity that is saved at the margin is based...

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

670 Federal Register 670 Federal Register / Vol. 76, No. 212 / Wednesday, November 2, 2011 / Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.: Notice of Intent To Prepare an Environmental Impact Statement and Hold Public Scoping Meetings AGENCY: Rural Utilities Service, USDA. ACTION: Notice. SUMMARY: The Rural Utilities Service (RUS), an agency within the U.S. Department of Agriculture (USDA), intends to prepare an environmental impact statement (EIS) for Basin Electric Power Cooperative's (Basin Electric) proposed Antelope Valley Station (AVS) to Neset Transmission Project (Project) in North Dakota. RUS is issuing this Notice of Intent (NOI) to inform the public and interested parties about the proposed Project, conduct a public

82

AET Solar formerly solar division of GGAM Electrical Services | Open Energy  

Open Energy Info (EERE)

Solar formerly solar division of GGAM Electrical Services Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name AET Solar (formerly solar division of GGAM Electrical Services) Place Limassol, Cyprus Product Cypriot subsidiary of AET. Coordinates 34.683338°, 33.051109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.683338,"lon":33.051109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Spot pricing of electricity and ancillary services in a competitive California market  

Science Conference Proceedings (OSTI)

Typically, in competitive electricity markets, the vertically integrated utilities that were responsible for ensuring system reliability in their own service territories, or groups of territories, cease to exist. The burden falls to an independent system operator (ISO) to ensure that enough ancillary services (AS) are available for safe, stable, and reliable operation of the grid, typically defined, in part, as compliance with officially approved engineering specifications for minimum levels of AS. In order to characterize the behavior of market participants (generators, retailers, and an ISO) in a competitive electricity market with reliability requirements, spot markets for both electricity and AS are modeled. By assuming that each participant seeks to maximize its wealth and that all markets clear, we solve for the optimal quantities of electricity and AS traded in the spot market by all participants, as well as the market clearing prices for each.

Siddiqui, A.S.; Marnay, C.; Khavkin, M.

2000-11-01T23:59:59.000Z

84

Using Forward Markets to Improve Electricity Market Design  

E-Print Network (OSTI)

Forward markets, both medium term and long term, complement the spot market for wholesale electricity. The forward markets reduce risk, mitigate market power, and coordinate new investment. In the medium term, a forward energy market lets suppliers and demanders lock in energy prices and quantities for one to three years. In the long term, a forward reliability market assures adequate resources are available when they are needed most. The forward markets reduce risk for both sides of the market, since they reduce the quantity of energy that trades at the more volatile spot price. Spot market power is mitigated by putting suppliers and demanders in a more balanced position at the time of the spot market. The markets also reduce transaction costs and improve liquidity and transparency. Recent innovations to the Colombia market illustrate the basic elements of the forward markets and their beneficial role. 1

Lawrence M. Ausubel; Peter Cramton

2010-01-01T23:59:59.000Z

85

Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

Not Available

2012-01-01T23:59:59.000Z

86

Improving quality assurance in education with web-based services by data mining and mobile technologies  

Science Conference Proceedings (OSTI)

The main focus of this paper is to use web-based services, data mining techniques and mobile technologies to improve Quality Assurance (QA) in education. This paper presents rather sophisticated web-based tools and services dedicated to the QA in education. ... Keywords: data mining, mobile technologies, quality assurance, web services, web-based application

Arben Hajra; Derya Birant; Alp Kut

2008-09-01T23:59:59.000Z

87

Analysis of Aerosol-Based Duct Improvement Business in PEPCO's Service Territory  

Science Conference Proceedings (OSTI)

Studies in the last ten years have indicated potentially large energy savings with residential duct sealing. However, market penetration of duct sealing services has been very limited. This project analyzed the viability of selling duct sealing as part of a duct improvement service in PEPCO's Washington, D.C., service territory.

2000-03-14T23:59:59.000Z

88

Improving Californias Infrastructure Services: The California Infrastructure Initiative  

E-Print Network (OSTI)

in the US to improve infrastructure planning, provision andtool for improving infrastructure planning, provision andBuilding Canada: Modern infrastructure for a Strong Canada (

David E. Dowall; Robin Ried

2008-01-01T23:59:59.000Z

89

Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Web site and in print publications. Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION ◆ DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles

90

Program on Technology Innovation: Tracking the Demand for Electricity from Grid Services  

Science Conference Proceedings (OSTI)

To help address the many challenges facing the electric power industry in the next 20years, an effective process of technology research and development (R&D) planning is needed. Based on input from a broad range of stakeholders and using a proven scenario planning process, this report represents an attempt to monitor one of three key drivers, namely, the demand for electricity from grid services, which may impact the industry in the future. Collectively, these drivers form the basis of a ...

2013-05-17T23:59:59.000Z

91

A Secure Web Service for Electricity Prepayment Vending in South Africa: A Case Study and Industry Specification  

Science Conference Proceedings (OSTI)

Current standardised offline vending systems play a critical role in supporting electricity prepayment-metering infrastructure by enabling convenient access to point of sales for customers to purchase prepaid electricity tokens. Electricity utilities ... Keywords: Electricity Vending, Interoperability, Industry specification, Client-server, Prepayment, Secure Socket layer, Web Service

K. P. Subramoney; G. P. Hancke

2007-05-01T23:59:59.000Z

92

Sustainable transport at MIT : improving area bus services  

E-Print Network (OSTI)

Everyday each member of the MIT community makes a decision about how they will travel to school or work. Using the Commuter Habit Survey and information regarding local bus services as guides, this report analyzes the ...

Beasley, Aimee K

2009-01-01T23:59:59.000Z

93

Reducing Electricity and Network Cost for Online Service Providers in Geographically Located Internet Data Centers  

Science Conference Proceedings (OSTI)

Online service providers(OSPs) have Internet data centers (IDCs) in multiple geographical locations in order to satisfy global user demand. Increased data centers consume a large amount of energy, and at the same time cause increased heat dissipation, ... Keywords: Internet data centers, green computing, electricity market, load dispatching, energy proportional

Xinying Zheng; Yu Cai

2011-08-01T23:59:59.000Z

94

Electrical substation service-area estimation using Cellular Automata: An initial report  

SciTech Connect

The service areas for electric power substations can be estimated using a Cellular Automata (CA) model. The CA model is a discrete, iterative process whereby substations acquire service area by claiming neighboring cells. The service area expands from a substation until a neighboring substation service area is met or the substation`s total capacity or other constraints are reached. The CA-model output is dependent on the rule set that defines cell interactions. The rule set is based on a hierarchy of quantitative metrics that represent real-world factors such as land use and population density. Together, the metrics determine the rate of cell acquisition and the upper bound for service area size. Assessing the CA-model accuracy requires comparisons to actual service areas. These actual service areas can be extracted from distribution maps. Quantitative assessment of the CA-model accuracy can be accomplished by a number of methods. Some are as simple as finding the percentage of cells predicted correctly, while others assess a penalty based on the distance from an incorrectly predicted cell to its correct service area. This is an initial report of a work in progress.

Fenwick, J.W.; Dowell, L.J.

1998-07-01T23:59:59.000Z

95

Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015  

SciTech Connect

The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

1997-08-01T23:59:59.000Z

96

Ames Electric Department- Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

The City of Ames Electric Services offers a variety of services and rebates for residential customers interested in purchasing energy efficient appliances or making energy efficiency improvements...

97

Quality of Service, Efficiency and Scale in Network Industries: An analysis of European electricity distribution  

E-Print Network (OSTI)

supplied measured in Gigawatt-hours (GWh). The two out- put variables also reflect the structure of a two-part tariff, i.e. a fixed charge per cus- tomer as well as a variable part dependent on consumed energy. In addition, economies of scope between... and transformers), economies of scale in electricity supply, and economies of scope between the major services in electricity distribution, namely customer connection and energy delivery.3 In economic theory, a natural monopoly is described as a market...

Growitsch, Christian; Jamasb, Tooraj; Pollitt, Michael G.

2006-03-14T23:59:59.000Z

98

A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation  

Science Conference Proceedings (OSTI)

This paper presents a hybrid adaptive network based fuzzy inference system (ANFIS), computer simulation and time series algorithm to estimate and predict electricity consumption estimation. The difficulty with electricity consumption estimation modeling ... Keywords: Adaptive network based fuzzy inference system, Computer simulation, Electricity consumption, Hybrid, Improvement, Time series

A. Azadeh; M. Saberi; A. Gitiforouz; Z. Saberi

2009-10-01T23:59:59.000Z

99

Assessing Air Pollution Control Options at the Hudson Station of Public Service Electric and Gas  

Science Conference Proceedings (OSTI)

This report presents the results of a pilot-scale assessment of air pollutant emission control options at the Hudson Generating Station of Public Service Electric and Gas (PSE&G). Tests over a period of a year and a half evaluated the capabilities of a high air-to-cloth ratio pulse jet baghouse (COHPAC) in controlling particulates, acid gases, and mercury and a tubular electrostatic precipitator (ESP) in controlling mercury emissions.

1998-10-30T23:59:59.000Z

100

DOE Provides $4.3 Million to Improve Reliability of the U.S. Electric Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provides $4.3 Million to Improve Reliability of the U.S. Provides $4.3 Million to Improve Reliability of the U.S. Electric Grid DOE Provides $4.3 Million to Improve Reliability of the U.S. Electric Grid August 21, 2009 - 3:47pm Addthis Innovative Synchrophasor Research Will Provide Better Real-Time Information WASHINGTON, DC - The Department of Energy's Office of Electricity and Energy Reliability today announced that it will provide $4.3 million for four projects that will use innovative synchrophasor research to improve the reliability and efficiency of our Nation's electricity grid. These awards are part of the Department's efforts to modernize the electric grid and enhance the security and reliability of the energy infrastructure. Synchrophasors are high-speed, real-time synchronized measurement devices used to diagnose the health of the electricity grid. With synchrophasor

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High-Pressure Fluid-Filled Cable Condition Assessment Through Electrical Impulse Testing of PSE&G 230-kV Service-Aged Cable  

Science Conference Proceedings (OSTI)

This report describes electrical and mechanical testing of a service-aged 230-kV high-pressure fluid-filled (HPFF) cable sample that was removed from a Public Service Electric & Gas (PSE&G) underground transmission line.

2008-11-26T23:59:59.000Z

102

Improving the Reliability and Resiliency of the US Electric Grid: SGIG  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving the Reliability and Resiliency of the US Electric Grid: Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012 The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid Investment Grant Program written by OE's Debbie Haught and Joseph Paladino. "Improving the Reliability and Resiliency of the US Electric Grid" is available for download below. Improving the Reliability and Resiliency of the US Electric Grid - SGIG Article in Metering International Issue 1 2012.pdf More Documents & Publications Smart Grid Investment Grant Program - Progress Report (October 2013)

103

Information Effects in Valuation of Electricity and Water Service Attributes Using Contingent Valuation  

E-Print Network (OSTI)

on costs and bene?ts of fuel options for electricity gener- 1CCS is a process through which emitted CO2 can be captured and stored in under- ground sites including depleted oil and gas ?elds. 3 ation and investments to improve energy security has an impact... of lakes or endangered species, while exploration of information for other types of non-market goods such as utility attributes has been neglected. Understanding how information can aect consumers is particularly per- tinent to the electricity sector...

Akcura, Elcin

104

Study on the performance improvements of electrical domestic appliance factory  

E-Print Network (OSTI)

This thesis has two objectives. First, it aims to help TECHSOL electronics domestic appliance measure and analyze its current performance. Secondly, it is aimed to ascertain where a small improvement can result in significant ...

Kasan Hidayat, Andy Darwin

2007-01-01T23:59:59.000Z

105

A Method to Improve Voltage Holding Across Vacuum Electrical Gaps to  

NLE Websites -- All DOE Office Websites (Extended Search)

A Method to Improve Voltage Holding Across Vacuum Electrical Gaps to A Method to Improve Voltage Holding Across Vacuum Electrical Gaps to Improve the Performance and Reduce the Conditioning Time by Removing Bacteria, Fungi, and Other Microbial Organisms and Their Spores. -- . Inventor Larry Grisham. Disclosed is a method to potentially increase the performance of devices which employ electric field within a vacuum by increasing the magnitude of the electric field gradient which can be sustained, the reliability of the devices, and by reducing the conditioning time of devices such as charged particle accelerators when they are brought into operation. The disclosed method can be employed, for example, for devices requiring voltages across vacuum gaps, such as, but not limited to, charged particle accelerators, X-ray machines, vacuum tubes, and vacuum electrical breakers.

106

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

107

Estimates of achievable potential for electricity efficiency improvements in U.S. residences  

E-Print Network (OSTI)

baseline electricity consumption forecast for the year 2010.Electricity-Efficiency Improvements in 2010 Discount Rate: 7% Forecast Year: 2010 Start Year: 1990 Baseline Energy Consumption for yearelectricity savings in the year 2010, which is 18% of the frozen efficiency baseline consumption forecast for that year.

Brown, Richard

1993-01-01T23:59:59.000Z

108

Unique Carbon-Coated Cathodes Improve Electrical Conductivity (ANL-IN-09-043)  

Scientists at Argonne National Laboratory have developed a coating process for cathodes that improves their electrical conductivity. This procedure, which uses carbon precursors, has proved superior to conventional methods that involve high ...

109

MINERVA: model driven and service oriented framework for the continuous business process improvement and related tools  

Science Conference Proceedings (OSTI)

The importance and benefits of Business Process Management (BPM) for organizations are nowadays broadly recognized, as not only the business area but also the information technology one are embracing and adopting the paradigm. The implementation of business ... Keywords: business process, business process management (BPM), improvement, model driven development (MDD), service oriented computing (SOC)

Andrea Delgado; Francisco Ruiz; Ignacio Garca-Rodrguez de Guzmn; Mario Piattini

2009-11-01T23:59:59.000Z

110

Improving Endurance of Autonomous Aerial Vehicles through Intelligent Service-Station Placement  

E-Print Network (OSTI)

Improving Endurance of Autonomous Aerial Vehicles through Intelligent Service-Station Placement Roy and the nature of the application. We present these algorithms in the context of a generic survey application location per flight, and not at more general survey applications such as search and rescue, surveillance

Minnesota, University of

111

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

112

Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components  

SciTech Connect

The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis that U.S. industry is ill prepared to handle which could further challenge U.S. competitiveness.

Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

2012-03-26T23:59:59.000Z

113

Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

Not Available

2011-11-01T23:59:59.000Z

114

Benchmarking and incentive regulation of quality of service: an application to the UK electricity distribution utilities  

E-Print Network (OSTI)

. Regulation of Electricity Distribution The paradigm of electricity sector liberalisation systems separates the basic functions of electricity generation, transmission, distribution, and supply (or retailing). Generation plants produce electricity, which...

Giannakis, D; Jamasb, Tooraj; Pollitt, Michael G.

2004-06-16T23:59:59.000Z

115

Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory  

Science Conference Proceedings (OSTI)

Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

2005-12-01T23:59:59.000Z

116

The Program on Technology Innovation: Tracking the Demand for Electricity From Grid-Related Services Preliminary Delphi Panel Resu lts  

Science Conference Proceedings (OSTI)

In order to develop a robust research and development portfolio under a variety of future scenarios, EPRI's research has identified three critical drivers which can substantially influence the technologies needed to provide society with clean, reliable and affordable electricity in the decades ahead. These drivers include the price of natural gas, the demand for electricity from grid services, and the potential for change in environmental and energy policy.In its scenario planning ...

2013-10-18T23:59:59.000Z

117

Denton County Electric Cooperative d/b/a CoServ Electric Smart...  

Open Energy Info (EERE)

throughout CoServ Electric's service territory and explores the application of distribution automation and customer systems. The project is aimed at improving customer...

118

GAO-05-274 Contract Management: Opportunities to Improve Surveillance on Department of Defense Service Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary of Defense Secretary of Defense March 2005 CONTRACT MANAGEMENT Opportunities to Improve Surveillance on Department of Defense Service Contracts GAO-05-274 What GAO Found United States Government Accountability Office Why GAO Did This Study Highlights Accountability Integrity Reliability www.gao.gov/cgi-bin/getrpt?GAO-05-274. To view the full product, including the scope and methodology, click on the link above. For more information, contact David E. Cooper at (617) 788-0555 or cooperd@gao.gov. Highlights of GAO-05-274, a report to the Secretary of Defense March 2005 CONTRACT MANAGEMENT Opportunities to Improve Surveillance on Department of Defense Service Contracts Surveillance varied on the 90 contracts we reviewed. Surveillance was insufficient on 26 of the contracts we reviewed but was sufficient on

119

Pressurization Tests on High-Pressure Fluid-Filled Underground Transmission Cables of Public Service Electric & Gas Company  

Science Conference Proceedings (OSTI)

This report describes pressurization tests performed on 138-kV and 230-kV high-pressure fluid-filled (HPFF) transmission cable samples. The samples were removed from two Public Service Electric & Gas Company (PSE&G) underground transmission lines.

2009-12-10T23:59:59.000Z

120

Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Services ESnet provides interoperable, effective, reliable, and high performance network communications infrastructure, and certain collaboration services, in support of the Office of Science (SC)'s large-scale, collaborative science programs. ESnet provides users with high bandwidth access to DOE sites and DOE's primary science collaborators including Research and

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms  

DOE Green Energy (OSTI)

California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

Vick, B. D.; Clark, R. N.; Mehos, M.

2008-01-01T23:59:59.000Z

122

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

E-Print Network (OSTI)

and Reliability of Electric Power. Power Symposium, 2006.of a Terrorist Attack on the Electric Power System of LosR. Windell. The Cost of Electric Power Interruptions in the

Sullivan, M.J.

2009-01-01T23:59:59.000Z

123

Services  

Energy.gov (U.S. Department of Energy (DOE))

The Human Capital Office offers benefit, new employee orientation and some learning & development related services to all DOE employees. Additionally the Office supplies employee and labor...

124

Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India  

Science Conference Proceedings (OSTI)

The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

2005-12-20T23:59:59.000Z

125

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

DOE Green Energy (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

126

Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields  

E-Print Network (OSTI)

Because of its versatility, electricity consumption continues to grow all over the world more rapidly than any other energy form. The portion of the United States' primary energy supply used as electricity has expanded from near zero at the turn of the century to 38 percent in 1987. Electric motors use as input about 64% of all electricity in the U.S. and many other countries. The cost of powering motors in the U.S. is estimated to be roughly $90 billion a year. In terms of primary energy input, motor energy use in the U.S. is comparable to all auto energy use. Electric motors are the largest users of energy in all mineral extraction activities. In oil fields, electric motors drive the pumping units used for lifting the oil and water to the surface. To find out actual efficiencies of operating motors in the oil fields, the University of Wyoming and the U.S. Department of Energy -Denver Support Office have been working for the last twelve months on two Naval Petroleum Reserve oil fields -one each in California and Wyoming. So far, actual motor loading of all operating oil fields motors has been determined by actual field measurements. We have also completed the analysis of economy of operation of existing motors and evaluating the candidate replacement motors. In this paper, we will present these results along with the methodologies and protocol developed for motor energy efficiency improvement in oil field applications.

Ula, S.; Cain, W.; Nichols, T.

1993-03-01T23:59:59.000Z

127

Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *  

E-Print Network (OSTI)

that generation firms have in restructured electricity markets for supporting long-term transmission investments electricity markets, have the incentives to fund or support incremental social-welfare-improving transmission.S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity

128

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

A: Calculating Marginal Electricity Rates An understandingof marginal electricity rates is crucial in assessingElectricity Rates .

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

129

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

of electricity, and transmission and distribution losses asof electricity, and transmission and distribution losses astotal electricity consumption by distribution transformers

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

130

Avista Utilities (Gas and Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through electric food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates...

131

Method and apparatus for improving the performance of a nuclear power electrical generation system  

SciTech Connect

A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1995-01-01T23:59:59.000Z

132

Method and apparatus for improving the performance of a nuclear power electrical generation system  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1995-01-01T23:59:59.000Z

133

Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory  

Science Conference Proceedings (OSTI)

The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation Construction Code of New York State (No CHP applied and no EE above the code); (2) Current Policy: This is a business-as-usual (BAU) scenario that incorporates some EE and DER based on market potential in the current economic and regulatory environment; (3) Modified Rate 14RA: This economic strategy is meant to decrease CHP payback by removing the contract demand from, and adding the delivery charge to the Con Edison Standby Rate PSC2, SC14-RA; (4) Carbon Trade at $20/metric tonne (mt): This policy establishes a robust carbon trading system in NY that would allow building owners to see the carbon reduction resulting from CHP and EE.

Kingston, Tim [Gas Technology Institute; Kelly, John [Endurant Energy LLC

2008-08-01T23:59:59.000Z

134

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs and Emissions Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Technical Report NREL/TP-640-41410 May 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Prepared under Task No. WR61.2001 Technical Report NREL/TP-640-41410 May 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

135

Making a good match: How schools and external service providers negotiate needs and services in support of school improvement  

E-Print Network (OSTI)

improvement By Mary Vixie Sandy A dissertation submitted inimprovement By Mary Vixie Sandy Abstract Making a goodschool improvement by Mary Vixie Sandy Doctor of Education

Vixie Sandy, Mary

2013-01-01T23:59:59.000Z

136

A design for improved performance of interior permanent magnet synchronous motor for hybrid electric vehicle  

Science Conference Proceedings (OSTI)

This paper investigates the layout of a magnet shape on the performance of an interior permanent magnet (IPM) synchronous motor. The motor is used in a hybrid electric vehicle. The IPM motor is a pancake shaped motor that has permanent magnets inside the rotor. The motor acts as a rotational electrodynamic machine between the engine and transmission. The main purpose of redesigning the shape of the magnet is to improve the motor performance

Seong Yeop Lim

2006-01-01T23:59:59.000Z

137

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

transmission, and distribution of electricity and gas. Wedistribution chain, and the installation cost. Electricity and

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

138

Coordinated Control and Optimization of Virtual Power Plants for Energy and Frequency Regulation Services in Electricity Markets  

E-Print Network (OSTI)

With increasing penetration of intermittent resources such as wind and solar, power system operations are facing much more challenges in cost effective provision of energy balancing and frequency regulation services. Enabled by advances in sensing, control and communication, the concept of Virtual Power Plant (VPP) is proposed as one possible solution which aggregates and firms up spatially distributed resources? net power injection to the system. This thesis proposes a coordinated control and bidding strategy for VPPs to provide energy balancing and grid frequency regulation services in electricity market environment. In this thesis, the VPP consists of two energy conversion assets: a Doubly Fed Induction Generator (DFIG)-based wind farm and a co-located Flywheel Energy Storage System (FESS). The coordination of the VPP is implemented through power electronics?based controllers. A five-bus system test case demonstrates the technical feasibility of VPPs to respond to grid frequency deviation as well as to follow energy dispatch signals. To enable the participation of VPPs in electricity market, this thesis also proposes an optimization based bidding strategy for VPPs in both energy balancing and frequency regulation service markets. The potential economic benefits of this bidding strategy are demonstrated under Denmark wholesale electricity market structure. Four case studies show the economic benefit of coordinating VPPs.

Zhang, Fan

2011-12-01T23:59:59.000Z

139

Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts -- final report  

SciTech Connect

This report summarizes findings from a unique project to improve the end-use electricity load shape and peak demand forecasts made by the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). First, the direct incorporation of end-use metered data into electricity demand forecasting models is a new approach that has only been made possible by recent end-use metering projects. Second, and perhaps more importantly, the joint-sponsorship of this analysis has led to the development of consistent sets of forecasting model inputs. That is, the ability to use a common data base and similar data treatment conventions for some of the forecasting inputs frees forecasters to concentrate on those differences (between their competing forecasts) that stem from real differences of opinion, rather than differences that can be readily resolved with better data. The focus of the analysis is residential space cooling, which represents a large and growing demand in the PG&E service territory. Using five years of end-use metered, central air conditioner data collected by PG&E from over 300 residences, we developed consistent sets of new inputs for both PG&E`s and CEC`s end-use load shape forecasting models. We compared the performance of the new inputs both to the inputs previously used by PG&E and CEC, and to a second set of new inputs developed to take advantage of a recently added modeling option to the forecasting model. The testing criteria included ability to forecast total daily energy use, daily peak demand, and demand at 4 P.M. (the most frequent hour of PG&E`s system peak demand). We also tested the new inputs with the weather data used by PG&E and CEC in preparing their forecasts.

Eto, J.H.; Moezzi, M.M.

1993-12-01T23:59:59.000Z

140

A Robust Mechanism to Dynamically Provide Grid Services with a Fleet of Plug-in Electric Vehicles  

E-Print Network (OSTI)

Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can help to reduce greenhouse gas emissions and our dependence on foreign oil. PEVs will also be an integral part of the future smart grid, due to two main features: First, PEV charging stations will most likely be available at home and at work, offering flexible charging options. Second, these vehicles will have the capability of transmitting electricity back to the grid, known as a vehicle-to-grid (V2G) system. These features allow PEV charging and discharging to be distributed among vehicles in order to benefit the consumer, who may profit from charging when electricity prices are relatively low and discharging when the electricity prices are higher. Moreover, a fleet of vehicles can be used to provide grid services for electric utilities. Utility companies may utilize PEVs as distributed energy storage devices that store surplus electricity generation to be transferred back to the grid in times of deficit, which will assist the integration of variable generation via renewable energy resources into the grid. However, along with these benefits come challenges and risks. For example, how will PEVs impact the stability of power grid? What type of market mechanism would be most efficient to organize this distributed trading? Are

Yinyu Ye; Nicole Taheri

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Field Operations Program - U.S. Postal Service - Fountain Valley Electric Carrier Route Vehicle Testing  

Science Conference Proceedings (OSTI)

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valley Post Office and eighteen mail carriers primarily drove the ECRVs on ''park and loop'' mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, J.E.

2002-01-21T23:59:59.000Z

142

Field Operations Program - US Postal Service Fountain Valley Electric Carrier Route Vehicle Testing  

SciTech Connect

The United States Postal Service (USPS) has ordered 500 light-duty electric carrier route vehicles (ECRV) mostly for their delivery carriers to use in several California locations. The 500 ECRVs have been defined as a demonstration fleet to support a decision of potentially ordering 5,500 additional ECRVs. Several different test methods are being used by the USPS to evaluate the 500-vehicle deployment. One of these test methods is the ECRV Customer Acceptance Test Program at Fountain Valley, California. Two newly manufactured ECRVs were delivered to the Fountain Valey Post Office and eighteen mail carriers primarily drove the ECRVs on "park and loop" mail delivery routes for a period of 2 days each. This ECRV testing consisted of 36 route tests, 18 tests per vehicle. The 18 mail carriers testing the ECRVs were surveyed for the opinions on the performance of the ECRVs. The U.S. Department of Energy, through its Field Operations Program, is supporting the USPS's ECRV testing activities both financially and with technical expertise. As part of this support, Field Operations Program personnel at the Idaho National Engineering and Environmental Laboratory have compiled this report based on the data generated by the USPS and its testing contractor (Ryerson, Master and Associates, Inc.) During the 36 route tests, the two test vehicles were driven a total of 474 miles, averaging 13 mile per test. The distance of the 36 route tests ranged from 4 to 34 miles. Both miles driven and State-of-Charge (SOC) data was collected for only 28 of the route tests. During these 28 tests, the ECRVs were driven a total of 447 miles. The SOC used during the 28 tests averaged a 41% decrease and the average distance driven was 16 miles. This suggests that a 16-mile route uses almost half of the ECRV's battery energy. The 18 carriers also rated 12 ECRV traits that included the physical design of the ECRVs as well as their performance. Based on a scale of 1 being the lowest and 5 being highest, or best, the overall average score for the ECRV was 4.3. The report also included individual comments from the ECRV drivers.

Francfort, James Edward

2002-01-01T23:59:59.000Z

143

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

on projections of electricity prices or avoided costs forthe projected marginal electricity price for households orfirst cost. Marginal Electricity Prices The consumer impacts

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

144

Modeling, simulation, and analysis of series hybrid electric vehicles for fuel economy improvement.  

E-Print Network (OSTI)

??A hybrid electric vehicle (HEV) combines a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system. In a series HEV, an electric (more)

Khandaker, Masuma

2011-01-01T23:59:59.000Z

145

Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?  

E-Print Network (OSTI)

assesses the impact of electricity industry restructuring onand Knittel (2002), electricity industry studies typically96, "Restructuring the Electricity Industry," The Council of

Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

2004-01-01T23:59:59.000Z

146

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

operating cost (electricity bill), and DR is the consumerPrice $US Annual Electricity Bill Payback Period TotalRetail Price $US Annual Electricity Bill Payback Total Delta

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

147

Achieving A Long Term Business Impact by Improving the Energy Effectiveness and Reliability of Electric Motors  

E-Print Network (OSTI)

Over 100,000 electric motors drive the production equipment throughout a large chemical company. The energy-efficiency and reliability of these motors during their entire life have a decided impact on the company's manufacturing costs and production capability. The Corporate Motor Technology Team (CMTT) conceived and led a program to optimize the cost effectiveness and reliability of new motors and developed criteria to determine whether to repair or replace motors that fail. The higher energy efficiency of the electric motors offered by vendors today plays a crucial role in these decisions. The company's current motor specification, procurement, maintenance, repair and replacement practices are vastly improved and consistent across the corporation. The 1995 savings attributed to the higher energy efficiency of over 2000 motors installed the prior year amount to $570,000 and will continue to accrue year after year. So will the savings stemming from lower maintenance cost and reduced downtime.

Whelan, C. D.

1997-04-01T23:59:59.000Z

148

A Service-Oriented Architecture for Electric Power Transmission System Asset Management  

E-Print Network (OSTI)

Modern electric power systems comprising of power transmission and distribution grids consist of a large in operating modern high-voltage electric power sys- tems. The proposed framework integrates real-time data of equipment. The failure of critical equipment can adversely impact the entire distribution grid and increase

Honavar, Vasant

149

Making a good match: How schools and external service providers negotiate needs and services in support of school improvement  

E-Print Network (OSTI)

support! or! facilitate! school;based! change! designed! to!learning:!! How! to! match! school! needs! with! providers!in! ways! that! maximize! school! improvement. ! A! growing!

Vixie Sandy, Mary

2013-01-01T23:59:59.000Z

150

An Improved Limit on the Electric Dipole Moment of the Muon  

E-Print Network (OSTI)

Data from the muon g-2 experiment at Brookhaven National Lab has been analyzed to search for a muon electric dipole moment(EDM), which would violate parity and time reversal symmetries. An EDM would cause a tilt in the spin precession plane of the muons, resulting in a vertical oscillation in the position of electrons hitting the detectors. No signal has been observed. Based on this analysis, an improved limit of $2.8 \\times 10^{-19} e-cm(95% CL) is set on the muon EDM.

Ronald McNabb

2004-07-01T23:59:59.000Z

151

Estimates of achievable potential for electricity efficiency improvements in U.S. residences  

SciTech Connect

This paper investigates the potential for public policies to achieve electricity efficiency improvements in US residences. This estimate of achievable potential builds upon a database of energy-efficient technologies developed for a previous study estimating the technical potential for electricity savings. The savings potential and cost for each efficiency measure in the database is modified to reflect the expected results of policies implemented between 1990 and 2010. Factors included in these modifications are: the market penetration of efficiency measures, the costs of administering policies, and adjustments to the technical potential measures to reflect the actual energy savings and cost experienced in the past. When all adjustment factors are considered, this study estimates that policies can achieve approximately 45% of the technical potential savings during the period from 1990 to 2010. Thus, policies can potentially avoid 18% of the annual frozen-efficiency baseline electricity consumption forecast for the year 2010. This study also investigates the uncertainty in best estimate of achievable potential by estimating two alternative scenarios -- a

Brown, Richard

1993-05-01T23:59:59.000Z

152

Electric  

U.S. Energy Information Administration (EIA)

Average Retail Price of Electricity to ... Period Residential Commercial Industrial ... or usage falling within specified limits by rate ...

153

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

154

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

155

Plug-In Electric Vehicle Charging Load Profile Forecasts for the Salt River Project Service Area  

Science Conference Proceedings (OSTI)

As plug-in electric vehicles (PEVs) enter the marketplace, it is important to understand the impacts of the potentially significant new load caused by PEV charging. Time-of-use (TOU) electricity pricing will help shift PEV charging loads to off-peak hours, mitigating the potential problem of raising the system peak load. However, there is a potential for a secondary peak to develop if the TOU plan causes a large PEV load to appear on the grid at a specific time in the evening. So-called smart chargingbid...

2011-06-30T23:59:59.000Z

156

On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy  

DOE Green Energy (OSTI)

Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

2008-05-27T23:59:59.000Z

157

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

are much below the industrial electricity price. The high-estimate the price of electricity to industrial customers toprice at the 40 HP level for each state, weighted by the total industrial electricity

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

158

Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.  

E-Print Network (OSTI)

demand of 40 all-electric Advanced Energy PEV Usage Study vehicles as maximum kW demand at each 15 minute to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8 hour. 48 kW / 40 vehicles = 1.2 kW per EV in the population, at highest- load moment #12;Demand, Net

California at Davis, University of

159

Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Electricity is an essential part of modern life. The Energy Department is working to create technology solutions that will reduce our energy use and save Americans money.

160

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

E-Print Network (OSTI)

of investments in Smart Grid. Improving the design of demandor without different Smart Grid). Each configuration variesbenefits of specific Smart Grid applications on specific

Sullivan, M.J.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Forthcoming, Utilities Policy, 2010. Using Forward Markets to Improve Electricity Market Design  

E-Print Network (OSTI)

Forward markets, both medium term and long term, complement the spot market for wholesale electricity. The forward markets reduce risk, mitigate market power, and coordinate new investment. In the medium term, a forward energy market lets suppliers and demanders lock in energy prices and quantities for one to three years. In the long term, a forward reliability market assures adequate resources are available when they are needed most. The forward markets reduce risk for both sides of the market, since they reduce the quantity of energy that trades at the more volatile spot price. Spot market power is mitigated by putting suppliers and demanders in a more balanced position at the time of the spot market. The markets also reduce transaction costs and improve liquidity and transparency. Recent innovations to the Colombia market illustrate the basic elements of the forward markets and their beneficial role. 1

Lawrence M. Ausubel; Peter Cramton

2010-01-01T23:59:59.000Z

162

Performance improvement of a solar heating system utilizing off-peak electric auxiliary  

DOE Green Energy (OSTI)

The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

Eltimsahy, A.H.

1980-06-01T23:59:59.000Z

163

Avoiding and Managing Interruptions of Electric Service Under an Interruptible Contract or Tariff  

E-Print Network (OSTI)

Many large industrial consumers of electricity purchase power through special interruptible contracts or curtailable tariffs. Historically, the number of actual interruptions has been very small -many interruptible consumers have never been required to curtail their usage, and may be assuming that interruptions will never occur. This situation is largely due to the glut of electric generating capacity that exists today in the United States -generally speaking, there is enough generation available to serve all firm customers and all interruptible customers most of the time. However, this glut will likely disappear in the next few years, meaning that interruptible consumers will be required to suffer more interruptions in the near term. Industrials subject to these interruptions should work now toward mitigating the possibility of interruptions and planning their operations so that interruptions can be avoided or sustained with minimal impact. This paper describes methods available to avoid and manage interruptions.

Evans, G. W.

1995-04-01T23:59:59.000Z

164

Coverage preserved optimal routing protocol for improving the quality of service in wireless sensor networks  

Science Conference Proceedings (OSTI)

In wireless sensor network, there are many hurdles takes place in providing quality of service routing to a desired level. The majority of routing protocols in wireless sensor networks concentrates only on energy efficiency as a prime factor, and only ... Keywords: cluster-head, coverage, energy efficiency, lifetime, multi-path routing, quality of service, self-scheduling

B. Paramasivan; K. Mohaideen Pitchai; D. Usha; S. Radha Krishnan

2009-11-01T23:59:59.000Z

165

California Electricity Restructuring: The Challenge to Providing Service and Grid Reliability  

Science Conference Proceedings (OSTI)

Download report 1007388 for FREE. For all the attention devoted to the California energy crisis, the challenge restructuring posed to the reliability of the electricity generation, transmission, and distribution system has largely been overlooked. Reliability, often treated as just another good to be traded, is often taken for granted even though an uninterrupted power supply, the fundamental precondition of the energy market, depends on the determined, real time efforts of professionals in the control r...

2002-12-04T23:59:59.000Z

166

Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?  

E-Print Network (OSTI)

States N Distribution Transmission Generation RestructuringStates N Distribution Transmission Generation Restructuringof generation, transmission, and distribution services, we

Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

2004-01-01T23:59:59.000Z

167

Improving Security of Oil Pipeline SCADA Systems Using Service-Oriented Architectures  

Science Conference Proceedings (OSTI)

Oil pipeline Supervisory Control and Data Acquisition (SCADA) systems monitor and help control pipes transporting both crude and refined petroleum products. Typical SCADA system architectures focus on centralized data collection and control --- however, ... Keywords: SCADA, architecture, petroleum, pipeline, security, services

Nary Subramanian

2008-11-01T23:59:59.000Z

168

Improving inventory and distribution in an aerospace parts and service organization  

E-Print Network (OSTI)

Hamilton Sundstrand has made several changes to their supply chain in recent years, including increased offshore and outsourced production, new service offerings and relocation of facilities, to meet shifting business needs ...

Wessels, Steven Allan, Jr

2011-01-01T23:59:59.000Z

169

Not-a-Bot (NAB): Improving Service Availability in the Face of Botnet Attacks  

E-Print Network (OSTI)

A large fraction of email spam, distributed denial-of-service (DDoS) attacks, and click-fraud on web advertisements are caused by traffic sent from compromised machines that form botnets. This paper posits that by identifying ...

Gummadi, Ramakrishna

170

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

marginal electricity rates for the residential, commercial,residential and agricultural tariffs in line with the cost of electricity production. In particular, agricultural ratesresidential consumers would see a present (discounted) benefit of 1.9 billion dollars over the forecast period, based on a marginal electricity rate

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

171

Size-based Scheduling with Differentiated Services to Improve Response Time of Highly Varying Flow Sizes  

E-Print Network (OSTI)

The sizes of Internet objects are known to be highly varying. We evaluate an M/G/1 queue under foreground background N (FBN ) scheduling policy for job size distributions with varying coefficient of variability (CoV) to analyze the impact of variability of job sizes to the performance of the policy. We find that FBN is very efficient in reducing the response time and minimizing the number of jobs that are penalized (i.e., have a higher response time under FBN than under processor sharing (PS)) when job sizes have a high CoV. We also propose and analyze variants of FBN called fixed priority FBN (FP \\Gamma FBN ) and differential FBN (DF \\Gamma FBN ), which introduce service differentiation by classifying jobs into high priority and low priority and then servicing the high priority before low priority jobs in an FBN related order. The numerical analysis conducted for highly varying job sizes reveals that FP \\Gamma FBN achieves a perfect service differentiation at the expense of a high penalty for the low priority small jobs. While DF \\Gamma FBN offers acceptable service differentiation, it does not penalize small jobs with low priority at all. Moreover, FP \\Gamma FBN and DF \\Gamma FBN can guarantee the service of high priority jobs even under overload.

Idris A. Rai; Guillaume Urvoy-keller; Ernst W. Biersack

2002-01-01T23:59:59.000Z

172

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC cdrtrokArJclaeT 3 I+ &i, y I &OF I*- j< t j,fci..- ir )(yiT E-li, ( -,v? Cl -p4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson...

173

Improving service continuity: IT disaster prevention and mitigation for data centers  

Science Conference Proceedings (OSTI)

Data centers provide highly-scalable and reliable computing for enterprise services such as web hosting, email, applications, and file storage. Because they integrate a range of different systems, data center administration is a complex process. Managing ... Keywords: data centers, infrastructure, it disaster recovery, mitigation

Louis Turnbull, Henry Ochieng, Chris Kadlec, Jordan Shropshire

2013-10-01T23:59:59.000Z

174

Not-a-Bot: improving service availability in the face of botnet attacks  

Science Conference Proceedings (OSTI)

A large fraction of email spam, distributed denial-of-service (DDoS) attacks, and click-fraud on web advertisements are caused by traffic sent from compromised machines that form botnets. This paper posits that by identifying human-generated traffic ...

Ramakrishna Gummadi; Hari Balakrishnan; Petros Maniatis; Sylvia Ratnasamy

2009-04-01T23:59:59.000Z

175

Timely Result-Data Offloading for Improved HPC Center Scratch Provisioning and Serviceability  

Science Conference Proceedings (OSTI)

Modern High-Performance Computing (HPC) centers are facing a data deluge from emerging scientific applications. Supporting large data entails a significant commitment of the highthroughput center storage system, scratch space. However, the scratch space is typically managed using simple purge policies, without sophisticated end-user data services to balance resource consumption and user serviceability. End-user data services such as offloading are performed using point-to-point transfers that are unable to reconcile center s purge and users delivery deadlines, unable to adapt to changing dynamics in the end-toend data path and are not fault-tolerant. Such inefficiencies can be prohibitive to sustaining high performance. In this paper, we address the above issues by designing a framework for the timely, decentralized offload of application result data. Our framework uses an overlay of user-specified intermediate and landmark sites to orchestrate a decentralized fault-tolerant delivery. We have implemented our techniques within a production job scheduler (PBS) and data transfer tool (BitTorrent). Our evaluation using both a real implementation and supercomputer job log-driven simulations show that: the offloading times can be significantly reduced (90.4% for a 5 GB data transfer); the exposure window can be minimized while also meeting center-user Service Level Agreements.

Monti, Henri [Virginia Polytechnic Institute and State University (Virginia Tech); Butt, Ali R [Virginia Polytechnic Institute and State University (Virginia Tech); Vazhkudai, Sudharshan S [ORNL

2011-01-01T23:59:59.000Z

176

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

to calculate national energy consumption and savings. Theto calculate national energy consumption and savings. Thenational electricity generation and primary energy consumption

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

177

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

178

Electricity Advisory Committee (EAC) - 2012 Meetings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Electricity Advisory Committee Archived Meetings 2008-2012 Electricity Advisory Committee (EAC) - 2012 Meetings Electricity Advisory Committee (EAC) - 2012...

179

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

weighting each states rate by total commercial electricityrate is an average over all states, weighted by each states agricultural electricityrates are the average over all states for which tariffs were available, weighted by sectoral electricity

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

180

Utility Service Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Service Renovations Utility Service Renovations Utility Service Renovations October 16, 2013 - 4:59pm Addthis Renewable Energy Options for Utility Service Renovations Photovoltaics Wind Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Improved electrical transport properties in p-type ZnO film by Rapid Dark thermal annealing process  

SciTech Connect

A rapid dark thermal annealing process at 800 deg. C of radio frequency sputtered P doped ZnO thin films have resulted in improved electrical transport properties with hole concentration of 1 x 1018 cm-3, mobility 4.37 cm2/Vs and resistivity 1.4 {Omega}-cm. X-ray photoelectron spectroscopy shows the presence of inactivated P in as-grown ZnO films.

Ghosh, Tushar; Basak, Durga [Department of Solid State Physics, Indian Association for the Cultivation of science, Jadavpur, Kolkata-700032 (India)

2012-06-05T23:59:59.000Z

182

Policy Drivers for Improving Electricity End-Use Efficiency in the U.S.: An Economic-Engineering Analysis  

E-Print Network (OSTI)

This paper estimates the economically achievable potential for improving electricity end-use efficiency in the U.S. The approach involves identifying a series of energy-efficiency policies aimed at tackling market failures, and then examining their impacts and cost-effectiveness using Georgia Techs version of the National Energy Modeling System (GT-NEMS). By estimating the policy-driven electricity savings and the associated levelized costs, a policy supply curve for electricity efficiency is produced. Each policy is evaluated individually and in an Integrated Policy scenario to examine policy dynamics. The Integrated Policy scenario demonstrates significant achievable potential: 261 TWh (6.5%) of electricity savings in 2020, and 457 TWh (10.2%) in 2035. All eleven policies examined were estimated to have lower levelized costs than average electricity retail prices. Levelized costs range from 0.5 8.0 cent/kWh, with the regulatory and information policies tending to be most cost-effective. Policy impacts on the power sector, carbon dioxide emissions, and energy intensity are also estimated to be significant. *Corresponding author:

Yu Wang; Marilyn A. Brown; Yu Wang

2013-01-01T23:59:59.000Z

183

Use of blogs in pre-service teacher education to improve student engagement  

Science Conference Proceedings (OSTI)

Web 2.0 technologies allow average computer users to be able to publish on the Internet without having to know complex computer technical knowledge, which gives these technologies powerful potential to facilitate student engagement in various learning ... Keywords: Cooperative/collaborative learning, Improving classroom teaching, Post-secondary education, Teaching/learning strategies

Hasan Cakir

2013-10-01T23:59:59.000Z

184

Improving Electricity Resource-Planning Processes by Consideringthe Strategic Benefits of Transmission  

SciTech Connect

Current methods of evaluating the economic impacts of new electricity transmission projects fail to capture the many strategic benefits of these projects, such as those resulting from their long life, dynamic changes to the system, access to diverse fuels, and advancement of public policy goals to integrate renewable-energy resources and reduce greenhouse gas emissions.

Budhraja, Vikram; Mobasheri, Fred; Ballance, John; Dyer, Jim; Silverstein, Alison; Eto, Joseph

2009-03-02T23:59:59.000Z

185

Do Mergers Improve Efficiency? Evidence from Restructuring the U.S. Electric Power Sector  

E-Print Network (OSTI)

signaled the federal interest in wider markets and was followed by FERC actions to require open access, more rational transmission pricing, and regional transmission planning. In 1996 FERC announced new merger 6 guidelines modeled after those... , but operating control of transmission was increasingly governed by FERC rules and later handed over to Independent Service Operators and Regional Transmission Organizations. Distribution companies operated much as they always had, except now they could more...

Kwoka, John; Pollitt, Michael G.

186

Case Study - National Rural Electric Cooperative Association Smart Grid Investment Grant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Rural Electric Cooperative Association Smart Grid Investment Grant National Rural Electric Cooperative Association Smart Grid Investment Grant 1 Helping America's Electric Cooperatives Build a Smarter Grid to Streamline Operations and Improve Service Electric cooperatives play an important role in the U.S. energy infrastructure, delivering electricity to 44 million consumers across over 70% of the geography of the country every day. Implementing smart grid technology is seen by co-ops as a cost-effective way to improve reliability, streamline the restoration of electricity following outages and improve customer service. At the National Rural Electric Cooperative Association (NRECA), an Arlington, VA-based organization that provides services to more than 900 not- for-profit electric cooperatives nationwide, work is underway to study the impacts of smart grid

187

Estimation of Lightning Stroke Peak Current as a Function of Peak Electric Field and the Normalized Amplitude of Signal Strength: Corrections and Improvements  

Science Conference Proceedings (OSTI)

The authors have made connections and improvements to published equations relating the peak current and the peak electric field intensity for return strokes of cloud-to-ground lightning. The original published equations were derived from ...

Y. P. Liaw; D. R. Cook; D. L. Sisterson

1996-06-01T23:59:59.000Z

188

Benefits of Using Mobile Transformers and Mobile Substations for Rapidly Restoring Electrical Service: a Report to the United States Congress Pursuant to Section 1816 of the Energy Policy Act of 2005 (August 2006)  

Energy.gov (U.S. Department of Energy (DOE))

Section 1816 of EPACT calls for a report on the benefits of using mobile transformers and mobile substations (MTS) to rapidly restore electrical service to areas subjected to blackouts as a result...

189

Modified laser-annealing process for improving the quality of electrical P-N junctions and devices  

DOE Patents (OSTI)

The invention is a process for producing improved electrical-junction devices. The invention is applicable, for example, to a process in which a light-sensitive electrical-junction device is produced by: (1) providing a body of crystalline semiconductor material having a doped surface layer; (2) irradiating the layer with at least one laser pulse to effect melting of the layer; (3) permitting recrystallization of the melted layer; and (4) providing the resulting body with electrical contacts. In accordance with the invention, the fill-factor and open-circuit-voltage parameters of the device are increased by conducting the irradiation with the substrate as a whole at a selected elevated temperature, the temperature being selected to effect a reduction in the rate of the recrystallization but insufficient to effect substantial migration of impurities within the body. In the case of doped silicon substrates, the substrate may be heated to a temperature in the range of from about 200/sup 0/C to 500/sup 0/C.

Wood, R.F.; Young, R.T.

1982-02-19T23:59:59.000Z

190

Electrical Energy Conservation Analyses of the Wood Products (SIC24) Industry in the BPA Service Sistrict : Mill Summary Report : Champion International Corporation, Roseburg, Oregon.  

Science Conference Proceedings (OSTI)

This report presents the partial results of a study conducted by Trans Energy Systems Industrial Division of URS Company for the Bonneville Power Administration (BPA) under contract AC79-84BP18946. The objective of this effort was an electrical energy conservation analysis of the Wood Products Industry (Standard Industrial Code (SIC) 24) in the BPA service district. The analysis was conducted by selecting five representative mills in the BPA service area and performing electrical energy conservation surveys and analyses of these mills. This report presents the results of data gathering and analysis at the Champion International Corporation plywood mill in Roseburg, Oregon, which produces exterior, interior, sanded and tongue and groove/shiplap softwood plywood. The plant produces 170 million square feet of 3/8-inch basis plywood annually. Species processed include Douglas fir and hemlock. This report summarizes the mill data collected, the technical and economic analyses performed, the strategy used in ranking the individual electrical energy conservation opportunities found in each mill, the recommended energy conservation measures (ECM), the projected cost benefits of each ECM and the estimated impacts of each ECM on plant production and operation.

TransEnergy Systems, Inc.

1985-01-01T23:59:59.000Z

191

Building-level occupancy data to improve ARIMA-based electricity use forecasts  

Science Conference Proceedings (OSTI)

The energy use of an office building is likely to correlate with the number of occupants, and thus knowing occupancy levels should improve energy use forecasts. To gather data related to total building occupancy, wireless sensors were installed in a ... Keywords: energy forecast, occupancy, office buildings, sensors

Guy R. Newsham; Benjamin J. Birt

2010-11-01T23:59:59.000Z

192

The cost of service quality improvements: tracking the flow of funds in social franchise networks in Myanmar  

E-Print Network (OSTI)

administrative overhead to the various lines of service. Thelines and across administrative work vs. quality supervision. Allocating overhead

2013-01-01T23:59:59.000Z

193

Office of Electricity Delivery and Energy Reliability | Department...  

NLE Websites -- All DOE Office Websites

of Electricity Delivery & Energy Reliability Services Electricity Advisory Committee Technology Development Electricity Policy Coordination and Implementation DOE Grid Tech Team...

194

The influence of the instruction of visual design principles on improving pre-service teachers' visual literacy  

Science Conference Proceedings (OSTI)

This study investigated whether the instruction of visual design principles had an influence on pre-service teachers' perception and analysis (interpretation) of visual materials. In addition, the relationships between pre-service teachers' visual intelligence ... Keywords: Educational technology course, Pre-service teachers, Visual design principles, Visual literacy, Visual literacy training

Hsin-Te Yeh; Yi-Chia Cheng

2010-01-01T23:59:59.000Z

195

Powering Electric Cooperatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Network Research Network DOE Electricity Distribution System Workshop Forward Looking Panel September 2012 NRECA's Technical Focus * Over 900 Electric Cooperatives * Serve 42 million Americans in 47 States * Cover >70% of Nation's land mass * Own 42% of all Distribution Line * Totals 2.4 Million Line Miles Not for Profit, Consumer Owned, Consumer Controlled 2 Timely Energy Innovations Identify and Adopt Beneficial Technologies: * Improve Productivity * Enhance Service * Control Cost Choosing the Right Technologies Motivations & Methods Uncovering Smart Grid ROI Technology Investments Hinge on Cost Benefit Accelerate Beneficial Adoption Rate Precision Modular Evaluation Tool * Run cost-benefit analyses on smart grid investments, either

196

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

DEPARTMENT OF ENERGY HYBRID DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors

197

Ancillary services market in California  

SciTech Connect

This report includes sections on the following topics: (1) California restructured electricity system overview; (2) Reliability criteria; (3) Design of the California ISO ancillary services market; (4) Operation of ancillary services markets; (5) Ancillary services markets redesign; and (6) Conclusions.

Gomez, T.; Marnay, C.; Siddiqui, A.; Liew, L.; Khavkin, M.

1999-07-01T23:59:59.000Z

198

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network (OSTI)

Edison/Rates and Tariffs /Schedule for Electricity Service,Edison/Rates and Tariffs /Schedule for Electricity Service,

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

199

Competitive Bidding Process for Electric Distribution Companies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bidding Process for Electric Distribution Companies' Procurement of Default and Back-up Electric Generation Services (Connecticut) Competitive Bidding Process for Electric...

200

Presentation to EAC: Renewable Electricity Futures Activities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Electricity Delivery & Energy Reliability Search form Search Office of Electricity Delivery & Energy Reliability Services Electricity...

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

s Colorado service area, system electricity requirementsColorado from the Southwest. ) The definitions of the three regions used by the Western Electricity

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

202

Electrical utilities model for determining electrical distribution capacity  

Science Conference Proceedings (OSTI)

In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

Fritz, R.L., Westinghouse Hanford, Richland, WA

1997-09-03T23:59:59.000Z

203

Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *  

E-Print Network (OSTI)

Transmission Grid Study of the U.S. Department of Energy (Abraham, 2002) declares: "Growth in electricity of incentives for investment in the U.S. electricity transmission system are sparse. Moreover, noneDo Generation Firms in Restructured Electricity Markets Have Incentives to Support Social

Oren, Shmuel S.

204

Improved  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Improved cache performance in Monte Carlo transport calculations using energy banding A. Siegel a , K. Smith b , K. Felker c,∗ , P . Romano b , B. Forget b , P . Beckman c a Argonne National Laboratory, Theory and Computing Sciences and Nuclear Engineering Division b Massachusetts Institute of Technology, Department of Nuclear Science and Engineering c Argonne National Laboratory, Theory and Computing Sciences Abstract We present an energy banding algorithm for Monte Carlo (MC) neutral parti- cle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, ex- hibit poor locality, and are typically much too large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on

205

High-Speed Optical and Electrical Measurements  

Science Conference Proceedings (OSTI)

High-Speed Optical and Electrical Measurements. The Optoelectronics Division provides three different services related ...

2011-12-15T23:59:59.000Z

206

The political economy of electricity market liberalization  

E-Print Network (OSTI)

indicator of the relative gains of urban consumers is the tariff rebalancing associated with liberalization. In addition to gains from tariff rebalancing, liberalization usually results in an improvement in electricity service (e.g. fewer interruptions... of government ideology, political factors and globalization on energy regulation in electricity and gas industries using the bias-corrected least square dummy variable model in a panel of 23 OECD countries over the period 1975-2007. They find that left- wing...

Erdogdu, Erkan

2012-05-17T23:59:59.000Z

207

Service/Product Provider  

NLE Websites -- All DOE Office Websites (Extended Search)

Wheatstone Energy Frito-Lay Wheatstone Energy Frito-Lay 1975 The Exchange, Ste. 320 7701 Legacy Dr. Atlanta, GA 30339 Plano, TX 75024 Business: Lighting, Electrical, HVAC Business: Snack Foods James B. Dore, Director, Sales and Marketing Rob Schasel, Director, Energy & Utilities Phone: 770-916-7107 Phone: 972-334-5567 Email: jim.dore@wheatstoneenergy.com Email: robert.d.schasel@fritolay.com Frito-Lay leverages its energy effort by partnering with Wheatstone Energy to identify and implement lighting improvements resulting in savings of $2.2 million. Project Scope Wheatstone provided turnkey services in upgrading the lighting systems at 96 distribution centers and 16 snack food production plants across North America. Project Summary In addressing lighting retrofits and lighting control strategies, Wheatstone's turnkey services included

208

An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building  

E-Print Network (OSTI)

With the increased use of building energy simulation programs, calibration of simulated data to measured data has been recognized as an important factor in substantiating how well the model fits a real building. Model calibration to measured monthly utility data has been utilized for many years. Recently, efforts have reported calibrated models at the hourly level. Most of the previous methods have relied on very simple comparisons including bar charts, monthly percent difference time-series graphs, and x-y scatter plots. A few advanced methods have been proposed as well which include carpet plots and comparative 3-D time-series plots. Unfortunately, at hourly levels of calibration, many of the traditional graphical calibration techniques become overwhelmed with data and suffer from data overlap. In order to improve upon previously established techniques, this thesis presents new calibration methods including temperature binned box-whisker-mean analysis to improve x-y scatter plots, 24-hour weather-daytype box-whisker-mean graphs to show hourly temperature-dependent energy use profiles, and 52-week box-whisker-mean plots to display long-term trends. In addition to the graphical calibration techniques, other methods are also used including indoor temperature calibration to improve thermostat schedules and architectural rendering as a means of verifying the building envelope dimensions and shading placement. Several statistical methods are also reviewed for their appropriateness including percent difference, mean bias error (MBE), and the coefficient of variation of the root mean squared error. Results are presented using a case study building located in Washington, D.C. In the case study building, nine months of hourly whole-building electricity data and site-specific weather data were measured and used with the DOE-2. 1D building simulation program to test the new techniques. Use of the new calibration procedures were able to produce a MBE of-0.7% and a CV(RMSE) of 23. 1 % which compare favorably with the most accurate hourly neural network models.

Bou-Saada, Tarek Edmond

1994-01-01T23:59:59.000Z

209

Identifying telemedicine services to improve access to specialty care for the underserved in the San Francisco safety net  

Science Conference Proceedings (OSTI)

Safety-net settings across the country have grappled with providing adequate access to specialty care services. San Francisco General Hospital and Trauma Center, serving as the city's primary safety-net hospital, has also had to struggle with the same ...

Ken Russell Coelho

2011-01-01T23:59:59.000Z

210

Prospects for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

improved, neighborhood electric cars will likely be seen aseven general-purpose electric cars. They con- size orgasoline-like electric cars, they wilt undoubtedlybecome

Sperling, Daniel

1994-01-01T23:59:59.000Z

211

Electric Power Industry Needs for Grid-Scale Storage Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Needs for Grid-Scale Storage Applications Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding upgrades to grid infrastructure Facilitating the integration of high penetrations of renewable energy Providing other ancillary services that can improve the stability and resiliency of the electric grid Electric Power Industry Needs for Grid-Scale Storage Applications More Documents & Publications

212

A Case Study of Supply Chain Sustainability in the Electric Power Industry  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Energy Sustainability Interest Group, consisting of approximately 30 electric power companies, is working to identify best practices in order to improve sustainability performance in the electric power industry. One component of a comprehensive approach toward meeting this objective is to work with the industrys non-fuel supply chain to improve the environmental performance of producing and delivering their products and services. Many corporations and par...

2012-05-14T23:59:59.000Z

213

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

214

Electricity Use and Management in the Municipal Water Supply and Wastewater Industries  

Science Conference Proceedings (OSTI)

The use of electricity for water and wastewater treatment is increasing due to demands for expanded service capacity and new regulations for upgraded treatment. Options available to control the electricity costs include technological changes, improved management, and participation in electric utility sponsored energy management programs. Appropriate options for a specific system will vary depending on the system characteristics, availability of electric utility programs to assist the water and ...

2013-11-26T23:59:59.000Z

215

Texas Electricity Restructuring Active  

U.S. Energy Information Administration (EIA)

Under these two bills, a pilot program would first need to prove that electricity deregulation would lower rates before the entire service area could be deregulated.

216

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

217

EA-274 Wisconsin Public Service Corporation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-274 Wisconsin Public Service Corporation Order authorizing Wisconsin Public Service Corporation to export electric energy to Canada. EA-274 Wisconsin Public Service...

218

Suppression of electric and magnetic fluctuations and improvement of confinement due to current profile modification by biased electrode in Saha Institute of Nuclear Physics tokamak  

Science Conference Proceedings (OSTI)

Improvement of plasma confinement is achieved in normal q{sub a} discharges of SINP-tokamak by introducing a biased electrode inside the last closed flux surface. All the important features of high confinement mode are observed biasing the electrode negatively with respect to the vacuum vessel. Arrays of electric and magnetic probes introduced in the edge plasma region reveal suppression of electric and magnetic fluctuations over distinct frequency ranges as well as modification of the toroidal current profile due to biasing. Further analysis identifies the electrostatic fluctuations to be due to drift mode and the magnetic fluctuations may be of slow compressional Alfven waves. Both get suppressed due to current profile modification during biasing, hence leading to the improvement of plasma confinement.

Basu, Debjyoti; Pal, Rabindranath [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064 (India); Ghosh, Joydeep; Chattopadhyay, Prabal K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2012-07-15T23:59:59.000Z

219

Mongolia Renewable Energy and Rural Electricity Access Project | Open  

Open Energy Info (EERE)

Mongolia Renewable Energy and Rural Electricity Access Project Mongolia Renewable Energy and Rural Electricity Access Project Jump to: navigation, search Name of project Mongolia Renewable Energy and Rural Electricity Access Project Location of project Mongolia Energy Services Lighting, Cooking and water heating, Space heating, Cooling, Earning a living Year initiated 2006 Organization World Bank Website http://documents.worldbank.org Coordinates 46.862496°, 103.846656° References The World Bank[1] The objective of the Renewable Energy and Rural Electricity Access Project is to increase access to electricity and improve reliability of electricity service among the herder population and in off-grid soum centers by: (i) assisting the development of institutions and delivery mechanisms; (ii) facilitating herders' investments in Solar Home Systems (SHSs) and small

220

NSLS Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services NSLS Services Computing Services Lab Space Libraries Postal Services Procurement Repair & Equipment Services Shipping Procedures Storage User Accounts Workshop Procedures...

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE  

E-Print Network (OSTI)

Colorado Public Service Company's insulation loan program). An alternative approach is California's dedicated electricity

Authors, Various

2010-01-01T23:59:59.000Z

222

University of Ljubljana Faculty of Electrical Engineering  

E-Print Network (OSTI)

calculation for different criteria. Ancillary service management: load forecast, power system reserve forecast#12;2 3 University of Ljubljana Faculty of Electrical Engineering University of Ljubljana Faculty of Electrical Engineering Doctoral Programme Electrical Engineering Doctoral Programme Electrical Engineering

?umer, Slobodan

223

Services | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Services OE plays a major role in addressing immediate challenges to America's energy security, while sustaining applied research into new technologies and implementing policies to meet the challenges we will face in the future. Electricity Advisory Committee (EAC) Technology Development Electricity Policy Coordination & Implementation DOE Grid Tech Team Energy Assurance Cybersecurity Provides advice to the U.S. Department of Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and Security Act of 2007, and modernizing the nation's electricity delivery infrastructure. OE supports a portfolio of technology development and deployment programs that will modernize our Nation's electric delivery system. OE is laying the framework for a modern electricity system by contributing to the development and implementation of electricity policy at the Federal and State level. Recognizing the need for strategic grid modernization efforts, both internally and externally, DOE established the Grid Tech Team (GTT) to:

224

A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation  

DOE Green Energy (OSTI)

A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

2005-06-30T23:59:59.000Z

225

Concentrating Solar Power Services CSP Services | Open Energy Information  

Open Energy Info (EERE)

Concentrating Solar Power Services CSP Services Concentrating Solar Power Services CSP Services Jump to: navigation, search Name Concentrating Solar Power Services (CSP Services) Place Cologne, Germany Zip D-51143 Sector Solar Product A spin-out of the DLR Institute of Technical Thermodynamics, providing consulting, due diligence and component testing for Solar Thermal Electricity Generation (STEG). References Concentrating Solar Power Services (CSP Services)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Concentrating Solar Power Services (CSP Services) is a company located in Cologne, Germany . References ↑ "Concentrating Solar Power Services (CSP Services)" Retrieved from "http://en.openei.org/w/index.php?title=Concentrating_Solar_Power_Services_CSP_Services&oldid=343830

226

Electrical engineering Electricity  

E-Print Network (OSTI)

generation Transmission Distribution · Electrical generators · Electric motors · High voltage engineering associated with the systems Electrical engineering · Electric power generation Transmission Distribution The electricity transported to load locations from a power station transmission subsystem The transmission system

?nay, Devrim

227

DOE EAC Electricity Adequacy Report. Transmission Section - September...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Electricity Delivery & Energy Reliability Search form Search Office of Electricity Delivery & Energy Reliability Services Electricity...

228

Office of Electricity Delivery and Energy Reliability: Organizational...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Electricity Delivery & Energy Reliability Search form Search Office of Electricity Delivery & Energy Reliability Services Electricity...

229

Performance improvement of a solar heating system utilizing off-peak electric auxiliary. Semi-annual progress report, June 18, 1979-December 31, 1979  

SciTech Connect

During the period 18 June 1979 through December 1979, a solar assisted heat pump system was designed, installed and operated in the University of Toledo Experimental Solar House. The heat pump system is capable of operating in a wide range of temperatures which is needed in a solar house utilizing off-peak storage from the electric utility. The complete system consists of 584.1 square feet of Libbey-Owens-Ford's flat plate solar collectors, a 5 horsepower compressor (Victaulic Corp.), an evaporator (Dunham-Bush), a condensor (Dunham-Bush), thermal storage units, and associated equipment. During the installation and initial operation of the system, numerous aspects of the feasibility of this system design have been evaluated. Many of these aspects point to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility.

Eltimsahy, A.H.

1979-12-01T23:59:59.000Z

230

Improved long-term electrical stability of pulsed high-power diodes using dense carbon fiber velvet cathodes  

Science Conference Proceedings (OSTI)

The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a {approx}230 kV, {approx}110 ns pulse has been investigated. The current density was on the order of {approx}123 A/cm{sup 2}. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvet cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.

Yang Jie; Shu Ting; Wang Hui [College of Opto-Electric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

2012-07-15T23:59:59.000Z

231

Talquin Electric Cooperative Inc | Open Energy Information  

Open Energy Info (EERE)

Talquin Electric Cooperative Inc Jump to: navigation, search Name Talquin Electric Cooperative Inc. Place Quincy, Florida Zip 32351 Product Florida-based energy service provider....

232

Automatic service deployment using virtualisation  

E-Print Network (OSTI)

Manual deployment of the application usually requires expertise both about the underlying system and the application. Automatic service deployment can improve deployment significantly by using on-demand deployment and selfhealing services. To support these features this paper describes an extension the Globus Workspace Service [10]. This extension includes creating virtual appliances for Grid services, service deployment from a repository, and influencing the service schedules by altering execution planning services, candidate set generators or information systems. 1 2 1.

Gabor Kecskemeti; Peter Kacsuk; Gabor Terstyanszky; Tamas Kiss; Thierry Delaitre

2008-01-01T23:59:59.000Z

233

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network (OSTI)

Outline global concept of microgrid and electric vehicle (services to a building microgrid produces technology neutral

Stadler, Michael

2011-01-01T23:59:59.000Z

234

New York Power Authority - Energy Services Programs for Public Entities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Authority - Energy Services Programs for Public Power Authority - Energy Services Programs for Public Entities New York Power Authority - Energy Services Programs for Public Entities < Back Eligibility Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Buying & Making Electricity Water Heating Program Info State New York Program Type State Rebate Program Rebate Amount Not Specified Provider New York Power Authority New York Power Authority (NYPA) provides energy efficiency improvements to eligible public sector organizations at no up-front cost. A range of energy

235

Internal Audit Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Audit Services Internal Audit Services Berkeley Lab Internal Audit Services Internal Audit Services Berkeley Lab Contacts Organizational Chart IAS Search Staff Only Lab Search Phone Book A-Z Index Privacy and Security Notice "Internal Auditing is an independent, objective assurance and consulting activity designed to add value and improve an organization's operations. It helps an organization accomplish its objectives by bringing a systematic, disciplined approach to evaluate and improve the effectiveness of risk management, control and governance processes." The Institute of Internal Auditors Standards for the Professional Practice of Internal Auditing About IAS | Audit Committee | Audit Planning | Ethics & Investigations | External Audit Coordination Advisory Services | Other Relevant Audit Links | Contacts | Organizational

236

Property:EIA/861/ActivityBundledServices | Open Energy Information  

Open Energy Info (EERE)

ActivityBundledServices ActivityBundledServices Jump to: navigation, search This is a property of type Boolean. Description: Activity Bundled Services Entity provides bundled services (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityBundledServices" Showing 25 pages using this property. (previous 25) (next 25) A Ajo Improvement Co + true + Alabama Power Co + true + Amana Society Service Co + true + American Samoa Power Authority + true + Atlantic City Electric Co + true + Auburn Board of Public Works + true + Avista Corp + true + B Bamberg Board of Public Works + true + Barrow Utils & Elec Coop, Inc + true + Basin Electric Power Coop + true + Borough of Wampum, Pennsylvania (Utility Company) + true +

237

NSLS Services | Postal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Postal Services Postal Services U.S. Postal Service BNL has a full-service U.S. Postal Service Office (Upton branch) located in Staff Services, Building 179, x2539. BNL Mail Service Mail is delivered and picked up twice a day from each building on site. Users should leave internal lab mail (brown envelopes, no stamps needed) and U.S. Mail (regular envelopes, stamps required) in the outgoing mail boxes at NSLS mail stop 725A, located in the lobby by the elevator. Receiving Mail During regular working hours, packages and other special deliveries are brought to the Stockroom while regular mail is taken to the mailstops around the building. Each beam port is assigned a mail slot at NSLS mail stop 725A near the elevator in the lobby. The beamline number should be on all mail addressed to users. Mail to users should be addressed as follows

238

Original article: A three-dimensional model for the study of the cooling system of submersible electric pumps  

Science Conference Proceedings (OSTI)

We study the cooling system for submersible electric pumps. This study aims to provide some guidelines to improve the existing cooling system of these electric pumps when they work partially or totally not immersed in the service fluid. Note that inefficient ... Keywords: Finite element method, Heat transfer, Numerical approximation

N. Egidi; P. Maponi; L. Misici; S. Rubino

2012-08-01T23:59:59.000Z

239

Dynamic adaptation policies to improve quality of service of real-time multimedia applications in IEEE 802.11e WLAN networks  

Science Conference Proceedings (OSTI)

With the increased popularity of wireless broad-band networks and the growing demand for multimedia applications, such as streaming video and teleconferencing, there is a need to support diverse multimedia services over the wireless medium. In order ... Keywords: IEEE 802.11e, quality of service, service level agreements, video streaming, wireless LAN

Naomi Ramos; Debashis Panigrahi; Sujit Dey

2007-08-01T23:59:59.000Z

240

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Schneider Electric ESCO Qualification Sheet  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet outlines the energy service company (ESCO) qualifications for Schneider Electric in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC).

242

EIA Electric Industry Data Collection  

U.S. Energy Information Administration (EIA)

Steam Production EIA Electric Industry Data Collection Residential Industrial ... Monthly data on cost and quality of fuels delivered to cost-of-service plants

243

An Energy Services Initiative  

E-Print Network (OSTI)

The parent company of a large electric utility has launched a new unregulated subsidiary that provides a portfolio of value-added, beyond-the-meter energy services. These services are designed to meet the specific needs of customers and to better position the company to meet the challenges of a more competitive operating environment. The energy services initiative integrates a variety of hardware-based solutions to meet a customer's energy management, high voltage distribution, information, and power quality needs. The subsidiary will continually search the horizon for emerging technologies to enhance its ability to deliver comprehensive and customized energy solutions. The approach to marketing these services supplements the electric utility's core competencies with services and expertise provided by trade allies and performance partners.

Beasley, R. C.; Tipton, J. K.; Ehmer, R. C.

1996-04-01T23:59:59.000Z

244

Office of Headquarters Procurement Services - Employee Customer Service  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Headquarters Procurement Services - Employee Customer Office of Headquarters Procurement Services - Employee Customer Service Standards Office of Headquarters Procurement Services - Employee Customer Service Standards CUSTOMER FOCUS The Office of Headquarters Procurement Services (MA-64) serves a variety of customers in the performance of its acquisition and financial assistance mission. Primary among its many customers is each of the Department of Energy Headquarters program offices. MA-64 continually seeks to improve service to its customers, by prioritizing its workload through a better understanding of customer needs; providing effective assistance in the development of quality procurement request packages; improving the timeliness of procurement transactions through the establishment of mutually agreeable transaction milestone

245

Jacksonville Electric Authority | Open Energy Information  

Open Energy Info (EERE)

Electric Authority Electric Authority Jump to: navigation, search Name Jacksonville Electric Authority Place Florida Utility Id 9617 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CS Curtailable Service Rider Option A CS Curtailable Service Rider Option A Primary Service Discount CS Curtailable Service Rider Option A Transmission Service 69000-230000 Discount CS Curtailable Service Rider Option A Transmission Service 230000+ volts Discount CS Curtailable Service Rider Option B CS Curtailable Service Rider Option B 230000+ volts CS Curtailable Service Rider Option B Primary Service Discount CS Curtailable Service Rider Option B Transmission Service 69000-230000

246

EA-283 Public Service Company of Colorado | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Colorado Order authorizing Public Service Company of Colorado to export electric energy to Canada. EA-283 Public Service Company of Colorado More Documents & Publications...

247

SERVICES Purpose  

E-Print Network (OSTI)

This Management Memo calls on all state agencies operating state motor vehicles to make every effort to Flex Your Power at the Pump, and lower fuel costs for the State of California through vigorous compliance with the preventative maintenance standards identified in this management memo and in the Automobile Record, Standard (STD.) 271. Background Public Resources Code 25722 mandates the state reduce petroleum consumption of its vehicle fleet to the maximum extent practicable including improved preventative maintenance. State Administrative Manual Section (SAM) 4101 establishes the need to comply with minimum preventative maintenance standards listed in the Automobile Maintenance Record, STD. 271. This includes prescribed services and mechanical inspections that promote state vehicle efficiency and achieve optimum fuel mileage. SAM Section 3687.1 prohibits the purchase of premium grade gasoline for state vehicles. And, directs state drivers to make fuel purchases at lower priced self-service pumps whenever possible.

Manual Sections

2005-01-01T23:59:59.000Z

248

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

249

Lodi Electric Utility - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - Residential Energy Efficiency Rebate Lodi Electric Utility - Residential Energy Efficiency Rebate Program Lodi Electric Utility - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Windows, Doors, & Skylights Maximum Rebate Energy Efficient Home Improvement Rebate Program: Maximum total rebate in a 12-month period is $500 per customer service address, PLUS, an additional $250 allowance for air duct repair, or an additional $800 allowance for air duct replacement, if eligible. Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Clothes Washer: $50 Dishwasher: $25 Air Duct Testing: $125

250

PP-300 Maine Public Service Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

maintain electric transmission facilities at the U.S-Canada border. PP-300 Maine Public Service Company More Documents & Publications Application to export electric energy OE...

251

Federal Energy Management Program: Energy Service Companies  

NLE Websites -- All DOE Office Websites (Extended Search)

Service Companies Energy service companies (ESCOs) develop, install, and fund projects designed to improve energy efficiency and reduce operation and maintenance costs in their...

252

Pacific Gas and Electric Company's Compressed Air Management Program: A Performance Assessment Approach to Improving Industrial Compressed Air System Operation and Maintenance  

E-Print Network (OSTI)

The Compressed Air Management Program (CAMP) provides Pacific Gas and Electric's (PG&E's) large industrial customers with measurement-based performance assessments of their compressed air systems. Under this program, the customer's system is inspected and both short-term, high resolution, and longer-term measurements are taken of power and pressure. These data are used in developing a system simulation based on the US DOE's AIRMaster+ computer model. Model results and professional judgment are used to identify a cost-effective strategy for improving the system. Recommendations are provided to the customer along with technical support for implementing these recommendations. After improvements are complete, the performance measurements are repeated so that PG&E and its customers can judge the effectiveness of the recommendations. The program uses a standardized toolkit (all off-the-shelf components) along with software developed exclusively for this application, to accomplish the required measurements and efficiently analyze and reduce the data for use in the AIRMaster+ model.

Qualmann, R. L.; Zeller, W.; Baker, M.

2002-04-01T23:59:59.000Z

253

Federated Rural Electric Assn | Open Energy Information  

Open Energy Info (EERE)

Federated Rural Electric Assn Federated Rural Electric Assn Place Minnesota Utility Id 6258 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service (Multiphase) - Commercial Commercial General Service (Multiphase)- Residential Residential General Service (Multiphase)-Commercial-Wind Energy Electric Service Commercial General Service (Multiphase)-Residential-Wind Energy Electric Service Residential General Service - Commercial Commercial General Service - Residential Residential General Service(Multiphase)- Commercial-Temporary Service Commercial

254

Coahoma Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Coahoma Electric Power Assn Coahoma Electric Power Assn Place Mississippi Utility Id 3839 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 11 - Residential Electric Service Single Phase Residential 11 - Residential Electric Service Three Phase Residential 12 - General Service Single Phase 12 - General Service Three Phase 13 - Large Commercial Service Commercial 14 - Industrial Power Service Industrial 15 - Irrigation Service 16 - Fish Farming Service 17 - Grain Bin/Dryer Service 18 - Cotton Gin Service

255

Energy Conservation Improvements Property Tax Exemption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conservation Improvements Property Tax Exemption Energy Conservation Improvements Property Tax Exemption Energy Conservation Improvements Property Tax Exemption < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Manufacturing Heat Pumps Appliances & Electronics Water Heating Bioenergy Solar Buying & Making Electricity Wind Program Info State New York Program Type Property Tax Incentive Rebate Amount 100% of the value added to the residence by the improvements Provider Office of Real Property Tax Services Qualifying energy-conservation improvements to homes are exempt from real property taxation to the extent that the addition would increase the value

256

Services | Central Fabrication Services | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Services & Capabilities Services & Capabilities The Central Fabrication Services Division's capabilities range from an Electric Discharge Machining (EDM) capability, to a state of the art cleaning facility, to a large fabricating facility which includes CNC Machining, Automatic Tube Welding, CNC Punch Press capability, and 3-D printing. CNC Auto Feed Saw High Bay Area 3-D Printer Main Shop, Building 479 Maintenance Sheet Metal Area Water Jet Machine X-ray Generating Tube CR X-ray Processor with High Resolution Monitor Low Bay Area in Machine Shop Wire EDM Machine Wire EDM Machine Oil Recycling Facility, Building 495 UHV Cleaning Facility, Building 498 Material Storage and Stock Central Fabrication Services is proud of it's highly proficient technical staff all of which are available, at no cost to the customer, for

257

Definition: Non-Firm Transmission Service | Open Energy Information  

Open Energy Info (EERE)

available. Also Known As Interruptible Load or Interruptible Demand Related Terms transmission lines, electricity generation, transmission line, firm transmission service,...

258

Transportation Services | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Services Transportation Services The BNL Transportation Office, located at 20 Brookhaven Avenue, Building 400A, is available to assist BNL employees, guests and visitors with transportation needs in support of Laboratory programs. The hours of operation are 8:30 AM - 5:00 PM Monday through Friday. To contact the Transportation Office call (631) 344-2535. Stony Brook Parking Passes The Transportation Office has a limited number of parking passes for the three (3) parking garages at Stony Brook University. The passes are available to and are intended for use by BNL employees/scientific staff on official business only. Passes may be used at the Administration, University Hospital and Health Services Center garages on the Stony Brook campus when visiting SBU on official business.

259

Customer Strategies for Responding to Day-Ahead Market Hourly Electricity Pricing  

E-Print Network (OSTI)

facilities that receive electricity service from Niagaraperiods is your facilitys electricity use highest? ( CHECKthe next days hourly electricity prices? ( CHECK ONLY ONE )

2005-01-01T23:59:59.000Z

260

Design, Modeling And Control Of Steering And Braking For An Urban Electric Vehicle  

E-Print Network (OSTI)

service access to small electric cars. The research involvedservice access to small electric cars. The research involvedservice access to small electric cars. This concept has been

Maciua, Dragos

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electric, Gas, Water, Heating, Refrigeration, and Street Railways...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Street Railways Facilities and Service (South Dakota) Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota) < Back...

262

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

for Electricity and Power Peak Demand . . . . ELECTRICITYby Major Utility Service Area Projected Peak Demand for1977 Historical Peak Demand by Utility Service Area Weather-

Benenson, P.

2010-01-01T23:59:59.000Z

263

Electric Bike Sharing--System Requirements and Operational Concepts  

DOE Green Energy (OSTI)

Bike sharing is an exciting new model of public-private transportation provision that has quickly emerged in the past five years. Technological advances have overcome hurdles of early systems and cities throughout the globe are adopting this model of transportation service. Electric bikes have simultaneously gained popularity in many regions of the world and some have suggested that shared electric bikes could provide an even higher level of service compared to existing systems. There are several challenges that are unique to shared electric bikes: electric-assisted range, recharging protocol, and bike and battery checkout procedures. This paper outlines system requirements to successfully develop and deploy an electric bike sharing system, focusing on system architecture, operational concepts, and battery management. Although there is little empirical evidence, electric bike sharing could be feasible, depending on demand and battery management, and can potentially improve the utility of existing bike sharing systems. Under most documented bike sharing use scenarios, electric bike battery capacity is insufficient for a full day of operation, depending on recharging protocol. Off-board battery management is a promising solution to address this problem. Off-board battery management can also support solar recharging. Future pilot tests will be important and allow empirical evaluation of electric bikesharing system performance. (auth)

Cherry, Christopher; Worley, Stacy; Jordan, David

2010-08-01T23:59:59.000Z

264

Patricia Hoffman Assistant Secretary Office of Electricity Delivery and Energy Reliability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Hoffman Assistant Secretary Office of Electricity Delivery and Energy Reliability U.S. Department of Energy Room 8H033 1000 Independence Avenue, SW Washington, DC 20585 Subject: DOE RFI DOE RFI 2010-23251 - Addressing Policy and Logistical Challenges to Smart Grid Implementation Dear Assistant Secretary Hoffman, The Galvin Electricity Initiative commends the Department of Energy for reaching out to key stakeholders to obtain input and comments on ways to improve electricity service. Your questions were comprehensive and should provide insights on ways to produce specific consumer benefits through the application of innovative technology, system design concepts, and enabling policies. The Galvin Electricity Initiative, a non-profit organization, has dedicated

265

The model electric restaurant  

SciTech Connect

Restaurants are the most intensive users of energy of all types of commercial buildings. As a result, they have some of the highest energy costs. New and existing restaurants are important customers to electric utilities. Many opportunities exist to use electricity to improve restaurant energy performance. This report discusses a project in which computer simulations were used to investigate restaurant energy subsystem performance and to assess the potential for electric equipment to reduce energy consumption, reduce peak demand improve load factors, and reduce energy cost in new all-electric restaurants. The project investigated typical restaurant designs for all-electric and gas/electric facilities and compared them to high efficiency electric options in all-electric restaurants. This analysis determined which investiments in high-efficiency electric equipment are attractive for restaurant operators. Improved equipment for food preparation, heating and cooling, ventilation, sanitation, and lighting subsystem was studied in cafeteria, full menu, fast food, and pizza restaurants in Atlanta, Cleveland, Los Angeles, and Phoenix. In addition to the actual rate structures, four synthetic rate structures were used to calculate energy costs, so that the results can be applied to other locations. The results indicate that high efficiency and improved all-electric equipment have the potential for significantly reducing energy consumption, peak demand, and operating costs in almost all restaurants in all locations. The all-electric restaurants, with a combination of improved equipment, also offer the customer a competitive choice in fuels in most locations. 12 refs., 26 figs., 55 tabs.

Frey, D.J.; Oatman, P.A. (Architectural Energy Corp., Boulder, CO (USA)); Claar, C.N. (Pennsylvania State Univ., University Park, PA (USA))

1989-12-01T23:59:59.000Z

266

Definition: Firm Transmission Service | Open Energy Information  

Open Energy Info (EERE)

Definition No reegle definition available. Also Known As Firm services Related Terms transmission lines, electricity generation, transmission line, smart grid References ...

267

Definition: Interconnected Operations Service | Open Energy Informatio...  

Open Energy Info (EERE)

operation of interconnected Bulk Electric Systems.1 Also Known As IOS Related Terms transmission lines, energy, transmission line, transmission service References ...

268

Moorhead Public Service Utility- Renewable Energy Incentive  

Energy.gov (U.S. Department of Energy (DOE))

Moorhead Public Service (MPS) offers rebates for qualifying electricity producing solar or wind renewable energy systems. Wind rebates are not availble to residential customers. Rebates are for up...

269

Gamesa Services Brasil Ltda | Open Energy Information  

Open Energy Info (EERE)

Gamesa Services Brasil Ltda Place Simes Filho, Estado da Bahia, Brazil Sector Wind energy Product Wind farm developer and independent electric energy producer References Gamesa...

270

KEM Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

KEM Electric Coop Inc KEM Electric Coop Inc Jump to: navigation, search Name KEM Electric Coop Inc Place North Dakota Utility Id 10153 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png DH-4M Commercial Dual Heat (DH)-3M Dual Heat Service - 3M Commercial Dual Heat Service Sub-metering RC-1 Residential Dual Heat Service Sub-metering GS-1 Commercial Dual Heat Service Sub-metering SE-1 Residential Electric Heat Service -4M Residential Electric Heat Service -6M Industrial Electric Heat Service -7 M Residential

271

General Electric in India GE | Open Energy Information  

Open Energy Info (EERE)

General Electric in India GE Jump to: navigation, search Name General Electric in India (GE) Place New Delhi, Delhi (NCT), India Zip 110015 Sector Services, Wind energy Product...

272

Electric System Update: Sunday August 17, 2003 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17, 2003 The electric transmission system is now operating reliably. All electric power transmission lines that were removed from service during the blackout on August 14, 2003,...

273

Property:ServiceTerritory | Open Energy Information  

Open Energy Info (EERE)

ServiceTerritory ServiceTerritory Jump to: navigation, search Property Name ServiceTerritory Property Type Page Description State(s) the utility company service territory is located in. Pages using the property "ServiceTerritory" Showing 25 pages using this property. (previous 25) (next 25) A AEP Generating Company + Ohio + AEP Texas Central Company + Texas + AEP Texas North Company + Texas + Ameren Illinois Company (Illinois) + Illinois + Appalachian Power Co + Virginia +, West Virginia +, Tennessee + Atlantic City Electric Co + New Jersey + Austin Energy + Texas + B Baltimore Gas & Electric Co + Maryland + Bangor Hydro-Electric Co + Maine + Barton Village, Inc (Utility Company) + Vermont + C CenterPoint Energy + Texas + Central Maine Power Co + Maine +

274

Developing New Consumer Products and Services in Texas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study DTE Energy Study DTE Energy November 2012 1 Michigan Utility Modernizes Electricity Delivery and Provides Improved Service to Customers With program (SGIG), Detroit---based DTE Energy (DTE) has been able to significantly increase the scope of its smart grid technology deployment. By July 2012, DTE has installed 725,000 smart meters as well as distribution automation devices at 11 substations and on 55 circuits. DTE is able to provide its customers with better service and enhanced reliability due to the new technologies. Operational efficiencies and

275

Ancillary services market in California  

E-Print Network (OSTI)

Service Market Redesign and FERC Filing. CAISO Internalmarket design improvements with FERC. However, from pastRegulatory Commission (FERC). 1996. Order No. 888 (Docket

Gomez, Tomas; Marnay, Chris; Siddiqui, Afzal; Liew, Lucy; Khavkin, Mark

1999-01-01T23:59:59.000Z

276

Solving the problems facing the electric utilities  

SciTech Connect

The dimensions of the current problems of attracting capital for utilities investment, of achieving more efficient utilization of capacity, of siting and construction of new power plants, and of utilities receiving a return on their investment large enough to enable them to continue their service to American consumers are examined. Federal actions that are being taken to help get the utilities out of their current state of malaise are described. The author concludes that positive electric power load management, through a system of cost-based pricing incentives and load controls, can achieve a balanced future both for total electricity usage and for peak demand. This would minimize the consumption of scarce fossil fuels in electricity generation, moderate the future need for construction of new capacity, improve utility revenues, and eventually reduce the need for rate increases to maintain utility viability. The FEA feels that is a reasonable, attainable objective for substantial electrification of the economy beyond 1985. (MCW)

Hill, J.A.

1975-01-01T23:59:59.000Z

277

Recruitment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

IAEA Recruitment Services Personal History Form (PHF) and Job Opportunities IAEA Employment Benefits Relevant Publications and Brochures Interview Process This service is provided...

278

Transmission Services J7000  

NLE Websites -- All DOE Office Websites (Extended Search)

C T D E S E R T S O U T H W E S T R E G I O N R O C K Y M O U N T A I N R E G I O N Transmission Services J7000 Ensuring the Reliability of the Bulk Electric System Western's...

279

Production Cost Modeling of Cogenerators in an Interconnected Electric Supply System  

E-Print Network (OSTI)

The Optimal State Electricity Supply System in Texas (OSEST) research project is part of the continuing Public Utility Commission of Texas (PUCT) effort to identify possible improvements in the production, transmission, and use of electricity in the state. The OSEST project is designed to identify the general configuration of the optimal electric supply system resulting from coordinated system planning and operation from a statewide perspective. The Optimized Generation Planning Program (OGP) and Multi-Area Production Simulation Program with Megawatt Flow (MAPS/MWFLOW) are two computer programs developed by General Electric that are being used in the study. Both of these programs perform production costing calculations to evaluate the performance of various electric supply system configurations necessary to appropriately model the present and future cogeneration activity in the service areas of the electric utilities that compose the Electric Reliability Council of Texas (ERCOT).

Ragsdale, K.

1989-09-01T23:59:59.000Z

280

Copy Service, Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Copy Service Copy Service Copying in color or black-and-white from hard copy or electronic files. Paper size up to 13" x 19" in a variety of stocks and colors. Larger Documents (up to 36" wide and 100" long) can be reproduced in Black & White from prints or files and can be saved in a variety of electronic format Variable Data Printing - personalized document production Tab Printing Forms CD/DVD Duplication CD/DVD direct printing Binding Collate documents, insert tab dividers, punch holes for binding Stapling documents up to 1 inch thick Spiral, adhesive and perfect binding. Hard covers also available upon request Folding & Mailing Print and apply mailing addresses and labels Machine fold documents and insert into envelopes for mailing Laminate printed items up to 35" wide.

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

282

Pioneer Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Pioneer Electric Coop, Inc Pioneer Electric Coop, Inc Place Kansas Utility Id 15073 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE A-12 SINGLE PHASE SERVICE Residential SCHEDULE A-2-12 ALL ELECTRIC SERVICE Single Phase-City Commercial SCHEDULE A-2-12 ALL ELECTRIC SERVICE Single Phase-Rural Residential SCHEDULE A-2-12 ALL ELECTRIC SERVICE Three Phase-City Commercial SCHEDULE A-2-12 ALL ELECTRIC SERVICE Three Phase-Rural Residential SCHEDULE B-12 THREE PHASE SERVICE Commercial

283

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

284

Cullman Electric Cooperative- Energy Efficient Homes Program  

Energy.gov (U.S. Department of Energy (DOE))

Cullman Electric Cooperative offers rebates to residential customers that make certain energy efficiency improvements to newly constructed, all electric homes. Up to $200 is available per home. ...

285

Just the Basics - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid electric vehicles (HEVs) offer reduced pollution and improved fuel economy. That's why the government and auto- makers are anxious to introduce a...

286

Lake Region Electric Cooperative - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

details Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for...

287

Case Study - National Rural Electric Cooperative Association...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Rural Electric Cooperative Association Smart Grid Investment Grant 1 Helping America's Electric Cooperatives Build a Smarter Grid to Streamline Operations and Improve...

288

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network (OSTI)

Policies In The Solar Electricity Sector: Lessons for Indiaissues in the energy and electricity sectors. Activitiesand improve access to electricity where the electric grid is

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

289

Improvements in the computation of balances and localization of commercial losses of electric energy in 0.38-kV networks  

SciTech Connect

An example of four 0.38-kV overhead distribution lines fed from a 10/0.4-kV transformer substation of the Grodno Electrical Networks (Belarus') and supplying electricity to a cottage area is used for analyzing energy balances and commercial losses in the networks. It is shown that the reliability of such analysis can be ensured by the use of modern software and electronic energy meters recording a retrospective of half-hourly intervals of active and reactive electric energy.

Vorotnitskii, V. Z.; Zaslonov, S. V.; Lysyuk, S. S. [Electric Power Research Institute (VNIIE) (Russian Federation)

2006-11-15T23:59:59.000Z

290

American Indian tribes and electric industry restructuring: Issues and opportunities  

Science Conference Proceedings (OSTI)

The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

Howarth, D. [Morse, Richard, and Weisenmiller, and Associates Inc., Oakland, CA (United States); Busch, J. [Lawrence Berkeley National Lab., CA (United States); Starrs, T. [Kelso, Starrs, and Associates LLC, Vashon, WA (United States)

1997-07-01T23:59:59.000Z

291

Kootenai Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Jump to: navigation, search Name Kootenai Electric Coop Inc Place Idaho Service Territory Idaho Website www.kec.com Green Button Reference Page www.nreca.coop...

292

Analysis of electric vehicle interconnection with commercial  

E-Print Network (OSTI)

Analysis of electric vehicle interconnection with commercial building microgrids Michael Stadler, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily Laboratories America Inc. Analysis of electric vehicle interconnection with commercial building microgrids

293

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: March 2012 End Use: March 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

294

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: September 2011 End Use: September 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

295

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2013 End Use: October 2013 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

296

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: January 2012 End Use: January 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

297

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: December 2011 End Use: December 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

298

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2011 End Use: August 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

299

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: November 2011 End Use: November 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

300

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: February 2012 End Use: February 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2011 End Use: October 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

302

Warren RECC- Electric Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE))

Warren Rural Electric Cooperative Corporation (RECC) provides service to customers in the south-central Kentucky counties of Ohio, Butler, Grayson, Edmonson, Warren, Simpson, Logan and Barren. Upon...

303

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

electricity customers are being exposed to real-time prices (RTP) in their default service tariff rates offered by utilities, particularly in states

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

304

Stearns Electric Association- Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Stearns Electric Association, through a program offered by Rural Utilities Services, offers its members low-interest Energy Resource Conservation (ERC) loans. The complete cost of making approved...

305

Consumers Energy (Electric)- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Consumers Energy residential electric customers are eligible to apply for a variety of rebates on energy efficient equipment. Customers must install equipment in the Consumers Energy service area...

306

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

307

Response to NIST: Developing a Framework to Improve ...  

Science Conference Proceedings (OSTI)

... Electricity Distribution and Generation- United States National Grid owns distribution facilities used to provide electric service to 3.5 million end-use ...

2013-04-10T23:59:59.000Z

308

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

309

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

310

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

311

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

312

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

313

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

314

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

315

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

316

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Monthly Update Explained Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general audience. The term rates/prices is used because charges for retail service are based primarily on set rates approved by State regulators. However, a number of

317

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California  

E-Print Network (OSTI)

service company EV Electric vehicle (used to refer to aHenriette Schn of the Electric Vehicle Information CenterJason France of Electric Vehicle Infrastructure, and Mark

Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

2001-01-01T23:59:59.000Z

318

The Rise of Electric Two-wheelers in China: Factors for their Success and Implications for the Future  

E-Print Network (OSTI)

Service Center of the Electric Vehicle Institute of Chinaand Fuel Cell Electric Vehicle Symposium & Exposition, (for Rapid Growth. Electric Vehicle Symposium Conference

Weinert, Jonathan X.

2007-01-01T23:59:59.000Z

319

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

System Analysis Tool EASA Electrical Apparatus Service Association EIA Energy Information Administration EPAct Energy Policy

Kermeli, Katerina

2013-01-01T23:59:59.000Z

320

Swisher Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Swisher Electric Coop, Inc Place Texas Utility Id 18199 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Single Phase Commercial Commercial Service Three Phase Commercial Cotton Gin Service Industrial General Service Single-Phase Residential General Service Three-Phase Residential Irrigation Service Commercial Large Power Service Industrial Security Lighting Service Metered 175 MV Lighting Security Lighting Service Metered 400 MV Lighting

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Category:QuickServiceRestaurant | Open Energy Information  

Open Energy Info (EERE)

QuickServiceRestaurant QuickServiceRestaurant Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "QuickServiceRestaurant" The following 77 files are in this category, out of 77 total. SVQuickServiceRestaurant Albuquerque NM Public Service Co of NM.png SVQuickServiceRestaura... 65 KB SVQuickServiceRestaurant Atlantic City NJ Public Service Elec & Gas Co.png SVQuickServiceRestaura... 64 KB SVQuickServiceRestaurant Baltimore MD Baltimore Gas & Electric Co.png SVQuickServiceRestaura... 67 KB SVQuickServiceRestaurant Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVQuickServiceRestaura... 72 KB SVQuickServiceRestaurant Boulder CO Public Service Co of Colorado.png SVQuickServiceRestaura... 61 KB SVQuickServiceRestaurant Bridgeport CT Connecticut Light & Power Co.png

322

Mailing Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Mailing Services Mailing Services Use the form below to add your name to the Depleted UF6 Mailing List. First Name: Last Name: Organization: Address: City: State: Postal Code:...

323

Electricity 101 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources » Electricity 101 Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS: Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM: What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? PEOPLE: Who owns the electric system? Who runs the grid? Who uses electricity? Where can I find out more about potential careers? How can I improve my energy use? POLICY: How is electricity regulated? Where can I find out about State incentives for renewables? What is a national corridor?

324

Calibration Services  

Science Conference Proceedings (OSTI)

... of these applications, the Optoelectronics Division provides measurement services at laser power levels from nanowatts to kilowatts and pulse ...

2012-11-28T23:59:59.000Z

325

Data centres in the ancillary services market  

Science Conference Proceedings (OSTI)

Ancillary services are the mechanisms power grids use to address short-term variability in supply and demand as well as the impact of power plant or transmission line failures. Organizations providing such services can earn revenue, or at least reduce ... Keywords: simulation,electrical markets,ancillary services,smart grids

David Aikema; Rob Simmonds; Hamidreza Zareipour

2012-06-01T23:59:59.000Z

326

Ancillary Services Measurement Handbook  

Science Conference Proceedings (OSTI)

In the deregulated electric utility industry, it is anticipated that many ancillary services (A/S) will be sold by "generators" to operating authorities (OAs) or independent system operators (ISOs). Such trade-in A/S will require contractual agreements, and these agreements will need to specify quality and quantity of service to be supplied. This, again, means it will be necessary to certify or measure the quality of an A/S to be supplied, as well as the quantity actually supplied. Towards that end, this...

2001-12-18T23:59:59.000Z

327

Southwestern Electric Power Co (Louisiana) | Open Energy Information  

Open Energy Info (EERE)

Southwestern Electric Power Co Southwestern Electric Power Co Place Louisiana Utility Id 17698 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Sign Service Applicable Commercial General Lighting and Power Service Commercial General Service Commercial General Service Commercial Large General Power Service - Off Peak Commercial Large Lighting and Power Service Commercial Lighting and Power Service - Primary Service Commercial Lighting and Power Service - Secondary Service Commercial Lighting and Power Service Time of Day Industrial Lighting and Power Service Time of Day - Primary Service Industrial ML-1 - Closed Offerings - 1000 Candle Power Incandescent Lighting

328

Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Services Services Waste Management EM is dedicated to safely disposing of waste and seeks cost effective and environmentally responsible project execution methods. Read more Site & Facility Restoration EM provides integration, planning and analysis for all soil and groundwater remediation, deactivation and decommissioning (D&D) and facility engineering. This work includes sustainability projects to ensure that these activities are completed efficiently and effectively, reducing significant risks and life-cycle schedules and costs in the D&D program. Read more Program Management EM provides program management support with the goal of continuously improving performance. Read more Communication & Engagement EM provides clear, timely, and consistent communication on the mission and

329

Definition: Remote Service Switch | Open Energy Information  

Open Energy Info (EERE)

Service Switch Service Switch Jump to: navigation, search Dictionary.png Remote Service Switch A power switch within a smart meter that allows a utility to turn electrical service to a residential customer premise on or off. The switch is remotely operated from the utility using the AMI communications infrastructure. This feature is limited to residential meters providing 200 amp service or less, and allows a utility to quickly switch service without having to roll a service truck. This can be particularly useful for reducing service time and associated costs for establishing or terminating services for move-ins/move-outs, or for switching off service for safety reasons.[1] Related Terms advanced metering infrastructure References ↑ https://www.smartgrid.gov/category/technology/remote_service_switch

330

Adapting Legacy Home Appliances to Home Network Systems Using Web Services  

E-Print Network (OSTI)

This paper presents a framework that adapts the conventional home electric appliances with the infrared remote controls (legacy appliances) to the emerging home network system (HNS). The proposed method extensively uses the concept of service-oriented architecture to improve programmable interoperability among multi-vendor appliances. We first prepare APIs that assist a PC to send infrared signals to the appliances. We then aggregate the APIs within self-contained service components, so that each of the component achieves a logical feature independent of device(or vendor)-specific operations. The service components are finally exported to the HNS as Web services. Thus, the legacy appliances can be used as distributed components with open interfaces. To demonstrate the effectiveness, we also implement an actual HNS and integrated services with multi-vendor legacy appliances.

Masahide Nakamura; Akihiro Tanaka; Hiroshi Igaki; Haruaki Tamada; Ken-ichi Matsumoto

2006-01-01T23:59:59.000Z

331

Energy Purchasing/Marketing Strategies- Energy Service Agreement  

E-Print Network (OSTI)

The objective of this program commits both the utility companies and industrial sectors to jointly agree to energy improvement projects and rate adjustments outside the standard scope of existing utility company's standard business formats. It can assist both industries to provide improved quality services and economical stability to each other in the rapid changing environment influence by regulator laws, technological advancements and socioeconomic factors. Formally regarded as an inconceivable program, this innovated methodology allows utility companies and their industrial customers an opportunity to assist each other in the complex competitiveness of the new global market philosophy. It can enable the business community to focus on their priorities that restrain or prevent affordable opportunities and prudent investments in quality manufacturing services and goods necessary to ensure a competitive edge in the new business era. This paper will analysis and focus on the economic stimulants necessary to prevent an imbalance affecting the futures of both industries and their comments to themselves and society. It will also illustrate some successes, hesitations and skepticism from various utility companies and their state PUC'S or PSC'S commissions. But, in the final analysis, it will demonstrate an option towards improving the efficiency of electricity, create electric price stability and lesson expensive investments for new power plants or special service equipment.

Filak, J. J. Jr.

1995-04-01T23:59:59.000Z

332

Intermetallic Electrodes Improve Safety and Performance in Lithium ...  

volumetric and gravimetric capacity and improves battery stability and safety. ... Transportation applications, such as electric and hybrid-electric vehicles

333

Biometric Web Services  

Science Conference Proceedings (OSTI)

Biometric Web Services. The biometric web services project combines biometrics and web services to. ... What are Web services? ...

2012-08-15T23:59:59.000Z

334

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 20, 2012 December 20, 2012 Electricity Advisory Committee 2012 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate (Ret.) VICE CHAIR William Ball Southern Company Linda Blair ITC Holdings Corporation Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council Paul Centolella Analysis Group The Honorable Robert Curry New York State Public Service Commission Clark Gellings Electric Power Research Institute Dian Grueneich Dian Grueneich Consulting, LLC. Michael Heyeck American Electric Power Paul Hudson Stratus Energy Group Val Jensen Commonwealth Edison Susan Kelly American Public Power Association Barry Lawson

335

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 5, 2012 June 5, 2012 Electricity Advisory Committee 2012 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate VICE CHAIR William Ball Southern Company Guido Bartels IBM Rick Bowen Alcoa Merwin Brown California Institute for Energy and Environment Ralph Cavanagh Natural Resources Defense Council The Honorable Paul Centolella Public Utilities Commission of Ohio David Crane NRG Energy, Inc. The Honorable Robert Curry New York State Public Service Commission José Delgado American Transmission Company (Ret.) Clark Gellings Electric Power Research Institute Robert Gramlich American Wind Energy Association Dian Grueneich Dian Grueneich Consulting, LLC. Michael Heyeck American Electric Power

336

DOE FEMP/U. S. Forest Service, Bureau of Land Management Collaborative...  

NLE Websites -- All DOE Office Websites (Extended Search)

service voltage * Number of service drops * No. of electric meters * Distance to closest substation * Power Quality problems? * Momentary Power Outages? * Sustained Power Outages?...

337

Menard Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Menard Electric Coop Menard Electric Coop Jump to: navigation, search Name Menard Electric Coop Place Illinois Utility Id 12395 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial And Power Service Commercial Commercial And Power Service With Electric Water Heater Control Rate 61 Commercial Commercial And Power Service With Electric Water Heater-Control rate 21 Commercial Commercial And Power Service, No Demand: Rate 30 Commercial Electric Heat With Water Heater Control (All Electric), Farm And

338

Category:FullServiceRestaurant | Open Energy Information  

Open Energy Info (EERE)

FullServiceRestaurant FullServiceRestaurant Jump to: navigation, search Go Back to PV Economics By Building Type Pages in category "FullServiceRestaurant" This category contains only the following page. O Openei test page Media in category "FullServiceRestaurant" The following 77 files are in this category, out of 77 total. SVFullServiceRestaurant Albuquerque NM Public Service Co of NM.png SVFullServiceRestauran... 66 KB SVFullServiceRestaurant Atlantic City NJ Public Service Elec & Gas Co.png SVFullServiceRestauran... 63 KB SVFullServiceRestaurant Baltimore MD Baltimore Gas & Electric Co.png SVFullServiceRestauran... 69 KB SVFullServiceRestaurant Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVFullServiceRestauran... 72 KB SVFullServiceRestaurant Boulder CO Public Service Co of Colorado.png

339

Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome The Production Services site contains links to each of the division's groups with descriptions of their services. Our goal is to update this website frequently to reflect ongoing service upgrades which, by planning and design, are added so that we can continue to meet your needs in a constantly changing work environment. Note: The Graphic Design Studio has been relocated to the second floor in the north wing of the Research Support Building 400. The telephone number remains the same, X7288. If you have any questions, please call supervisor, Rick Backofen, X6183. Photography Photography services are available at no charge to BNL and Guest users. See a list of the complete range of photography services available. Video Video services are available at no charge to BNL and Guest users. See a list of the complete range of video services available.

340

Sumter Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Sumter Electric Member Corp Sumter Electric Member Corp Place Georgia Utility Id 18305 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting Service Lighting Athletic Field Lighting Service* Commercial Cotton Gin Time-of-Use Service Commercial Cotton Gin Time-of-Use Service* Commercial General Service Commercial Irrigation Time-of-Use Service Commercial Irrigation Time-of-Use Service* Commercial Large Power Service Industrial Large Power Time-of-Use Service Industrial Large Power Time-of-Use Service* Industrial

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

342

Impact of the Electric Vehicle on the Electric System.  

E-Print Network (OSTI)

?? Since few years the electric vehicles draw the attention. The battery technologys continual improvements and incentives from the authorities guarantee them an assured future (more)

Rousselle, Melaine

2009-01-01T23:59:59.000Z

343

Competitive Bidding Process for Electric Distribution Companies'  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Bidding Process for Electric Distribution Companies' Competitive Bidding Process for Electric Distribution Companies' Procurement of Default and Back-up Electric Generation Services (Connecticut) Competitive Bidding Process for Electric Distribution Companies' Procurement of Default and Back-up Electric Generation Services (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

344

Electricity Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 3, 2011 Page 1 October 3, 2011 Page 1 Electricity Advisory Committee Meeting National Rural Electric Cooperative Association Headquarters 4301 Wilson Boulevard Arlington, VA Agenda October 19, 2011 2:00 - 5:00 pm EDT 1:30 - 2:00 pm Registration 2:00 - 2:15 pm WELCOME and Introductions Richard Cowart, Chair, Electricity Advisory Committee Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy (DOE) 2:15 - 3:15 pm Presentation on U.S. Department of Energy's Vision of a Future Grid Bill Parks, Senior Advisor, DOE Office Electricity Delivery and Energy Reliability 3:15 - 3:30 pm Break 3:30 - 4:15 pm Response to U.S. Department of Energy's Vision of a Future Grid Honorable Robert Curry, Commissioner, New York State Public Service

345

Excelsior Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Excelsior Electric Member Corp Excelsior Electric Member Corp Jump to: navigation, search Name Excelsior Electric Member Corp Place Georgia Utility Id 5905 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting Service Lighting General Service- Single Phase Commercial General Service- Three Phase Commercial Irrigation Service- Controlled Commercial Irrigation Service- Non-Controlled Commercial Large Industrial Service Industrial Large Power Service Commercial Large School Service Commercial

346

Sierra Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Sierra Electric Coop, Inc Sierra Electric Coop, Inc Jump to: navigation, search Name Sierra Electric Coop, Inc Place New Mexico Utility Id 23326 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Service Commercial Irrigation Service-TOU Commercial Large Power Service Industrial Large Power Service-Mining or Milling Industrial Large Power Service-TOU Industrial Private, Public and Community Area Lighting Lighting Renewable Energy Residential Service Residential Residential Service-TOU Residential Small Commercial Service Commercial

347

Choptank Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Choptank Electric Coop, Inc Choptank Electric Coop, Inc Jump to: navigation, search Name Choptank Electric Coop, Inc Place Maryland Utility Id 3503 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Service - Medium Industrial General Service - Small Industrial LIGHTING SERVICE - HPS 100W Lighting LIGHTING SERVICE - HPS 150W Lighting LIGHTING SERVICE - HPS 250W Lighting LIGHTING SERVICE - HPS 400W Lighting LIGHTING SERVICE - HPS 70W Lighting LIGHTING SERVICE - MV 100W Lighting

348

Final environmental impact statement/report. Volume 4. Comment letters and public hearing transcripts. Northeast corridor improvement project electrication: New Haven, CT to Boston, MA  

Science Conference Proceedings (OSTI)

This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume IV) reprints the comments received on the DEIS/R.

NONE

1994-10-01T23:59:59.000Z

349

Understanding Electric Utility Customers  

Science Conference Proceedings (OSTI)

How customers use and value electricity has been a subject of study and debate for many decades. A better understanding of how customers use electricity could help the industry find ways to improve energy efficiency, thereby helping to reduce green house gas emissions, increase energy sustainability, and improve overall growth in the economy. In addition, our ability to encourage more efficient consumption through real-time feedback, control technology, and pricing is better and less costly than it has e...

2012-02-07T23:59:59.000Z

350

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

351

Public Service Electric and Gas (PSEG) Services Corporation ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City. PSEG Power is a wholesale energy supply company that integrates its generation asset operations with its wholesale energy, fuel supply, energy trading and marketing, and...

352

Essays on Service Innovation  

E-Print Network (OSTI)

As economies are increasingly driven by services, the introduction of new services to satisfy customers and improve firm value is becoming a critical issue for managers. In my dissertation, I take a step in improving the understanding of service innovations. In the first essay, I look at the determinants of the number of service innovations introduced by a firm and their interrelationship with customer satisfaction and firm value. Furthermore, I look how these interrelationships vary between Internet-Enabled Service Innovations (IESIs) and Non-Internet-Enabled Service Innovations (NIESIs). I develop a system of equations that link service innovation, customer satisfaction and firm value. I model the determinants of service innovations, using a zero-inflated Poisson model. I estimate the model on a panel data set that I assembled across multiple industries from multiple data sources such as the American Customer Satisfaction Index, Compustat, SDC Platinum, and LexisNexis. My results reveal that IESIs are more strongly influenced by financial resources of the firm and by market growth than are NIESIs. Surprisingly, neither IESIs nor NIESIs have a significant direct effect on customer satisfaction. However, IESIs have a positive and significant effect on firm value. Given the differences between consumer markets and business markets, it is important to understand better the determinants and outcomes of business-to-business service innovations (B2B-SIs). In my second essay, I empirically address this issue. I develop a modeling system that relates service innovation to firm value. I estimate my model on unique panel data of service innovations. Results indicate that B2B-SIs have positive effects on firm value. Furthermore, I find that the number of B2B-SIs introduced by a firm is primarily determined by firm-level factors rather than marketlevel factors Overall, I find that regardless of firm type or market type, the number of service innovations introduced by a firm has a substantial impact on firm value. In particular, IESIs and B2B-SIs increase firm value. In addition, the two essays also show that liquid financial resources are important determinants of service innovations. This is especially true for IESIs and B2B-SIs.

Dotzel, Thomas

2009-08-01T23:59:59.000Z

353

Competitive Electricity Prices: An Update  

Reports and Publications (EIA)

Illustrates a third impact of the move to competitive generation pricing -- the narrowing of the range of prices across regions of the country. This feature article updates information in Electricity Prices in a Competitive Environment: Marginal Cost Pricing of Generation Services and Financial Status of Electric Utilities.

J Alan Beamon

1998-07-06T23:59:59.000Z

354

Electric Companies and Electric Transmission Lines (North Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Companies and Electric Transmission Lines (North Dakota) Electric Companies and Electric Transmission Lines (North Dakota) Electric Companies and Electric Transmission Lines (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis The Public Service Commission has the authority to regulate the

355

Translation Services  

Science Conference Proceedings (OSTI)

... As a courtesy, the National Center for Standards ... companies may be located by entering the term ... translation services" in any Internet search engine. ...

356

First-Ever Demonstration of Quantum Cryptography to Improve Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid First-Ever Demonstration of Quantum Cryptography to Improve Security of the Electric Grid...

357

Plug-in Electric Vehicle Adoption Forecasts  

Science Conference Proceedings (OSTI)

The imminent introduction of plug-in electric vehicles (PEVs) into the automotive marketplace has the potential to dramatically affect electricity service providers. The vehicles will require infrastructure that facilitates recharging, and the resulting electric load could have a combination of positive and negative effects on utility systems. To characterize the effects, it is necessary to forecast the size of the PEV fleet and its electricity consumption. The electricity use must be analyzed over long ...

2010-12-22T23:59:59.000Z

358

service sector | OpenEI  

Open Energy Info (EERE)

service sector service sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. Source UK Department of Energy and Climate Change (DECC) Date Released July 31st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption coal Coke domestic Electricity Electricity Consumption energy data Industrial Natural Gas Petroleum service sector transportation UK Data application/zip icon Five Excel spreadsheets with UK Energy Consumption data (zip, 2.6 MiB) Quality Metrics Level of Review Peer Reviewed Comment The data in ECUK are classified as National Statistics

359

Customer Service Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer Service Plan Department of Energy Customer Service Plan - 2011 1 A Message from the Secretary Over the past two and a half years, the Obama Administration and the Department of Energy have worked to make the federal government more open for the American public and its own employees. Through these efforts, we have significantly expanded the amount and breadth of information available online about our programs and services. We have also transformed the way we communicate with the public by relaunching Energy.gov, making it an interactive, streamlined information platform. In April, President Obama directed federal agencies to take this ongoing effort one step further and establish Customer Service Plans, improving the public's interactions with the

360

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Bluestem Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Bluestem Electric Coop Inc Bluestem Electric Coop Inc Jump to: navigation, search Name Bluestem Electric Coop Inc Place Kansas Utility Id 23826 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Single-Phase General Service Demand Commercial Single-Phase Service Commercial Single-Phase Service Residential Single-Phase Time-of-Use Service Single-Phase Total Electric Service Single-phase Earth-Coupled Heat Pump Service Commercial Average Rates Residential: $0.1410/kWh Commercial: $0.1160/kWh Industrial: $0.2110/kWh

362

Electric and Hybrid Vehicle Technology: TOPTEC  

DOE Green Energy (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

363

Electric and Hybrid Vehicle Technology: TOPTEC  

DOE Green Energy (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

364

Phases Energy Services County Electric Power Assn A N Electric...  

Open Energy Info (EERE)

City of Liberal Missouri Utility Company City of Liberty Texas Utility Company City of Lincoln Center Kansas Utility Company City of Lincolnton North Carolina Utility Company...

365

Salem Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Salem Electric Place Oregon Utility Id 16555 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Business service- With Demand Meter(V2) Commercial Business service-No Demand Meter Commercial Outdoor Field Lighting Lighting Residential Overhead Service Residential Residential Underground Service Residential Security Lighting Schedule 5A 175 MV Lighting Security Lighting Schedule 5A 250 MV Lighting

366

Electricity Reliability  

NLE Websites -- All DOE Office Websites (Extended Search)

lines and bar graph Electricity Reliability The Consortium for Electric Reliability Technology Solutions (CERTS) conducts research, develops, and disseminates new methods, tools,...

367

Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

government incentives or subsidies in the near future. Companies active in the electric automobile area There are no companies directly active in the electric automobile...

368

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

369

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

370

Service Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidelines for Obtaining Guidelines for Obtaining Best-Practice Contracts for Commercial Buildings Operation and Maintenance Service Contracts Prepared with funding from the U.S. EPA December 1997 PECI Acknowledgements Special thanks to the following people for their ongoing contributions and careful review of the document: Byron Courts, Director of Engineering Services, and Dave Rabon, Chief Engineer, Melvin Mark Pete Degan, Director of Customer Marketing, Landis/Staefa David Fanning, HVAC Coordinator, EXPRESS Bil Pletz, Facility Manager, Intel Mike Sanislow, Service Channel Development Leader, Honeywell Home and Building Karl Stum, Director of Technical Services, PECI Tom Walton, President, United Service Alliance For additional copies of this guidebook, contact: Portland Energy Conservation Inc. (PECI)

371

EA-328-A RBC Energy Services LP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Application to Export Electric Energy OE Docket No. EA-328-A RBC Energy Services LP EA-328 RBC Energy Services L.P. EA-342-A Royal Bank of Canada...

372

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

LBNL-3163E Energy Efficiency Services Sector: Workforce Education and Training Needs Charles A Efficiency and Renewable Energy, Weatherization and Intergovernmental Program and Office of Electricity Energy Efficiency Services Sector: Workforce Education and Training Needs Prepared for the U

373

Wisconsin Dells Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dells Electric Util Dells Electric Util Jump to: navigation, search Name Wisconsin Dells Electric Util Place Wisconsin Utility Id 20844 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase Commercial General Service- Three Phase Commercial Large General Service Commercial Large Power Service Industrial Large Power Service(Primary Metering & Transformer Ownership) Industrial Large Power Service(Primary Metering) Industrial Large Power Service(Transformer Ownership) Industrial

374

Altamaha Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Altamaha Electric Member Corp Altamaha Electric Member Corp Jump to: navigation, search Name Altamaha Electric Member Corp Place Georgia Utility Id 407 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Service Industrial Irrigation Service- IRGS-8 Commercial Large Power Service- LPS Commercial Net Metering Service- NMS-8 Commercial Outdoor Security Lighting Service- SL-9 (1000W HPS-Flood) Lighting Outdoor Security Lighting Service- SL-9 (1000W MH-Flood) Lighting Outdoor Security Lighting Service- SL-9 (1000W MH-Flood) Lighting

375

Mitchell Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Mitchell Electric Member Corp Mitchell Electric Member Corp Jump to: navigation, search Name Mitchell Electric Member Corp Place Georgia Utility Id 12706 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE A-14 RESIDENTIAL SERVICE Residential SCHEDULE A-14 RESIDENTIAL SERVICE Multi-Phase Residential SCHEDULE AG-14 AGRICULTURAL SERVICE Commercial SCHEDULE AG-14 AGRICULTURAL SERVICE MULTI-PHASE SCHEDULE C-14 SINGLE-PHASE COMMERCIAL SERVICE Commercial SCHEDULE GS-14 GENERAL SERVICE Commercial SCHEDULE HLF-14 HIGH LOAD FACTOR LARGE POWER SERVICE Commercial

376

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Minnesota Valley Electric Coop Minnesota Valley Electric Coop Place Minnesota Utility Id 12651 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule A- Single Phase Service Schedule B- 3 phase service 25 kW and greater Commercial Schedule B- 3 phase service less than 25 kW Schedule DH: Dual Heat Service Schedule EH: Electric Heat Service Schedule I: Single-Phase Irrigation Service Schedule I: Three-Phase Irrigation Service Schedule SL: 150 Watt HPS Lighting Schedule SL: 175 Watt MV Lighting Schedule SL: 400 Watt MV Lighting

377

Lyntegar Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Lyntegar Electric Coop, Inc Lyntegar Electric Coop, Inc Jump to: navigation, search Name Lyntegar Electric Coop, Inc Place Texas Utility Id 11364 Utility Location Yes Ownership C NERC Location SPP NERC ERCOT Yes NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cotton Gin Service "CG" Commercial General service single-phase Residential General service three-phase Residential Irrigation Single-Phase Service Industrial Irrigation Three-Phase Service Industrial Large Power Service "LP" Industrial Muncipal Pumping Service - 100kW or less - Horse Power Commercial

378

Beauregard Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Beauregard Electric Coop, Inc Beauregard Electric Coop, Inc Jump to: navigation, search Name Beauregard Electric Coop, Inc Place Louisiana Utility Id 1458 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Ball Park Service - Single phase Commercial Ball Park Service - Three phase Commercial Church Service Single Phase Commercial Church Service Three Phase Commercial INTERRUPTIBLE SERVICE FOR HLF ASP (5') Industrial INTERRUPTIBLE SERVICE FOR HLF ASP (60') Industrial INTERRUPTIBLE SERVICE FOR HLF ASP (FIRM) Industrial

379

Kootenai Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Kootenai Electric Cooperative Kootenai Electric Cooperative Jump to: navigation, search Name Kootenai Electric Cooperative Place Idaho Service Territory Idaho Website www.kec.com Green Button Committed Yes Utility Id 10454 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Irrigation Service Commercial Large Commercial Service Commercial Large Commercial Service* Commercial Large Commercial Service-Primary Voltage* Commercial Net Metering Residential Service Residential Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 400 W Lighting Outdoor Lighting HPSSL 100 W Lighting Outdoor Lighting HPSSL 100 W Fiber . Pole Lighting

380

Customer Strategies for Responding to Day-Ahead Market Hourly Electricity Pricing  

E-Print Network (OSTI)

nature of electric service and usage, defining the hoursElectric. 12 The resulting evaluation report estimated elasticities and found measurable reductions in energy usage

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Barron Electric Cooperative- Energy Star Appliance & Energy Efficient Lighting Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Barron Electric Cooperative (BEC) offers rebates to any member receiving electrical service for the purchase of Energy Star appliances and energy efficient lighting. All appliance rebates are $25...

382

Electric retail market options: The customer perspective  

SciTech Connect

This report describes various options that are now available for retail electric customers, or that may become available during the next few years as the electric utility industry restructures. These options include different ways of meeting demand for energy services, different providers of service or points of contact with providers, and different pricing structures for purchased services. Purpose of this document is to examine these options from the customer`s perspective: how might being a retail electric customer in 5--10 years differ from now? Seizing opportunities to reduce cost of electric service is likely to entail working with different service providers; thus, transaction costs are involved. Some of the options considered are speculative. Some transitional options include relocation, customer-built/operated transmission lines, municipalization, self-generation, and long-term contracts with suppliers. All these may change or diminish in a restructured industry. Brokers seem likely to become more common unless restructuring takes the form of mandatory poolcos (wholesale). Some options appear robust, ie, they are likely to become more common regardless of how restructuring is accomplished: increased competition among energy carriers (gas vs electric), real-time pricing, etc. This report identified some of the qualitative differences among the various options. For customers using large amounts of electricity, different alternatives are likely to affect greatly service price, transaction costs, tailoring service to customer preferences, and risks for customer. For retail customers using small amounts of electricity, there may be little difference among the options except service price.

Hadley, S.W.; Hillsman, E.L.

1995-07-01T23:59:59.000Z

383

Design and evaluation of BRT and limited-stop services  

E-Print Network (OSTI)

Many transit agencies operate limited-stop or Bus Rapid Transit (BRT) services overlapped with local services in corridors with high demand. These service strategies have the potential to improve bus performance as well ...

Scorcia, Harvey (Harvey Manuel Scorcia Tenjo)

2010-01-01T23:59:59.000Z

384

American Electric Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Technologies Inc Electric Technologies Inc Jump to: navigation, search Name American Electric Technologies Inc Place Houston, Texas Zip TX 77087 Sector Services Product American Electric Technologies (formerly M&I Electric Industries) is a global supplier of power delivery products and services to the traditional and alternative energy industries. References American Electric Technologies Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Electric Technologies Inc is a company located in Houston, Texas . References ↑ "American Electric Technologies Inc" Retrieved from "http://en.openei.org/w/index.php?title=American_Electric_Technologies_Inc&oldid=342113"

385

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

386

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

387

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

388

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

389

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

390

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

391

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

392

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

393

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

394

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

395

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

396

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

397

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

398

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

399

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

400

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

402

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

403

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

404

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

405

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

406

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

407

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

408

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

409

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

410

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

411

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

412

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

413

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

414

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

415

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

416

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

417

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

418

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

419

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

420

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

422

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

423

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

424

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

425

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

426

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

427

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

428

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

429

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

430

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

431

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

432

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

433

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

434

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

435

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

436

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

437

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

438

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

439

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

440

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

442

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

443

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

444

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

445

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

446

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

447

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

448

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

449

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

450

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

451

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

452

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

453

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

454

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

455

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

456

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

457

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

458

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

459

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

460

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

Note: This page contains sample records for the topic "improved electric service" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

462

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

463

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

464

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

465

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

466

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

467

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

468

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

469

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

470

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

471

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

472

Enforcement Letter, Computer Services, LLC- WEL-2012-03  

Energy.gov (U.S. Department of Energy (DOE))

Enforcement Letter issued to On Computer Services, LLC, related to an Employee Electrical Shock that occurred in Technical Area 55 at the Los Alamos National Laboratory,

473

New Construction of Distribution Lines, Service Lines, and Appurtenant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permitting Provider New York State Public Service Commission Any proposed construction of electricity-related facilities in residential subdivisions, including distribution and...

474

Public Service Commission and Natural Gas Safety Standards (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes the state Public Service Commission, which has regulatory authority over the electric, gas, water, and telecommunications utilities. Section 386.572 of this legislation...

475

Resource Management Services: Water Regulation, Part 605: Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Applications for Diversion or Use of Water for Purposes Other Than Hydro-Electric Power Projects (New York) Resource Management Services: Water Regulation, Part 605:...

476

Analysis and Representation of Miscellaneous Electric Loads in NEMS -  

Gasoline and Diesel Fuel Update (EIA)

Analysis and Representation of Miscellaneous Electric Loads in NEMS Analysis and Representation of Miscellaneous Electric Loads in NEMS Release date: January 6, 2014 Miscellaneous Electric Loads (MELs) comprise a growing portion of delivered energy consumption in residential and commercial buildings. Recently, the growth of MELs has offset some of the efficiency gains made through technology improvements and standards in major end uses such as space conditioning, lighting, and water heating. Miscellaneous end uses, including televisions, personal computers, security systems, data center servers, and many other devices, have continued to penetrate into building-related market segments. Part of this proliferation of devices and equipment can be attributed to increased service demand for entertainment, computing, and convenience appliances.

477

New Construction of Distribution Lines, Service Lines, and Appurtenant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Construction of Distribution Lines, Service Lines, and New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Certain Visually Significant Resources Outside Residential Subdivisions (New York) New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Certain Visually Significant Resources Outside Residential Subdivisions (New York) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Environmental Regulations Provider New York State Public Service Commission Any proposed construction of distribution lines, service lines, and appurtenant facilities to electric utilities located near scenic areas of

478

Firelands Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Firelands Electric Cooperative - Residential Energy Efficiency Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $800 Air Source Heat Pump: $500 Dual Fuel Heat Pump: $250 Electric Water Heater: $100-$300 HVAC Controls: $100 Provider Firelands Electric Cooperative Firelands Electric Cooperative (FEC) is offering rebates on energy efficient equipment to residential customers receiving electric service from FEC. Eligible equipment includes new Geothermal Heat Pumps, Air-Source

479

Transdisciplinary electric power grid science  

E-Print Network (OSTI)

The 20th-century engineering feat that most improved the quality of human life, the electric power system, now faces discipline-spanning challenges that threaten that distinction. So multilayered and complex that they resemble ecosystems, power grids face risks from their interdependent cyber, physical, social and economic layers. Only with a holistic understanding of the dynamics of electricity infrastructure and human operators, automatic controls, electricity markets, weather, climate and policy can we fortify worldwide access to electricity.

Brummitt, Charles D; Dobson, Ian; Moore, Cristopher; D'Souza, Raissa M

2013-01-01T23:59:59.000Z

480

Novell Services  

NLE Websites -- All DOE Office Websites (Extended Search)

CIS Department CIS Department Novell Services If you don't see the answer to your question here, contact the help desk at 486-HELP or submit a Help Request. Novell Netware is the labs main method of providing file and print services for the PC and Macintosh platforms. Novell end user services are free and include a backed up home directory and access to all distributed printers at LBL. Request a Novell account Request a new Novell printer Request a Novell file restore (choose PC for platform and Backups/Restores for problem) Novell iPrint Accessing Novell File Services Download the LBL Netware client Novell Server Information Novell Departmental Administrative Contacts Novell FAQ: How do I login to the Novell network? 9x | NT4/2000/XP Do I have the Netware client installed? 9x | NT4/2000/XP