Powered by Deep Web Technologies
Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Improved Biomass Cooking Stoves and Improved Stove Emission Equipment  

SciTech Connect (OSTI)

In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASAT’s manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.

HATFIELD, MICHAEL; Still, Dean

2013-04-15T23:59:59.000Z

2

Improved Biomass Cooking Stoves | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDSDloomis's picture Submitted

3

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

4

Los Alamos improves biomass-to-fuel process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry...

5

IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS  

SciTech Connect (OSTI)

Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

2012-10-01T23:59:59.000Z

6

Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel  

SciTech Connect (OSTI)

The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ? Carcinogenesis in airway cells was examined in biomass and LPG using women. ? Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ? Change in airway cytology was associated with oxidative stress and Akt activation. ? Biomass users had greater exposure to respirable PM, B(a)P and benzene. ? Cooking with biomass increases cancer risk in the airways via Akt activation.

Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan, E-mail: manasrray@rediffmail.com

2012-02-15T23:59:59.000Z

7

IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING  

SciTech Connect (OSTI)

The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dyn

Washington University- St. Louis:; ,; Muthanna Al-Dahhan (Principal Investigator); E-mail: muthanna@wustl.edu; ,; Rajneesh Varma; Khursheed Karim; Mehul Vesvikar; Rebecca Hoffman; ,; Oak Ridge National Laboratory:; ,; David Depaoli, (Co-principal investigator); Email: depaolidw@ornl.gov; ,; Thomas Klasson; Alan L. Wintenberg; Charles W Alexander; Lloyd Clonts; ,; Iowa Energy Center; ,; ,; Norm Olson; Email: nolson@energy.iastate.edu

2007-03-26T23:59:59.000Z

8

Improving estimates of African woodland biomass by fusing radar data, models and ground observations  

E-Print Network [OSTI]

Improving estimates of African woodland biomass by fusing radar data, models and ground management of savannahs and woodlands requires accurate estimates of the woody biomass. For these reasons, developing new methods to accurately estimate woody biomass and its changes is high on the political

9

Mastication of forest biomass for wildfire hazard reduction and forest health improvement has expanded dramatically  

E-Print Network [OSTI]

Mastication of forest biomass for wildfire hazard reduction and forest health improvement has or tree spacing is adequate to allow sufficient room for equipment operation. b. Carefully review

10

Donald Cook  

Broader source: Energy.gov [DOE]

Dr. Donald L. Cook serves as the Deputy Administrator for Defense Programs at the National Nuclear Security Administration. Appointed to the position by President Barack Obama, Dr. Cook was sworn...

11

Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium  

DOE Patents [OSTI]

Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

2013-07-02T23:59:59.000Z

12

Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium  

DOE Patents [OSTI]

Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

2013-10-29T23:59:59.000Z

13

Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

Rokhsar, Daniel

2011-04-28T23:59:59.000Z

14

Outdoor Cooking.  

E-Print Network [OSTI]

ham slices; sirloin, T-bone; rib and ribeye steaks; lamb or pork chops; beef or lamb cubes or patties; Cana. dian bacon; and some varieties of sausage; fryers and fish. Some outdoor cooks prefer a large sirloin steak about 1% inches thick. Allow 1..., sirloin tips and high /-I quality (low choice) chuck and arm roasts are suitable for this 0 .' type of cooking. Lamb, pork and bologna may also be used. / (-)/ Poultry for this method include rock cornish game hen, broiler 1 \\ or fryer, roaster...

Douglas, Jenoyce; Reasonover, Frances

1967-01-01T23:59:59.000Z

15

Improving Biomass Yields: High Biomass, Low Input Dedicated Energy Crops to Enable a Full Scale Bioenergy Industry  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops can’t grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.

None

2010-01-01T23:59:59.000Z

16

Biomass pretreatment  

DOE Patents [OSTI]

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

17

Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon  

E-Print Network [OSTI]

Click Here for Full Article Assessing general relationships between aboveground biomass 2010; published 23 June 2010. [1] Lidarbased aboveground biomass is derived based on the empirical relationship between lidarmeasured vegetation height and aboveground biomass, often leading to large

Ni-Meister, Wenge

18

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-Print Network [OSTI]

be made from any carbonaceous feedstock, including natural gas, coal, or biomass, using establishedDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton gas (LPG) as a household cooking fuel. As such, DME is an attractive fuel for clean cooking. DME can

19

Cooking the volumes  

E-Print Network [OSTI]

Cooking possesses a system of units of measurement, that includes measures of volumes based on pre-metric units. This paper discusses the cooking measures and compares their features with those of the ancient Roman measures of capacity.

Sparavigna, Amelia Carolina

2012-01-01T23:59:59.000Z

20

Up in Smoke: The Influence of Household Behavior on the Long-Run Impact of Improved Cooking Stoves  

E-Print Network [OSTI]

It is conventional wisdom that it is possible to reduce exposure to indoor air pollution, improve health outcomes, and decrease greenhouse gas emissions in rural areas of developing countries through the adoption of improved ...

Hanna, Rema

2012-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cooking with Ground Pork  

E-Print Network [OSTI]

to thaw. Even when cooked, pork that has been thawed at room temperature can make you sick. Cooking ground pork safely For dishes that contain ground pork, cook the pork before mixing it with other ingredients. How to store cooked ground pork Leftover... dishes made with ground pork should be stored in a covered dish in the refrigerator right away to prevent spoilage. Use it within 3 days. Reheat foods with ground pork until they are steaming hot, bubbling, or at 165 degrees. Other uses Use cooked...

Anding, Jenna

2008-12-09T23:59:59.000Z

22

Up in Smoke: The Influence of Household Behavior on the Long-Run Impact of Improved Cooking Stoves  

E-Print Network [OSTI]

It is conventional wisdom that it is possible to reduce exposure to indoor air pollution, improve health outcomes, and decrease greenhouse gas emissions in the rural areas of developing countries through the adoption of ...

Hanna, Rema

23

Assessment of Biomass Resources in Afghanistan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

almond and walnut shells, as well as olive pits, can be used to produce charcoal through pyrolysis of biomass, which could be used for cooking and as a soil amendment. Processing...

24

Countercurrent Enzymatic Saccharification of Lignocellulosic Biomass and Improvements Over Batch Operation  

E-Print Network [OSTI]

of starchy biomass (e.g., corn), which competes with food. Using lignocellulose avoids competition with food; however, it is difficult to digest using traditional batch saccharification. This work investigates countercurrent saccharification as an alternative...

Zentay, Agustin Nicholas

2014-05-05T23:59:59.000Z

25

The Use of Biomass for Power Generation in the U.S.  

SciTech Connect (OSTI)

Historically, biomass has been man's principal source of energy, mainly used in the form of wood for cooking and heating. With the industrial revolution and the introduction of motorized transportation and electricity, fossil fuels became the dominant source of energy. Today, biomass is the largest domestic source of renewable energy providing over 3% of total U.S. energy consumption, and surpassing hydropower. Yet, recent increases in the price and volatility of fossil fuel supplies and the financial impacts from a number of financially distressed investments in natural gas combined cycle power plants have led to a renewed interest in electricity generation from biomass. The biomass-fueled generation market is a dynamic one that is forecast to show significant growth over the next two decades as environmental drivers are increasingly supported by commercial ones. The most significant change is likely to come from increases in energy prices, as decreasing supply and growing demand increase the costs of fossil fuel-generated electricity and improve the competitive position of biomass as a power source. The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and gives a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered in the report include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an analysis of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; and, a review of the economic drivers of biomass-fueled generation project success.

none

2006-07-15T23:59:59.000Z

26

Mapping Biomass Distribution Potential  

E-Print Network [OSTI]

Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

Schaetzel, Michael

2010-11-18T23:59:59.000Z

27

Viability of waste-based cooking fuels for Developing countries : combustion emissions and field feasibility  

E-Print Network [OSTI]

Biomass-derived cooking fuels are used by three billion people worldwide. The drawbacks of such fuels, typically wood or wood-derived charcoal, include health hazards, negative environmental effects, and perpetuation of ...

Banzaert, Amy, 1976-

2013-01-01T23:59:59.000Z

28

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

less recalcitrant biomass feedstocks and improved enzymes.of less recalcitrant biomass feedstocks and improvedpotential of improved biomass feedstocks and enzymes for the

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

29

Cooking with Processed Cheese  

E-Print Network [OSTI]

the cheese and stir it until it is melted. 7. Mix in the cooked macaroni and stir it until the macaroni is heated. Note: You can also add a 6-ounce can of tuna and 1 cup of frozen or drained canned peas for a quick and easy no-bake tuna casserole. Just... cheese, cut into 1-inch cubes 1? cups skim milk 3 cups cooked macaroni How to make it 1. Wash your hands; make sure your cooking area is clean. 2. Melt...

Anding, Jenna

2008-12-09T23:59:59.000Z

30

Cooking with Canned Salmon  

E-Print Network [OSTI]

it from the pan. Alaska Salmon Shepherd?s Pie (makes 3 to 4 servings) What you need 14.75-ounce can salmon 15-ounce can mixed vegetables, drained 2 cups cooked mashed potatoes Paprika (if you...

Anding, Jenna

2001-09-10T23:59:59.000Z

31

Pre-clinical Measures of Eye Damage (Lens Opacity), Case-control Study of Tuberculosis, and Indicators of Indoor Air Pollution from Biomass Smoke  

E-Print Network [OSTI]

Indoor air pollution from biomass fuels and respiratoryTuberculosis and Indoor Biomass and Kerosene Use in Nepal: AR.D. Retherford, and K.R. Smith, Biomass cooking fuels and

Pokhrel, Amod Kumar

2010-01-01T23:59:59.000Z

32

Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors  

DOE Patents [OSTI]

A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

Griffith, William Louis; Compere, Alicia Lucille; Leitten Jr., Carl Frederick

2010-04-20T23:59:59.000Z

33

Cooking with Oatmeal  

E-Print Network [OSTI]

it to the dry ingredients; mix until slightly moist. Note: The batter may look a little thin. 4. Cook the pancakes on a nonstick or lightly oiled griddle or skillet. Possible toppings for oatmeal pancakes: cinnamon, applesauce, or canned peaches. How to make...

Anding, Jenna

2008-12-09T23:59:59.000Z

34

Cooking with Walnuts  

E-Print Network [OSTI]

and salt; add it to the banana mixture and stir it until the dry ingredients are moist. 5. Add the walnuts. 6. Spoon the batter into a prepared 9- by 5-inch loaf pan. A prepared pan is one that has been greased and floured or sprayed with cooking spray. 7...

Anding, Jenna

2001-09-10T23:59:59.000Z

35

Cooking with Macaroni  

E-Print Network [OSTI]

minutes or until the macaroni is tender but firm. If the macaroni is to be used in a dish that needs further cooking, undercook the macaroni slightly. How to store it Store dry macaroni in a cool and dry place. For best quality, use it within 1 year...

Anding, Jenna

2001-09-10T23:59:59.000Z

36

Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops  

SciTech Connect (OSTI)

The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

Doust, Andrew, N.

2011-11-11T23:59:59.000Z

37

I Reproducedwith pennissionfrom Elsevier Preparedfor Proceedingsof the4thBiomassConferenceof theAmericas,ElsevierScience,Ltd.,Oxford,UK, 1999.  

E-Print Network [OSTI]

with solid biomass. It is also far more efficient (Fig. 1), even considering biomass-to-fuels conversion. We present a preliminary assessment of the cost for producing these fuels from com stalks today to meet household cooking needs. 2. ENERGY BALANCES FOR F-T COOKING FUELS FROM BIOMASS Two clean

38

Beef -- Selection, Care, Cooking.  

E-Print Network [OSTI]

TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS TEXAS AGRICULTURAL EXTENSION SERVICE J. E. HUTCHISON, DIRECTOR I I -4 ACKNOWLEDGMENTS i CONTENTS The Nutritive Value, 3 Tenderness, 3 Grading Beef, 4 Beef Cuts, 5 Amount to Purchase, 5 -- Care..., MAEONA LOUISE MASON cox W FRANCES REASONOVER WRIE TRIBBLE Extension Foods and Nutrition Specidlists car^; Cooking Texas AB~M University YOU CAN TAKE YOUR PICK of beef dishes- tempting broiled steaks, flavor-filled roasts, delicious stews...

Cox, Maeona; Mason, Louise; Tribble, Marie; Reasonover, Frances

1964-01-01T23:59:59.000Z

39

Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal  

SciTech Connect (OSTI)

There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40%) with coal.

Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

2012-06-01T23:59:59.000Z

40

Understanding Biomass Feedstock Variability  

SciTech Connect (OSTI)

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Understanding Biomass Feedstock Variability  

SciTech Connect (OSTI)

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

2013-01-01T23:59:59.000Z

42

COOKING APPLIANCE USE IN CALIFORNIA HOMES DATA COLLECTED FROM A WEB-BASED SURVEY  

SciTech Connect (OSTI)

Cooking of food and use of natural gas cooking burners generate pollutants that can have substantial impacts on residential indoor air quality. The extent of these impacts depends on cooking frequency, duration and specific food preparation activities in addition to the extent to which exhaust fans or other ventilation measures (e.g. windows) are used during cooking. With the intent of improving our understanding of indoor air quality impacts of cooking-related pollutants, we created, posted and advertised a web-based survey about cooking activities in residences. The survey included questions similar to those in California's Residential Appliance Saturation Survey (RASS), relating to home, household and cooking appliance characteristics and weekly patterns of meals cooked. Other questions targeted the following information not captured in the RASS: (1) oven vs. cooktop use, the number of cooktop burners used and the duration of burner use when cooking occurs, (2) specific cooking activities, (3) the use of range hood or window to increase ventilation during cooking, and (4) occupancy during cooking. Specific cooking activity questions were asked about the prior 24 hours with the assumption that most people are able to recollect activities over this time period. We examined inter-relationships among cooking activities and patterns and relationships of cooking activities to household demographics. We did not seek to obtain a sample of respondents that is demographically representative of the California population but rather to inexpensively gather information from homes spanning ranges of relevant characteristics including the number of residents and presence or absence of children. This report presents the survey, the responses obtained, and limited analysis of the results.

Klug, Victoria; Lobscheid, Agnes; Singer, Brett

2011-08-01T23:59:59.000Z

43

Cooking with Cornmeal  

E-Print Network [OSTI]

and onion in a skillet until the ground beef is crumbly; drain off any excess fat. 3. In a bowl, mix the corn, tomato sauce, chili powder, cornmeal and water. Add the cooked ground beef and onion. 4. Place mixture in a casserole dish and bake at 350... degrees F for 45 minutes. 5. Remove the dish from the oven. Sprinkle the cheese on the top. 6. Bake the casserole for 10 minutes or until the cheese is melted. Cornmeal Mix (makes about 5? cups of mix) Cornbread (makes 12 servings, each 2 by 2? inches...

Anding, Jenna

2008-12-09T23:59:59.000Z

44

Small Game -- Cooking Care.  

E-Print Network [OSTI]

Game - Cooking Care Mary K. Sweeten* The Hunt Hunting small game animals in Texas is a popular recreational activity. Careful handling and preparation help you use game and avoid unnecessary waste of wild game resources if you do hunt. Squirrels.... Count Y2 cup of vegetable or fruit as one serving, or a portion ordinarily served such as one medium apple, banana, orange or potato, half a medium grapefruit or cantaloupe or the juice of one lemon. Some good sources of vitamin Care oranges...

Sweeten, Mary K.

1981-01-01T23:59:59.000Z

45

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

46

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

47

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

48

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

49

Capital Cooking: Proposed Penalty (2014-CE-23008)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Capital Cooking Equipment, Inc. failed to certify cooking products as compliant with the applicable energy conservation standards.

50

Composition of Cooked Fish Dishes  

E-Print Network [OSTI]

Composition of Cooked Fish Dishes CIRCULAR 29 Fish and Wildlife Service John L. Farley, Director United States Department of the Interior Douglas McKay, Secretary #12;#12;Composition of Cooked Fish Dishes CIRCULAR 29 Fish and Wildlife Service John L. Farley, Director United States Department

51

Federal Biomass Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Budget Federal Biomass Activities Federal Biomass Activities Biopower Biopower Biofuels Biofuels Bioproducts Bioproducts Federal Biomass Activities Federal Biomass...

52

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3086  

E-Print Network [OSTI]

specifications. The movement of woody biomass from the forest to the mill is called a supply chain. Supply chains BILL COOK, MICHIGAN STATE UNIVERSITY EXTENSION FORESTER JANUARY 2010 What is Woody Biomass? Stated most in dry weight per unit area, such as tons per acre. In a forest, trees produce huge amounts of biomass

53

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3088  

E-Print Network [OSTI]

BILL COOK, MICHIGAN STATE UNIVERSITY EXTENSION FORESTER JANUARY 2010 Where Does Michigan's Wood Supply Michigan forest land? Can woody biomass be harvested, transported, and delivered at a profit? Will woody biomass harvesting compete with existing forest industries? How does the woody biomass potential compare

54

Cook stove assembly  

SciTech Connect (OSTI)

A combustion chamber, having an upper part and a lower part, may include an annular constriction, in combination with the combustion chamber, to aid in directing partially combusted gases such as carbon monoxide away from the periphery of the combustion chamber back toward its center, and into the flame front. The annular constriction may also impede the flow of partially combusted gases located at the periphery, thus increasing the time these gases spend within the combustion chamber and increasing the likelihood that any products of incomplete combustion will undergo combustion. The combustion chamber may further comprise a dual burner cooktop for directing combustion gases and exhaust to multiple cooking vessels. In further embodiments, the combustion chamber may be made of, lined, or clad with a metal alloy comprising iron, chromium, and aluminum.

DeFoort, Morgan W; Willson, Bryan D; Lorenz, Nathan; Brady, Michael P; Marchese, Anthony; Miller-Lionberg, Daniel D

2014-12-02T23:59:59.000Z

55

NREL: Biomass Research - Michael Resch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

56

Improving the Technical, Environmental, and Social Performance of Wind Energy Systems Using Biomass-Based Energy Storage  

SciTech Connect (OSTI)

A completely renewable baseload electricity generation system is proposed by combining wind energy, compressed air energy storage, and biomass gasification. This system can eliminate problems associated with wind intermittency and provide a source of electrical energy functionally equivalent to a large fossil or nuclear power plant. Compressed air energy storage (CAES) can be economically deployed in the Midwestern US, an area with significant low-cost wind resources. CAES systems require a combustible fuel, typically natural gas, which results in fuel price risk and greenhouse gas emissions. Replacing natural gas with synfuel derived from biomass gasification eliminates the use of fossil fuels, virtually eliminating net CO{sub 2} emissions from the system. In addition, by deriving energy completely from farm sources, this type of system may reduce some opposition to long distance transmission lines in rural areas, which may be an obstacle to large-scale wind deployment.

Denholm, P.

2006-01-01T23:59:59.000Z

57

Assessment of Biomass Resources in Liberia  

SciTech Connect (OSTI)

Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

Milbrandt, A.

2009-04-01T23:59:59.000Z

58

Biomass 2014 Poster Session  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

59

Mining the Home Environment Diane J. Cook and Narayanan Krishnan  

E-Print Network [OSTI]

Mining the Home Environment Diane J. Cook and Narayanan Krishnan Washington State University in their home or workplace and for many, these places are our sanctuaries. As society and technology advance there is a growing interest in improving the intelligence of the environments in which we live and work. By filling

Cook, Diane J.

60

Heart Healthy Home Cooking African American Style  

E-Print Network [OSTI]

Heart Healthy Home Cooking African American Style With Every Heartbeat Is Life #12;#12;Heart Recipe Substitutions for Heart Healthy Cooking at the heart of African American family life and special celebrations. This recipe book brings together many

Bandettini, Peter A.

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

62

High-biomass sorghums for biomass biofuel production  

E-Print Network [OSTI]

University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

Packer, Daniel

2011-05-09T23:59:59.000Z

63

AGCO Biomass Solutions: Biomass 2014 Presentation  

Broader source: Energy.gov [DOE]

Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

64

Biomass energy use in developing countries: An African perspective  

SciTech Connect (OSTI)

Biomass forms the bulk of the energy supply of the developing world with the largest share consumed in the household sector as either fuelwood or charcoal for cooking, lighting and space heating. However there are a number of constraints facing the use of biomass if it is to be sustainable. Stephen Karekezi and Esther Ewagata of the African Energy Policy Research Network (AFREPREN) outline these constraints and discuss the modernisation of the traditional technologies now underway.

Karekezi, S.; Ewagata, E. [AFREPREN and FWD, Nairobi (Kenya)

1994-09-01T23:59:59.000Z

65

Interannual and seasonal variability of biomass burning emissions constrained by satellite observations  

E-Print Network [OSTI]

--composition and chemistry; KEYWORDS: Biomass burning, interannual seasonal variation Citation: Duncan, B. N., R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan, Interannual and seasonal variability of biomass burning [Malingreau, 1990; Stricker et al., 1995; Hsu et al., 1996; Cooke et al., 1996; Justice et al., 1996; Herman

Jacob, Daniel J.

66

Woody Biomass for Energy in Michigan TOPICS FOR DISCUSSION AND INQUIRY EXTENSION BULLETIN E-3085  

E-Print Network [OSTI]

BILL COOK, MICHIGAN STATE UNIVERSITY EXTENSION FORESTER JANUARY 2010 Energy Use in Michigan Before we sources--woody biomass, agricultural products (food and non-food), wind, solar, hydro and ground heat of renewable sources--woody biomass, agricultural products (food and non-food), wind, solar, hydro and ground

67

Biomass power for rural development  

SciTech Connect (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

68

Biomass energy in China and its potential Li Jingjing  

E-Print Network [OSTI]

& Mining Unit, East Asia and the Pacific Region, The World Bank #172 Xizhimennei Avenue, 100035, Beijing, P of firewood and agricultural residues for cooking and heating brings with it detrimental effects of indoor air pollution and associated adverse health impacts. In addition, the time spent collecting biomass fuels

69

Also inside this issue: Bioengineering Better Biomass  

E-Print Network [OSTI]

Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

70

Michigan Nuclear Profile - Donald C Cook  

U.S. Energy Information Administration (EIA) Indexed Site

Donald C Cook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

71

Biomass Surface Characterization Laboratory  

E-Print Network [OSTI]

the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

72

Cooking for One or Two.  

E-Print Network [OSTI]

for one or two servings and reduce waste and cleanup time, For oven dishes, try this idea. Line serving-size oven dishes with foil, fill with food and freeze. Once frozen , remove the item from the dish , seal the foil , label and return to the freezer.... Later, simply return the item to the original dish, heat and serve. Main Dishes Main dishes take a large share of the food dollar, so plan their purchase and use wisely. Instead of cooking a whole roast or steak, divide each into serving...

Haggard, Marilyn A.

1980-01-01T23:59:59.000Z

73

Alfreda Cook | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAboutAlbuquerque RoundtableAlfreda Cook About Us

74

Biomass Feedstocks  

Broader source: Energy.gov [DOE]

A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

75

Anderson-Cook named American Society for Quality Fellow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pre-eminence in technology, theory, education, or the application or management of quality control. January 17, 2012 Christine Anderson-Cook Christine Anderson-Cook Contact...

76

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISĂ? and DTU Anne Belinda Thomsen (RISĂ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

77

Biomass shock pretreatment  

SciTech Connect (OSTI)

Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

2014-07-01T23:59:59.000Z

78

Cooking with Canned Tuna (packed in water)  

E-Print Network [OSTI]

E-75 12/08 Cooking with Canned Tuna (packed in water) Tuna is a nutritious source of protein, iron, and niacin. Because it is already cooked, it can be eaten right out of the can or used to make your favorite tuna dishes. A serving of tuna is 2...- by 13-inch baking dish. 4. Bake it at 350 degrees F for 30 to 35 minutes. Let it stand for about 10 minutes before serving. Note: You can also use 2 cups of cooked rice instead of macaroni. Quick Tuna Spread (makes 4 servings, ? cup each) Tuna...

Anding, Jenna

2008-12-09T23:59:59.000Z

79

Cook County- LEED Requirements for County Buildings  

Broader source: Energy.gov [DOE]

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

80

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network [OSTI]

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network [OSTI]

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

82

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network [OSTI]

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

83

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

84

Biomass Densification Workshop Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supply systems that ensure high- volume, reliable, and on-spec availability of biomass feedstocks. The United States has a diverse and abundant potential of biomass resources...

85

Biomass Analytical Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

86

Lessons learned from existing biomass power plants  

SciTech Connect (OSTI)

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

87

Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-08-22T23:59:59.000Z

88

Indoor air pollution in rural China: Cooking fuels, stoves, and health status  

SciTech Connect (OSTI)

Solid fuels are a major source of indoor air pollution, but in less developed countries the short-term health effects of indoor air pollution are poorly understood. The authors conducted a large cross-sectional study of rural Chinese households to determine associations between individual health status and domestic cooking as a source of indoor air pollution. The study included measures of health status as well as measures of indoor air-pollution sources, such as solid cooking fuels and cooking stoves. Compared with other fuel types, coal was associated with a lower health status, including negative impacts on exhaled carbon monoxide level, forced vital capacity, lifetime prevalence of chronic obstructive pulmonary disease and asthma, and health care utilization. Decreasing household coal use, increasing use of improved stove technology, and increasing kitchen ventilation may decrease the short-term health effects of indoor air pollution.

Peabody, J.W.; Riddell, T.J.; Smith, K.R.; Liu, Y.P.; Zhao, Y.Y.; Gong, J.H.; Milet, M.; Sinton, J.E. [Amgen Inc., Thousand Oaks, CA (United States)

2005-03-15T23:59:59.000Z

89

Biomass treatment method  

DOE Patents [OSTI]

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

90

Fiscalini Farms Biomass Energy Project  

SciTech Connect (OSTI)

In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

2011-09-30T23:59:59.000Z

91

Solar cooking : the development of a thermal battery  

E-Print Network [OSTI]

There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to cook food. However most people around the world like to cook large meals at night, when the ...

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

92

Pre-clinical Measures of Eye Damage (Lens Opacity), Case-control Study of Tuberculosis, and Indicators of Indoor Air Pollution from Biomass Smoke  

E-Print Network [OSTI]

other cleaner burning fuels (biogas or LPG) for cooking andstove with improved stove or biogas can be suggested, if thegaseous-burning-fuel stove (biogas, liquefied petroleum gas,

Pokhrel, Amod Kumar

2010-01-01T23:59:59.000Z

93

Cooking When the Power Goes Off  

E-Print Network [OSTI]

. Charcoal or gas grills: The most obvious alternative sources of heat for cook- ing are grills. Never use them indoors. In doing so, you risk both asphyxiation from carbon monoxide and starting a fire that could destroy your home. Camp stoves: Likewise...

FCS Project Team - FDRM UNIT

2005-09-30T23:59:59.000Z

94

STATIA LUSZCZ-COOK Department of Astronomy  

E-Print Network [OSTI]

STATIA LUSZCZ-COOK Department of Astronomy University of California, Berkeley B-20 Hearst Field, University of California, Berkeley 2006 B.A. Astronomy with Honors, magna cum laude, Cornell University 2006 Graduate Student Instructor, Astronomy for Non-majors, U.C. Berke- ley 2004 - 2006 Undergraduate

Militzer, Burkhard

95

Workflow Patterns in Orc William Cook  

E-Print Network [OSTI]

1 Workflow Patterns in Orc William Cook Sourabh Patwardhan Jayadev Misra Department of Computer Sciences University of Texas at Austin 2 Overview of Orc · Orchestration language ­Invoke services ­Manage(M, N) let(z) where z : if(x) | if(y) | or(x, y) where x : M where y : N 11 Orc Summary e, f, g ::= c

Cook, William R.

96

Policy-Based Authorization William R. Cook  

E-Print Network [OSTI]

Page 1 Policy-Based Authorization William R. Cook Department of Computer Sciences University of Texas at Austin Abstract This paper discusses policy-based authorization, an effective intermediate point between MAC and DAC that promises to combine the best features of both models. Policy

Cook, William R.

97

Diet and Cancer Are Cooked Meats Involved  

ScienceCinema (OSTI)

Diet has been associated with differences in cancer rates in human populations for many years. Mark Knize presents the latest research on cancer causes including work performed at Lawrence Livermore National Laboratory investigating some interesting chemical products created when meat is cooked and how to reduce them. Series: Science on Saturday [10/2006] [Health and Medicine] [Science] [Show ID: 11542

LLNL - University of California Television

2009-09-01T23:59:59.000Z

98

Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Also inside this issue: Bioengineering Better Biomass DOE JGIEMSL Collaborative Science Projects Special Science Call Continues Improving Pore-Scale Predictions Translating...

99

System and technique for ultrasonic determination of degree of cooking  

DOE Patents [OSTI]

A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

Bond, Leonard J. (Richland, WA); Diaz, Aaron A. (W. Richland, WA); Judd, Kayte M. (Richland, WA); Pappas, Richard A. (Richland, WA); Cliff, William C. (Richland, WA); Pfund, David M. (Richland, WA); Morgen, Gerald P. (Kennewick, WA)

2007-03-20T23:59:59.000Z

100

Biomass Gasification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Biomass Gasification Biomass Gasification Photo of switchgrass being swathed. The Program anticipates that biomass gasification could be deployed in the...

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sandia National Laboratories: Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

102

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

103

Method for producing ethanol and co-products from cellulosic biomass  

DOE Patents [OSTI]

The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

Nguyen, Quang A

2013-10-01T23:59:59.000Z

104

Original article Root biomass and biomass increment in a beech  

E-Print Network [OSTI]

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

105

Pretreated densified biomass products  

SciTech Connect (OSTI)

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

106

AVAILABLE NOW! Biomass Funding  

E-Print Network [OSTI]

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

107

NREL: Biomass Research - Biomass Characterization Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white...

108

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

109

Cook, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | OpenMinor PermitControllingCook, Minnesota: Energy

110

Biomass Processing Photolibrary  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

111

Co-firing biomass  

SciTech Connect (OSTI)

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

112

Biomass 2013 Attendee List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Attendee List Biomass 2013 Attendee List This is a list of attendees for the Biomass 2013 conference. biomass2013attendeelist.pdf More Documents & Publications Biomass 2013...

113

aceria lantanae cook: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phillip S. Johnson,1 Peter L. Cook,2 Ioannis Zegkinoglou,1,3 J. M. Garc-a-Lastra,4,5 Angel Rubio,4 Himpsel, Franz J. 237 Publications Busby, J.W., K.H. Cook, E.K. Vizy,...

114

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected fromOne Biomass

115

NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global...

116

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

117

Biomass Research Program  

SciTech Connect (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2011-01-01T23:59:59.000Z

118

Module Handbook Specialisation Biomass Energy  

E-Print Network [OSTI]

Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

Damm, Werner

119

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

120

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

122

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

123

NREL: Biomass Research - Thomas Foust  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels...

124

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

125

NREL: Biomass Research - Video Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

126

NREL: Biomass Research - Amie Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to...

127

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

128

Biomass Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

129

Review: Enzymatic Hydrolysis of Cellulosic Biomass  

SciTech Connect (OSTI)

Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

2011-07-16T23:59:59.000Z

130

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network [OSTI]

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

131

Strategic Biomass Solutions (Mississippi)  

Broader source: Energy.gov [DOE]

The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors...

132

DOE 2014 Biomass Conference  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

133

Biomass Energy Production Incentive  

Broader source: Energy.gov [DOE]

In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt...

134

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network [OSTI]

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

135

Biomass | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(RedirectedBiomass: Organic

136

Northeast Regional Biomass Program  

SciTech Connect (OSTI)

The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

Lusk, P.D.

1992-12-01T23:59:59.000Z

137

Poster created by: Syracuse University Food Services cooked Spelt =  

E-Print Network [OSTI]

Try M e! Poster created by: Syracuse University Food Services 1 cup of cooked Spelt = 246 calories 100 years. It is sometimes used to feed animals. Spelt was once used as a peasant food as it became

Mather, Patrick T.

138

Lawrence B. Flanagan Craig S. Cook James R. Ehleringer  

E-Print Network [OSTI]

Lawrence B. Flanagan á Craig S. Cook James R. Ehleringer Unusually low carbon isotope ratios limited overlap in species distributions inside and out- side these gardens. Solar exposure in hanging

Ehleringer, Jim

139

Investigations of Biomass Pretreatment and Submerged Fixed-bed Fermentation  

E-Print Network [OSTI]

To improve the MixAlco process and biomass pretreatment, five studies were conducted. Three studies related to fermentation, whereas the other two investigated the effectiveness of shock tube pretreatment (STP) coupled with oxidative lime...

Meysing, Daniel

2012-02-14T23:59:59.000Z

140

Performance of Installed Cooking Exhaust Devices  

SciTech Connect (OSTI)

The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) – including exhaust fan/microwave combination appliances – were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Biomass Thermochemical Conversion Program. 1983 Annual report  

SciTech Connect (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

142

NREL: Biomass Research - Biomass Characterization Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards and Honors(PPS)WebmasterBiomass

143

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed,Tracy Biomass

144

Biomass Reburning: Modeling/Engineering Studies  

SciTech Connect (OSTI)

Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

Vladimir M. Zamansky

1998-01-20T23:59:59.000Z

145

1982 annual report: Biomass Thermochemical Conversion Program  

SciTech Connect (OSTI)

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

146

November 2011 Model documentation for biomass,  

E-Print Network [OSTI]

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

147

NREL: International Activities - Biomass Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

148

NREL: Biomass Research - David W. Templeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

149

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

150

Transcript: Biomass Clean Cities Webinar - Workforce Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript of the BiomassClean Cities Workforce...

151

Sustainable Biomass Supply Systems  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

152

YEAR 2 BIOMASS UTILIZATION  

SciTech Connect (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

153

Biomass Scenario Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09BiomassAct ofBiomass

154

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

155

Advances in High Throughput Screening of Biomass Recalcitrance (Poster)  

SciTech Connect (OSTI)

This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

2012-06-01T23:59:59.000Z

156

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

157

ENERGY FROM BIOMASS AND  

E-Print Network [OSTI]

in aeroderivative gas turbines has beencommerciallyestablished for natural gas-fired cogeneration since 1980. Steam!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE of the gas turbine for cogeneration.applications(27) and the low unit capital cost of gas turbines comparedto

158

Biomass 2014 Attendee List | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

159

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

160

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

162

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

163

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network [OSTI]

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

164

13, 3226932289, 2013 Biomass burning  

E-Print Network [OSTI]

ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

Dong, Xiquan

165

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

166

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

167

7, 1733917366, 2007 Biomass burning  

E-Print Network [OSTI]

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

168

Reburn system with feedlot biomass  

DOE Patents [OSTI]

The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

Annamalai, Kalyan; Sweeten, John M.

2005-12-13T23:59:59.000Z

169

NREL: Biomass Research - Microalgal Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

synthesis. Learn about microalgal biofuels capabilities. Printable Version Biomass Research Home Capabilities Projects Biomass Characterization Biochemical Conversion...

170

Federal Biomass Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

171

Biomass Supply and Carbon Accounting for  

E-Print Network [OSTI]

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

172

McCook, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis aMaury County,Energy InformationMcCookMcCook,

173

Lignin-blocking treatment of biomass and uses thereof  

DOE Patents [OSTI]

Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion. Cellulase efficiencies are improved by the protein or polypeptide treatment. The treatment may be used in combination with steam explosion and acid prehydrolysis techniques. Hydrolysis yields from lignin containing biomass are enhanced 5-20%, and enzyme utilization is increased from 10% to 50%. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.

Yang, Bin (Hanover, NH); Wyman, Charles E. (Norwich, VT)

2009-10-20T23:59:59.000Z

174

NREL Research on Converting Biomass to Liquid Fuels  

ScienceCinema (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2013-05-29T23:59:59.000Z

175

NREL Research on Converting Biomass to Liquid Fuels  

SciTech Connect (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2010-01-01T23:59:59.000Z

176

GEODESIC FRCHET DISTANCE WITH POLYGONAL OBSTACLES Atlas F. Cook IV  

E-Print Network [OSTI]

GEODESIC FR�CHET DISTANCE WITH POLYGONAL OBSTACLES Atlas F. Cook IV Carola Wenk Abstract We present the first algorithm to compute the geodesic Fréchet distance between two polygonal curves in a plane of from a point source). This shortest path map supports geodesic distance queries from any point s ab

Texas at San Antonio, University of

177

COOKING APPLIANCE USE IN CALIFORNIA HOMES--DATA  

E-Print Network [OSTI]

COOKING APPLIANCE USE IN CALIFORNIA HOMES--DATA COLLECTED FROM A WEB-BASED SURVEY Victoria L. Klug, Agnes B. Lobscheid, and Brett C. Singer Environmental Energy Technologies Division August 2011 LBNL-5028 FROM A WEB-BASED SURVEY Victoria L. Klug, Agnes B. Lobscheid, and Brett C. Singer Indoor Environment

178

Healthy Foods, Healthy Lives: Cooking on a Student's Budget  

E-Print Network [OSTI]

Healthy Foods, Healthy Lives: Cooking on a Student's Budget FScN 2002 ­ Fall & Spring Semesters/monthly menus within a realistic food budget and a modest supply list Gain valuable information and connect to a variety of resources on nutrition, food safety, budgeting and meal planning Develop a social network

Amin, S. Massoud

179

Engine Control J.A. Cook, J.W. Grizzley  

E-Print Network [OSTI]

, spark ignition, internal combustion gasoline engine. Mechanically, this powerplant has remained a ect emissions, performance and fuel economy in the spark ignition engine: Air-fuel ratio controlEngine Control J.A. Cook, J.W. Grizzley , and J. Sun January 18, 1995 1 Introduction Automotive

Grizzle, Jessy W.

180

Page 1 of 4 STATIA HONORA LUSZCZ-COOK  

E-Print Network [OSTI]

Page 1 of 4 STATIA HONORA LUSZCZ-COOK Department of Astronomy University of California, Berkeley B ­ present UC Berkeley Graduate Student Instructor, Undergraduate Solar System Physics, 2007 UC Berkeley National Solar Observatory RESEARCH INTERESTS Planetary atmospheres, extrasolar planets, near

Militzer, Burkhard

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

It Takes Two Neurons To Ride a Bicycle Matthew Cook  

E-Print Network [OSTI]

It Takes Two Neurons To Ride a Bicycle Matthew Cook Abstract Past attempts to get computers to ride bicycles have required an inor- dinate amount of learning time (1700 practice rides for a reinforcement an algebraic analysis of the exact equations of motion for the specific bicycle to be controlled [2, 3

Bruck, Jehoshua (Shuki)

182

Energy Impacts of Effective Range Hood Use for all U.S. Residential Cooking  

SciTech Connect (OSTI)

Range hood use during residential cooking is essential to maintaining good indoor air quality. However, widespread use will impact the energy demand of the U.S. housing stock. This paper describes a modeling study to determine site energy, source energy, and consumer costs for comprehensive range hood use. To estimate the energy impacts for all 113 million homes in the U.S., we extrapolated from the simulation of a representative weighted sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey database. A physics-based simulation model that considered fan energy, energy to condition additional incoming air, and the effect on home heating and cooling due to exhausting the heat from cooking was applied to each home. Hoods performing at a level common to hoods currently in U.S. homes would require 19?33 TWh [69?120 PJ] of site energy, 31?53 TWh [110-190 PJ] of source energy; and would cost consumers $1.2?2.1 billion (U.S.$2010) annually in the U.S. housing stock. The average household would spend less than $15 annually. Reducing required airflow, e.g. with designs that promote better pollutant capture has more energy saving potential, on average, than improving fan efficiency.

Logue, Jennifer M; Singer, Brett

2014-06-01T23:59:59.000Z

183

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network [OSTI]

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

184

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

such lignocellulosic biomass feedstocks into ethanol via atools. Different biomass feedstocks have different cell wallmajor lignocellulosic biomass feedstocks, except softwoods,

Li, Hongjia

2012-01-01T23:59:59.000Z

185

Hydrothermal Liquefaction of Biomass  

SciTech Connect (OSTI)

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

186

Science Activities in Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) CawithMicrofluidicJournalWhatActivities in Biomass

187

Biomass 2013: Welcome  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09 ConferenceBiomass 2013

188

Sandia National Laboratories: Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuelsBiomass Renewable

189

NREL: Biomass Research - Joseph Shekiro  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

190

NREL: Biomass Research - Josh Schaidle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices...

191

Biomass IBR Fact Sheet: POET  

Broader source: Energy.gov (indexed) [DOE]

in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

192

Biomass Rapid Analysis Network (BRAN)  

SciTech Connect (OSTI)

Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

Not Available

2003-10-01T23:59:59.000Z

193

System and process for biomass treatment  

SciTech Connect (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

194

Biomass in the Deregulated Marketplace: Current Issues for Biomass Power  

SciTech Connect (OSTI)

This issue brief provides readers with a monthly review and analysis of electric utility deregulation as it impacts biomass power production and distribution. The topical areas to be routinely covered will include Federal activities, State activities, Current challenges, and Current opportunities. Additionally, a monthly highlighted topic will provide more in-depth analysis of current issue impacting biomass power.

Not Available

1998-12-01T23:59:59.000Z

195

Process for concentrated biomass saccharification  

DOE Patents [OSTI]

Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

2010-10-05T23:59:59.000Z

196

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

197

Biomass Producer or Collector Tax Credit (Oregon)  

Broader source: Energy.gov [DOE]

 The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

198

Treatment of biomass to obtain fermentable sugars  

DOE Patents [OSTI]

Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

2011-04-26T23:59:59.000Z

199

BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES  

E-Print Network [OSTI]

icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

Ergun, Sabri

2012-01-01T23:59:59.000Z

200

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network [OSTI]

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

BRSIC RECIPES COOKinG fiSH  

E-Print Network [OSTI]

BRSIC RECIPES fOR COOKinG fiSH Fishery Leaflet 106 Fish anel Wi Iellife Se r v;ce po-)ited States Department of the Interior Wa s.hi ngton, D.C. #12;United States Department of the Interior, J. A. Fish~9~4~9 Introduction .· ... BASTC R~CIP~~ FOR GOOK IN~ FISH By Rose G. Kerr, Home Economist Branch of Commercial

202

Cooking Up Some Energy Saving Tips | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorkingCooking Up Some Energy

203

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

204

Mobile Biomass Pelletizing System  

SciTech Connect (OSTI)

This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

Thomas Mason

2009-04-16T23:59:59.000Z

205

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock...

206

Symbiosis: Addressing Biomass Production Challenges and Climate...  

Broader source: Energy.gov (indexed) [DOE]

Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

207

NREL: Biomass Research - Robert M. Baldwin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MI. Dr. Baldwin has extensive experience and expertise in thermochemical conversion of biomass to gaseous and liquid fuels, including catalysis and reaction engineering of biomass...

208

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

209

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

210

NREL: Biomass Research - Daniel J. Schell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

more than 30 years of research experience in bio-based conversion of lignocellulosic biomass and has extensive expertise in integrated biomass conversion operations at the bench...

211

Biomass Compositional Analysis Laboratory (Fact Sheet), National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

212

NREL: Biomass Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility (IBRF). June 2, 2011 Science & Industry Peers Turn to NREL for Biomass Solutions The biomass industry looks to the U.S. Department of Energy's National...

213

Transcript: Biomass Clean Cities Webinar ? Workforce Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Page 1 of 12 Alicia Lindauer: My name is Alicia Lindauer. I work for the Department of Energy's Biomass Program....

214

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

215

Supplying High-Quality, Raw Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

216

Converting Biomass to High-Value Feedstocks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

217

Biomass Guidelines (Prince Edward Island, Canada)  

Broader source: Energy.gov [DOE]

PEI Biomass Guidelines identify two major pathways that biomass projects may follow: No Public Investment, and Public Investment. Projects with Public Investment include any project that has:

218

Hydrogen Production Cost Estimate Using Biomass Gasification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is...

219

Development of a commercial enzymes system for lignocellulosic biomass saccharification  

SciTech Connect (OSTI)

DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

Manoj Kumar

2012-12-20T23:59:59.000Z

220

Effects of Market Approaches to Green Technologies for the Poor: The Case of Improved Cookstoves  

E-Print Network [OSTI]

see solar cookers as superior to improved biomass stovessolar cooker examples we see the first attempts to import stove &

Booker, Kayje Merrea

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Aqueous fractionation of biomass based on novel carbohydrate hydrolysis kinetics  

DOE Patents [OSTI]

A multi-function process for hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components comprising extractives and proteins; a portion of a solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising: a) introducing either solid fresh biomass or partially fractioned lignocellulosic biomass material with entrained acid or water into a reactor and heating to a temperature of up to about 185.degree. C.-205.degree. C. b) allowing the reaction to proceed to a point where about 60% of the hemicellulose has been hydrolyzed in the case of water or complete dissolution in case of acid; c) adding a dilute acid liquid at a pH below about 5 at a temperature of up to about 205.degree. C. for a period ranging from about 5 to about 10 minutes; to hydrolyze the remaining 40% of hemicellulose if water is used. d) quenching the reaction at a temperature of up to about 140.degree. C. to quench all degradation and hydrolysis reactions; and e) introducing into said reaction chamber and simultaneously removing from said reaction chamber, a volumetric flow rate of dilute acid at a temperature of up to about 140.degree. C. to wash out the majority of the solubilized biomass components, to obtain improved hemicellosic sugar yields.

Torget, Robert W. (Littleton, CO)

2001-01-01T23:59:59.000Z

222

Biomass Conversion Task IV 1987 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect (OSTI)

Biomass is a major, renewable energy resource through out the world, and extensive research is being conducted by many countries on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several nations have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes the 1987 Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and descriptions of specific conversion projects are presented. Details of activity funding are also provided. 3 tabs.

Stevens, D.J.

1986-12-01T23:59:59.000Z

223

THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION  

SciTech Connect (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

M. G. McKellar; G. L. Hawkes; J. E. O'Brien

2008-11-01T23:59:59.000Z

224

TOPICAL PAPER Potential Synergies and Challenges in Refining Cellulosic Biomass  

E-Print Network [OSTI]

TOPICAL PAPER Potential Synergies and Challenges in Refining Cellulosic Biomass to Fuels, Chemicals that can reduce greenhouse gas emissions, enhance energy security, improve the economy, dispose of such products, and sugar costs are predicted to drop with plant size as a result of economies of scale

California at Riverside, University of

225

Biothermal gasification of biomass  

SciTech Connect (OSTI)

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

226

Ohio Biomass Energy Program (Ohio)  

Broader source: Energy.gov [DOE]

Ohio is one of seven states participating in the Great Lakes Regional Biomass Energy Program which was established in 1983. The Regional Program is administered by the Council of Great Lakes...

227

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission

228

Biomass Supply for a Bioenergy  

E-Print Network [OSTI]

Resource assessment – do we have enough biomass? Techno-economic analysis – can biofuels be produced at competitive prices? • Integrated biorefineries – what is being funded at DOE and what are future plans?

Hydrocarbon-based Biofuels; Zia Haq

2012-01-01T23:59:59.000Z

229

Washington State biomass data book  

SciTech Connect (OSTI)

This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

Deshaye, J.A.; Kerstetter, J.D.

1991-07-01T23:59:59.000Z

230

HYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION  

E-Print Network [OSTI]

biomass, such as peanut shells, for urban transportation. The process involves pyrolysis of the biomassHYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION Collaborating Project Team Y. Yeboah (PI) and K and liquid fuels) · Potential sources of hydrogen include biomass, natural gas and other fossil fuels. #12

231

Cadmium Biosorption Rate in Protonated Sargassum Biomass  

E-Print Network [OSTI]

Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

Volesky, Bohumil

232

Vanadium catalysts break down biomass for fuels  

E-Print Network [OSTI]

- 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

233

Biomass Surface Characterization Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

Not Available

2012-04-01T23:59:59.000Z

234

November 2011 Competition for biomass among  

E-Print Network [OSTI]

remain high, limiting the development of national or even regional markets for biomass feedstocks. We

Noble, James S.

235

Global (International) Energy Policy and Biomass  

SciTech Connect (OSTI)

Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

Overend, R. P.

2004-01-01T23:59:59.000Z

236

Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

237

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network [OSTI]

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

238

Energy-Efficient Cooking for Winter | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUpDrain-WaterDepartment of EnergyCooking for

239

List of Commercial Cooking Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) JumpEventBoilersCeilingClothesCooking

240

Cook County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | OpenMinor PermitControlling StructuresConverse29.Cook

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cooke County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | OpenMinor PermitControllingCook, Minnesota: Energy3

242

Pantex firefighters cook it up | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. StevenPanoramicfirefighters cook it up |

243

McCook Public Power District | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis aMaury County,Energy InformationMcCook

244

Anderson-Cook wins William G. Hunter Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| DepartmentInformationAnderson-Cook

245

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current… (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

246

Modeling the coupled effects of heat transfer. thermochemistry, and kinetics during biomass torrefaction  

E-Print Network [OSTI]

Torrefaction is a thermal pretreatment process which improves the energy density, storage, grinding, and handling characteristics of raw biomass. Research efforts to date have focused on empirical measurements of the fuel ...

Bates, Richard Burton

2012-01-01T23:59:59.000Z

247

Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding  

E-Print Network [OSTI]

Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding, material microstructure and properties in friction stir welding welds of AA5083 (a non welding, Johnson-Cook material model 1. Introduction In this study, an attempt is made to modify

Grujicic, Mica

248

INFLUENCE OF HYDROTHERMAL TREATMENT ON RHEOLOGICAL AND COOKING CHARACTERISTICS OF FRESH EGG PASTA  

E-Print Network [OSTI]

0 INFLUENCE OF HYDROTHERMAL TREATMENT ON RHEOLOGICAL AND COOKING CHARACTERISTICS OF FRESH EGG PASTA@univ-lr.fr Keywords: D.I.C. Hydrothermal treatment; Fresh egg pasta; Mechanical properties; Apparent density; Cooking (2008) 283­291" DOI : 10.1016/j.jcs.2007.04.014 #12;1 Abstract. The effect of D.I.C. processing

Paris-Sud XI, Université de

249

The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative  

SciTech Connect (OSTI)

The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

2009-03-31T23:59:59.000Z

250

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

251

A Review on Biomass Torrefaction Process and Product Properties  

SciTech Connect (OSTI)

Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

2011-08-01T23:59:59.000Z

252

Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

253

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

254

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

255

LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)  

E-Print Network [OSTI]

0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

Figueroa, Carlos

2012-01-01T23:59:59.000Z

256

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

257

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

for the same quantity of biomass. Finally, the distanceto ?nd the quantity of hydrogen from biomass that is likelyhow the quantity of hydrogen available from biomass varies

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

258

Biomass Resources Overview and Perspectives on Best Fits for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass resources overview and...

259

348 P U R S U I T A N D P R O M O T I O N O F S C I E N C E ndia is endowed with abundant sunlight,  

E-Print Network [OSTI]

energy technologies which include improved cooking stoves, biogas plants, biomass gasifiers, solar systems/devices such as biogas plants, improved wood stoves, wind pumps, biomass gasifiers, solar cookers.2 million family size biogas plants, 3400 community/institutional biogas plants, 33.4 million improved cook

Srinivasan, N.

260

Carbonic Acid Pretreatment of Biomass  

SciTech Connect (OSTI)

This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

2003-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass and Coal  

SciTech Connect (OSTI)

Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/cofiring of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550oC for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300oC and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300oC lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300oC is probably sufficient to improve grindability and retain energy value.

Wang, Ping; Howard, Bret; Hedges, Sheila; Morreale, Bryan; Van Essendelft, Dirk; Berry, David

2013-10-29T23:59:59.000Z

262

Issues in Value-Added Products from Biomass  

SciTech Connect (OSTI)

While biomass conversion to energy products has been the primary focus of most development efforts over the past 30 years, process development for chemical products is an area of increasing effort more recently. Although the fuels market is likely to allow the largest impact for renewable resources in the world economy, chemical products can also be more than just niche market applications. However, the specific chemical processing required for refined chemical products requires improved chemical handling methods for separations and purifications, as well as improved catalyst systems. Development of these unit operations has lagged behind the process research focused on the finished products. This paper will describe some of the critical processing issues that need to be addressed to allow biomass feedstocks to make a real impact in the chemicals market. The paper will also describe some of the process research which has been performed or is now underway in our laboratory and others'. Areas to be discussed include biomass component separation, catalyst development for aqueous processing, and trace component effects in catalytic processing of biomass feedstocks.

Elliott, Douglas C.

2001-11-01T23:59:59.000Z

263

Improved vortex reactor system  

DOE Patents [OSTI]

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

264

Treatment of biomass to obtain ethanol  

DOE Patents [OSTI]

Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

2011-08-16T23:59:59.000Z

265

Biomass Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

266

Biomass Feedstock Composition and Property Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

267

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

268

Biomass Equipment and Materials Compensating Tax Deduction  

Broader source: Energy.gov [DOE]

In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

269

Conversion of Waste Biomass into Useful Products  

E-Print Network [OSTI]

Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

Holtzapple, M.

270

Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods  

SciTech Connect (OSTI)

Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

Lunden, Melissa M.; Delp, William W.

2014-06-05T23:59:59.000Z

271

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

SciTech Connect (OSTI)

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

272

Biomass energy systems program summary  

SciTech Connect (OSTI)

Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

None

1980-07-01T23:59:59.000Z

273

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-10-01T23:59:59.000Z

274

Biomass from Combined Backseatter Modeling  

E-Print Network [OSTI]

and SAR back- scatter. In this article we discuss' the use of models to help develop a relationship to an airbomw SAR (AIB- SAB) image over a fi?rested area in Maine. A relationship derived totall!l from model results was fi?und to undervs- timate biomass. Calibrating the modeled backscatter with limited AIRSAB

Weishampel, John F.

275

Dairy Biomass as a Renewable Fuel Source  

E-Print Network [OSTI]

biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

2008-03-19T23:59:59.000Z

276

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-07-01T23:59:59.000Z

277

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network [OSTI]

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

278

Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States  

E-Print Network [OSTI]

Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

Gray, Matthew

279

4, 52015260, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

Paris-Sud XI, Université de

280

4, 707745, 2007 Proxies of biomass  

E-Print Network [OSTI]

BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biomass Gasification at The Evergreen State College  

E-Print Network [OSTI]

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

282

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

283

Thermodynamics of Energy Production from Biomass  

E-Print Network [OSTI]

Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

Patzek, Tadeusz W.

284

SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS  

E-Print Network [OSTI]

373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial Biomass remains a key energy source for several billion people living in developing countries, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy

Kammen, Daniel M.

285

Fermentable sugars by chemical hydrolysis of biomass  

E-Print Network [OSTI]

Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

Raines, Ronald T.

286

Energie-Cits 2001 BIOMASS -WOOD  

E-Print Network [OSTI]

Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

287

Woody Biomass Logistics Robert Keefe1  

E-Print Network [OSTI]

14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

288

5, 1045510516, 2005 A review of biomass  

E-Print Network [OSTI]

ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

289

4, 51355200, 2004 A review of biomass  

E-Print Network [OSTI]

ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

Paris-Sud XI, Université de

290

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network [OSTI]

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

291

Original article Micronutrients in biomass fractions  

E-Print Network [OSTI]

Original article Micronutrients in biomass fractions of holm oak, beech and fir forests biomass fractions in individual monospecific stands of holm oak (Quercus ilex L), beech (Fagus sylvatica L in different biomass fractions of the holm oak forest studied. This can be related to the low soil pH values

Boyer, Edmond

292

Gasification reactivities of solid biomass fuels  

SciTech Connect (OSTI)

The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

Moilanen, A.; Kurkela, E.

1995-12-31T23:59:59.000Z

293

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

Unknown

2002-12-31T23:59:59.000Z

294

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

Unknown

2001-07-01T23:59:59.000Z

295

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

Francis S. Lau

2003-09-01T23:59:59.000Z

296

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

hydrogen from dry biomass feedstocks (i.e. straws, stovers,be produced from the wet biomass feedstocks (manures, urban

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

297

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect (OSTI)

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

298

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network [OSTI]

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

299

Selection and performance of Materials for Biomass Gasifiers  

SciTech Connect (OSTI)

Production of syngas through gasification or pyrolysis offers one of the more efficient routes for utilization of biomass resources; however, the containment structures used for many of these thermochemical processes are exposed to severe environments that limit their longevity and reliability. Studies have been conducted for three of these systems, and superior alternative materials have been identified. Improved materials will be of even greater importance in proposed gasification systems, many of which will generate even more extreme operating conditions.

Keiser, James R [ORNL] [ORNL; Hemrick, James Gordon [ORNL] [ORNL; Meisner, Roberta A [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)] [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Blau, Peter J [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Pint, Bruce A [ORNL] [ORNL

2010-01-01T23:59:59.000Z

300

2011 Biomass Program Platform Peer Review: Feedstock | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) | DepartmentFeedstock 2011 Biomass

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners  

E-Print Network [OSTI]

, CA 94720 2 Stanford University Palo Alto, CA June 2011, Berkeley, CA 94720 2 Stanford University, Palo Alto, CA * Corresponding email: ablobscheid@lbl.gov SUMMARYiPage | i Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking

302

Conjugated linoleic acid reduces lipid oxidation in irradiated, cooked ground beef patties  

E-Print Network [OSTI]

This study was conducted to examine the antioxidative effect of conjugated linoleic acid (CLA) in irradiated, cooked ground beef patties. The hypothesis was that CLA would be retained during irradiation and would reduce lipid oxidation...

Chae, Sung Hee

2007-09-17T23:59:59.000Z

303

Orange Sweet Potato Brie Tartlet 2.5 # cooked diced Sweet potato  

E-Print Network [OSTI]

Orange Sweet Potato Brie Tartlet 2.5 # cooked diced Sweet potato 2 cups orange marmalade 1 cup potato. Spoon into phyllo tart shells. Top with Brie cheese and bake in oven for 10 min at 350 deg oven

Kim, Duck O.

304

2014-02-06 Issuance: Energy Conservation Standards for Residential Conventional Cooking Products; Request for Information  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register request for information and notice of document availability regarding energy conservation standards for residential conventional cooking products, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 6, 2014.

305

Reading Cook-Lynn: Anti-Colonialism, Cultural Resistance, and Native Empowerment  

E-Print Network [OSTI]

This work is an intellectual history and cultural study of Cook-Lynn's scholarship and other writings. Most scholars who discuss United States imperialism often prioritize its overseas activities and reduce the colonization ...

Afagla, Kodjo Ruben

2010-12-17T23:59:59.000Z

306

Hydrogen from biomass: state of the art and research challenges  

SciTech Connect (OSTI)

The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of appropriate feedstocks and deployment scenarios that match hydrogen to the local markets. Co-production opportunities are of particular interest for near-term deployment since multiple products improve the economics; however, co-product development is not covered in this report. Biomass has the potential to accelerate the realization of hydrogen as a major fuel of the future. Since biomass is renewable and consumes atmospheric CO2 during growth, it can have a small net CO2 impact compared to fossil fuels. However, hydrogen from biomass has major challenges. There are no completed technology demonstrations. The yield of hydrogen is low from biomass since the hydrogen content in biomass is low to being with (approximately 6% versus 25% for methane) and the energy content is low due to the 40% oxygen content of biomass. Since over half of the hydrogen from biomass comes from splitting water in the steam reforming reaction, the energy content of the feedstock is an inherent limitation of the process . The low yield of hydrogen on a weight basis is misleading since the energy conversion efficiency is high. However, the cost for growing, harvesting, and transporting biomass is high. Thus even with reasonable energy efficiencies, it is not presently economically competitive with natural gas steam reforming for stand-alone hydrogen without the advantage of high-value co-products. Additionally, as with all sources of hydrogen, production from biomass will require appropriate hydrogen storage and utilization systems to be developed and deployed. The report also looked at promising areas for further research and development. The major areas for R,D and D are: feedstock preparation and feeding; gasification gas conditioning; system integration; modular systems development; valuable co-product integration; and larger-scale demonstrations. These are in addition to the challenges for any hydrogen process in storage and utilization technologies.

Milne, Thomas A.; Elam, Carolyn C.; Evans, Robert J.

2002-02-01T23:59:59.000Z

307

Development of a Commerical Enzyme System for Lignocellulosic Biomass Saccharification  

SciTech Connect (OSTI)

Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

Manoj Kumar, PhD

2011-02-14T23:59:59.000Z

308

Factors affecting the cooking and extrusion properties of sorghum for noodle production  

E-Print Network [OSTI]

Sorghum grain. Flour Noodles 10 13 15 18 18 18 18 23 23 26 26 26 27 CHAPTER TABLE OF CONTENTS (Continued) Chemical Analysis Physico-Chemical Analysis. Page Cooking Quality Tests Sensory Evaluation Stati. stical Analysis. 29 30 30... IV FACTORS AFFECTING SORGHUM NOODLE PRODUCTION. . . . 31 Raw Materials Noodle Flour Preparation. 31 31 Sorghum Noodle Preparation: Preliminary Trials 36 Standardization of Flour:Water Ratio. 36 Standardization of Dough Ball Cooking Time. 36...

Lekalake, Rosemary Ikalafeng

1993-01-01T23:59:59.000Z

309

Scanning electron microscope study of connective tissue in raw and cooked muscles  

E-Print Network [OSTI]

in the cooked psoas is another indication that less perimysium is present in the psoas major. These factors indicate why connective tissue is probably responsible for the difference in tenderness of the biceps and psoas muscles. 22 Indented surface...SCANNING ELECTRON MICROSCOPE STUDY OF CONNECTIVE TISSUE IN RAW AND COOKED MUSCLES A Thesis MARY LOU PERCY Submitted to the Graduate College of Texas Alii University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE...

Percy, Mary Lou

1976-01-01T23:59:59.000Z

310

Development and evaluation of corn cooking procedures for the production of tortillas  

E-Print Network [OSTI]

each cooking treatment. The texture of the tortillas was then measured by the Instron. Extent of gelatinization via enzyme susceptibility was negatively correlated with the Instron grain shear values. Amylograph peaks and particle size determination... Samples of Corn. Chemical Analysis. Preparation of Nixtamal Preparation of Masa. Preparation of Tortillas Evaluation of Particle Size Measurement of Gelatinization. Evaluation of Optimum Cook Time. Color Measurement and Subjective Tests Evaluation...

Des Rosiers, Mary Candace

1979-01-01T23:59:59.000Z

311

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-09-30T23:59:59.000Z

312

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of 2002. GTI worked with DOE to develop the Statement of Work for the supplemental activities. DOE granted an interim extension of the project until the end of January 2002 to complete the contract paperwork. GTI worked with Calla Energy to develop request for continued funding to proceed with Phase II, submitted to DOE on November 1, 2001.

Unknown

2001-12-31T23:59:59.000Z

313

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-06-30T23:59:59.000Z

314

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

Unknown

2002-03-31T23:59:59.000Z

315

Biomass Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas and Fuel Cells2008:Biomass

316

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2012-04-17T23:59:59.000Z

317

Biomass Energy Data Book: Edition 2  

SciTech Connect (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

2009-12-01T23:59:59.000Z

318

Biomass Energy Data Book: Edition 4  

SciTech Connect (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

2011-12-01T23:59:59.000Z

319

Biomass Energy Data Book: Edition 3  

SciTech Connect (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

2010-12-01T23:59:59.000Z

320

Biomass Energy Data Book: Edition 1  

SciTech Connect (OSTI)

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biomass Energy Data Book, 2011, Edition 4  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

Wright, L.; Boundy, B.; Diegel, S.W.; Davis, S.C.

322

Comparing synthetic aperture radar and LiDAR for above-ground biomass estimation in Glen Affric, Scotland   

E-Print Network [OSTI]

Quantifying above-ground biomass (AGB) and carbon sequestration has been a significant focus of attention within the UNFCCC and Kyoto Protocol for improvement of national carbon accounting systems (IPCC, 2007; UNFCCC, ...

Tan, Chue Poh

2012-06-25T23:59:59.000Z

323

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected fromOne

324

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to: navigation,APNAAPS Biomass

325

One-Pot Methamphetamine Cooks Pose New Danger Law enforcement in Southern Illinois are reporting that they are finding full blown methamphetamine cooks taking place in Coleman  

E-Print Network [OSTI]

that they are finding full blown methamphetamine cooks taking place in Coleman fuel cans. The cans are testing positive in doing this. This method began appearing late last spring in a few states (Washington, Arkansas enforcement is due to the mixing of all of the ingredients in the one container. The concentration of products

US Army Corps of Engineers

326

Biomass Resource Allocation among Competing End Uses  

SciTech Connect (OSTI)

The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

2012-05-01T23:59:59.000Z

327

Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes  

E-Print Network [OSTI]

Biomass feedstocks .Materials and Methods Biomass feedstocks Two kinds ofthe screening of biomass feedstocks. In this study, a one-

Gao, Xiadi

2013-01-01T23:59:59.000Z

328

Biomass Compositional Analysis Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

Not Available

2014-07-01T23:59:59.000Z

329

Estimates of US biomass energy consumption 1992  

SciTech Connect (OSTI)

This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

Not Available

1994-05-06T23:59:59.000Z

330

Bayport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector BiomassBayport Biomass

331

Biomass 2014 Breakout Speaker Biographies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09 ConferenceBiomass

332

Determination of Extractives in Biomass: Laboratory Analytical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extractives in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NRELTP-510-42619...

333

NREL: Biomass Research - Ryan M. Ness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ryan M. Ness Ryan Ness is a research technician with the National Bioenergy Center Biomass Analysis Group at NREL. Ryan has been with NREL since 2007. Ryan's primary...

334

SSF Experimental Protocols -- Lignocellulosic Biomass Hydrolysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SSF Experimental Protocols - Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedure (LAP) Issue Date: 10302001 N. Dowe and J. McMillan Technical...

335

NREL: Biomass Research - Thermochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

336

Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enzymatic Saccharification of NRELTP-510-42629 Lignocellulosic Biomass March 2008 Laboratory Analytical Procedure (LAP) Issue Date: 3212008 M. Selig, N. Weiss, and Y. Ji NREL is...

337

NREL: Biomass Research - Courtney E. Payne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

338

Biomass Indirect Liquefaction Strategy Workshop: Summary Report...  

Broader source: Energy.gov (indexed) [DOE]

Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies...

339

NREL: Biomass Research - Eric P. Knoshaug  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on...

340

NREL: Biomass Research - Gregg T. Beckham  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bonds. An illustration of lignin is shown below. In current selective routes for biomass utilization, lignin is typically burned for heat and power. However, the energy and...

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL: Biomass Research - Justin B. Sluiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin...

342

NREL: Biomass Research - Mary Ann Franden  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in a better understanding of holoenzyme structure and function. Research Interests Biomass conversion to biofuels Metabolic engineering of Zymomonas, Lactobacillus, E. coli,...

343

NREL: Biomass Research - Jonathan J. Stickel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the leader (Principal Investigator) for the Mechanistic Process Modeling task of the Biomass Program. This work involves fundamental and applied research of the fluid mechanics,...

344

Biomass IBR Fact Sheet: ICM, Inc.  

Broader source: Energy.gov (indexed) [DOE]

technology coupled with a robust C5C6 co-fermenting organism to refine cellulosic biomass into fuel ethanol and co- products. ICM's process addresses pretreatment, hydrolysis,...

345

NREL: Biomass Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effort to economically produce drop-in gasoline, diesel and jet fuel from non-food biomass feedstocks, the federal laboratory announced today. November 26, 2012 NREL...

346

NREL: Biomass Research - Mark R. Nimlos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

347

Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

348

NREL: Biomass Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. April 26, 2013 Combining Strategies Speeds the Work...

349

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

use biomass, waste, or renewable resources (including wind, and  emerging  renewable  resource  technologies.   new,  and  emerging  renewable  resources.   The  goal  of 

Cattolica, Robert

2009-01-01T23:59:59.000Z

350

Short-Rotation Woody Biomass Sustainability  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Short-Rotation Woody Biomass Sustainability Natalie A. Griffiths, Oak Ridge National Laboratory C. Rhett Jackson, University of Georgia Kellie Vache, Oregon State University...

351

EERC Center for Biomass Utilization 2006  

SciTech Connect (OSTI)

The Center for Biomass Utilization (CBU�®) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

Christopher J. Zygarlicke; John P. Hurley; Ted R. Aulich; Bruce C. Folkedahl; Joshua R. Strege; Nikhil Patel; Richard E. Shockey

2009-05-27T23:59:59.000Z

352

Biomass IBR Fact Sheet: Haldor Topsoe, Inc.  

Broader source: Energy.gov [DOE]

Haldor Topsoe, Inc. will integrate the Carbona Gasification and the Haldor Topsoe TIGAS (Topsoe Integrated Gasoline Synthesis) proprietary processes to produce renewable gasoline from woody biomass.

353

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Figure 1: West Biofuels Biomass Gasification to Power process will utilize  gasification technology provided by is  pioneering the gasification technology that has been 

Cattolica, Robert

2009-01-01T23:59:59.000Z

354

NREL: Biomass Research - Michelle L. Reed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Technologies (BAT) team. She provides compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic...

355

Low Solids Enzymatic Saccharification of Lignocellulosic Biomass...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Solids Enzymatic Saccharification of Lignocellulosic Biomass Laboratory Analytical Procedure (LAP) Issue Date: February 4, 2015 M. G. Resch, J. O. Baker, and S. R. Decker...

356

Decentralised energy systems based on biomass.  

E-Print Network [OSTI]

??Replacing fossil fuels with renewable energy sources is recognised as an important measure to mitigate climate change. Residual biomass from agriculture and forestry and short-rotation… (more)

Kimming, Marie

2015-01-01T23:59:59.000Z

357

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network [OSTI]

of the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsof the Pyrolysis of Biomass. 1. Fundamentals. Energy Fuelsfor analytical pyrolysis. 7.5.2 Biomass analysis All biomass

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

358

Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006  

SciTech Connect (OSTI)

Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

Not Available

2006-10-01T23:59:59.000Z

359

Evaluate Supply and Recovery of Woody Biomass for Energy  

E-Print Network [OSTI]

Biomass Recovery DataContrasting Woody Biomass Recovery Data Forest Biomass Supply in the Southeastern4/11/2011 1 Evaluate Supply and Recovery of Woody Biomass for Energy Production from Natural. Other studies of biomass supply have supply have assumedassumed a technical recovery rate

Gray, Matthew

360

A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality  

E-Print Network [OSTI]

F was also examined. Results of the analysis showed that the allometric power coefficient b for northern rock sole Lepidopsetta polyxystra in the eastern Bering Sea. A comparison of biomass-based LCA population biomass estimates with northern rock sole research survey biomass estimates showed good agreement

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large Wildfires  

E-Print Network [OSTI]

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large: Global Biomass Burning & Carbon Emissions Standard Emissions Inventories: Burned Area & GFED recently daily. Fire occurrenceoccurrence Roy et al.Roy et al. Carbon emissions (C) = burned area . fuel

362

A Review on Biomass Torrefaction Process and Product Properties for Energy Applications  

SciTech Connect (OSTI)

Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

2011-10-01T23:59:59.000Z

363

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-18T23:59:59.000Z

364

Engineered plant biomass feedstock particles  

DOE Patents [OSTI]

A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

2011-10-11T23:59:59.000Z

365

Bamboo: An Overlooked Biomass Resource?  

SciTech Connect (OSTI)

Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

Scurlock, J.M.O.

2000-02-01T23:59:59.000Z

366

Biomass Logistics and Particle Technology Group Purdue Improved Drying  

E-Print Network [OSTI]

to maintain quality of grain in storage. n Farmers primarily depended on open air solar drying after logistics Grain & pest management Pre-Harvest losses from: Insect, molds and birds Harvesting & handling of PICS, technology Open Air Solar Drying of Maize in Ejura Market, Ashanti Region, Ghana #12;4 Chronology

Ginzel, Matthew

367

Heterogeneous Catalyst for Improved Selectivity of Biomass-Derived  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cellHeat TransferHelpingEnergyHermanMolecules -

368

Ethanol Tolerant Yeast for Improved Production of Ethanol from Biomass -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton StanatAccepted forEstimation Weekly

369

Los Alamos improves biomass-to-fuel process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las Conchas recoveryNuclear energy innovation

370

Los Alamos improves biomass-to-fuel process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las Conchas recoveryNuclear energy innovationimproves

371

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip  

E-Print Network [OSTI]

Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

372

The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds in biological leachate treatment  

E-Print Network [OSTI]

The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds that microorganisms must satisfy their maintenance energy requirements prior to synthesizing new biomass, a set on the excess biomass production. Decreasing the supply of substrate per unit biomass resulted in gradual

Bae, Jin-Woo

373

Improved vortex reactor system  

DOE Patents [OSTI]

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

374

Researchers at the Biomass Energy Center  

E-Print Network [OSTI]

into fuels and other energy products. Like petroleum and coal, biomass contains carbon taken fromHARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David of 2005, the term "energy independence" suddenly held new urgency. Finding the energy sources

Lee, Dongwon

375

Fluidizable Catalysts for Hydrogen Production from Biomass  

E-Print Network [OSTI]

Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

376

Successful biomass (wood pellets ) implementation in  

E-Print Network [OSTI]

Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local of primary energy in Estonia ! Wood fuels production ! Pellet firing projects in Estonia ­ SIDA Demo East Production of wood fuels in Estonia in 2002 Regional Energy Centres in Estonia Wood pellets production

377

Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass  

E-Print Network [OSTI]

2.3. Effects of low pH on biomass solids……………………………. ………………of effects of low pH on biomass……………………………. ….25 2.4. Low pHof low pH biomass reactions………………………. ……………..46

McKenzie, Heather Lorelei

2012-01-01T23:59:59.000Z

378

High Biomass Low Export Regimes in the Southern Ocean  

E-Print Network [OSTI]

of enhanced carbon biomass and export at 55 degrees S duringHigh Biomass Low Export Regimes in the Southern Ocean PhoebeSurface waters with high biomass levels and high proportion

Lam, Phoebe J.; Bishop, James K.B.

2006-01-01T23:59:59.000Z

379

Original article Biomass, litterfall and nutrient content in  

E-Print Network [OSTI]

Original article Biomass, litterfall and nutrient content in Castanea sativa coppice stands November 1995) Summary - Aboveground biomass and nutrient content, litterfall and nutrient return) and Catania (Italy). Best regression equations for the aboveground biomass were obtained by applying the allo

Paris-Sud XI, Université de

380

Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction  

E-Print Network [OSTI]

southern hardwoods. Biomass Bioenerg. 2006 Oct;30(10):855-of corn stover. Biomass Bioenerg. 2000;18(3):189- 99.and switchgrass. Biomass Bioenerg. 2010 Dec;34(12):1885-95.

Li, Hongjia

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Original article Belowground biomass seasonal variation in two  

E-Print Network [OSTI]

Original article Belowground biomass seasonal variation in two Neotropical savannahs (Brazilian March 2001) Abstract ­ The belowground biomass of two types of ecosystems, frequently burned open by flotation and sieving. Belowground biomass showed significant seasonal variation, values being higher during

Paris-Sud XI, Université de

382

Hydrogen from Biomass Catalytic Reforming of Pyrolysis Vapors  

E-Print Network [OSTI]

kg H2/day) with catalyst attrition rates Biomass Feedstocks 6 CO2 +6 H2O C6 waste Issues: Biomass Availability and Costs Georgia Biomass Feedstock Supply 0 3 6 9 12 2000 2010 2020

383

Biomass/Clean Cities State Web Conference - Green Racing | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BiomassClean Cities State Web Conference - Green Racing BiomassClean Cities State Web Conference - Green Racing Transcript of the September 13 BiomassClean Cities Webinar on...

384

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

385

Bioconversion of waste biomass to useful products  

DOE Patents [OSTI]

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

386

Superheater Corrosion Produced By Biomass Fuels  

SciTech Connect (OSTI)

About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

Sharp, William (Sandy) [SharpConsultant] [SharpConsultant; Singbeil, Douglas [FPInnovations] [FPInnovations; Keiser, James R [ORNL] [ORNL

2012-01-01T23:59:59.000Z

387

Catalytic microwave torrefaction and pyrolysis of Douglas fir pellet to improve biofuel quality .  

E-Print Network [OSTI]

??The aims of this dissertation were to understand the effects of torrefaction as pretreatment on biomass pyrolysis and catalytic pyrolysis for improving biofuel quality, and… (more)

[No author

2012-01-01T23:59:59.000Z

388

For more information contact the Biomass Energy Centre, (01420) 526197 biomass.centre@forestry.gsi.gov.uk  

E-Print Network [OSTI]

For more information contact the Biomass Energy Centre, (01420) 526197 · biomass, but with effective management, a substantial quantity of wood is available from forestry which is not suitable suppliers are available on the Biomass Energy Centre website (www

389

Evaluation of antioxidative/antimicrobial potential of Oriental nutraceutical herb extracts in raw and cooked goat meat and beef products  

E-Print Network [OSTI]

to ground goat meat, and treated meat samples were aerobically stored at 4°C for 6 days, with or without cooking. Each herbal extract was also added to ground beef at 0.25% (w/w), with or without adding NaCl at 2% (w/w), and stored as raw and cooked patties...

Han, Jaejoon

2001-01-01T23:59:59.000Z

390

New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India  

E-Print Network [OSTI]

New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black; accepted 8 June 2004; published 30 July 2004. [1] The dominance of biofuel combustion emissions in the Indian region, and the inherently large uncertainty in biofuel use estimates based on cooking energy

Dickerson, Russell R.

391

cOiridered to replace test fishing at the mouth of ri ver~ in Cook Inlet to more  

E-Print Network [OSTI]

the department to order another ide sca nner for applica- tion in Cook Inl et and elsewhere in th e state. Thi and subsequentl y \\~ould be brought to Cook Inl et for u e in counting adu lt a lmon escapements. Based

392

UNLOCKING ANCIENT DIET: USING STARCH GRANULES IN FOOD RESIDUE FROM COOKING CERAMICS TO ANALYZE PRE-COLUMBIAN ERA CADDO DIET  

E-Print Network [OSTI]

This thesis examines the nature of food residues on sherds of ancient Caddoan ceramic cooking vessels from East Texas, which was the homeland of Caddoan peoples for more than 2,000 years. Interior surfaces of some ceramic cooking vessels retain...

Skrla, Amy

2011-04-28T23:59:59.000Z

393

Understanding the product distribution from biomass fast pyrolysis.  

E-Print Network [OSTI]

??Fast pyrolysis of biomass is an attractive route to transform solid biomass into a liquid bio-oil, which has been envisioned as a renewable substitute for… (more)

Patwardhan, Pushkaraj Ramchandra

2010-01-01T23:59:59.000Z

394

2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I:...

395

USDA and DOE Biomass Research And Development Technical Advisory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Research And Development Technical Advisory Committee Members USDA and DOE Biomass Research And Development Technical Advisory Committee Members January 15, 2008 - 10:23am...

396

Office of the Biomass Program Educational Opportunities in Bioenergy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Introduction...

397

Lignocellulosic Biomass to Ethanol Process Design and Economics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover Lignocellulosic Biomass to...

398

High Tonnage Forest Biomass Production Systems from Southern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations This...

399

Biomass 2014: Growing the Future Bioeconomy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy Bioenergy: America's Energy Future is a short documentary film showcasing examples of...

400

Ionic Liquid Pretreatment Process for Biomass Is Successfully...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale...

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Low-Emissions Burner Technology using Biomass-Derived Liquid...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that developed...

402

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

403

Reduction in biomass burning aerosol light absorption upon humidificat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

404

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

405

Recovery Act, Office of the Biomass Program,Funding Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

406

NREL: Biomass Research - Jack Ferrell, Ph.D.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analytical development for pyrolysis oil, and on kinetic and hydrodynamic modeling of biomass-to-biofuels processes. Research Interests Thermochemical conversion of biomass to...

407

EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...  

Broader source: Energy.gov (indexed) [DOE]

07: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens County, KS August 20, 2010 EIS-0407: Final...

408

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

409

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Results of an...

410

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

411

Exploring Hydrogen Generation from Biomass-Derived Sugar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce...

412

Crow Nation Students Participate in Algae Biomass Research Project...  

Broader source: Energy.gov (indexed) [DOE]

Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation...

413

Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and...

414

Department of Energy Recovery Act Investment in Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

415

High Tonnage Forest Biomass Production Systems from Southern...  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Review High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DE-EE0001036 S. Taylor (Auburn University), R. Rummer (USDA Forest...

416

Biomass Compositional Analysis: NIR Rapid Methods (Fact Sheet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at NREL use near-infrared spectroscopy to predict the composition of a variety of biomass types. Photo by Dennis Schroeder, NREL 26528 Biomass Compositional Analysis: NIR...

417

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

economic analysis of hydrogen production by gasi?cation of2005. Biomass to hydrogen production detailed design andof using biomass for hydrogen production, particularly with

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

418

Specific Effects of Fiber Size and Fiber Swelling on Biomass...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate...

419

Update of Hydrogen from Biomass - Determination of the Delivered...  

Office of Environmental Management (EM)

Update of Hydrogen from Biomass - Determination of the Delivered Cost of Hydrogen: Milestone Completion Report Update of Hydrogen from Biomass - Determination of the Delivered Cost...

420

High-Speed Pipeline Revs Up Biomass Analysis (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) have developed a new biomass evaluation process that opens up research avenues into understanding and manipulating biomass recalcitrance.

Not Available

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

USDA and DOE Award Biomass Research and Development Grants to...  

Broader source: Energy.gov (indexed) [DOE]

and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. For more information on DOE's Biomass Program,...

422

State Grid and Shenzhen Energy Group Biomass Engineering Technology...  

Open Energy Info (EERE)

Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre...

423

DOE Announces Webinars on Natural Gas for Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for...

424

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

Pressure on the Steam Gasification of Biomass," Departmentof Energy, Catalytic Steam Gasification of Biomass, 11 AprilII. DISCUSSION III. GASIFICATION/LIQUEFACTION DESIGN BASIS

Figueroa, C.

2012-01-01T23:59:59.000Z

425

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...  

Office of Environmental Management (EM)

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste...

426

Quarterly Biomass Program/Clean Cities State Web Conference:...  

Broader source: Energy.gov (indexed) [DOE]

feraci.pdf More Documents & Publications Quarterly Biomass ProgramClean Cities State Web Conference: May 6, 2010 Quarterly Biomass ProgramClean Cities State Web Conference: May...

427

Quarterly Biomass Program/Clean Cities States Web Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Presentation from the...

428

Effect of genotype on cooking and texture of corn for tortilla production  

E-Print Network [OSTI]

Cell to measure n1xtamal texture . . . Plunger (A) and Ottawa cell (C) to measure tortilla texture Page 13 17 Effect of cook1ng time on n1xtamal texture of corneous, 1ntermediate and floury hybrids (Linear model) Effect of cooking time... composition of corn on the average is: water, 13. 5K; protein, 10K; oil, 4%; carbohydrates 70. 7X; and ash, 1. 4X. The germ contains about 35% oil, 20K protein and 10% ash (Hopkins et al. , 1903; Katz et al. , 1974). Nixtamal Preparation Nethods...

Bedolla, Santiago

1980-01-01T23:59:59.000Z

429

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

430

Commercial demonstration of biomass gasification the Vermont project  

SciTech Connect (OSTI)

Thermal gasification of biomass for use in gas turbine combined cycle plants will improve efficiencies and reduce capital intensity in the forest and paper industry. One such technology has over 20,000 successful hours of operation at Battelle Columbus Labs (BCL) process research unit (PRU), including the first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification biomass. A commercial scale demo of the technology (rated at 200 dry tons per day) will be constructed and put into operation during the first quarter of 1997. The initial project phase will provide fuel gas to McNeil`s power boiler. A subsequent phase will utilize the fuel gas in a combustion gas turbine. The technology utilizes an extremely high throughput circulating fluid bed (CFB) gasifier in which biomass (which typically contains 85 percent to 90 percent volatiles) is fully devolatilized with hot sand from a CFB char combustor. The fuel gas is then cooled and conditioned by a conventional scrubbing system to remove particulate, condensable organics, ammonia and metal aerosols which could otherwise cause turbine emission and blade fouling problems. Alternate hot gas conditioning systems are also being developed for final gas clean-up. The fuel gas heating value is 450 to 500 Btus per standard cubic foot. A mid size gas turbine combined cycle plant utilizing the technology will have an approximate net cycle efficiency of 35-40 percent. This compares to a conventional biomass plant with an overall net cycle efficiency of 20-25 percent. Capital costs are expected to be low as the process operates at low pressures without the requirement of an oxygen plant.

Farris, S.G.; Weeks, S.T. [Ruture Energy Resources Corp., Atlanta, GA (United States)

1996-12-31T23:59:59.000Z

431

Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks  

SciTech Connect (OSTI)

Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

2009-06-01T23:59:59.000Z

432

Sustainable Sourcing of Biomass Feedstock  

Broader source: Energy.gov [DOE]

Opening Plenary Session: Bioenergy Sustainability—Charting the Path toward a Viable Future Al Lucier, Senior Vice President, National Council for Air and Stream Improvement, Inc.

433

Biomass Gasification Research Facility Final Report  

SciTech Connect (OSTI)

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature of the vapor phase components of the conveyed sample gas. In addition, to minimize adsorption or chemical changes in the syngas components prior to analysis, the temperature of the transported stream is maintained as hot as is practical, while still being cooled only as much necessary prior to entering the analyzer(s). The successful transport of the sample gas stream to the analyzer(s) is accomplished through the managed combination of four basic gas conditioning methods that are applied as specifically called for by the process conditions, the gas constituent concentrations, the analyzer requirements, and the objectives of the syngas analyses: 1) removing entrained particulate matter from the sample stream; 2) maintaining the temperature of the sample gas stream; 3) lowering the pressure of the sample gas stream to decrease the vapor pressures of all the component vapor species in the sample stream; and 4) diluting the gas stream with a metered, inert gas, such as nitrogen. Proof-of-concept field demonstrations of the sampling approach were conducted for gasification process streams from a black liquor gasifier, and from the gasification of biomass and coal feedstocks at GTI’s Flex-Fuel Test Facility. In addition to the descriptions and data included in this Final Report, GTI produced a Special Topical Report, Design and Protocol for Monitoring Gaseous Species in Thermochemical Processes, that explains and describes in detail the objectives, principles, design, hardware, installation, operation and representative data produced during this successful developmental effort. Although the specific analyzers used under Cooperative Agreement DE-FC36-02GO12024 were referenced in the Topical Report and this Final Report, the sampling interface design they present is generic enough to adapt to other analyzers that may be more appropriate to alternate process streams or facilities.

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30T23:59:59.000Z

434

Processing Cost Analysis for Biomass Feedstocks  

SciTech Connect (OSTI)

The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the years the industry has shown a good deal of ingenuity and, as a result, has developed several cost effective methods of processing and handling wood. SMB systems usually cannot afford to perform much onsite processing and therefore usually purchase fuels processed to specification. Owners of larger systems try to minimize onsite processing to minimize processing costs. Whole truck dumpers are expensive, but allow for faster and easier unloading, which reduces labor costs and charges by the haulers. Storage costs are a major factor in overall costs, thus the amount of fuel reserve is an important consideration. Silos and bins are relatively expensive compared to open piles used for larger facilities, but may be required depending on space available, wood characteristics, and amount of wood to be stored. For larger systems, a front-end loader has a lot of flexibility in use and is an essential piece of equipment for moving material. Few opportunities appear to exist for improving the cost effectiveness of these systems.

Badger, P.C.

2002-11-20T23:59:59.000Z

435

Co-processing of agricultural and biomass waste with coal  

SciTech Connect (OSTI)

A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng [West Virginia Univ., Morgantown, WV (United States)] [and others

1995-12-31T23:59:59.000Z

436

EERC Center for Biomass Utilization 2005  

SciTech Connect (OSTI)

Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

2008-07-28T23:59:59.000Z

437

AUTOMOTIVE POWERTRAIN CONTROL A SURVEY Jeffrey A. Cook, Jing Sun, Julia H. Buckland, Ilya V. Kolmanovsky,  

E-Print Network [OSTI]

AUTOMOTIVE POWERTRAIN CONTROL A SURVEY Jeffrey A. Cook, Jing Sun, Julia H. Buckland, Ilya V, Michigan, 48109, U.S.A. (e-mail: jingsun@umich.edu). AUTOMOTIVE POWERTRAIN CONTROL A SURVEY Jeffrey A This paper surveys recent and historical publications on automotive powertrain control. Control

Peng, Huei

438

Energy Outlier Detection in Smart Environments Chao Chen and Diane Cook  

E-Print Network [OSTI]

Energy Outlier Detection in Smart Environments Chao Chen and Diane Cook School of Electrical series energy data into a symbol se- quence, and then extend a suffix tree data structure as an efficient into a symbol sequence, then discovers energy patterns using a suffix tree (Gusfield 1997). The results

Cook, Diane J.

439

Keeping the Intelligent Environment Resident in the Loop Parisa Rashidi and Diane J. Cook*  

E-Print Network [OSTI]

Keeping the Intelligent Environment Resident in the Loop Parisa Rashidi and Diane J. Cook* *School will become part of our everyday environments. However, many of these technologies are brittle and do and requests. 1 Introduction Recently there has been extensive research to develop smart environments

Cook, Diane J.

440

The CADE14 ATP System Competition Dep't of Computer Science, James Cook University  

E-Print Network [OSTI]

The CADE­14 ATP System Competition Dep't of Computer Science, James Cook University Technical of the CADE­14 ATP System Competition (CASC­14). 1 Introduction The CADE­14 ATP System Competition (CASC­14, Australia. CASC­14 was the second CADE ATP system competition, following the successful competition at CADE

Sutcliffe, Geoff

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cooking with Healthier Fats and Oils When you do use fats  

E-Print Network [OSTI]

Cooking with Healthier Fats and Oils When you do use fats and oils, choose those with less Oil Use this chart to help you choose products with less saturated fat. Look for the to findLessOfteneOftenChooseMor Canola Oil Safflower Oil Sesame Oil Sunflower Oil Corn Oil Olive Oil Soybean Oil Margarine (tub) Peanut

Bandettini, Peter A.

442

Intelligibility-enhancing speech modifications: the Hurricane Challenge Martin Cooke1,2  

E-Print Network [OSTI]

Intelligibility-enhancing speech modifications: the Hurricane Challenge Martin Cooke1,2 , Catherine to enhance speech intelligibility. Eighteen systems operating on a common data set were subjected to ex interest in tackling what has been termed the `near-end' speech enhancement problem [7­15]. Consequently

Edinburgh, University of

443

A Timed Semantics of Orc Ian Wehrman, David Kitchin, William R. Cook, Jayadev Misra  

E-Print Network [OSTI]

A Timed Semantics of Orc Ian Wehrman, David Kitchin, William R. Cook, Jayadev Misra The University of Texas at Austin Abstract Orc is a kernel language for structured concurrent programming. Orc provides support sequential and concurrent execution, and concurrent execution with blocking and termination. Orc

Cook, William R.

444

Workflow Patterns in Orc William R. Cook, Sourabh Patwardhan, and Jayadev Misra  

E-Print Network [OSTI]

Workflow Patterns in Orc William R. Cook, Sourabh Patwardhan, and Jayadev Misra Department systems and models. In this paper we provide implementations of the workflow patterns in Orc, a new process calculus for orchestrating wide-area computations. A key feature of the Orc implementations

Cook, William R.

445

The Orc Programming Language David Kitchin, Adrian Quark, William Cook, Jayadev Misra  

E-Print Network [OSTI]

The Orc Programming Language David Kitchin, Adrian Quark, William Cook, Jayadev Misra The University of Texas at Austin Abstract. Orc was originally presented as a process calculus. It has now practical concurrent programming problems are easily solved in Orc. 1 Introduction Concurrency has become

Cook, William R.

446

Scanning Electron Microscopy of Squid, Loligo peale;: Raw, Cooked, and Frozen Mantle  

E-Print Network [OSTI]

OTWELL and GEORGE G. GIDDINGS W. Steven Otwell is with the Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611. George G. Gid- dings is with the Fundacion Chile, Avda Santa, but cooking caused gross distortions in all mantle tissues. North Carolina, and cleaned for use (skin, head

447

Comparative tenderness of beef fajitas and beef steaks as influenced by beef subprimal and cooking method  

E-Print Network [OSTI]

A comparative study of the variation between and within muscles of different subprimals as affected by cook method was conducted for both beef fajita and steak sandwich products. In Phase 1, eighteen subprimals were fabricated into 6 mm wide x 15 mm...

Raszkowski, Lara Marie

1996-01-01T23:59:59.000Z

448

X-ray absorption spectroscopy of biomimetic dye molecules for solar cells Peter L. Cook,1  

E-Print Network [OSTI]

X-ray absorption spectroscopy of biomimetic dye molecules for solar cells Peter L. Cook,1 Xiaosong November 2009 Dye-sensitized solar cells are potentially inexpensive alternatives to traditional semiconductor solar cells. In order to optimize dyes for solar cells we systematically investigate

Himpsel, Franz J.

449

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

SciTech Connect (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

450

Enzymatically based cellulosic ethanol production technology was selected as a key area for biomass  

E-Print Network [OSTI]

Enzymatically based cellulosic ethanol production technology was selected as a key area for biomass cellulosic ethanol com- petitive. Improvements in dilute acid pretreatment and cellulase produced by Trichoderma reesei discov- ered during World War II led to most of the historic cellulosic ethanol cost

California at Riverside, University of

451

NREL: Biomass Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

than 15,000 votes. September 28, 2010 NREL Releases BioEnergy Atlas - a Comprehensive Biomass Mapping Application BioEnergy Atlas, a Web portal that provides access to two...

452

Background and Motivation Biomass derived syngas contains  

E-Print Network [OSTI]

Background and Motivation · Biomass derived syngas contains: CO, H2, small hydrocarbons, H2S prepared by SEA contain smaller metal particle sizes and have higher dispersion · The quantity of reducible

Das, Suman

453

Ozone treatment of biomass to enhance digestibility  

E-Print Network [OSTI]

is very resistant to enzymatic degradation. Lignocellulosic materials require pretreatment to enhance their digestibility. The main objective of this research was to further enhance the digestibility of biomass (bagasse) with ozonation as a follow...

Almendarez, Maria Elena

2000-01-01T23:59:59.000Z

454

Biomass reforming processes in hydrothermal media  

E-Print Network [OSTI]

While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

Peterson, Andrew A

2009-01-01T23:59:59.000Z

455

Biomass 2014: Growing the Future Bioeconomy  

Office of Energy Efficiency and Renewable Energy (EERE)

Register for Biomass 2014 today and don’t miss your chance to take part in this important event that will help move the nation to a more secure, sustainable, and economically sound future.

456

Relating forest biomass to SAR data  

SciTech Connect (OSTI)

This paper presents the results of an experiment defined to demonstrate the use of radar to retrieve forest biomass. The SAR data, after calibration, has been analyzed together with ground data collected on forest stands from young stage (8 yrs) to nature stage (46 yrs). The dynamic range of the radar backscatter intensity from forest was found maximum at P-band and decreases with increasing frequencies. Also, cross-polarized backscatter intensity yields the best sensitivities to variations of forest biomass. L-band data confirmed past results on good correlation with forest parameters. The most striking observation has been the strong correlation of P-band backscatter intensity to forest biomass. In order to develop algorithms to infer forest biomass from spaceborne SAR's, the experimental results will be compared with observations on other forest ecosystems and will be interpreted by theoretical modeling.

LeToan, T.; Beaudoin, A. (Centre d'Etude Spatiale des Rayonnements CNRS- Univ. Paul Sabatier Toulouse (FR)); Riom, J.; Guyon, D. (Lab. de Bioclimatologie INRA, Bordeaux (FR))

1992-03-01T23:59:59.000Z

457

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

char from the gasifier  to  the  char  combustor  and  heat from  the  char  combustor  back  to  the  gasifier.   Such exhaust stream of the Char Combustor (R?2).  The biomass is 

Cattolica, Robert

2009-01-01T23:59:59.000Z

458

Biomass energy : a real estate investment perspective  

E-Print Network [OSTI]

A central consideration in real estate is how value is created in real estate development and investment deals. A biomass power plant is not only an asset which generates revenues, but from a real estate perspective, it ...

Foo, Chester Ren Jie

2014-01-01T23:59:59.000Z

459

Biomass Energy and Competition for Land  

E-Print Network [OSTI]

We describe an approach for incorporating biomass energy production and competition for land into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy, ...

Reilly, John

460

Assessment of Biomass Resources in Afghanistan  

SciTech Connect (OSTI)

Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

Milbrandt, A.; Overend, R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire  

E-Print Network [OSTI]

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire objectives Fifteen years Yorkshire town are being replaced by a cleaner, green alternative: biomass. Barnsley's Communal Biomass on to residents. · To increase energy efficiency. · To develop biomass usage in new and refurbished public

462

Method of producing hydrogen, and rendering a contaminated biomass inert  

DOE Patents [OSTI]

A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

Bingham, Dennis N. (Idaho Falls, ID) [Idaho Falls, ID; Klingler, Kerry M. (Idaho Falls, ID) [Idaho Falls, ID; Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID

2010-02-23T23:59:59.000Z

463

Ris0-R-833(EN) Cyclone Gasifier for Biomass  

E-Print Network [OSTI]

Ris0-R-833(EN) Cyclone Gasifier for Biomass Preliminary Investigations Poul Astrup Ris0 National Laboratory, Roskilde, Denmark July 1995 #12;#12;Cyclone Gasifier for Biomass Ris0-R-833(EN) Preliminary at the design of a 20 MW as fired slagging cyclone gasifier for biomass, it has been investigated how biomass

464

Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation  

E-Print Network [OSTI]

Biomass Control in Waste Air Biotrickling Filters by Protozoan Predation Huub H. J. Cox, Marc A as a means of biomass control. Wet biomass for- mation in 23.6-L reactors over a 77-day period was reduced in the biotrickling filter enriched with protozoa. The lower rate of biomass accumulation after the addi- tion

465

Biosorption of Trivalent Chromium on the Brown Seaweed Biomass  

E-Print Network [OSTI]

Biosorption of Trivalent Chromium on the Brown Seaweed Biomass Y E O U N G - S A N G Y U N , D O N brown alga Ecklonia biomass as a model system. Titration of the biomass revealed that it contains that various biosorbents are able to effectively remove chromium (4-11). Some of the biomass types have

Volesky, Bohumil

466

Global observations of desert dust and biomass burning aerosols  

E-Print Network [OSTI]

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

467

Original article Belowground biomass and nutrient content in a  

E-Print Network [OSTI]

Original article Belowground biomass and nutrient content in a 47-year-old Douglas-fir plantation, France (Received 17 July 2000; accepted 6 October 2000) Abstract ­ Biomass and nutrient content and root biomass or nutrient content were observed. The root biomass was 58 t of dry matter, which was 18

Paris-Sud XI, Université de

468

The Biomass Energy Data Book Center for Transportation Analysis  

E-Print Network [OSTI]

of biomass feedstocks to their end use, including discussions on sustainability. This work is sponsored

469

APPLICATION OF PYROLYSIS-GC/MS TO THE STUDY OF BIOMASS AND BIOMASS CONSTITUENTS.  

E-Print Network [OSTI]

??Fast pyrolysis, the rapid thermal decomposition of organic material in the absence of oxygen, is a process that can be used to convert biomass into… (more)

Ware, Anne E

2013-01-01T23:59:59.000Z

470

Process for the treatment of lignocellulosic biomass  

DOE Patents [OSTI]

A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

2013-03-12T23:59:59.000Z

471

Process for the treatment of lignocellulosic biomass  

SciTech Connect (OSTI)

A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

Dale, Bruce E.

2014-07-08T23:59:59.000Z

472

Direct conversion of algal biomass to biofuel  

SciTech Connect (OSTI)

A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

2014-10-14T23:59:59.000Z

473

Biodyne Springfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:GreatBioGoldBiodyneBiomass Facility

474

Bridgewater Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyard Energy Partners LLCBridgewater Biomass

475

Biodyne Congress Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:GreatBioGoldBiodyne Congress Biomass

476

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-05-01T23:59:59.000Z

477

Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources  

SciTech Connect (OSTI)

This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

Donaldson, T.L.; Culberson, O.L.

1983-06-01T23:59:59.000Z

478

Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world's primary energy consumption and  

E-Print Network [OSTI]

Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world. Furthermore, biomass often accounts for more than 90% of the total rural energy supplies in developing countries. The traditional stoves in developing countries waste a lot of biomass, mainly because

Toohey, Darin W.

479

Fatty acid composition of raw and cooked muscle tissue from closely or completely trimmed beef steaks and roasts  

E-Print Network [OSTI]

. S. Choice and U. S. Seiect, were chosen to study the fatty acid composition of raw and cooked beef retail cuts. Fourteen retail cuts, in sets of three, were fabricated from the carcasses. One cut was trimmed to 0. 6 cm external fat and analyzed... raw. Another cut was trimmed to 0. 6 cm external fat, cooked and analyzed. The third cut was trimmed to 0. 0 cm external fat, cooked and analyzed. Prior to analysis all cuts were dissected into lean, fat, and bone (if present). Fatty acid...

Harris, Kerri Beth King

2012-06-07T23:59:59.000Z

480

Discrete Element Modeling Results of Proppant Rearrangement in the Cooke Conductivity Cell  

SciTech Connect (OSTI)

The study of propped fracture conductivity began in earnest with the development of the Cooke cell which later became part of the initial API standard. Subsequent developments included a patented multicell design to conduct 4 tests in a press at the same time. Other modifications have been used by various investigators. Recent studies by the Stim-Lab proppant consortium have indicated that the flow field across a Cooke proppant conductivity testing cell may not be uniform as initially believed which resulted is significantly different conductivity results. Post test analysis of low temperature metal alloy injections at the termination of proppant testing prior to the release of the applied stress suggest that higher flow is to be expected along the sides and top of the proppant pack than compared to the middle of the pack. To evaluate these experimental findings, a physics-based two-dimensional (2-D) discrete element model (DEM) was developed and applied to simulate proppant rearrangement during stress loading in the Cooke conductivity cell and the resulting porosity field. Analysis of these simulations are critical to understanding the impact of modification to the testing cell as well as understanding key proppant conductivity issues such as how these effects are manifested in proppant concentration testing results. The 2-D DEM model was constructed to represent a realistic cross section of the Cooke cell with a distribution of four material properties, three that represented the Cooke cell (steel, sandstone,square rings), and one representing the proppant. In principle, Cooke cell materials can be approximated as assemblies of independent discrete elements (particles) of various sizes and material properties that interact via cohesive interactions, repulsive forces, and frictional forces. The macroscopic behavior can then be modeled as the collective behavior of many interacting discrete elements. This DEM model is particularly suitable for modeling proppant mechanical interactions subjected to an applied stress, where the experimental cell is represented as a cohesive body composed of a large number of discrete elements, and proppants can be modeled as the individual discrete particles with various sizes (following the proppant size distribution-density function used in the test) that exhibit no cohesive strength between the particles. Initial 2-D DEM modeling results suggest that proppant rearrangement and non-uniform stress distribution across the proppant pack results in significant non-uniform porosity distribution across the Cooke cell. Larger porosities develop along the edge of the proppant pack beneath the square ring seal and would result in a disproportionate higher flow field along these edges as compared to the middle of the proppant pack. These results suggest that reported conductivity values determined by the Cooke cell may be biased to overestimate the actual conductivity of the proppant at high stresses and that modifications to the standard Cooke cell will affect the magnitude of this bias.

Earl Mattson; Hai Huang; Michael Conway; Lisa O'Connell

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "improved biomass cooking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project  

SciTech Connect (OSTI)

Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

Worthington, Monty [Project Director - AK] [Project Director - AK

2014-02-05T23:59:59.000Z

482

Energy and mass flow computation in biomass computation in biomass combustion systems  

SciTech Connect (OSTI)

A computational technique which utilizes biomass ultimate analysis, gross heat of combustion from a bomb calorimeter, and moisture content was developed for balancing an empirical chemical equation and calculating the combustion temperature and exhaust composition. A single equation for relating the net heat of combustion of a biomass to moisture content was developed. A sample calculation is presented. 7 references.

Payne, F.A.

1984-09-01T23:59:59.000Z

483

Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL  

E-Print Network [OSTI]

.g. in conventional forestry equals today's global demand for primary energy, namely about 380 Exajoule net heating brought about by mainly two human activities: deforestation and fossil energy consumption (see Fig. 19th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY

Keeling, Stephen L.

484

Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends  

E-Print Network [OSTI]

derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

Martin, Brandon Ray

2009-05-15T23:59:59.000Z

485

Department of Energy Planning Cookstoves Research, Releases Biomass...  

Broader source: Energy.gov (indexed) [DOE]

one-third of the world's population. According to the World Health Organization, indoor air pollution from these cooking devices is responsible for the deaths of 1.6 million...

486

The Potential for Biomass District Energy Production in Port Graham, Alaska  

SciTech Connect (OSTI)

This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

2008-05-08T23:59:59.000Z

487

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois. ItBrookhaven Facility

488

Demonstration of the BioBaler harvesting system for collection of small-diameter woody biomass  

SciTech Connect (OSTI)

As part of a project to investigate sustainable forest management practices for producing wood chips on the Oak Ridge Reservation (ORR) for the ORNL steam plant, the BioBaler was tested in various Oak Ridge locations in August of 2011. The purpose of these tests and the subsequent economic analysis was to determine the potential of this novel woody biomass harvesting method for collection of small-diameter, low value woody biomass. Results suggest that opportunities may exist for economical harvest of low-value and liability or negative-cost biomass. (e.g., invasives). This could provide the ORR and area land managers with a tool to produce feedstock while improving forest health, controlling problem vegetation, and generating local employment.

Langholtz, Matthew H [ORNL; Caffrey, Kevin R [ORNL; Barnett, Elliott J [ORNL; Webb, Erin [ORNL; Brummette, Mark W [ORNL; Downing, Mark [ORNL

2011-12-01T23:59:59.000Z

489

Biomass Thermochemical Conversion Program. 1984 annual report  

SciTech Connect (OSTI)

The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1985-01-01T23:59:59.000Z

490

Evaluation of Catalysts from Different Origin for Vapor Phase Upgrading in Biomass Pyrolysis  

SciTech Connect (OSTI)

Liquid fuels and chemicals from biomass resources arouse much interests in research and development. Fast pyrolysis of biomass has the potential to effectively change solid biomass materials into liquid products. However, bio-oil from traditional pyrolysis processes is difficult to apply in industry, because of its complicated composition, high oxygen content, low stability, etc. Upgrading or refining of the bio-oil should be performed for industrial application of biomass pyrolysis. Often, the process would be done in a separate reactor downstream of the pyrolysis process. In this paper, a laboratory scale micro test facility was constructed, wherein the pyrolysis of pine and catalytic upgrading of the resulting vapors were closely coupled in one reactor. The composition of vapor effluent was monitored with a molecular beam mass spectrometer (MBMS) for the online evaluation of the catalyst performance. Catalysts from different origin were tested and compared for the effectiveness of pyrolysis vapor upgrading, namely commercial zeolites, Ni based steam reforming catalyst, CaO, MgO, and several laboratory-made catalysts. The reaction temperature for catalytic upgrading varied between 400 and 600 centigrade, and the gaseous residence time ranged from 0.1 second to above 2 second, to simulate the conditions in industrial application. It is revealed that some catalysts are active in transform most of primary biomass pyrolysis vapors into hydrocarbons, resulting in nonoxygenated products, which is beneficial for downstream utilization. Others are not as effective, results in minor improvement compared with blank test results.

Zhang, X.; Mukarakate, C.; Zheng, Z.; Nimlos, M.

2012-01-01T23:59:59.000Z

491

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

G. , An overview of biomass pyrolysis, Energy Sources, 2002,Spliethoff, H. , Biomass pyrolysis/gasification for productreactor for the study of biomass pyrolysis chemistry at high

FAN, XIN

2012-01-01T23:59:59.000Z

492

Do biomass burning aerosols intensify drought in equatorial Asia during El Nińo?  

E-Print Network [OSTI]

fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

493

Estimation of Biomass Heat Storage Using Thermal Infrared Imagery: Application to a Walnut Orchard  

E-Print Network [OSTI]

NOTE Estimation of Biomass Heat Storage Using Thermalmethod to estimate tree biomass heat storage from thermalinfrared (TIR) imaging of biomass surface temperature is

Garai, Anirban; Kleissl, Jan; Llewellyn Smith, Stefan G.

2010-01-01T23:59:59.000Z

494

Biomass crops can be used for biological disinfestation and remediation of soils and water  

E-Print Network [OSTI]

liquid biofuels from biomass: The writings on the walls. Newreduced feed intake. Biomass crop sustainability flexibilityMC, et al. 2009. Cali- fornia biomass resources, potentials,

Stapleton, James J; Banuelos, Gary

2009-01-01T23:59:59.000Z

495

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

CO 2 gasification reactivity of biomass char, Biotechnologyand economic feasibility of biomass gasification for powerLi, X.T. , et al. , Biomass gasification in a circulating

FAN, XIN

2012-01-01T23:59:59.000Z

496

Biomass burning contribution to black carbon in the Western United States Mountain Ranges  

E-Print Network [OSTI]

and the atmosphere from biomass burning, Climatic Change, 2,Chemistry and Physics Biomass burning contribution to black2011 Y. H. Mao et al. : Biomass burning contribution to

2011-01-01T23:59:59.000Z

497

Biomass burning and urban air pollution over the Central Mexican Plateau  

E-Print Network [OSTI]

J. D. Crounse et al. : Biomass burning pollution overChemistry and Physics Biomass burning and urban airprimary anthropogenic and biomass burning organic aerosols

2009-01-01T23:59:59.000Z

498

The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass  

E-Print Network [OSTI]

Enzymatic Conversion of Biomass for Fuels Production, 566,B. , 2002. Lignocellulosic Biomass to Ethanol Process DesignSummary of findings from the Biomass Refining Consortium for

Qing, Qing

2010-01-01T23:59:59.000Z

499

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network [OSTI]

lignocellulosic biomass feedstocks (Lynd et al. , 1991;as well as superior biomass feedstocks be intelligentlyrecalcitrance for all biomass feedstocks. Consequently, more

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

500

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

fluidised bed biomass gasifier, Fuel, 2007, 86, 1417-1429.utilizing a down draft gasifier, Biomass and Bioenergy,fixed bed and fluidized bed gasifier, Biomass and Bioenergy,

FAN, XIN

2012-01-01T23:59:59.000Z