Sample records for improve turbine performance

  1. Turbine Steam Path Audits for Improved Performance and Profitability

    E-Print Network [OSTI]

    Babson, P. E.

    TURBINE STEAM PATH AUDITS FOR IMPROVED PERFORMANCE AND PROFITABILITY PAUL E. BABSON, DIRECTOR, BUSINESS DEVELOPMENT, ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT This paper describes the use and value of conducting steam path audits... in turbines. Critical measurements and observations made during overhaul identify and quantify the effects of component degradations upon turbine performance as compared to design conditions. The information generated permits performance oriented repair...

  2. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    SciTech Connect (OSTI)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01T23:59:59.000Z

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  3. Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application

    SciTech Connect (OSTI)

    Ashok K. Anand

    2005-12-16T23:59:59.000Z

    This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

  4. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Office of Environmental Management (EM)

    as the device performed as expected, with no discernible harm to river-dwelling fish. Free Flow has also completed preliminary designs of utility-scale installations at a...

  5. Predicting Steam Turbine Performance

    E-Print Network [OSTI]

    Harriz, J. T.

    ," PREDICTING STEAM TURBINE PERFORMANCE James T. Harriz, EIT Waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT Tracking the performance of extraction, back pressure and condensing steam turbines is a crucial part... energy) and test data are presented. Techniques for deriving efficiency curves from each source are described. These techniques can be applied directly to any steam turbine reliability study effort. INTRODUCTION As the cost of energy resources...

  6. Predicting Steam Turbine Performance 

    E-Print Network [OSTI]

    Harriz, J. T.

    1985-01-01T23:59:59.000Z

    Tracking the performance of extraction, back-pressure and condensing steam turbines is a crucial part of minimising energy and maintenance costs for large process industries. A thorough understanding of key equipment performance characteristics...

  7. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  8. Improving Wind Turbine Gearbox Reliability: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; McNiff, B.

    2007-06-01T23:59:59.000Z

    This paper describes a new research and development initiative to improve gearbox reliability in wind turbines begun at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, USA.

  9. Performance Study and Optimization of the Zephergy Wind Turbine

    E-Print Network [OSTI]

    Soodavi, Moein

    2013-12-04T23:59:59.000Z

    There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

  10. Performance Study and Optimization of the Zephergy Wind Turbine 

    E-Print Network [OSTI]

    Soodavi, Moein

    2013-12-04T23:59:59.000Z

    There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

  11. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  12. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities 

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01T23:59:59.000Z

    of the plant and introduce the history of efficiency improvements for compressors and steam turbines in the Petrochemical Industry. Since heat balance configurations affect the plant's steam consumption, the authors will explain several cases of heat balance...

  13. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25T23:59:59.000Z

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  14. The EPRI/DOE Utility Wind Turbine Performance Verification Program

    SciTech Connect (OSTI)

    Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

    1997-01-01T23:59:59.000Z

    In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

  15. DOE Research Grant Leads to Gas Turbine Manufacturing Improvements

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy's Office of Fossil Energy has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy.

  16. Computational Tools to Assess Turbine Biological Performance

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2014-07-24T23:59:59.000Z

    Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  17. Feasibility Studies on Disturbance Feedforward Techniques to Improve Wind Turbine Load Mitigation Performance: January 2009 -- January 2010

    SciTech Connect (OSTI)

    Laks, J.H.; Dunne, F.; Pao, L. Y.

    2010-12-01T23:59:59.000Z

    This study investigates disturbance feedforward and preview control to better understand the best possible improvement in load mitigation using advanced wind measurement techniques.

  18. Identification of airfoil characteristics for optimum wind turbine performance / b 

    E-Print Network [OSTI]

    Miller, Leonard Scott

    1983-01-01T23:59:59.000Z

    with a performance optimization routine was used to perform the analyses. The relationship between airfoil lift and drag characteristics and turbine performance was determined and discussed. High lift and low drag was found to improve, respectively..., the low and high tip speed ratio power output of the tur bine. An investigation using the NACA 63 series family showed that airfoils with 12 to 15 percent thickness should generate good performance over a broad range of tip speed ratios. iv...

  19. Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Advanced Research The American Recovery and Reinvestment Act (ARRA) funds gas turbine technology research and development to improve the efficiency, emissions, and...

  20. Wind turbine generator with improved operating subassemblies

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

    1985-01-01T23:59:59.000Z

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  1. Reliable Gas Turbine Output: Attaining Temperature Independent Performance 

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    1992-01-01T23:59:59.000Z

    Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine...

  2. Theory and Performance of Tesla Turbines

    E-Print Network [OSTI]

    Romanin, Vincent D.

    2012-01-01T23:59:59.000Z

    through a Tesla turbine microchannel . . . . . . . . . . .1.2 History of the Tesla Turbine 1.3 BackgroundCFD) Solution of Flow Through a Tesla Turbine 4.1 Summary of

  3. Power Performance Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2012-12-01T23:59:59.000Z

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  4. Parametric study on performance of cross-flow turbine

    SciTech Connect (OSTI)

    Joshi, C.B. [Tribhuvan Univ., Kathmandu (Nepal); Seshadri, V.; Singh, S.N. [Indian Inst. of Technology, New Delhi (India)

    1995-04-01T23:59:59.000Z

    In the present experimental study, the effect of blade number, nozzle entry arc, and head on the performance characteristics of a cross-flow turbine have been investigated. It has been observed that the efficiency of the turbine increases with increase in blade number, nozzle entry arc, and head. The present investigation has also shown that there is an optimum number of blades for a given nozzle entry arc beyond which the performance of the cross-flow turbine deteriorates. It has also been shown that cross-flow turbines at higher heads do not behave as pure impulse turbines.

  5. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  6. Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)

    SciTech Connect (OSTI)

    Clifton, A.

    2012-12-01T23:59:59.000Z

    Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

  7. Effect of Surface Roughness on Wind Turbine Performance

    E-Print Network [OSTI]

    Ehrmann, Robert Schaefer

    2014-06-25T23:59:59.000Z

    40% for 140 µm roughness, corresponding to a 2.3% loss in annual energy production. Simulated performance loss compares well to measured performance loss on an in-service wind turbine....

  8. Steam Turbine Performance in Europe | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam Turbine Performance in Europe Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to...

  9. Design of wind turbines with Ultra-High Performance Concrete

    E-Print Network [OSTI]

    Jammes, François-Xavier

    2009-01-01T23:59:59.000Z

    Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

  10. Identification of airfoil characteristics for optimum wind turbine performance / b

    E-Print Network [OSTI]

    Miller, Leonard Scott

    1983-01-01T23:59:59.000Z

    IDENTIFICATION OF AIRFOIL CHARACTERISTICS FOR OPTIMUM WIND TURBINE PERFORMANCE A Thesis by LEONARD SCOTT MILLER Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1983 Major Subject: Aerospace Engineering IDENTIFICATION OF AIRFOIL CHARACTERISTICS FOR OPTIMUM WIND TURBINE PERFORMANCE A Thesis by LEONARD SCOTT MILLER Approved as to Style and Content by: Dr. S. J. Miley (Chairm of Committee...

  11. Using Machine Learning to Create Turbine Performance Models (Presentation)

    SciTech Connect (OSTI)

    Clifton, A.

    2013-04-01T23:59:59.000Z

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to explore atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that of the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data is required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of different turbulence and shear at the new site, compared to the test site.

  12. Performance deterioration modeling in aircraft gas turbine engines

    SciTech Connect (OSTI)

    Zaita, A.V. [Advanced Engineering and Research Associates, Inc., Arlington, VA (United States). Technology Development Div.; Buley, G. [Naval Surface Warfare Center, West Bethesda, MD (United States). Carderock Div.; Karlsons, G. [Naval Air Warfare Center, Patuxent River, MD (United States)

    1998-04-01T23:59:59.000Z

    Steady-state performance models can be used to evaluate a new engine`s baseline performance. As a gas turbine accumulates operating time in the field, its performance deteriorates due to fouling, erosion, and wear. This paper presents the development of a model for predicting the performance deterioration of aircraft gas turbines. The model accounts for rotating component deterioration based on the aircraft mission profiles and environmental conditions and the engine`s physical and design characteristics. The methodology uses data correlations combined with a stage stacking technique for the compressor and a tip rub model, along with data correlations for the turbine to determine the amount of performance deterioration. The performance deterioration model interfaces with the manufacturer`s baseline engine simulation model in order to create a deteriorated performance model for that engine.

  13. Ris-R-Report Improved design for large wind turbine blades

    E-Print Network [OSTI]

    Risø-R-Report Improved design for large wind turbine blades of fibre composites (Phase 3) - Summary: Improved design for large wind turbine blades of fibre composites (Phase 3) - Summary report Division: 1 char.): An overview is given of the activities of the project "Improved design for large wind turbine

  14. NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

  15. Computational Fluid Dynamics Framework for Turbine Biological Performance Assessment

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Carlson, Thomas J.; Ebner, Laurie L.; Sick, Mirjam; Cada, G. F.

    2011-05-04T23:59:59.000Z

    In this paper, a method for turbine biological performance assessment is introduced to bridge the gap between field and laboratory studies on fish injury and turbine design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, the engineer can identify the more-promising designs. Discussion here is focused on Kaplan-type turbines, although the method could be extended to other designs. Following the description of the general methodology, we will present sample risk assessment calculations based on CFD data from a model of the John Day Dam on the Columbia River in the USA.

  16. Ris-R-1526(EN) Improved design of large wind turbine

    E-Print Network [OSTI]

    Risø-R-1526(EN) Improved design of large wind turbine blades of fibre composites (Phase 2. Halling+ Title: Improved design of large wind turbine blades of fibre composites (Phase 2) - Summary in a wind turbine blade 7 2.1 Experimental investigations 7 2.2 Finite element models 7 2.3 Synthesis 8 2

  17. Influence of wind characteristics on turbine performance Ioannis Antoniou (1)

    E-Print Network [OSTI]

    Influence of wind characteristics on turbine performance Ioannis Antoniou (1) , Rozenn Wagner (1 (2) , Peder Enevoldsen (2) , Leo Thesbjerg (3) (1): Wind Energy Department, Risø): Siemens Wind Power (3): Vestas Wind Systems A/S Summary The uncertainty of power performance measurements

  18. Applied methods to verify LP turbine performance after retrofit

    SciTech Connect (OSTI)

    Overby, R. [Florida Power and Light Co., Juno Beach, FL (United States); Lindberg, G. [ABB Power Generation, Baden (Switzerland)

    1996-12-31T23:59:59.000Z

    With increasing operational hours of power plants, many utilities may find it necessary to replace turbine components, i.e., low pressure turbines. In order to decide between different technical and economic solutions, the utility often takes the opportunity to choose between an OEM or non-OEM supplier. This paper will deal with the retrofitting of LP turbines. Depending on the scope of supply the contract must define the amount of improvement and specifically how to verify this improvement. Unfortunately, today`s Test Codes, such as ASME PTC 6 and 6.1, do not satisfactorily cover these cases. The methods used by Florida Power and Light (FP and L) and its supplier to verify the improvement of the low pressure turbine retrofit at the Martin No. 1 and Sanford No. 4 units will be discussed and the experience gained will be presented. In particular the influence of the thermal cycle on the applicability of the available methods will be analyzed and recommendations given.

  19. American Institute of Aeronautics and Astronautics PERFORMANCE INVESTIGATION OF SMALL GAS TURBINE ENGINES

    E-Print Network [OSTI]

    Müller, Norbert

    American Institute of Aeronautics and Astronautics 1 PERFORMANCE INVESTIGATION OF SMALL GAS TURBINE into the given baseline engine are studied. The compressor and turbine pressure ratios, and the turbine inlet operates with the same turbine pressure ratio, inlet temperature and the same physical compressor like

  20. Ris-R-Report Improved design for large wind turbine blades

    E-Print Network [OSTI]

    for large wind turbine blades of fibre composites (Phase 4) - Summary report Division: 1 Materials Research of wind turbine blade involving geometric and material instabilities 30 5.2 Simulation of crack growthRisø-R-Report Improved design for large wind turbine blades of fibre composites (Phase 4) - Summary

  1. Wind turbine amplitude modulation: research to improve understanding as to its cause & effect

    E-Print Network [OSTI]

    Boyer, Edmond

    Wind turbine amplitude modulation: research to improve understanding as to its cause & effect M. M-27 April 2012, Nantes, France 811 #12;of wind turbines is presently receiving a high focus of attention. Whilst the acceptability of audible noise from wind turbines continues to be the subject of considerable

  2. Optimizing turbine withdrawal from a tropical reservoir for improved water quality in downstream wetlands

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Optimizing turbine withdrawal from a tropical reservoir for improved water quality in downstream using Itezhi-Tezhi Reservoir (Zambia) as a model system aims at defining optimized turbine withdrawal. The water depth of turbine withdrawals was varied in a set of simulations to optimize outflow water quality

  3. 1. Introduction The efficiency of steam turbines can be improved by in-

    E-Print Network [OSTI]

    Cambridge, University of

    1. Introduction The efficiency of steam turbines can be improved by in- creasing the maximum-efficiency power plant. 2. Turbines, Steam, Efficiency and Power Plant A power plant has a steam generator which the operating pressure is below about 22 MPa, in which case the steam is separated and passed on to the turbine

  4. Aerodynamic performance measurements of a film-cooled turbine stage

    E-Print Network [OSTI]

    Keogh, Rory (Rory Colm), 1968-

    2001-01-01T23:59:59.000Z

    The goal of this research is to measure the aerodynamic performance of a film-cooled turbine stage and to quantify the loss caused by film-cooling. A secondary goal of the research is to provide a detailed breakdown of the ...

  5. Performance Analysis of an Annular Diffuser Under the Influence of a Gas Turbine Stage Exit Flow

    E-Print Network [OSTI]

    Blanco, Rafael Rodriguez

    2013-12-31T23:59:59.000Z

    In this investigation the performance of a gas turbine exhaust diffuser subject to the outlet flow conditions of a turbine stage is evaluated. Towards that goal, a fully three-dimensional computational analysis has been performed where several...

  6. Turbulent heat transfer performance of single stage turbine

    SciTech Connect (OSTI)

    Amano, R.S.; Song, B.

    1999-07-01T23:59:59.000Z

    To increase the efficiency and the power of modern power plant gas turbines, designers are continually trying to raise the maximum turbine inlet temperature. Here, a numerical study based on the Navier-Stokes equations on a three-dimensional turbulent flow in a single stage turbine stator/rotor passage has been conducted and reported in this paper. The full Reynolds-stress closure model (RSM) was used for the computations and the results were also compared with the computations made by using the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} model. The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wall region. The set of the governing equations in a generalized curvilinear coordinate system was discretized by using the finite volume method with non-staggered grids. The numerical modeling was performed to interact between the stator and rotor blades.

  7. Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbine

    E-Print Network [OSTI]

    Victoria, University of

    Experimental investigation of the performance of a diffuser- augmented vertical axis wind turbine Experimental investigation of the performance of a diffuser-augmented vertical axis wind turbine by Arash The performance of a vertical axis wind turbine with and without a diffuser was studied using direct force

  8. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect (OSTI)

    Leonard Angello

    2004-03-31T23:59:59.000Z

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  9. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect (OSTI)

    Leonard Angello

    2004-09-30T23:59:59.000Z

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  10. Optimizing small wind turbine performance in battery charging applications

    SciTech Connect (OSTI)

    Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

    1995-05-01T23:59:59.000Z

    Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

  11. A comparison between the performance of different silencer designs for gas turbine exhaust systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A comparison between the performance of different silencer designs for gas turbine exhaust systems in more specialist applications, such as the exhaust systems of gas turbines, different silencer experiments are carried out with the aim of investigating performance of silencers used on gas turbines

  12. Performance Testing of a Small Vertical-Axis Wind Turbine , S. Tullis2

    E-Print Network [OSTI]

    Tullis, Stephen

    Performance Testing of a Small Vertical-Axis Wind Turbine R. Bravo1 , S. Tullis2 , S. Ziada3 of electric production [1]. Although most performance testing for small-scale wind turbines is conducted vertical-axis wind turbines (VAWT) in urban settings, full-scale wind tunnel testing of a prototype 3.5 k

  13. WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    1 WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES J. J. Miau*1 were carried out to study the aerodynamic performance of three vertical axis wind turbines (VAWTs. On the other hand, the characteristics of unsteady flow around the helical wind turbine were studied with a hot

  14. Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

  15. Automated DecisionAnalytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision­Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno­ sis of e#ciency problems for large gas turbines the ultimate goal of applying the system in the day­to­day maintenance of gas­ turbine power plants. A Overview

  16. Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno- sis of efficiency problems for large gas turbines the ultimate goal of applying the system in the day-to-day maintenance of gas- turbine power plants. A Overview

  17. PERFORMANCE ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL

    E-Print Network [OSTI]

    Duffy, Ken

    PERFORMANCE ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL D.J.Leith W Power regulation of horizontal-axis grid-connected up-wind constant-speed pitch-regulated wind turbines ENHANCEMENT OF WIND TURBINE POWER REGULATION BY SWITCHED LINEAR CONTROL D.J.Leith W.E.Leithead Department

  18. Hydrodynamic and Structural Performance of the Transverse Horizontal Axis Water Turbine

    E-Print Network [OSTI]

    Gorban, Alexander N.

    Hydrodynamic and Structural Performance of the Transverse Horizontal Axis Water Turbine Prof. Guy across the flow THAWT Concept Transverse Horizontal Axis Water Turbine · Length limited only by stiffness;Options for tidal stream power (1) · Axial flow turbines ("underwater windmills") ­ "Unducted" » MCT (most

  19. International Conference on Ocean Energy, 6 October, Bilbao Computational Analysis of Ducted Turbine Performance

    E-Print Network [OSTI]

    Pedersen, Tom

    Turbine Performance M. Shives1 and C. Crawford2 Dept. of Mechanical Engineering, University of Victoria turbine designs using computational fluid dynamics (CFD) simulation. Analytical model coefficients is proposed for the base pressure coefficient. Keywords: base-pressure, CFD, diffuser-augmented turbine, tidal

  20. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    E-Print Network [OSTI]

    Pedersen, Tom

    Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Dissertation Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines) #12;iii ABSTRACT This thesis examines methods for designing and analyzing kinetic turbines based

  1. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Thesis Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines examines methods for designing and analyzing kinetic turbines based on blade element momentum (BEM) theory

  2. Improving Deaerator Performance

    E-Print Network [OSTI]

    Dyer, D. F.; Maples, G.

    The objectives of deaeration of feedwater are reviewed. A discussion of appropriate test data and methods for assessing deaerator performance are given. Analysis procedures are developed to analyze the test data. Typical problems such as over...

  3. SciTech Connect: Improved Wind Turbine Drivetrain Reliability...

    Office of Scientific and Technical Information (OSTI)

    and Renewable Energy Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 97 MATHEMATICS AND COMPUTING NONTORQUE LOADS; WIND TURBINE DRIVETRAIN;...

  4. Ris-R-1390(EN) Improved design of large wind turbine

    E-Print Network [OSTI]

    the understanding of damage evolution in wind turbine blades by a combination of structural- and material modellingRisø-R-1390(EN) Improved design of large wind turbine blade of fibre composites based on studies# *, Find M. Jensen*, Henrik M. Jensen$ , Torben K. Jacobsen¤ and Kaj M. Halling+ # Materials Research

  5. Gas Turbine Technology, Part A: Overview, Cycles, and Thermodynamic Performance 

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    1985-01-01T23:59:59.000Z

    The growth of cogeneration technology has accelerated in recent years, and it is estimated that fifty percent of the cogeneration market will involve gas turbines. To several energy engineers, gas turbine engines present a new and somewhat...

  6. Gas Turbine Technology, Part A: Overview, Cycles, and Thermodynamic Performance

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    The growth of cogeneration technology has accelerated in recent years, and it is estimated that fifty percent of the cogeneration market will involve gas turbines. To several energy engineers, gas turbine engines present a new and somewhat...

  7. Reliable Gas Turbine Output: Attaining Temperature Independent Performance

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    % of the electric system, could create reliability and operational problems. This paper explores the potential for maintaining constant, reliable outputs from gas turbines by cooling ambient air temperatures before the air is used in the compressor section... strides have been made in the development of both aircraft, aircraft-derivative, and industrial gas turbines. The Basic Cycle The basic gas turbine engine consists of a compressor, a combustor, and a turbine in series. The intake air is compressed...

  8. Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13T23:59:59.000Z

    Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

  9. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30T23:59:59.000Z

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  10. Title: Improving Jet Engine Turbine Thermal Barrier Coatings via Reactive Element Addition to the Bond Coat Alloy

    E-Print Network [OSTI]

    Carter, Emily A.

    Title: Improving Jet Engine Turbine Thermal Barrier Coatings via Reactive Element Addition engine turbine blades can shield the temperature to which the underlying superalloy is exposed modifications that should inhibit the failure of these jet engine turbine thermal barrier coatings. Research

  11. User's manual for the vertical axis wind turbine performance computer code darter

    SciTech Connect (OSTI)

    Klimas, P. C.; French, R. E.

    1980-05-01T23:59:59.000Z

    The computer code DARTER (DARrieus, Turbine, Elemental Reynolds number) is an aerodynamic performance/loads prediction scheme based upon the conservation of momentum principle. It is the latest evolution in a sequence which began with a model developed by Templin of NRC, Canada and progressed through the Sandia National Laboratories-developed SIMOSS (SSImple MOmentum, Single Streamtube) and DART (SARrieus Turbine) to DARTER.

  12. Aerodynamic and Performance Measurements on a SWT-2.3-101 Wind Turbine

    SciTech Connect (OSTI)

    Medina, P.; Singh, M.; Johansen, J.; Jove, A.R.; Machefaux, E.; Fingersh, L. J.; Schreck, S.

    2011-10-01T23:59:59.000Z

    This paper provides an overview of a detailed wind turbine field experiment being conducted at NREL under U.S. Department of Energy sponsorship. The purpose of the experiment is to obtain knowledge about the aerodynamics, performance, noise emission and structural characteristics of the Siemens SWT-2.3-101 wind turbine.

  13. R and D for improved efficiency small steam turbines. Phase II. Second quarterly technical report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The detailed design of a radial inflow steam turbine (RIT) comprised of two radial inflow turbine stages driving a common bull gear/output shaft designed for rated speeds of 70,000 rpm and 52,500 rpm, respectively, is described. Details are presented on: aerodynamic design; high speed rotors; high speed rotor bearings; high speed rotor sealing; gearing; output shaft; static structure; and predicted performance. (MCW)

  14. PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP

    E-Print Network [OSTI]

    PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP high-temperature gasifiers for gas turbine applications. ABB and MTCr/Stonechem are developing low-load performance of gasifier/gas turbine systemsincorporating the four above-noted gasifier designs are reported

  15. Improving the performance of BITNET

    E-Print Network [OSTI]

    Ku, Chih-Hsiung

    1989-01-01T23:59:59.000Z

    diff'erent heuristics have been adopted to design large and distributed computer networks. The cut-saturation heuristic has been shown to be a, very ef- ficient method for topological design. In this thesis, the cut-saturation heunst&c is employed... to improve the performance of BITNET. In addition, a topology con- straint (retention of BITNET connectivitv) is also adopted. The traditionai cut-saturation heuristic as reported in the literature uses a single capacity for simplicity. A combination...

  16. Gas turbine cycles with solid oxide fuel cells. Part 1: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency of the combustion process can be improved if immediate contact of fuel and oxygen is prevent4ed and an oxygen carrier is used. In a previous paper (Harvey et al., 1992), a gas turbine cycle was investigated in which part of the exhaust gases are recycled and used as oxygen-carrying components. For the optimized process, a theoretical thermal efficiency of 66.3% was achieved, based on the lower heating value (LHV) of the methane fuel. One means to further improve the exergetic efficiency of a power cycle is to utilize fuel cell technology. Solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. In this paper, the authors will therefore consider SOFC technology. In view of their high operating temperatures and the incomplete nature of the fuel oxidation process, fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. In this paper, the authors will show how monolithic SOFC (MSOFC) technology may be integrated into the previously described gas turbine cycle using recycled exhaust gases as oxygen carriers. An optimized cycle configuration will be presented based upon a detailed cycle analysis performance using Aspen Plus[trademark] process simulation software and a MSOFC fuel cell simulator developed by Argonne National Labs. The optimized cycle achieves a theoretical thermal efficiency of 77.7%, based on the LHV of the fuel.

  17. A method of evaluating the performance deterioration of aircraft gas-turbines

    E-Print Network [OSTI]

    Subramanian, V

    1978-01-01T23:59:59.000Z

    A METHOD OF EVALUATING THE PERFORMANCE DETERIORATION OF AIRCRAFT GAS-TURBINES A Thesis by V. SUBRAMANIAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1978 Major Subject: Mechanical Engineering A METHOD OF EVALUATING THE PERFORMANCE DETERIORATION OF AIRCRAFT GAS-TURBINES A Thesis by V. SUBRAMANIAN Approved as to style and content by: Charrman o Commztt (Head o D pa ment Sg D~ Member...

  18. Off-design performance characteristics of a twin shaft gas turbine engine with regeneration

    E-Print Network [OSTI]

    Leckie, Todd Stewart

    1984-01-01T23:59:59.000Z

    OFF-DESIGN PERFORMANCE CHARACTERISTICS OF A TWIN SHAFT GAS TURBINE ENGINE WITH RECTION A 'Ihesis TODD STEWART LECKIE Submitted to the Graduate College Texas ABM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1984 Major Subject: Mechanical Engineering OFF-DESIGN PERFORMANCE CHARACTERISTICS OF A TWIN SHAFT GAS TURBINE ENGINE WITH REGENERATION A Thesis by Approved as to style and content by: er E. J 'ns rrman of Corrmittee) Je- 'n Han...

  19. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    SciTech Connect (OSTI)

    Singh, Punit; Nestmann, Franz [Institute for Water and River Basin Management (IWG), University of Karlsruhe, Kaiser Str. 12, D 76128 Karlsruhe (Germany)

    2010-09-15T23:59:59.000Z

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)

  20. 66 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine Performance With

    E-Print Network [OSTI]

    Kusiak, Andrew

    mass damper to mitigate vibrations of the blades and tower of a wind turbine was presented in [1466 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine, IEEE Abstract--This paper presents a multiobjective optimization model of wind turbine performance

  1. The development of CACTUS : a wind and marine turbine performance simulation code.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; Murray, Jonathan

    2010-12-01T23:59:59.000Z

    CACTUS (Code for Axial and Cross-flow TUrbine Simulation) is a turbine performance simulation code, based on a free wake vortex method, under development at Sandia National Laboratories (SNL) as part of a Department of Energy program to study marine hydrokinetic (MHK) devices. The current effort builds upon work previously done at SNL in the area of vertical axis wind turbine simulation, and aims to add models to handle generic device geometry and physical models specific to the marine environment. An overview of the current state of the project and validation effort is provided.

  2. Improvement of surface properties of turbine blade by laser surface alloying

    SciTech Connect (OSTI)

    Lee, C.H.; Eom, H.S.; Chang, W.

    1994-12-31T23:59:59.000Z

    The blades in a top-over reduction gas turbine (TRT), run by blast furnace gas (BFG: mixture of CO{sub 2}, CO, H{sub 2} and N{sub 2}) in an iron and steel making mill, are significantly impared by erosion and corrosion. This study evaluated the feasibility of laser consolidation of the thermal sprayed coating for improved bond strength, erosion resistance, and for reducing the number of pores. In addition, laser in-situ coating (laser surface alloying technique), in which the same coating material (Cr{sub 3}C{sub 2} + CrNi powder) used for thermal spraying was blown (by powder feeder) into the moving molten pool generated by laser, was also performed and compared with laser consolidation. The properties of laser-treated specimens were evaluated and compared with the untreated substrate and plasma coating. The properties evaluated were solid particle erosion, corrosion (anodic polarization), bond strength, hardness, density of porosity, and microstructural chaca teristics [OLM, SEM (EPMA), TEM, XRD]. As may be expected, laser consolidation enhanced the erosion resistance, bond strength, and reduced the porosity density as compared to the as-plasma-coated condition. The mechanism for the degradation of the plasma coating of the turbine was found to be a repetitive action of erosion, corrosion penetration through pores, and impative spalling. The laser-alloyed Layer showed almost the same properties as that of the consolidated layer and was a strong function of parameters (specific energy density, line mass, and powder feed rate). The laser-alloyed coating consisted of three different layers of microstructures.

  3. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01T23:59:59.000Z

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  4. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines

    SciTech Connect (OSTI)

    Alman, David; Marcio, Duffles

    2014-02-05T23:59:59.000Z

    The objective of this Stage Gate IV project was to test and substantiate the viability of an erosion?resistant nanocoating for application on compressor airfoils for gas turbines in both industrial power generation and commercial aviation applications. To effectively complete this project, the National Energy Technology Laboratory’s Office of Research & Development teamed with MDS Coating Technologies Inc. (MCT), Delta Air Lines ? Technical Operations Division (Delta Tech Ops), and Calpine Corporation. The coating targeted for this application was MCT’s Next Generation Coating, version 4 (NGC?v4 ? with the new registered trademark name of BlackGold®). The coating is an erosion and corrosion resistant composite nanostructured coating. This coating is comprised of a proprietary ceramic?metallic nano?composite construction which provides enhanced erosion resistance and also retains the aerodynamic geometry of the airfoils. The objective of the commercial aviation portion of the project was to substantiate the coating properties to allow certification from the FAA to apply an erosion?resistant coating in a commercial aviation engine. The goal of the series of tests was to demonstrate that the durability of the airfoils is not affected negatively with the application of the NGC v4 coating. Tests included erosion, corrosion, vibration and fatigue. The results of the testing demonstrated that the application of the coating did not negatively impact the properties of the blades, especially fatigue performance – which is of importance in acceptance for commercial aviation applications. The objective of the industrial gas turbine element of the project was to evaluate the coating as an enabling technology for inlet fogging during the operation of industrial gas turbines. Fluid erosion laboratory scale tests were conducted to simulate inlet fogging conditions. Results of these tests indicated that the application of the erosion resistant NGC?v4 nanocoating improved the resistance to simulated inlet fogging conditions by a factor of 10 times. These results gave confidence for a field trial at Calpine’s power plant in Corpus Christi, TX, which commenced in April 2012. This test is still on?going as of November 2013, and the nanocoated blades have accumulated over 13,000 operational hours on this specific power plant in approximately 19 months of operation.

  5. Recent performance improvements on FXR

    SciTech Connect (OSTI)

    Kulke, B.; Kihara, R.

    1983-01-01T23:59:59.000Z

    The FXR machine is a nominal 4-kA, 20-MeV, linear-induction, electron accelerator for flash radiography at LLNL. The machine met its baseline requirements in March 1982. Since then, the performance has been greatly improved. We have achieved stable and repeatable beam acceleration and transport, with over 80% transmission to the tungsten bremsstrahlung target located some 35 m downstream. For best stability, external-beam steering has been eliminated almost entirely. We regularly produce over 500 Roentgen at 1 m from the target (TLD measurement), with a radiographic spot size of 3 to 5 mm. Present efforts are directed towards the development of a 4-kA tune, working interactively with particle-field and beam transport code models. A remaining uncertainty is the possible onset of RF instabilities at the higher current levels.

  6. Power Performance Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect (OSTI)

    Roadman, J.; Murphy, M.; van Dam, J.

    2012-12-01T23:59:59.000Z

    This report contains the results of the power performance test that was performed on a Viryd CS8 wind turbine as part of the DOE Independent Testing project. The test is an accredited test to the IEC 61400-12-1 power performance standard.

  7. Improving the Capacity or Output of a Steam Turbine Generator at XYZ Power Plant in Illinois

    E-Print Network [OSTI]

    Amoo-Otoo, John Kweku

    2006-05-19T23:59:59.000Z

    Competition has been a prime mover in the energy industry and there is the drive to increase performance of steam turbine-driven equipment. Availability of a unit is also critical to the operation of a plant and has also provided the fundamental...

  8. Advanced fenestration systems for improved daylight performance

    E-Print Network [OSTI]

    Selkowitz, S.; Lee, E.S.

    1998-01-01T23:59:59.000Z

    Systems for Improved Daylight Performance S. Selkowitz, E.S.Systems for Improved Daylight Performance S. Selkowitz, E.S.Introduction The use of daylight to replace or supplement

  9. OPTIMIZATION OF OPERATIONAL CHARACTERISTICS OF SHOTBLASTING TURBINE

    E-Print Network [OSTI]

    Aleš Hribernik; Bojan A?ko; Gorazd Bombek

    A parametric study has been performed in order to optimize the operational characteristics of shotblasting turbine used for surface cleaning of metal products in foundries. The study has been focused on four main parameters: shot velocity, shot distribution, shot mass flow and turbine efficiency. Different turbine designs were experimentally studied which enabled the influence factors to be identified and then quantified by means of comparison of original and modified turbine characteristics. The step-by-step optimization was then performed which resulted in redesigned shotblasting turbine with improved operational characteristics. Up to 35 % higher maximum massflow rate of shot particles has been achieved and turbine efficiency has been improved by more than 6 %. Just slight reduction of shot flow velocity was observed (only 2 %), which confirms an important improvement of shotblasting potentials of new turbine.

  10. Improving pulverized coal plant performance

    SciTech Connect (OSTI)

    Regan, J.W.; Borio, R.W.; Palkes, M.; Mirolli, M. [ABB Combustion Engineering, Inc., Windsor, CT (United States); Wesnor, J.D. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J. [Raytheon Engineers and Constructors, Inc., New York, NY (United States)

    1995-12-31T23:59:59.000Z

    A major deliverable of the U.S. Department of Energy (DOE) project ``Engineering Development of Advanced Coal-Fired Low-Emissions Boiler Systems`` (LEBS) is the design of a large, in this case 400 MWe, commercial generating unit (CGU) which will meet the Project objectives. The overall objective of the LEBS Project is to dramatically improve environmental performance of future pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. The DOE specified the use of near-term technologies, i.e., advanced technologies that partially developed, to reduce NO{sub x}, SO{sub 2} and particulate emissions to be substantially less than current NSPS limits. In addition, air toxics must be in compliance and waste must be reduced and made more disposable. The design being developed by the ABB Team is projected to meet all the contract objectives and to reduce emission of NO{sub x}, SO{sub 2} and particulates to one-fifth to one-tenth NSPS limits while increasing net station efficiency significantly and reducing the cost of electricity. This design and future work are described in the paper.

  11. Hot gas path analysis and data evaluation of the performance parameters of a gas turbine

    E-Print Network [OSTI]

    Hanawa, David Allen

    1974-01-01T23:59:59.000Z

    VITA 83 LIST OF FIGURES F g. 1. 1 Centrifugal Compressor Performance Nap 1. 2 Compressor and Turbine Shaft Assembly ? ag'e 1. 3 Axial Compressor Performance Nap 2. 1 Variation of Compressor Pressure Ratio Over the Load Range 2. 2 Variation... of Compressor Pressure Ratio With the Flow Rate 13 2. 3 T-s Diagram of Brayton Cycle 2. 4 Sketch of Open Cycle Gas Turbine 1 7 2. 5 Specific Heat versus Temperature 18 2. 6 Optimum Cycle Efficiency by Pressure Ratios . . . . 20 3. 1 Different Compressor...

  12. Hot gas path analysis and data evaluation of the performance parameters of a gas turbine 

    E-Print Network [OSTI]

    Hanawa, David Allen

    1974-01-01T23:59:59.000Z

    SCIENCE December 1974 Major Subject: Mechanical Engineering HOT GAS PATH ANALYSIS AND DATA EVALUATION OF THE PERFORMANCE PARAMETERS OF A GAS TURBINE A Thesis by DAVID AI, LEN HANAWA Approved as to style and content by: PfnA J 7 EY3 .j (Chairman... of -Committee) zr (Head of Depai'tment) Member) /i ~E" Egg(JQJ a g i (Member) (Member) December l974 ABSTRACT Ho Gas Path Ana'ysis and Data Evaluation o. the Performance Parameters of a Gas Turbine (December 1974) David Allen Hanawa, B. S. , Texas A...

  13. Turbulent Flow Effects on the Biological Performance of Hydro-Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-08-25T23:59:59.000Z

    The hydro-turbine industry uses Computational Fluid Dynamics (CFD) tools to predict the flow conditions as part of the design process for new and rehabilitated turbine units. Typically the hydraulic design process uses steady-state simulations based on Reynolds-Averaged Navier-Stokes (RANS) formulations for turbulence modeling because these methods are computationally efficient and work well to predict averaged hydraulic performance, e.g. power output, efficiency, etc. However, in view of the increasing emphasis on environmental concerns, such as fish passage, the consideration of the biological performance of hydro-turbines is also required in addition to hydraulic performance. This leads to the need to assess whether more realistic simulations of the turbine hydraulic environment ?those that resolve unsteady turbulent eddies not captured in steady-state RANS computations? are needed to better predict the occurrence and extent of extreme flow conditions that could be important in the evaluation of fish injury and mortality risks. In the present work, we conduct unsteady, eddy-resolving CFD simulations on a Kaplan hydro-turbine at a normal operational discharge. The goal is to quantify the impact of turbulence conditions on both the hydraulic and biological performance of the unit. In order to achieve a high resolution of the incoming turbulent flow, Detached Eddy Simulation (DES) turbulence model is used. These transient simulations are compared to RANS simulations to evaluate whether extreme hydraulic conditions are better captured with advanced eddy-resolving turbulence modeling techniques. The transient simulations of key quantities such as pressure and hydraulic shear flow that arise near the various components (e.g. wicket gates, stay vanes, runner blades) are then further analyzed to evaluate their impact on the statistics for the lowest absolute pressure (nadir pressures) and for the frequency of collisions that are known to cause mortal injury in fish passing through hydro-turbines.

  14. Measured and predicted rotor performance for the SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Kelley, N.; Jager, D.

    1992-02-01T23:59:59.000Z

    Measured and predicted rotor performance for the SERI advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction. 11 refs.

  15. 36 AUGUST | 2011 EnhancEd TurbinE

    E-Print Network [OSTI]

    Kusiak, Andrew

    36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected by asymmetric loads, variable wind speeds, and se- vere weather conditions which cause wind turbines to change their states. A typical wind turbine under- goes various states during its daily operations. The wind turbine

  16. Sandia National Laboratories: improving PV performance model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accuracy PV Performance Modeling Collaborative's New and Improved Website Is Launched On December 10, 2014, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  17. Sandia National Laboratories: improving PV performance model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical rigor PV Performance Modeling Collaborative's New and Improved Website Is Launched On December 10, 2014, in Computational Modeling & Simulation, Energy, Facilities, News,...

  18. Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems M. J School of S ~ao Carlos, Brazil. Email: ramos@sel.eese.usp.br Abstract--The complexity of power systems, such as wind generators. This changing nature of power systems has considerable effect on its dynamic behaviour

  19. The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance , J. Chapman1

    E-Print Network [OSTI]

    Manuel, Lance

    The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance A. Swift1 , J data acquisition tower is continuously measuring and recording atmospheric conditions at multiple providing barometric pressure and temperature data. A second data acquisition tower approximately 100m

  20. Configuration and performance of the indirect-fired fuel cell bottomed turbine cycle

    SciTech Connect (OSTI)

    Micheli, P.L.; Williams, M.C.; Parsons, E.L. Jr.

    1993-12-31T23:59:59.000Z

    The natural gas, indirect-fired fuel cell bottomed turbine cycle (NG-IFFC) is introduced as a novel power plant system for the distributed power and on-site markets in the 20--200 megawatt (MW) size range. The novel indirect-fired carbonate fuel cell bottomed turbine cycle (NG-IFCFC) power plant system configures the ambient pressure carbonate fuel cell with a gas turbine, air compressor, combustor, and ceramic heat exchanger. Performance calculations from ASPEN simulations present material and energy balances with expected power output. The results indicate efficiencies and heat rates for the NG-IFCFC are comparable to conventionally bottomed carbonate fuel cell steam bottomed cycles, but with smaller and less expensive components.

  1. Predicting Improved Chiller Performance Through Thermodynamic Modeling

    E-Print Network [OSTI]

    Figueroa, I. E.; Cathey, M.; Medina, M. A.; Nutter, D. W.

    This paper presents two case studies in which thermodynamic modeling was used to predict improved chiller performance. The model predicted the performance (COP and total energy consumption) of water-cooled centrifugal chillers as a function...

  2. Rugged ATS turbines for alternate fuels

    SciTech Connect (OSTI)

    Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

    1995-02-01T23:59:59.000Z

    A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

  3. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01T23:59:59.000Z

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  4. A Simplified Morphing Blade for Horizontal Axis Wind Turbines

    E-Print Network [OSTI]

    Boyer, Edmond

    A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

  5. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdfStatement of Christopher47328 Vol.ModernFrancis

  6. DOE-Sponsored Research Improves Gas Turbine Performance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002 October5-99 FebruaryThreeCO2 |Energy

  7. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    Performance STudies Authors: George T. Lee (METC) Frederick A. Sudhoff (METC) Conference: Fuel Cells '96 Review Meeting Conference Location: Morgantown, West Virginia Conference...

  8. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  9. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2005-12-01T23:59:59.000Z

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

  10. Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Labora-

    E-Print Network [OSTI]

    Research turbine supports sustained technology development. For more than three decades, engineers, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC

  11. Influence of hole shape on the performance of a turbine vane endwall film-cooling scheme

    E-Print Network [OSTI]

    Thole, Karen A.

    Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream industrial gas turbine engines. One means of achieving this goal is to increase the combustion temper- ature are so high in today's gas turbine engines that in the absence of complex cooling schemes the turbine

  12. Method for improving fuel cell performance

    DOE Patents [OSTI]

    Uribe, Francisco A.; Zawodzinski, Thomas

    2003-10-21T23:59:59.000Z

    A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.

  13. Improving Unit Operations-Test Station Performance

    E-Print Network [OSTI]

    Filak, J. J. Jr.

    IMPROVING UNIT OPERATIONS - TEST STATION PERFORMANCE JosqIb 1. Filak. Jr, ? Corporate Energy Manager. Park.er?Hannafin COfpontioo- Cleveland. Oh ABSTRACT: This program's basic concept deals with the possibilities for reducing energy efficiency... requirements, control operation test performance functions more successfully, and retain peak load surges from reaching higher utility rate expense levels. 142 ESL-IE-95-04-23 Proceedings from the Seventeenth Industrial Energy Technology Conference...

  14. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01T23:59:59.000Z

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  15. Turbine bucket natural frequency tuning rib

    DOE Patents [OSTI]

    Wang, John Zhiqiang (Greenville, SC); Norton, Paul Francis (Greenville, SC); Barb, Kevin Joseph (Halfmoon, NY); Jacala, Ariel Caesar-Prepena (Simpsonville, SC)

    2002-01-01T23:59:59.000Z

    A tuning rib is added preferably in the aft cavity of a cored turbine bucket to alter the bucket's natural frequencies. The tuning rib may be a solid rib or a segmented rib and is particularly suited for altering high order frequency modes such as 2T, 4F and 1-3S. As such, detrimental crossings of natural bucket frequencies and gas turbine stimuli can be avoided to thereby improve the reliability of a gas turbine without impacting other features of the bucket that are important to the performance of the gas turbine.

  16. Electrospray characteristic curves: in pursuit of improved performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrospray characteristic curves: in pursuit of improved performance in the nano-flow regime. Electrospray characteristic curves: in pursuit of improved performance in the...

  17. Possible Origin of Improved High Temperature Performance of Hydrotherm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Origin of Improved High Temperature Performance of Hydrothermally Aged CuBeta Zeolite Catalysts. Possible Origin of Improved High Temperature Performance of Hydrothermally Aged...

  18. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  19. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Steam System Performance: A Sourcebook for Industry, Second Edition Improving Steam System Performance: A Sourcebook for Industry, Second Edition This sourcebook is...

  20. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01T23:59:59.000Z

    boils water to drive a steam turbine generator and then usesremaining in the steam exiting the turbine for process Dry-

  1. Improved Building Performance Through Effective Communication & Training

    E-Print Network [OSTI]

    Bates, R.

    2005-01-01T23:59:59.000Z

    IMPROVED BUILDING PERFORMANCE THROUGH EFFECTIVE COMMUNICATION & TRAINING Rick Bates Project Manager Environmental Education Foundation Gilbert, AZ ABSTRACT This paper describes the procedures involved in the development of a... for not understanding how buildings should be cared for. Separate course materials and separate training programs had been designed although the same underlying guidance was needed for both groups. The gender and age relationship between these groups...

  2. Numeric-modeling sensitivity analysis of the performance of wind turbine arrays

    SciTech Connect (OSTI)

    Lissaman, P.B.S.; Gyatt, G.W.; Zalay, A.D.

    1982-06-01T23:59:59.000Z

    An evaluation of the numerical model created by Lissaman for predicting the performance of wind turbine arrays has been made. Model predictions of the wake parameters have been compared with both full-scale and wind tunnel measurements. Only limited, full-scale data were available, while wind tunnel studies showed difficulties in representing real meteorological conditions. Nevertheless, several modifications and additions have been made to the model using both theoretical and empirical techniques and the new model shows good correlation with experiment. The larger wake growth rate and shorter near wake length predicted by the new model lead to reduced interference effects on downstream turbines and hence greater array efficiencies. The array model has also been re-examined and now incorporates the ability to show the effects of real meteorological conditions such as variations in wind speed and unsteady winds. The resulting computer code has been run to show the sensitivity of array performance to meteorological, machine, and array parameters. Ambient turbulence and windwise spacing are shown to dominate, while hub height ratio is seen to be relatively unimportant. Finally, a detailed analysis of the Goodnoe Hills wind farm in Washington has been made to show how power output can be expected to vary with ambient turbulence, wind speed, and wind direction.

  3. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  4. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1995-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  5. Ceramic stationary gas turbine development. Final report, Phase 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

  6. Ceramic stationary gas turbine

    SciTech Connect (OSTI)

    Roode, M. van

    1995-12-31T23:59:59.000Z

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  7. Improving Access to Foundational Energy Performance Data

    SciTech Connect (OSTI)

    Studer, D.; Livingood, W.; Torcellini, P.

    2014-08-01T23:59:59.000Z

    Access to foundational energy performance data is key to improving the efficiency of the built environment. However, stakeholders often lack access to what they perceive as credible energy performance data. Therefore, even if a stakeholder determines that a product would increase efficiency, they often have difficulty convincing their management to move forward. Even when credible data do exist, such data are not always sufficient to support detailed energy performance analyses, or the development of robust business cases. One reason for this is that the data parameters that are provided are generally based on the respective industry norms. Thus, for mature industries with extensive testing standards, the data made available are often quite detailed. But for emerging technologies, or for industries with less well-developed testing standards, available data are generally insufficient to support robust analysis. However, even for mature technologies, there is no guarantee that the data being supplied are the same data needed to accurately evaluate a product?s energy performance. To address these challenges, the U.S. Department of Energy funded development of a free, publically accessible Web-based portal, the Technology Performance Exchange(TM), to facilitate the transparent identification, storage, and sharing of foundational energy performance data. The Technology Performance Exchange identifies the intrinsic, technology-specific parameters necessary for a user to perform a credible energy analysis and includes a robust database to store these data. End users can leverage stored data to evaluate the site-specific performance of various technologies, support financial analyses with greater confidence, and make better informed procurement decisions.

  8. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01T23:59:59.000Z

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2012 for the component reliability as reported in the Equipment Performance and Information Exchange (EPIX). The TDP failure modes considered are failure to start, failure to run less than or equal to 1 hour, failure to run more than 1 hour, and (for normally running systems) failure to run. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. No statistically significant increasing trends were identified in the TDP results. Statistically significant decreasing trends were identified for TDP run hours per reactor critical year and start demands.

  9. Improvement of risk estimate on wind turbine tower buckled by hurricane

    E-Print Network [OSTI]

    Li, Jingwei

    2013-01-01T23:59:59.000Z

    Wind is one of the important reasonable resources. However, wind turbine towers are sure to be threatened by hurricanes. In this paper, method to estimate the number of wind turbine towers that would be buckled by hurricanes is discussed. Monte Carlo simulations show that our method is much better than the previous one. Since in our method, the probability density function of the buckling probability of a single turbine tower in a single hurricane is obtained accurately but not from one approximated expression. The result in this paper may be useful to the design and maintenance of wind farms.

  10. Performance Improvements for Nuclear Reaction Network Integration

    E-Print Network [OSTI]

    Longland, Richard; José, Jordi

    2014-01-01T23:59:59.000Z

    Aims: The aim of this work is to compare the performance of three reaction network integration methods used in stellar nucleosynthesis calculations. These are the Gear's backward differentiation method, Wagoner's method (a 2nd-order Runge-Kutta method), and the Bader-Deuflehard semi-implicit multi-step method. Methods: To investigate the efficiency of each of the integration methods considered here, a test suite of temperature and density versus time profiles is used. This suite provides a range of situations ranging from constant temperature and density to the dramatically varying conditions present in white dwarf mergers, novae, and x-ray bursts. Some of these profiles are obtained separately from full hydrodynamic calculations. The integration efficiencies are investigated with respect to input parameters that constrain the desired accuracy and precision. Results: Gear's backward differentiation method is found to improve accuracy, performance, and stability in integrating nuclear reaction networks. For te...

  11. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  12. Improving the manufacturing yield of investment cast turbine blades through robust design

    E-Print Network [OSTI]

    Margetts, David (David Lawrence)

    2008-01-01T23:59:59.000Z

    The manufacturing of turbine blades is often outsourced to investment casting foundries by aerospace companies that design and build jet engines. Aerospace companies have found that casting defects are an important cost ...

  13. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-01-01T23:59:59.000Z

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission tomore »replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.« less

  14. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13T23:59:59.000Z

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

  15. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-01-01T23:59:59.000Z

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

  16. Performance improvement options for the supercritical carbon dioxide brayton cycle.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

    2008-07-17T23:59:59.000Z

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO{sub 2} Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g.., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.

  17. Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006

    SciTech Connect (OSTI)

    Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

    2008-02-01T23:59:59.000Z

    This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

  18. Improved Wind Turbine Drivetrain Reliability using a Combined Experimental, Computational, and Analytical Approach (Presentation)

    SciTech Connect (OSTI)

    Guo, Yi; Bergua, R.; van Dam, J.; Jove, J.; Campbell, J.

    2014-08-01T23:59:59.000Z

    Nontorque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling, and experimental data to evaluate a unique drivetrain design that minimize the effects of nontorque loads on gearbox reliability: the Pure Torque drivetrain developed by Alstom. The drivetrain has a hub-support configuration that transmits nontorque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces, and the resulting drivetrain loads. Main shaft bending loads are orders of magnitude lower than the rated torque and are hardly affected by wind speed and turbine operations.

  19. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Kaplan Turbines

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.; Dauble, Dennis D.

    2007-11-10T23:59:59.000Z

    Bio-indexing of hydroturbines is an important means to optimize passage conditions for fish by identifying operations for existing and new design turbines that minimize the probability of injury. Cost-effective implementation of bio-indexing requires the use of tools such as numerical and physical turbine models to generate hypotheses for turbine operations that can be tested at prototype scales using live fish. Numerical deterministic and stochastic blade strike models were developed for a 1:25-scale physical turbine model built by the U.S. Army Corps of Engineers for the original design turbine at McNary Dam and for prototype-scale original design and replacement minimum gap runner (MGR) turbines at Bonneville Dam's first powerhouse. Blade strike probabilities predicted by both models were comparable with the overall trends in blade strike probability observed in both prototype-scale live fish survival studies and physical turbine model using neutrally buoyant beads. The predictions from the stochastic model were closer to the experimental data than the predictions from the deterministic model because the stochastic model included more realistic consideration of the aspect of fish approaching to the leading edges of turbine runner blades. Therefore, the stochastic model should be the preferred method for the prediction of blade strike and injury probability for juvenile salmon and steelhead using numerical blade-strike models.

  20. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and Reduced Cost of...

  1. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating System Performance: A Sourcebook for Industry, Second Edition Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition This...

  2. Improving Pumping System Performance: A Sourcebook for Industry...

    Broader source: Energy.gov (indexed) [DOE]

    Pumping System Performance: A Sourcebook for Industry - Second Edition Improving Pumping System Performance: A Sourcebook for Industry - Second Edition This sourcebook is designed...

  3. Goal setting for improvement in product development performance of organizations

    E-Print Network [OSTI]

    Kashyap, Pankaj Kumar

    2013-01-01T23:59:59.000Z

    Companies have been constantly trying for ways and means to improve R&D performance as it is one of the most important competitive advantage tools of an organization. Literature review on R&D performance improvement suggests ...

  4. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtained through this project can directly benefit the U.S. power and utility turbine industry by improving product development that specifically meets DOE advanced turbine program...

  5. Blade tip clearance effect on the performance and flow field of a three stage axial turbine

    E-Print Network [OSTI]

    Abdel-Fattah, Sharef Aly

    2003-01-01T23:59:59.000Z

    The effect of a 1.5 % blade tip clearance on a rotating three stage turbine under different operating points was investigated using radially and circumferentially traversed five hole pressure probes. The probes were used to obtain flow field total...

  6. Performance Contracting for Public Sector Improvement Projects

    E-Print Network [OSTI]

    Mallory, A. D.

    2013-01-01T23:59:59.000Z

    Conference, San Antonio, Texas Dec. 16-18 2 Johnson Controls Confidential Overview ? What is Performance Contracting? ? What is the Performance Contracting Process? ? When does Performance Contracting Work Best? ? Government Entity ? ESCO ? 3rd Party... Finance Company ? How do I Pay for Performance Contracting? ? Benefits of Performance Contracting? ESL-KT-13-12-41 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 3 Johnson Controls Confidential COMPANY BACKGROUND...

  7. Improving Indoor Air Quality Improves the Performance of Office Work and School Work 

    E-Print Network [OSTI]

    Wargocki, P.

    2008-01-01T23:59:59.000Z

    Recent studies show that improving indoor air quality (IAQ) from the mediocre level prevalent in many buildings worldwide improves the performance of office work by adults and the performance of schoolwork by children. These results constitute a...

  8. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25T23:59:59.000Z

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  9. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30T23:59:59.000Z

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  10. Improving SSL Handshake Performance via Batching Hovav Shacham Dan Boneh

    E-Print Network [OSTI]

    Boneh, Dan

    Improving SSL Handshake Performance via Batching Hovav Shacham Dan Boneh hovav@cs.stanford.edu dabo@cs.stanford.edu Abstract We present an algorithmic approach for speeding up SSL's performance on a web server. Our approach improves the performance of SSL's handshake protocol by up to a factor of 2.5 for 1024-bit RSA keys

  11. Furnace Blower Performance Improvements - Building America Top...

    Energy Savers [EERE]

    efficiencies of only 10%-15%. Researchers at Lawrence Berkeley National Laboratory (LBNL) garnered a 2013 Top Innovation award for their work on evaluating the performance of...

  12. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect (OSTI)

    Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

    2013-03-01T23:59:59.000Z

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  13. Improving Motor and Drive System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and ImprovingMotor and

  14. Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

  15. Intermetallic Electrodes Improve Safety and Performance in Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermetallic Electrodes Improve Safety and Performance in Lithium-Ion Batteries Technology available for licensing: A new class of intermetallic material that can be used as a...

  16. Improving Motor and Drive System Performance - A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    motors and drives, as well as resources for additional information, tools, software, videos, and training opportunities. Improving Motor and Drive System Performance - A...

  17. Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance

    E-Print Network [OSTI]

    Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

    2011-01-01T23:59:59.000Z

    and P. Price, 2009. “Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

  18. Improving wireless network performance using sensor hints

    E-Print Network [OSTI]

    Sivalingam, Lenin Ravindranath

    2010-01-01T23:59:59.000Z

    Users of wireless devices often switch between being stationary and in motion while transferring data. Protocols that perform well in the static setting (where the channel conditions are relatively stable), however, tend ...

  19. Improving performance of TCP over wireless networks

    E-Print Network [OSTI]

    Mehta, Miten N.

    1998-01-01T23:59:59.000Z

    TCP has been designed and tuned to perform well on a phics. wired network made up of links with low bit-error rates. Wireless networks and heterogeneous networks consisting of wired and wireless links have many different characteristics compared...

  20. Using analytics to improve delivery performance

    E-Print Network [OSTI]

    Napolillo, Tacy J. (Tacy Jean)

    2014-01-01T23:59:59.000Z

    Delivery Precision is a key performance indicator that measures Nike's ability to deliver product to the customer in full and on time. The objective of the six-month internship was to quantify areas in the supply chain ...

  1. Improving Processor Design by Exploiting Performance Variance

    E-Print Network [OSTI]

    Wang, Zhe

    2014-07-28T23:59:59.000Z

    of a microarchitectural optimization optimization and not the rest of the microarchitecture. We explore performance variance caused by phase changes and develop prediction-driven last-level cache (LLC) writeback techniques. We propose a rank idle time...

  2. When Network Coding improves the Performances of Clustered Wireless Networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    When Network Coding improves the Performances of Clustered Wireless Networks that significantly increases the performances of clustering algorithms in wireless multi-hop networks-XOR coding; wireless multi-hop networks; clustering I. INTRODUCTION Partitioning nodes

  3. Automatic Control of Freeboard and Turbine Operation

    E-Print Network [OSTI]

    Automatic Control of Freeboard and Turbine Operation ­ Wave Dragon, Nissum Bredning Project: Sea of Freeboard and Turbine Operation Wave Dragon, Nissum Bredning by Jens Peter Kofoed & Peter Frigaard, Aalborg.........................................................................................................................10 TURBINE PERFORMANCE DATA

  4. American Institute of Aeronautics and Astronautics Performance Optimization of Gas Turbines Utilizing

    E-Print Network [OSTI]

    Müller, Norbert

    T = temperature = efficiency = pressure ratio Subscripts b = baseline (untopped) engine comb = combustor loss PC = polytropic, compressor PT = polytropic, turbine th = thermal WE = wave rotor expansion WP = wave rotor), combustor inlet 3 = combustor outlet, wave rotor inlet (expansion side) 4 = wave rotor outlet (expansion

  5. Inter-stage and Performance Tests of a Two-stage High-pressure Turbine

    E-Print Network [OSTI]

    Sharma, Kapil

    2011-08-08T23:59:59.000Z

    License Academic Use Only Fig . 14. : Sectiona l vie w of th e turbi ne asse m bl y sh owin g detail s of th e heater , torque-mete r an d th e shaf t [26 ] 28 Fig . 15. : Sectiona l vie w of th e turbin...

  6. Performance Characteristics of an Electrochemically Powered Turboprop: A Comparison with State of the Art Gas Turbines 

    E-Print Network [OSTI]

    Johnson, M. C.; Swan, D. H.

    1993-01-01T23:59:59.000Z

    /fuel cell power system be superior to a state of the art hydrogen/gas turbine power system? The systems are compared on a fuel consumption basis, a cost basis, and a reliability/ maintainability basis. The analysis show that both specific power...

  7. Improved Wireless Performance from Mode Scattering in Ventilation Ducts

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Improved Wireless Performance from Mode Scattering in Ventilation Ducts Benjamin E. Henty, PA 15230. henty@eirp.org and stancil@cmu.edu Abstract Ventilation ducts are a convenient present in a ventilation duct T-junction and note with some surprise that improvement in the performance

  8. Improved Economic Performance Municipal Solid Waste Combustion Plants

    E-Print Network [OSTI]

    Van den Hof, Paul

    Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control #12;#12;Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based-of-the-art and challenges in the operation of MSWC plants . . . 1 1.1.1 The aims of municipal solid waste combustion

  9. Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01T23:59:59.000Z

    A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

  10. Long-term average performance benefits of parabolic trough improvements

    SciTech Connect (OSTI)

    Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

    1980-03-01T23:59:59.000Z

    Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

  11. SMART POWER TURBINE

    SciTech Connect (OSTI)

    Nirm V. Nirmalan

    2003-11-01T23:59:59.000Z

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

  12. Steam Path Audits on Industrial Steam Turbines

    E-Print Network [OSTI]

    Mitchell, D. R.

    in sellable power output as a result of improved turbine efficiency. The Lyondell facility is a combined cycle power plant where a gas turbine: heat recovery system supplies steam to the steam turbine. Since this steam is a bypropuct of the gas turbine...steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits...

  13. Efficient Materialization of Dynamic Web Data to Improve Web Performance

    E-Print Network [OSTI]

    Bouras, Christos

    Efficient Materialization of Dynamic Web Data to Improve Web Performance Christos Bouras, Agisilaos of performance, response efficiency and data consistency are among the most important ones for data intensive Web a materialization policy that may be applied to data intensive Web sites. Our research relies on the performance

  14. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01T23:59:59.000Z

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  15. Improving Face Recognition Performance Using a Hierarchical Bayesian Model

    E-Print Network [OSTI]

    Shikaripur Nadig, Ashwini

    2010-04-27T23:59:59.000Z

    which can result in an improved recognition performance over already existing baseline approaches. We use Kernelized Fisher Discriminant Analysis (KFLD) as our baseline as it is superior to PCA in a way that it produces well separated classes even under...

  16. Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with...

  17. Using Building Commissioning to Improve Performance in State Buildings

    E-Print Network [OSTI]

    Haasl, T.; Wilkinson, R.

    1998-01-01T23:59:59.000Z

    Using the commissioning process, states are beginning to improve and optimize their existing building stock as well as ensure that their new construction projects perform according to design. This paper reports on the progress a number of states...

  18. An SMT-Selection Metric to Improve Multithreaded Applications' Performance

    E-Print Network [OSTI]

    Fedorova, Alexandra

    An SMT-Selection Metric to Improve Multithreaded Applications' Performance Justin R. Funston Simon Fraser University* Abstract--Simultaneous multithreading (SMT) increases CPU utilization- cation scalability or when there is significant contention for CPU resources. This paper describes an SMT

  19. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  20. A Simple Representation Technique to Improve GA Performance

    E-Print Network [OSTI]

    's performance by allowing a more rapid search through the hypothesis space. This is achieved by the prior be very different than their parents, thus increasing the speed in which the hypothesis space is searchedA Simple Representation Technique to Improve GA Performance Steven L. Keast Department of Computer

  1. Current performance and potential improvements in solar thermal industrial heat

    SciTech Connect (OSTI)

    Hale, M.J.; Williams, T.; Barker, G.

    1992-12-01T23:59:59.000Z

    A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m{sup 2} system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  2. Current performance and potential improvements in solar thermal industrial heat

    SciTech Connect (OSTI)

    Hale, M.J.; Williams, T.; Barker, G.

    1992-12-01T23:59:59.000Z

    A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m[sup 2] system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  3. Laboratory implementation of variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Zinger, D.S. [Northern Illinois University, DeKalb, IL (United States)] [Northern Illinois University, DeKalb, IL (United States); Miller, A.A. [Univ. of Idaho, Moscow, ID (United States)] [Univ. of Idaho, Moscow, ID (United States); Muljadi, E.; Butterfield, C.P.; Robinson, M.C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

    1996-07-01T23:59:59.000Z

    To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

  4. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03T23:59:59.000Z

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  5. DEVELOPMENT OF MODIFIED WIND TURBINE: A PAST REVIEW

    E-Print Network [OSTI]

    Rob Res; N R Deshmukh; S J Deshmukh; N R Deshmukh; S J Deshmukh

    Wind energy represents a viable alternative, as it is a virtually endless resource. Through the next several decades, renewable energy technologies, thanks to their continually improving performance and cost, and growing recognition of their Environmental, economic and social values, will grow increasingly competitive with Traditional energy technologies, so that by the middle of the 21 st century, renewable Energy, in its various forms, should be supplying half of the world’s energy needs. In this paper various types of wind turbine are reviewed to understand and the development and modification of horizontal axis wind turbine and how more power can be generated compared to bare turbine of the same rotor blade diameter.

  6. NREL Collaborative Improves the Reliability of Wind Turbine Gearboxes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    Gearbox failures have a significant impact on the cost of wind farm operations. To help minimize gearbox failures, in 2007 the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which consists of manufacturers, owners, researchers, and consultants. Based on all the lessons learned from the past five years, the GRC has now produced a new and improved design, which is projected to yield an operating lifetime of 12 years, more than triple that of the previous redesigned gearbox. The GRC findings will result in increased gearbox reliability and an overall reduction in the cost of wind energy.

  7. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S. (Albuquerque, NM); Lobitz, Donald W. (Albuquerque, NM)

    2003-01-01T23:59:59.000Z

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  8. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07T23:59:59.000Z

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  9. Potential improvements in SiGe radioisotope thermoelectric generator performance

    SciTech Connect (OSTI)

    Mowery, A.L. [4 Myrtle Bank Lane, Hilton Head Island, South Carolina, 29926-2650 (United States)

    1999-01-01T23:59:59.000Z

    In accordance with NASA{close_quote}s slogan: {open_quotes}Better, Cheaper, Faster,{close_quotes} this paper will address potential improvements to SiGe RTG technology to make them Better. RTGs are doubtless cheaper than {open_quotes}paper designs{close_quotes} which are better and cheaper until development, performance and safety test costs are considered. RTGs have the advantage of being fully developed and tested in the rigors of space for over twenty years. Further, unless a new system can be accelerated tested, as were the RTGs, they cannot be deployed reliably unless a number of systems have succeeded for test periods exceeding the mission lifetime. Two potential developments are discussed that can improve the basic RTG performance by 10 to 40{sup +}{percent} depending on the mission profile. These improvements could be demonstrated in years. Accelerated testing could also be performed in this period to preserve existing RTG reliability. Data from a qualification tested RTG will be displayed, while not definitive, to support the conclusions. Finally, it is anticipated that other investigators will be encouraged to suggest further modifications to the basic RTG design to improve its performance. {copyright} {ital 1999 American Institute of Physics.}

  10. On Improving the Performance of Reliable Server Pooling Systems

    E-Print Network [OSTI]

    Dreibholz, Thomas

    On Improving the Performance of Reliable Server Pooling Systems for Distance-Sensitive Distributed, Germany, dreibh@iem.uni-due.de, http://www.exp-math.uni-essen.de/~dreibh Abstract. Reliable Server Pooling (RSerPool) is a protocol framework for server redundancy and session failover, currently under

  11. Improving the Load Balancing Performance of Reliable Server Pooling

    E-Print Network [OSTI]

    Dreibholz, Thomas

    Improving the Load Balancing Performance of Reliable Server Pooling in Heterogeneous Capacity@iem.uni-due.de Abstract. The IETF is currently standardizing a light-weight protocol frame- work for server redundancy and session failover: Reliable Server Pooling (RSer- Pool). It is the novel combination of ideas from

  12. Improving Real World Efficiency of High Performance Buildings

    E-Print Network [OSTI]

    this shortfall is critical as the focus on moving toward zero net energy buildings and carbon reductionImproving Real World Efficiency of High Performance Buildings Buildings End-Use Energy Efficiency Research www.energy.ca.gov/research/buildings February 2012 The Issue Highperformance buildings

  13. Nitrogen modification of highly porous carbon for improved supercapacitor performance

    E-Print Network [OSTI]

    Cao, Guozhong

    Nitrogen modification of highly porous carbon for improved supercapacitor performance Stephanie L for supercapacitor applications. Surface modification increases the amount of nitrogen by four times when compared elements in highly porous carbon used for electric double-layer supercapacitors.1 These elements modify

  14. Advanced turbine systems: Studies and conceptual design

    SciTech Connect (OSTI)

    van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

    1993-11-01T23:59:59.000Z

    The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

  15. A low order model for vertical axis wind turbines

    E-Print Network [OSTI]

    Drela, Mark

    A new computational model for initial sizing and performance prediction of vertical axis wind turbines

  16. New MEA Materials for Improved DMFC Performance, Durability and Cost

    SciTech Connect (OSTI)

    Fletcher, James H. [University of North Florida; Campbell, Joseph L. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J. [University of North Florida

    2013-09-16T23:59:59.000Z

    Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled “New MEA Materials for Improved DMFC Performance, Durability and Cost”. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative “passive water recovery” MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for Nafion) that minimizes flooding issues at the cathode, which often fatally limit open cathode MEA performance. During this successfully completed DOE program the project team met all of the project goals. The team built and tested over 1,500 MEAs with a wide range of different manufacturing chemistries and process conditions. This project demonstrated that the UNF MEA design could be fabricated with a high degree of reproducibility and repeatability. Some specific achievements include: • Durability - The UNF MEA has demonstrated over 11,000 hours continuous operation in a short stack configuration. The root cause of an off-state degradation issue was successfully mitigated by modifying the manufacturing process by changing the wetting agents used in the catalyst printing. The stability of the anode electrode was increased by replacing the anode electrodes with a stabilized PtRu/C catalyst. The overall degradation rate was significantly reduced through optimization of the MEA operating conditions. • Performance - The project team optimized the performance of the critical MEA sub-components. By increasing the membrane thickness, the methanol crossover was reduced, thereby increasing the fuel utilization efficiency without sacrificing any electrochemical performance. The reduction in methanol crossover increased the fuel utilization efficiency from 78% to over 90%. The liquid barrier layer was optimized to provide improved reproducibility, thereby improving stack voltage uniformity and reliability. Additionally the barrier layer water permeability was lowered without sacrificing any power density, thereby enabling increased operating temperature. Improvements in the cathode catalyst selection and coating provided an additional 10% to 20% improvement in the MEA performance at the target operating range. • Cost - Commercially scalable processes were developed for all of the critical MEA components which led to improved yields and lower overall manufacturing costs. Furthermore, significant steps have been made in improving the process control, which increases MEA

  17. Adaptive optics simulation performance improvements using reconfigurable logic

    E-Print Network [OSTI]

    Alastair Basden

    2006-11-09T23:59:59.000Z

    A technique used to accelerate an adaptive optics simulation platform using reconfigurable logic is described. The performance of parts of this simulation have been improved by up to 600 times (reducing computation times by this factor) by implementing algorithms within hardware and enables adaptive optics simulations to be carried out in a reasonable timescale. This demonstrates that it is possible to use reconfigurable logic to accelerate computational codes by very large factors when compared with conventional software approaches, and this has relevance for many computationally intensive applications. The use of reconfigurable logic for high performance computing is currently in its infancy and has never before been applied to this field.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Natural gas expansion turbine Steam Distribution SystemNath (2000). Improve Steam Turbine Efficiency. Hydrocarbona steam boiler and steam turbine (back pressure turbine) to

  19. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect (OSTI)

    Frank Macri

    2003-10-01T23:59:59.000Z

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  20. Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Balas, M. J.

    2006-01-01T23:59:59.000Z

    Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

  1. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    None

    2011-10-01T23:59:59.000Z

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

  2. Computational Analysis of Shrouded Wind Turbine Configurations

    E-Print Network [OSTI]

    Alonso, Juan J.

    Computational Analysis of Shrouded Wind Turbine Configurations Aniket C. Aranake Vinod K. Lakshminarayan Karthik Duraisamy Computational analysis of diuser-augmented turbines is performed using high-dimensional simulations of shrouded wind turbines are performed for selected shroud geometries. The results are compared

  3. Improving Dynamic Load and Generator Response PerformanceTools

    SciTech Connect (OSTI)

    Lesieutre, Bernard C.

    2005-11-01T23:59:59.000Z

    This report is a scoping study to examine research opportunities to improve the accuracy of the system dynamic load and generator models, data and performance assessment tools used by CAISO operations engineers and planning engineers, as well as those used by their counterparts at the California utilities, to establish safe operating margins. Model-based simulations are commonly used to assess the impact of credible contingencies in order to determine system operating limits (path ratings, etc.) to ensure compliance with NERC and WECC reliability requirements. Improved models and a better understanding of the impact of uncertainties in these models will increase the reliability of grid operations by allowing operators to more accurately study system voltage problems and the dynamic stability response of the system to disturbances.

  4. Turbine airfoil with an internal cooling system having vortex forming turbulators

    DOE Patents [OSTI]

    Lee, Ching-Pang

    2014-12-30T23:59:59.000Z

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  5. Steam Path Audits on Industrial Steam Turbines 

    E-Print Network [OSTI]

    Mitchell, D. R.

    1992-01-01T23:59:59.000Z

    The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set...

  6. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect (OSTI)

    Albrecht H. Mayer

    2000-07-15T23:59:59.000Z

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  7. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30T23:59:59.000Z

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  8. Improving Reactor Performance Rose Montgomery The Tennessee Valley Authority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenITLaboratoryImproving Reactor Performance

  9. USING VIRTUAL REALITY TECHNOLOGY TO IMPROVE AIRCRAFT INSPECTION PERFORMANCE: PRESENCE AND PERFORMANCE MEASUREMENT STUDIES

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    and maintenance has revealed the criticality of human inspection performance in improving aviation safety. If we of Industrial Engineering Clemson University, SC Eric Medlin, Andrew T. Duchowski Department of Computer Science are to provide the general public with a safe and reliable air transportation system, inspection must

  10. Satoshi Hada Department of Gas Turbine Engineering,

    E-Print Network [OSTI]

    Thole, Karen A.

    Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago on Vane Endwall Film-Cooling Turbines are designed to operate with high inlet temperatures to improve. The endwall design considers both an upstream slot, representing the combustor--turbine junction

  11. Improving Emergency Response and Human-Robotic Performance

    SciTech Connect (OSTI)

    David I. Gertman; David J. Bruemmer; R. Scott Hartley

    2007-08-01T23:59:59.000Z

    Preparedness for chemical, biological, and radiological/nuclear incidents at nuclear power plants (NPPs) includes the deployment of well trained emergency response teams. While teams are expected to do well, data from other domains suggests that the timeliness and accuracy associated with incident response can be improved through collaborative human-robotic interaction. Many incident response scenarios call for multiple, complex procedure-based activities performed by personnel wearing cumbersome personal protective equipment (PPE) and operating under high levels of stress and workload. While robotic assistance is postulated to reduce workload and exposure, limitations associated with communications and the robot’s ability to act independently have served to limit reliability and reduce our potential to exploit human –robotic interaction and efficacy of response. Recent work at the Idaho National Laboratory (INL) on expanding robot capability has the potential to improve human-system response during disaster management and recovery. Specifically, increasing the range of higher level robot behaviors such as autonomous navigation and mapping, evolving new abstractions for sensor and control data, and developing metaphors for operator control have the potential to improve state-of-the-art in incident response. This paper discusses these issues and reports on experiments underway intelligence residing on the robot to enhance emergency response.

  12. IMPROVING CONSISTENCY OF PERFORMANCE ASSESSMENTS IN THE DOE COMPLEX

    SciTech Connect (OSTI)

    Seitz, R; Elmer Wilhite, E

    2009-01-20T23:59:59.000Z

    The low-level waste (LLW) performance assessment (PA) process has been traditionally focused on disposal facilities at a few United States Department of Energy (USDOE) sites and commercial disposal facilities. In recent years, there has been a dramatic increase in the scope of the use of PA-like modeling approaches, involving multiple activities, facilities, contractors and regulators. The scope now includes, for example: (1) National Environmental Policy Act (NEPA) assessments, (2) CERCLA disposal cells, (3) Waste Determinations and High-Level Waste (HLW) Closure activities, (4) Potential on-site disposal of Transuranic (TRU) waste, and (5) In-situ decommissioning (including potential use of existing facilities for disposal). The dramatic increase in the variety of activities requiring more detailed modeling has resulted in a similar increase in the potential for inconsistency in approaches both at a site and complexwide scale. This paper includes a summary of USDOE Environmental Management (EM) sponsored initiatives and activities for improved consistency. New initiatives entitled the Performance Assessment Community of Practice and Performance Assessment Assistance Team are also introduced.

  13. Integrated supercritical water gasification combined cycle (IGCC) systems for improved performance and reduced operating costs in existing plants

    SciTech Connect (OSTI)

    Tolman, R.; Parkinson, W.J.

    1999-07-01T23:59:59.000Z

    A revolutionary hydrothermal heat recovery steam generator (HRSG) is being developed to produce clean fuels for gas turbines from slurries and emulsions of opportunity fuels. Water can be above 80% by weight and solids below 20%, including coal fines, coal water fuels, biomass, composted municipal refuse, sewage sludge and bitumen/Orimulsion. The patented HRSG tubes use a commercial method of particle scrubbing to improve heat transfer and prevent corrosion and deposition on heat transfer surfaces. A continuous-flow pilot plant is planned to test the HRSG over a wide range of operating conditions, including the supercritical conditions of water, above 221 bar (3,205 psia) and 374 C (705 F). Bench scale data shows, that supercritical water gasification below 580 C (1,076 F) and low residence time without catalysts or an oxidizer can produce a char product that can contain carbon up to the amount of fixed carbon in the proximate analysis of the solids in the feed. This char can be burned with coal in an existing combustion system to provide the heat required for gasification. The new HRSG tubes can be retrofitted into existing power plant boilers for repowering of existing plants for improved performance and reduced costs. A special condensing turbine allows final low-temperature cleaning and maintains quality and combustibility of the fuel vapor for modern gas turbine in the new Vapor Transmission Cycle (VTC). Increased power output and efficiency can be provided for existing plants, while reducing fuel costs. A preliminary computer-based process simulation model has been prepared that includes material and energy balances that simulate commercial-scale operations of the VTC on sewage sludge and coal. Results predict over 40% HHV thermal efficiency to electric power from sewage sludge at more than 83% water by weight. The system appears to become autothermal (no supplemental fuel required) at about 35% fixed carbon in the feed. Thus, bituminous and lignite coal slurries could be gasified at less than 25% coal and more than 75% water. Preliminary life cycle cost analyses indicate that disposal fees for sewage sludge improve operating economics over fuel that must be purchased, the cost and schedule advantages of natural gas-fired combined cycle systems are preserved. Sensitivity analyses show that increasing capital costs by 50% can be offset by an increase in sewage sludge disposal fees of $10/metric ton.

  14. Improving Site-Specific Radiological Performance Assessments - 13431

    SciTech Connect (OSTI)

    Tauxe, John; Black, Paul; Catlett, Kate; Lee, Robert; Perona, Ralph; Stockton, Tom; Sully, Mike [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States)] [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States)

    2013-07-01T23:59:59.000Z

    An improved approach is presented for conducting complete and defensible radiological site-specific performance assessments (PAs) to support radioactive waste disposal decisions. The basic tenets of PA were initiated some thirty years ago, focusing on geologic disposals and evaluating compliance with regulations. Some of these regulations were inherently probabilistic (i.e., addressing uncertainty in a quantitative fashion), such as the containment requirements of the U.S. Environmental Protection Agency's (EPA's) 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, Chap. 191.13 [1]. Methods of analysis were developed to meet those requirements, but at their core early PAs used 'conservative' parameter values and modeling approaches. This limited the utility of such PAs to compliance evaluation, and did little to inform decisions about optimizing disposal, closure and long-term monitoring and maintenance, or, in general, maintaining doses 'as low as reasonably achievable' (ALARA). This basic approach to PA development in the United States was employed essentially unchanged through the end of the 20. century, principally by the U.S. Department of Energy (DOE). Performance assessments developed in support of private radioactive waste disposal operations, regulated by the U.S. Nuclear Regulatory Commission (NRC) and its agreement states, were typically not as sophisticated. Discussion of new approaches to PA is timely, since at the time of this writing, the DOE is in the midst of revising its Order 435.1, Radioactive Waste Management [2], and the NRC is revising 10 CFR 61, Licensing Requirements for Land Disposal of Radioactive Waste [3]. Over the previous decade, theoretical developments and improved computational technology have provided the foundation for integrating decision analysis (DA) concepts and objective-focused thinking, plus a Bayesian approach to probabilistic modeling and risk analysis, to guide improvements in PA. This decision-making approach, [4, 5, 6] provides a transparent formal framework for using a value- or objective-focused approach to decision-making. DA, as an analytical means to implement structured decision making, provides a context for both understanding how uncertainty affects decisions and for targeting uncertainty reduction. The proposed DA approach improves defensibility and transparency of decision-making. The DA approach is fully consistent with the need to perform realistic modeling (rather than conservative modeling), including evaluation of site-specific factors. Instead of using generic stylized scenarios for radionuclide fate and transport and for human exposures to radionuclides, site-specific scenarios better represent the advantages and disadvantages of alternative disposal sites or engineered designs, thus clarifying their differences as well as providing a sound basis for evaluation of site performance. The full DA approach to PA is described, from explicitly incorporating societal values through stakeholder involvement to model building. Model building involves scoping by considering features, events, processes, and exposure scenarios (FEPSs), development of a conceptual site model (CSM), translation into numerical models and subsequent computation, and model evaluation. These are implemented in a cycle of uncertainty analysis, sensitivity analysis and value of information analysis so that uncertainty can be reduced until sufficient confidence is gained in the decisions to be made. This includes the traditional focus on hydrogeological processes, but also places emphasis on other FEPSs such as biotically-induced transport and human exposure phenomena. The significance of human exposure scenarios is emphasized by modifying the traditional acronym 'FEPs' to include them, hence 'FEPSs'. The radioactive waste community is also recognizing that disposal sites are to be considered a national (or even global) resource. As such, there is a pressing need to optimize their utility withi

  15. Self-assessed performance improves statistical fusion of image labels

    SciTech Connect (OSTI)

    Bryan, Frederick W., E-mail: frederick.w.bryan@vanderbilt.edu; Xu, Zhoubing; Asman, Andrew J.; Allen, Wade M. [Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States)] [Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Reich, Daniel S. [Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States)] [Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States); Landman, Bennett A. [Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States) [Electrical Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); and Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2014-03-15T23:59:59.000Z

    Purpose: Expert manual labeling is the gold standard for image segmentation, but this process is difficult, time-consuming, and prone to inter-individual differences. While fully automated methods have successfully targeted many anatomies, automated methods have not yet been developed for numerous essential structures (e.g., the internal structure of the spinal cord as seen on magnetic resonance imaging). Collaborative labeling is a new paradigm that offers a robust alternative that may realize both the throughput of automation and the guidance of experts. Yet, distributing manual labeling expertise across individuals and sites introduces potential human factors concerns (e.g., training, software usability) and statistical considerations (e.g., fusion of information, assessment of confidence, bias) that must be further explored. During the labeling process, it is simple to ask raters to self-assess the confidence of their labels, but this is rarely done and has not been previously quantitatively studied. Herein, the authors explore the utility of self-assessment in relation to automated assessment of rater performance in the context of statistical fusion. Methods: The authors conducted a study of 66 volumes manually labeled by 75 minimally trained human raters recruited from the university undergraduate population. Raters were given 15 min of training during which they were shown examples of correct segmentation, and the online segmentation tool was demonstrated. The volumes were labeled 2D slice-wise, and the slices were unordered. A self-assessed quality metric was produced by raters for each slice by marking a confidence bar superimposed on the slice. Volumes produced by both voting and statistical fusion algorithms were compared against a set of expert segmentations of the same volumes. Results: Labels for 8825 distinct slices were obtained. Simple majority voting resulted in statistically poorer performance than voting weighted by self-assessed performance. Statistical fusion resulted in statistically indistinguishable performance from self-assessed weighted voting. The authors developed a new theoretical basis for using self-assessed performance in the framework of statistical fusion and demonstrated that the combined sources of information (both statistical assessment and self-assessment) yielded statistically significant improvement over the methods considered separately. Conclusions: The authors present the first systematic characterization of self-assessed performance in manual labeling. The authors demonstrate that self-assessment and statistical fusion yield similar, but complementary, benefits for label fusion. Finally, the authors present a new theoretical basis for combining self-assessments with statistical label fusion.

  16. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

  17. Improving Performance of Federal Permitting and Review of Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modernizing the nation's electric transmission grid requires improvements in how transmission lines are sited, permitted, and reviewed. As part of its efforts to improve the...

  18. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect (OSTI)

    Ward, R.M.; Vaughey, J.T.

    2006-01-01T23:59:59.000Z

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  19. Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price

    SciTech Connect (OSTI)

    Burdis, Mark; Sbar, Neil

    2012-06-30T23:59:59.000Z

    The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was

  20. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect (OSTI)

    Corradini, Michael; Sridharan, Kumar

    2012-11-26T23:59:59.000Z

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  1. R and D for improved efficiency small steam turbines, Phase II. Report No. 1380-3. First quarterly technical report

    SciTech Connect (OSTI)

    Jansen, Dr., W.; Maillar, K. M.; Bender, D. A.; Brassert, W. L.; Capone, P. A.; Carter, A. F.; Heitmann, A. M.; Holland, J. E.; Lord, R. E.; Thirumalaisamy, S. N.

    1980-09-01T23:59:59.000Z

    Progress made in the second phase of a two-phase research, design and prototype development program is presented. Phase II consists of the detailed design of the prototype radial inflow steam turbine configuration selected during the first phase and subsequent fabrication and testing. At this time, the detailed aerodynamic design of the stage flowpath has been completed except for the crossover piping from the first stage exhaust to the second stage inlet. In addition, mechanical design effort has resulted in a definition of a rotor system. The aerodynamic design included the optimization of the overall flowpath geometry of the stages specified in the initial phase of the program. The detailed aerodynamic designs of the rotor blades, nozzle vanes, scroll and diffuser were based on the optimized geometry. The final blading selected for the stage is a radial design with 26 blades, 13 of which are splitters. Sixteen nozzle vanes have been specified. The mechanical design of the rotor system to date has included the specification of the rotor wheels and shafts with their polygon connection, and the design of the thrust and journal bearings and the gearing. In addition, various shaft sealing arrangements have been evaluated, subject to the constraints indicated by initial rotordynamic analyses. Indications are that a reasonably effective labyrinth seal is not precluded by shaft length limitations. As this type of seal has been long accepted by steam turbine users, its use in the prototype is most likely. Proven components have been specified wherever possible, i.e., redesign/development could not be justified. The rotor system has been designed for at least 100,000 hours life with the most severe operating conditions and loads. The system cannot be considered complete, however, until dynamic response of the rotors for all possible operating conditions is shown to be within acceptable limits.

  2. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01T23:59:59.000Z

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  3. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2011-07-01T23:59:59.000Z

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

  4. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    SciTech Connect (OSTI)

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31T23:59:59.000Z

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  5. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect (OSTI)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01T23:59:59.000Z

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  6. High Temperature Irradiation-Resistant Thermocouple Performance Improvements

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; Darrell Knudson; John Crepeau; S. Curtis Wilkins

    2009-04-01T23:59:59.000Z

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple (HTIR-TC) that contains alloys of molybdenum and niobium. Data from high temperature (up to 1500 ºC) long duration (up to 4000 hours) tests and on-going irradiations at INL’s Advanced Test Reactor demonstrate the superiority of these sensors to commercially-available thermocouples. However, several options have been identified that could further enhance their reliability, reduce their production costs, and allow their use in a wider range of operating conditions. This paper presents results from on-going Idaho National Laboratory (INL)/University of Idaho (UI) efforts to investigate options to improve HTIR-TC ductility, reliability, and resolution by investigating specially-formulated alloys of molybdenum and niobium and alternate diameter thermoelements (wires). In addition, on-going efforts to evaluate alternate fabrication approaches, such as drawn and loose assembly techniques will be discussed. Efforts to reduce HTIR-TC fabrication costs, such as the use of less expensive extension cable will also be presented. Finally, customized HTIR-TC designs developed for specific customer needs will be summarized to emphasize the varied conditions under which these sensors may be used.

  7. Improving the thermal performance of the US residential window stock

    SciTech Connect (OSTI)

    Brown, R.E.; Arasteh, D.K.; Eto, J.H.

    1992-05-01T23:59:59.000Z

    Windows have typically been the least efficient thermal component in the residential envelope, but technology advances over the past decade have helped to dramatically improve the energy efficiency of window products. While the thermal performance of these advanced technology windows can be easily characterized for a particular building application, few precise estimates exist of their aggregate impact on national or regional energy use. Policy-makers, utilities, researchers and the fenestration industry must better understand these products` ultimate conservation potential in order to determine the value of developing new products and initiating programs to accelerate their market acceptance. This paper presents a method to estimate the conservation potential of advanced window technologies, combining elements of two well-known modeling paradigms: supply curves of conserved energy and residential end-use forecasting. The unique features include: detailed descriptions of the housing stock by region and vintage, state-of-the-art thermal descriptions of window technologies, and incorporation of market effects to calculate achievable conservation potential and timing. We demonstrate the methodology by comparing, for all new houses built between 1990 and 2010, the conservation potential of very efficient, high R-value ``superwindows`` in the North Central federal region and spectrally-selective low-emissivity (moderate Revalue and solar transmittance) windows in California.

  8. An automotive transmission for automotive gas turbine power plants

    SciTech Connect (OSTI)

    Polak, J.C.

    1980-01-01T23:59:59.000Z

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  9. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.; [General Physics Corp. (United States)

    2005-11-01T23:59:59.000Z

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  10. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01T23:59:59.000Z

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  11. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01T23:59:59.000Z

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  12. Improving Remedial Planning Performance: The Rattlesnake Creek Experience

    SciTech Connect (OSTI)

    Rieman, C.R.; Spector, H.L.; Andrews, S.M. [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, L. A.; Johnson, R. L. [Argonne National Laboratory, 9700 S. Cass Ave., EVS 900, Argonne, IL 60439 (United States); Racino, R. R. [Cabrera Services, Inc., 29 Railroad Avenue, Middletown, NY 10940 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Army Corps of Engineers (USACE), Buffalo District, has responsibility for characterizing and remediating radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Most of these FUSRAP sites include radionuclide contamination in soils where excavation and offsite disposal is the selected remedial action. For many FUSRAP soil remediation projects completed to date, the excavated contaminated soil volumes have significantly exceeded the pre-excavation volume estimates that were developed for project planning purposes. The exceedances are often attributed to limited and sparse datasets that are used to calculate the initial volume estimates. These volume exceedances complicate project budgeting and planning. Building on these experiences, the USACE took a different approach in the remediation of Rattlesnake Creek, located adjacent to the Ashland 2 site, in Tonawanda, New York. This approach included a more extensive pre-design data collection effort to improve and reduce the uncertainty in the pre-excavation volume estimates, in addition to formalizing final status survey data collection strategies prior to excavation. The final status survey sampling was fully integrated with the pre-design data collection, allowing dual use of the pre-design data that was collected (i.e., using the data to close out areas where contamination was not found, and feeding the data into volume estimates when contamination was encountered). The use of real-time measurement techniques (e.g., X-ray fluorescence [XRF] and gamma walkover surveys) during pre-excavation data collection allowed the USACE to identify and respond to unexpected contamination by allocating additional data collection to characterizing new areas of concern. The final result was an estimated soil volume and excavation footprint with a firm technical foundation and a reduction in uncertainty. However, even with extensive pre-design data collection, additional contamination was found during the excavation that led to an increase in the soil volume requiring offsite disposal. This paper describes the lessons learned regarding improving remedial planning performance from the Rattlesnake Creek experience and evaluates the level of project uncertainty reduction achieved through pre-design data collection. (authors)

  13. Subhourly wind forecasting techniques for wind turbine operations

    SciTech Connect (OSTI)

    Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

    1984-08-01T23:59:59.000Z

    Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

  14. NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

  15. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01T23:59:59.000Z

    biofuel production processes, the ability to measure environmental performance, and environmental goals all advance.

  16. High-reliability gas-turbine combined-cycle development program: Phase II, Volume 3. Final report

    SciTech Connect (OSTI)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    1982-01-01T23:59:59.000Z

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. The power plant was addressed in three areas: (1) the gas turbine, (2) the gas turbine ancillaries, and (3) the balance of plant including the steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and manual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-h EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricty compared to present market offerings.

  17. Improving Pumping System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Prepared for the DOE Industrial Technologies Program, this sourcebook contains the practical guidelines and information manufacturers need to improve the efficiency of their pumping systems.

  18. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    the case to building owners for energy efficiency. Developoperation with energy efficiency in building systems. X X XBuildings: A Roadmap to Improved Energy Efficiency 11-Sept-

  19. Extension of Comment Period on Improving Performance of Federal...

    Energy Savers [EERE]

    to Export Electric Energy OE Docket No. EA-353 Boralex Fort Fairfield LP & Boralex Ashland LP: Federal Register Notice Vol 74 No 151 Request for Information on Improving...

  20. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01T23:59:59.000Z

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  1. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 23, NO. 2, JUNE 2008 651 Clustering-Based Performance Optimization of the

    E-Print Network [OSTI]

    Kusiak, Andrew

    . Kuprianov [13] discussed different objective func- tions to improve boiler thermal efficiency and reduce Optimization of the Boiler­Turbine System Andrew Kusiak, Member, IEEE, and Zhe Song Abstract--In this paper, two optimization models for improve- ment of the boiler­turbine system performance are formulated

  2. Permanent magnet assisted synchronous reluctance motor, design and performance improvement

    E-Print Network [OSTI]

    Niazi, Peyman

    2006-04-12T23:59:59.000Z

    Recently, permanent magnet assisted (PMa)-synchronous reluctance motors (SynRM) have been considered as a possible alternative motor drive for high performance applications. In order to have an efficient motor drive, performing of three steps...

  3. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Energy Savers [EERE]

    by university teams, these wind turbines will compete in areas such as performance, power control, and safety ratings. Prototypes of the wind turbines will be tested in a...

  4. Progress in Implementing and Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2004-12-01T23:59:59.000Z

    Designing wind turbines with maximum energy production and longevity for minimal cost is a major goal of the federal wind program and the wind industry. Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory (NREL) we are designing state-space control algorithms for turbine speed regulation and load reduction and testing them on the Controls Advanced Research Turbine (CART). The CART is a test-bed especially designed to test advanced control algorithms on a two-bladed teetering hub upwind turbine. In this paper we briefly describe the design of control systems to regulate turbine speed in region 3 for the CART. These controls use rotor collective pitch to regulate speed and also enhance damping in the 1st drive-train torsion, 1st rotor symmetric flap mode, and the 1st tower fore-aft mode. We designed these controls using linear optimal control techniques using state estimation based on limited turbine measurements such as generator speed and tower fore-aft bending moment. In this paper, we describe the issues and steps involved with implementing and testing these controls on the CART, and we show simulated tests to quantify controller performance. We then present preliminary results after implementing and testing these controls on the CART. We compare results from these controls to field test results from a baseline Proportional Integral control system. Finally we report conclusions to this work and outline future studies.

  5. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    SciTech Connect (OSTI)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01T23:59:59.000Z

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  6. Structural Monitoring of Wind Turbines using Wireless Sensor Networks

    E-Print Network [OSTI]

    Sweetman, Bert

    on traditional fossil fuel technologies. Conditional monitoring of wind turbines can help to avert unplanned). Technological improvements (e.g. larger, more powerful generation turbines) and federal tax subsidies have

  7. Near-term improvements in parabolic troughs: an economic and performance assessment

    SciTech Connect (OSTI)

    Gee, R.; Murphy, L.M.

    1981-08-01T23:59:59.000Z

    Improved parabolic-trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis qualifies the performance potential of various parabolic-trough component improvements from a systems viewpoint and uses these performance data to determine the worth of each improvement on an economic basis. The improvements considered are evacuated receivers, silvered-glass reflectors, improved receiver, selective coatings, higher optical accuracy concentrations, and higher transmittance receiver glazings. Upper-bound costs for each improvement are provided as well as estimates of the increased solar system rates of return that are made possible by these improvements. The performance and economic potential of some of these improvements are shown to be substantial, especially at higher collector operating temperatures.

  8. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines...

  9. Improving Dynamic Load and Generator Response Performance Tools

    E-Print Network [OSTI]

    Lesieutre, Bernard C.

    2005-01-01T23:59:59.000Z

    in dynamic simulations of power systems. Using the PCMDynamic Simulations: The Probabilistic Collocation Method,” IEEE Transactions on Power Systems,Dynamic Simulations with Improved Representation of Loads and their Connection to a Power System,”

  10. Improved performance of railcar/rail truck interface components

    E-Print Network [OSTI]

    Story, Brett Alan

    2009-05-15T23:59:59.000Z

    The objective of this research is to improve the railcar/rail truck interface by developing a low maintenance bearing interface with a favorable friction coefficient. Friction and wear at the center bowl/center plate bearing interface cause high...

  11. Improved performance of railcar/rail truck interface components 

    E-Print Network [OSTI]

    Story, Brett Alan

    2009-05-15T23:59:59.000Z

    The objective of this research is to improve the railcar/rail truck interface by developing a low maintenance bearing interface with a favorable friction coefficient. Friction and wear at the center bowl/center plate bearing interface cause high...

  12. Improving Building Energy System Performance by Continuous Commissioning

    E-Print Network [OSTI]

    Turner, W. D.; Liu, M.; Claridge, D. E.; Haberl, J. S.

    1996-01-01T23:59:59.000Z

    data. The first buildings to undergo a continuous commissioning process were in the Texas LoanSTAR program [Liu, et al, 1994, Claridge, et al, 1994]. These buildings had been retrofitted with various energy efficiency improvements, and measured hourly...

  13. APPLICATION OF IT AND INTERNATIONAL STANDARDS TO IMPROVE BUILDING ENVELOPE PERFORMANCE

    E-Print Network [OSTI]

    Hammad, Amin

    , Quebec, Canada ABSTRACT Improving thermal performance of building envelopes reduces energy consumption the thermal performance of the building envelope, e.g., the advanced house program from NRCan, better windows, and improved thermal performance of building envelopes. According to Hydro Quebec, house characteristics

  14. A BEMS-Assisted Commissioning Tool to Improve the Energy Performance of HVAC Systems

    E-Print Network [OSTI]

    Choiniere, D.; Corsi, M.

    2003-01-01T23:59:59.000Z

    of process cost and manual effort on site, improved quality assurance process and the adoption of automated energy audit capabilities to improve overall building performance. This paper presents the concept for a new automated commissioning tool that verifies...

  15. Using Consulting Skills to Improve Individual and Organizational Performance

    Broader source: Energy.gov [DOE]

    REGISTRATION:  You must register in CHRIS and sign-in to receive credit for this training. CHRIS Name: Performance Mgt Coaching Session 

  16. New MEA Materials for Improved DMFC Performance, Durability and...

    Broader source: Energy.gov (indexed) [DOE]

    performance and durability - Johnson Matthey * MEA fabrication scale up and MEA optimization 2 Project Objectives * Leverage the PolyFuel Passive water recovery MEA design to...

  17. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  18. Enhancements to SQLite Library to Improve Performance on Mobile Platforms

    E-Print Network [OSTI]

    Sambasivan Ramachandran, Shyam

    2013-07-29T23:59:59.000Z

    mechanism is added to the database file using byte-range locks for fine-grained locking. Its impact on performance is measured using SQLite benchmarks as well as real applications. A multi-threaded benchmark is designed to measure the performance of fine...

  19. Improving Fan System Performance - A Sourcebook for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and Improving Fan System

  20. Improving Fatigue Performance of AHSS Welds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and Improving Fan

  1. Improving Motor and Drive System Performance - A Sourcebook for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and ImprovingMotor and|

  2. Improving Pumping System Performance: A Sourcebook for Industry, Second Edition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling andProgram Improving

  3. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect (OSTI)

    Annen, K.D.

    1981-08-01T23:59:59.000Z

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  4. The Emergence of Trade Associations as Agents of Environmental Performance Improvement

    E-Print Network [OSTI]

    Nash, Jennifer

    2002-08-26T23:59:59.000Z

    This paper explores a surprising phenomenon: the emergence of trade associations as agents of environmental performance improvement. Trade associations in the United States have historically fought environmental regulation, ...

  5. Improving urban transport performances by tendering lots : an econometric estimation of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - Improving urban transport performances by tendering lots : an econometric estimation, Christensen & Tretheway 1984), and a large number of econometric estimations had been realised on urban

  6. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01T23:59:59.000Z

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  7. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01T23:59:59.000Z

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  8. Permanent magnet assisted synchronous reluctance motor, design and performance improvement 

    E-Print Network [OSTI]

    Niazi, Peyman

    2006-04-12T23:59:59.000Z

    Recently, permanent magnet assisted (PMa)-synchronous reluctance motors (SynRM) have been considered as a possible alternative motor drive for high performance applications. In order to have an efficient motor drive, ...

  9. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    SciTech Connect (OSTI)

    Capstone Turbine Corporation

    2007-12-31T23:59:59.000Z

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  10. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21T23:59:59.000Z

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  11. Approach for the Improvement of Energy Performance of a Stock of Buildings

    E-Print Network [OSTI]

    Vaezi-Nejad, H.; Bouillon, J.; Crozier, L.; Guyot, G.

    2003-01-01T23:59:59.000Z

    This paper summarizes the work performed by CSTB, ADEME and the Ministry of equipment in France to improve the energy performance of the ministry stock of buildings: 7 millions square meters, 10 000 buildings, wide range of different buildings...

  12. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01T23:59:59.000Z

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

  13. Effects of turbulence on power generation for variable-speed wind turbines

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

    1996-11-01T23:59:59.000Z

    One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

  14. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect (OSTI)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08T23:59:59.000Z

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  15. Improving Indoor Air Quality Improves the Performance of Office Work and School Work

    E-Print Network [OSTI]

    Wargocki, P.

    -10-15a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Definitions #0;? Performance: ability of an individual to perform different mentally and/or physically demanding tasks... Building Operations, Berlin, Germany, October 20-22, 2008 Performance vs productivity #0;? #0;? Effect on individual performance of reading: reduced by 10% Effect on overall productivity: reduced by only 5% if reading speed critical for 50...

  16. Ris-R-1209(EN) European Wind Turbine Testing

    E-Print Network [OSTI]

    Risø-R-1209(EN) European Wind Turbine Testing Procedure Developments Task 1: Measurement Method to Verify Wind Turbine Performance Character- istics Raymond Hunter RES Task coordinator Troels Friis assessment and wind turbine power performance testing. A standards maintenance team is revising the current

  17. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01T23:59:59.000Z

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  18. Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines

    SciTech Connect (OSTI)

    Jean-Claude Ossyra

    2012-10-25T23:59:59.000Z

    The objective of this project was to reduce the technical risk for a hydrostatic transmission based drivetrain for high-power utility-size wind turbines. A theoretical study has been performed to validate the reduction of cost of energy (CoE) for the wind turbine, identify risk mitigation strategies for the drive system and critical components, namely the pump, shaft connection and hydrostatic transmission (HST) controls and address additional benefits such as reduced deployment costs, improved torque density and improved mean time between repairs (MTBR).

  19. Performance-Based Evaluation of an Improved Robust Optimization Formulation

    E-Print Network [OSTI]

    Vogel, Richard M.

    of risk, and ability to adapt. Formulating a tool to meet the information needs of a decision management; Benefit-cost analysis; Decision-making under uncertainty; Regional planning. Introduction), and (4) risk of performance deterioration (sustainability). In addition, a decision-maker may want

  20. Improving cryogenic deuterium–tritium implosion performance on OMEGA

    SciTech Connect (OSTI)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.; Radha, P. B.; Boehly, T. R.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, Y. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); and others

    2013-05-15T23:59:59.000Z

    A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.

  1. Improving consumer value through enhanced performance around the world

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important Trinity /EnergyImproving

  2. Improving Compressed Air System Performance: A Sourcebook for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam Casting ProcessEnergy

  3. Design and Production Interface in Lean Production: A Performance Improvement Criteria Proposition Proceedings IGLC `98

    E-Print Network [OSTI]

    Tommelein, Iris D.

    Design and Production Interface in Lean Production: A Performance Improvement Criteria Proposition Proceedings IGLC `98 DESIGN AND PRODUCTION INTERFACE IN LEAN PRODUCTION: A PERFORMANCE IMPROVEMENT CRITERIA PROPOSITION Eduardo L. Isatto1 and Carlos T. Formoso2 ABSTRACT Failures on transferring Japanese production

  4. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01T23:59:59.000Z

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

  5. Improvement in Plasma Performance with Lithium Coatings in NSTX

    SciTech Connect (OSTI)

    Kaita, R

    2009-02-17T23:59:59.000Z

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  6. Improvement in Plasma Performance with Lithium Coatings in NSTX

    SciTech Connect (OSTI)

    Kaita, R; Ahn, J -W; Allain, J P; Bell, M G; Bell, R; Boedo, J; Bush, C; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Wampler, W R; Wilgen, J B

    2008-09-12T23:59:59.000Z

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFCOs) have been demonstrated on many fusion devices, including TFTR, [1] T-11M, [2] and FT-U. [3] Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. [4] The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  7. Improving Packet Processing Performance in the ATLAS FELIX Project

    E-Print Network [OSTI]

    Schumacher, Jorn; The ATLAS collaboration; Borga, Andrea; Boterenbrood, Hendrik; Chen, Hucheng; Chen, Kai; Drake, Gary; Francis, David; Gorini, Benedetto; Lanni, Francesco; Lehmann Miotto, Giovanna; Levinson, Lorne; Narevicius, Julia; Roich, Alexander; Ryu, Soo; Schreuder, Frans Philip; Vandelli, Wainer; Zhang, Jinlong; Vermeulen, Jos

    2015-01-01T23:59:59.000Z

    Experiments in high-energy physics (HEP) and related fields often impose constraints and challenges on data acquisition systems. As a result, these systems are implemented as unique mixtures of custom and commercial-off-the-shelf electronics (COTS), involving and connecting radiation-hard devices, large high-performance networks, and computing farms. FELIX, the Frontend Link Exchange, is a new PC-based general purpose data routing device for the data-acquisition system of the ATLAS experiment at CERN. Performance is a very crucial point for devices like FELIX, which have to be capable of processing tens of gigabyte of data per second. Thus it is important to understand the performance limitations for typical workloads on modern hardware. We present an analysis of a packet processing algorithm that is used in FELIX, and show how the PC system's memory architecture plays a key factor in the overall data throughput achieved by the application. Finally, we present optimizations that increase the processing throug...

  8. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  9. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    SciTech Connect (OSTI)

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19T23:59:59.000Z

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (1999). Rebuilding steam turbine generator reduces costscan be driven by a steam turbine or an electric motor. Hot

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $demand. Back-pressure steam turbines which may be used to

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Steam expansion turbines Steam Distribution Systems andNath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $

  13. BigHorn Home Improvement Center Energy Performance: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Pless, S.; Torcellini, P.

    2006-04-01T23:59:59.000Z

    This is one of the nation's first commercial building projects to integrate extensive high-performance design into a retail space. The extensive use of natural light, combined with energy-efficient electrical lighting design, provides good illumination and excellent energy savings. The reduced lighting loads, management of solar gains, and cool climate allow natural ventilation to meet the cooling loads. A hydronic radiant floor system, gas-fired radiant heaters, and a transpired solar collector deliver heat. An 8.9-kW roof-integrated photovoltaic (PV) system offsets a portion of the electricity.

  14. Tennessee: U.S. Automaker Improves Plant's Performance, Saves Costs |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology Performance Exchange(tm)MEMORANDUMDepartment of

  15. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  16. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  17. Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  18. Single Rotor Turbine

    DOE Patents [OSTI]

    Platts, David A. (Los Alamos, NM)

    2004-10-26T23:59:59.000Z

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  19. Economical Condensing Turbines

    E-Print Network [OSTI]

    Dean, J. E.

    1997-01-01T23:59:59.000Z

    Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one...

  20. Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  1. Apparatus for improving performance of electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  2. Method for improving performance of highly stressed electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  3. Apparatus for improving performance of electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J.; Goerz, David A.

    2004-08-31T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  4. Development of an improved performance SiGe unicouple

    SciTech Connect (OSTI)

    Nakahara, J.F.; Franklin, B.; DeFillipo, L.E. [Martin Marietta Astro Space, PO Box 8555, Room 29B12, Philadelphia, Pennsylvania 19101-8555 (United States)

    1995-01-20T23:59:59.000Z

    A two-step diffusion bonding process was developed such that the p-type material is bonded to the SiMo hot shoe first at 1594 K followed by the lower melting point n-type material between 1518 and 1520 K. Standard procedures were used to silicon nitride coat the thermoelectric pellets and to attach the cold side CTE transition and heat rejection components to produce unicouples. Two unicouples successfully withstood simulated rivet operations as would be experienced in the fabrication of a Radioisotope Thermoelectric Generator (RTG) converter to verify the integrity of the tungsten cold shoe to thermoelectric material interface. The performance of these unicouples will be further evaluated in an 18-couple test module. {copyright}American Institute of Physics 1995

  5. Improving Secure Server Performance by Rebalancing SSL/TLS Claude Castelluccia, Einar Mykletun, Gene Tsudik

    E-Print Network [OSTI]

    Improving Secure Server Performance by Re­balancing SSL/TLS Handshakes Claude Castelluccia, Einar of each SSL handshake. Since most SSL­enabled servers use RSA, the burden of performing many costly to perform commensurately less work, thus resulting in better SSL throughput. Proposed tech­ niques are based

  6. Improving environmental performances of organic spreading technologies through the use of life cycle

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Improving environmental performances of organic spreading technologies through the use of life) is generally used to assess environmental performances of a product or a system. Some agricultural LCA were carried out to assess environmental performances of fertilisation processes, but they barely take

  7. Improving the performance of photo-electrically controlled lighting systems

    SciTech Connect (OSTI)

    Rubinstein, F.; Ward, G.; Verderber, R.

    1988-08-01T23:59:59.000Z

    The ability of a photo-electrically controlled lighting system to maintain a constant total light level on a task surface by responding to changing daylight levels is affected by the control algorithm used to relate the photosensor signal to the supplied electric light level and by the placement and geometry of the photosensor. We describe the major components of a typical control system, discuss the operation of three different control algorithms, and derive expressions for each algorithm that express the total illuminance at the task as a function of the control photosensor signal. Using a specially-designed scale model, we measured the relationship between the signal generated by various ceiling-mounted control photosensors and workplane illuminance for two room geometries under real sky conditions. The measured data were used to determine the performance of systems obeying the three control algorithms under varying daylight conditions. Control systems employing the commonly-used integral reset algorithm supplied less electric light than required, failing to satisfy the control objective regardless of the control photosensor used. Systems employing an alternative, closed-loop proportional control algorithm achieved the control objective under virtually all tested conditions when operated by a ceiling-mounted photosensor shielded from direct window light.

  8. Investigation of aerodynamic braking devices for wind turbine applications

    SciTech Connect (OSTI)

    Griffin, D.A. [R. Lynette & Associates, Seattle, WA (United States)

    1997-04-01T23:59:59.000Z

    This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

  9. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  10. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  11. Performance Engineering: Understanding and Improving thePerformance of Large-Scale Codes

    SciTech Connect (OSTI)

    Bailey, David H.; Lucas, Robert; Hovland, Paul; Norris, Boyana; Yelick, Kathy; Gunter, Dan; de Supinski, Bronis; Quinlan, Dan; Worley,Pat; Vetter, Jeff; Roth, Phil; Mellor-Crummey, John; Snavely, Allan; Hollingsworth, Jeff; Reed, Dan; Fowler, Rob; Zhang, Ying; Hall, Mary; Chame, Jacque; Dongarra, Jack; Moore, Shirley

    2007-10-01T23:59:59.000Z

    Achieving good performance on high-end computing systems is growing ever more challenging due to enormous scale, increasing architectural complexity, and increasing application complexity. To address these challenges in DOE's SciDAC-2 program, the Performance Engineering Research Institute (PERI) has embarked on an ambitious research plan encompassing performance modeling and prediction, automatic performance optimization and performance engineering of high profile applications. The principal new component is a research activity in automatic tuning software, which is spurred by the strong user preference for automatic tools.

  12. Improving the Performance of Lithium Ion Batteries at Low Temperature

    SciTech Connect (OSTI)

    Trung H. Nguyen; Peter Marren; Kevin Gering

    2007-04-20T23:59:59.000Z

    The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

  13. Design, Analysis, and Learning Control of a Fully Actuated Micro Wind Turbine

    E-Print Network [OSTI]

    Tedrake, Russ

    Design, Analysis, and Learning Control of a Fully Actuated Micro Wind Turbine J. Zico Kolter of renewable energy, and improvements to wind turbine design and control can have a significant impact a actuated micro wind turbine intended for research purposes. While most academic work on wind turbine

  14. Technetium and Iodine Getters to Improve Cast Stone Performance

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G.; Serne, R. Jeffrey; Westsik, Joseph H.; Snyder, Michelle MV

    2014-07-01T23:59:59.000Z

    To determine the effectiveness of the various getter materials prior to their solidification in Cast Stone, a series of batch sorption experiments was performed at Pacific Northwest National Laboratory. To quantify the effectiveness of the removal of Tc(VII) and I(I) from solution by getters, the distribution coefficient, Kd (mL/g), was calculated. Testing involved placing getter material in contact with spiked waste solutions at a 1:100 solid-to-solution ratio for periods up to 45 days with periodic solution sampling. One Tc getter was also tested at a 1:10 solid-to-solution ratio. Two different solution media, 18.2 M? deionized water (DI H2O) and a 7.8 M Na LAW simulant, were used in the batch sorption tests. Each test was conducted at room temperature in an anoxic chamber containing N2 with a small amount of H2 (0.7%) to maintain anoxic conditions. Each getter-solution combination was run in duplicate. Three Tc- and I-doping concentrations were used separately in aliquots of both the 18.2 M? DI H2O and a 7.8 M Na LAW waste simulant. The 1× concentration was developed based on Hanford Tank Waste Operations Simulator (HTWOS) model runs to support the River Protection Project System Plan Revision 6. The other two concentrations were 5× and 10× of the HTWOS values. The Tc and I tests were run separately (i.e., the solutions did not contain both solutes). Sampling of the solid-solution mixtures occurred nominally after 0.2, 1, 3, 6, 9, 12, 15 days and ~35 to 45 days. Seven getter materials were tested for Tc and five materials were tested for I. The seven Tc getters were blast furnace slag 1 (BFS1) (northwest source), BFS2 (southeast source), Sn(II)-treated apatite, Sn(II) chloride, nano tin phosphate, KMS (a potassium-metal-sulfide), and tin hydroxapatite. The five iodine getters were layered bismuth hydroxide (LBH), argentite mineral, synthetic argentite, silver-treated carbon, and silver-treated zeolite. The Tc Kd values measured from experiments conducted using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest Kd value for Tc at 35 days where Kd values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter-bearing Cast Stone monoliths.

  15. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01T23:59:59.000Z

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

  16. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    SciTech Connect (OSTI)

    Wei Qiao

    2012-05-29T23:59:59.000Z

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

  17. Performance Engineering: Understanding and Improving the Performance of Large-Scale Codes

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    An API for Runtime Code Patching,” Journal of Highof the Conference on Code Generation and Optimization,Performance of Large-Scale Codes David H. Bailey 1 , Robert

  18. Design of a Transonic Research Turbine Facility Ruolong Ma*

    E-Print Network [OSTI]

    Morris, Scott C.

    the power generated by the turbine to load-share with a motor to drive a centrifugal compressor which and performance of modern gas-turbine engines. A detailed address of the various opportunities for flow control throughout the gas-turbine engine in terms of their impact on each engine component was given by Lord et al.1

  19. Wind Turbine Test \\^ind Matic WM 15S

    E-Print Network [OSTI]

    00 ·2 V. v/ RisoM-2481 Wind Turbine Test \\^ind Matic WM 15S Troels Friis Pedersent The Test Station for Windmills Riso National Laboratory, DK-4000 Roskilde, Denmark July 1986 #12;#12;RIS0-M-2481 WIND TURBINE describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements

  20. Riso-M-2546 g Wind Turbine Test

    E-Print Network [OSTI]

    Riso-M-2546 g Wind Turbine Test Wind Matic WM 17S Troels Friis Pedersen The Test Station for Windmills Riso National Laboratory, DK-4000 Roskilde Denmark April 1986 #12;#12;RIS0-M-2546 WIND TURBINE describes standard measurements performed on a Wind-Matic WM 17S, 75 kW wind turbine. The measurements

  1. Dynamic Simulation of DFIG Wind Turbines on FPGA Boards

    E-Print Network [OSTI]

    Zambreno, Joseph A.

    Dynamic Simulation of DFIG Wind Turbines on FPGA Boards Hao Chen, Student Member, IEEE, Song Sun is a friction coefficient. The wind turbine model is based on the relation between the upstream wind speed V w + 1 where p is the air density; Rw is the wind turbine radius; cp (A, (3) is the performance

  2. Diffuser for augmenting a wind turbine

    DOE Patents [OSTI]

    Foreman, Kenneth M. (North Bellmore, NY); Gilbert, Barry L. (Westbury, NY)

    1984-01-01T23:59:59.000Z

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  3. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  4. Rotor Speed Dependent Yaw Control of Wind Turbines Based on Empirical Data

    SciTech Connect (OSTI)

    Kragh, K. A.; Fleming, P. A.

    2012-01-01T23:59:59.000Z

    When extracting energy from the wind using horizontal-axis upwind wind turbines, a primary condition for maximum power yield is the ability to align the rotor axis with the dominating wind direction. Attempts have been made to improve yaw alignment by applying advanced measurement techniques such as LIDARs. This study is focused at assessing the current performance of an operating turbine and exploring how the yaw alignment can be improved using existing measurements. By analyzing available turbine and met mast data a correction scheme for the original yaw alignment system is synthesized. The correction scheme is applied and it is seen that with the correction scheme in place, the power yield below rated is raised 1-5 percent. Furthermore, results indicate that blade load variations are decreased when the correction scheme is applied. The results are associated with uncertainties due to the amount of available data and the wind site climate. Further work should be focused at gathering more experimental data.

  5. Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications

    E-Print Network [OSTI]

    Williams, F. D. M.; Kondratas, H. M.

    1983-01-01T23:59:59.000Z

    and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

  6. Experimental Evaluation of Performance Improvements in Abductive Network Classifiers with Problem Decomposition

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    1 Experimental Evaluation of Performance Improvements in Abductive Network Classifiers with Problem by problem decomposition for abductive network classifiers that classify four noisy waveform patterns having decomposition method and significantly superior to an abductive network committee approach. Index Terms

  7. Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance

    SciTech Connect (OSTI)

    Kelkar, Mohan; Liner, Chris; Kerr, Dennis

    1999-10-15T23:59:59.000Z

    This final report describes the progress during the six year of the project on ''Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance.'' This report is funded under the Department of Energy's (DOE's) Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially-dominated deltaic deposits. The project involves using an integrated approach to characterize the reservoir followed by drilling of horizontal injection wells to improve production performance. The project was divided into two budget periods. In the first budget period, many modern technologies were used to develop a detailed reservoir management plan; whereas, in the second budget period, conventional data was used to develop a reservoir management plan. The idea was to determine the cost effectiveness of various technologies in improving the performance of mature oil fields.

  8. Improved performance of ultra-high molecular weight polyethylene for orthopedic applications

    E-Print Network [OSTI]

    Plumlee, Kevin Grant

    2009-05-15T23:59:59.000Z

    two alternate approaches to improving the wear performance of UHMWPE in orthopedic applications Previous work has shown that UHMWPE-based composites have wear resistance comparable to the irradiation-crosslinked polymer. Zirconium has been shown...

  9. An improved structural mechanics model for the FRAPCON nuclear fuel performance code

    E-Print Network [OSTI]

    Mieloszyk, Alexander James

    2012-01-01T23:59:59.000Z

    In order to provide improved predictions of Pellet Cladding Mechanical Interaction (PCMI) for the FRAPCON nuclear fuel performance code, a new model, the FRAPCON Radial-Axial Soft Pellet (FRASP) model, was developed. This ...

  10. Substrate and channel engineering for improving performance of strained-SiGe MOSFETs

    E-Print Network [OSTI]

    Gupta, Saurabh, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    With VLSI technology moving closer towards fundamental physical limits, a way to further improve the transistor drive current for superior circuit performance is enhancing the average velocity of carriers in the channel. ...

  11. Turbine FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zand Analysis Utilities (TAU)Tuning ofTurbine

  12. Optimizing Graph Algorithms for Improved Cache Performance*+ Joon-Sang Park

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    . For these algorithms, we demonstrate up to 2Ã? improvement in real execution time by using a simple cache- friendly graphs. We show performance improvements of 2Ã? - 3Ã? in real execution time by using the technique N and C are the problem size and cache size respectively. Experimental results show that this cache

  13. Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-07-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

  14. Industrial Decision Making- Improving Petroleum Refining Performance through Better Economic Performance Analysis

    E-Print Network [OSTI]

    Mergens, E. H.

    Industrial manufacturing performance, to be efficient, must be measured against identifiable goals. The management of the plant must be charged to meet specific objectives. The typical goal for a manufacturing plant is usually to produce a quality...

  15. Ceramic stationary gas turbine development program -- Fifth annual summary

    SciTech Connect (OSTI)

    Price, J.R.; Jimenez, O.; Faulder, L.; Edwards, B.; Parthasarathy, V.

    1999-10-01T23:59:59.000Z

    A program is being performed under the sponsorship of the US Department of Energy, Office of Industrial Technologies, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of metallic hot section components with ceramic parts. The program focuses on design, fabrication, and testing of ceramic components, generating a materials properties data base, and applying life prediction and nondestructive evaluation (NDE). The development program is being performed by a team led by Solar Turbines Incorporated, and which includes suppliers of ceramic components, US research laboratories, and an industrial cogeneration end user. The Solar Centaur 50S engine was selected for the development program. The program goals included an increase in the turbine rotor inlet temperature (TRIT) from 1,010 C (1,850 F) to 1,121 C (2,050 F), accompanied by increases in thermal efficiency and output power. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The ceramic liners are also expected to lower the emissions of NOx and CO. Under the program uncooled ceramic blades and nozzles have been inserted for currently cooled metal components in the first stage of the gas producer turbine. The louvre-cooled metal combustor liners have been replaced with uncooled continuous-fiber reinforced ceramic composite (CFCC) liners. Modifications have been made to the engine hot section to accommodate the ceramic parts. To date, all first generation designs have been completed. Ceramic components have been fabricated, and are being tested in rigs and in the Centaur 50S engine. Field testing at an industrial co-generation site was started in May, 1997. This paper will provide an update of the development work and details of engine testing of ceramic components under the program.

  16. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28T23:59:59.000Z

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  17. Reverse SSL: Improved Server Performance and DoS Resistance for SSL Kemal BICAKCI

    E-Print Network [OSTI]

    1 Reverse SSL: Improved Server Performance and DoS Resistance for SSL Handshakes Kemal BICAKCI the performance and DoS resistance of SSL handshakes. In this paper, we tackle these two related problems by proposing reverse SSL, an extension in which the server is relieved from the heavy public key decryption

  18. NREL study may provide future guidance in improving CdS/CdTe photovoltaic device performance.

    E-Print Network [OSTI]

    NREL study may provide future guidance in improving CdS/CdTe photovoltaic device performance. The majority of minority carrier lifetime (MCL) studies performed on CdS/CdTe photovoltaic (PV) devices have Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices." Proc. 37th IEEE Photovoltaic

  19. BLACK-BOX MODELLING OF HVAC SYSTEM: IMPROVING THE PERFORMANCES OF NEURAL NETWORKS

    E-Print Network [OSTI]

    Boyer, Edmond

    BLACK-BOX MODELLING OF HVAC SYSTEM: IMPROVING THE PERFORMANCES OF NEURAL NETWORKS Eric FOCK Ile de La Réunion - FRANCE ABSTRACT This paper deals with neural networks modelling of HVAC systems of HVAC system can be modelled using manufacturer design data presented as derived performance maps

  20. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect (OSTI)

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01T23:59:59.000Z

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  1. Economical Condensing Turbines?

    E-Print Network [OSTI]

    Dean, J. E.

    Economical Condensing Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown... turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: ? Letdown turbines produce power based upon steam requirements and not based upon...

  2. On optimization of sensor selection for aircraft gas turbine engines Ramgopal Mushini

    E-Print Network [OSTI]

    Simon, Dan

    for generating an optimal sensor set [3]. 3. Aircraft gas turbine engines An aircraft gas turbine engineOn optimization of sensor selection for aircraft gas turbine engines Ramgopal Mushini Cleveland sets for the problem of aircraft gas turbine engine health parameter estimation. The performance metric

  3. American Institute of Aeronautics and Astronautics An Experimental Investigation on the Effects of Turbine Rotation

    E-Print Network [OSTI]

    Hu, Hui

    of Turbine Rotation Directions on the Wake Interference of Wind Turbines Wei Yuan1 , Ahmet Ozbay2 , Wei Tian3 to investigate on the effects of the relative rotation directions of two tandwm wind turbines on the power production performance and flow characteristics in the wakes of two wind turbines in tandem. The experimental

  4. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines

    SciTech Connect (OSTI)

    Singh, Punit; Nestmann, Franz [Institute of Water and River Basin Management (IWG), Karlsruhe Institute of Technology, Kaiser Str. 12, D 76131 Karlsruhe (Germany)

    2011-01-15T23:59:59.000Z

    The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement. In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency. The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume. The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding effects over wide range of pump shapes including axial pumps. (author)

  5. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01T23:59:59.000Z

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  6. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  7. Integrated approach towards the application of horizontal wells to improve waterflooding performance. Annual report

    SciTech Connect (OSTI)

    Kelkar, M.; Liner, C.; Kerr, D.

    1995-05-01T23:59:59.000Z

    This annual report describes the progress during the second year of the project on Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance. This project is funded under the Department of Energy`s Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvial-dominated deltaic deposits. The project involves an integrated approach to characterize the reservoir followed by the drilling of horizontal injection wells to improve production performance. The type of data we have integrated include cross bore hole seismic surveys, geological interpretation based on logs and cores, and engineering information. This report covers the second phase of the project which includes a detailed reservoir description of the field by integrating all the available information, followed by flow simulation of the Self Unit under various operating conditions. Based on an examination of the various operating parameters, we observed that the best possible solution to improve the Self Unit performance is to recomplete and stimulate most of the wells followed by an increase in the water injection rate. Drilling of horizontal injection well, although helpful in improving the performance, was not found to be economically feasible. The proposed reservoir management plan will be implemented shortly.

  8. Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    SciTech Connect (OSTI)

    Kisner, R.; Melin, A.; Burress, T.; Fugate, D.; Holcomb, D.; Wilgen, J.; Miller, J.; Wilson, D.; Silva, P.; Whitlow, L.; Peretz, F.

    2012-09-15T23:59:59.000Z

    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.

  9. Biphase Turbine Tests on Process Fluids 

    E-Print Network [OSTI]

    Helgeson, N. L.; Maddox, J. P.

    1983-01-01T23:59:59.000Z

    The Biphase turbine is a device for effectively producing shaft power from two-phase (liquid and gas) pressure let-downs and for separating the resulting phases. No other device is currently available for simultaneously performing these tasks...

  10. Foam Cleaning of Steam Turbines 

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    2000-01-01T23:59:59.000Z

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  11. Foam Cleaning of Steam Turbines

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  12. Hydro Review: Computational Tools to Assess Turbine Biological...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to analyze the biological performance of proposed designs to help ensure the safety of fish passing through the turbines at the Priest Rapids Dam in Grant County, Washington....

  13. State of the Art in Floating Wind Turbine Design Tools

    SciTech Connect (OSTI)

    Cordle, A.; Jonkman, J.

    2011-10-01T23:59:59.000Z

    This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

  14. Combustion Turbine CHP System for Food Processing Industry -...

    Broader source: Energy.gov (indexed) [DOE]

    power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food Processing Industry More Documents &...

  15. Creep performance of candidate SiC and Si{sub 3}N{sub 4} materials for land-based, gas turbine engine components

    SciTech Connect (OSTI)

    Wereszczak, A.A.; Kirkland, T.P.

    1996-03-01T23:59:59.000Z

    Tensile creep-rupture of a commercial gas pressure sintered Si3N4 and a sintered SiC is examined at 1038, 1150, and 1350 C. These 2 ceramics are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and there is interest in their high temperature performance over service times {ge} 10,000 h (14 months). For this long lifetime, a static tensile stress of 300 MPa at 1038/1150 C and 125 Mpa at 1350 C cannot be exceeded for Si3N4; for SiC, the corresponding numbers are 300 Mpa at 1038 C, 250 MPa at 1150 C, and 180 MPa at 1350 C. Creep-stress exponents for Si3N4 are 33, 17, and 8 for 1038, 1150, 1350 C; fatigue- stress exponents are equivalent to creep exponents, suggesting that the fatigue mechanism causing fracture is related to the creep mechanism. Little success was obtained in producing failure in SiC after several decades of time through exposure to appropriate tensile stress; if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. Creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350 C. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that initiated from the surface.

  16. IMPROVEMENT OF CdMnTe DETECTOR PERFORMANCE BY MnTe PURIFICATION

    SciTech Connect (OSTI)

    Kim, K.H.; Bolotnikov, A.E.; Camarda, G.S.; Tappero, R.; Hossain, A.; Cui, Y.; Yang, G.; Gul, R.; and James, R.B.

    2011-04-25T23:59:59.000Z

    Residual impurities in manganese (Mn) are a big obstacle to obtaining high-performance CdMnTe (CMT) X-ray and gamma-ray detectors. Generally, the zone-refining method is an effective way to improve the material's purity. In this work, we purified the MnTe compounds combining the zone-refining method with molten Te, which has a very high solubility for most impurities. We confirmed the improved purity of the material by glow-discharge mass spectrometry (GDMS). We also found that CMT crystals from a multiply-refined MnTe source, grown by the vertical Bridgman method, yielded better performing detectors.

  17. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    SciTech Connect (OSTI)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01T23:59:59.000Z

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  18. Sandia Energy - Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of wind-turbine wakes within a turbulent atmospheric boundary layer using a large eddy simulation (LES) method. Current and ongoing work aims to leverage the simulation...

  19. Strategies for Assessment of the Biological Performance and Design of Hydroturbines

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Richmond, Marshall C.

    2011-05-05T23:59:59.000Z

    The biological response of fish to turbine passage has been of concern for several decades and emphasized recently by consideration of hydro as a 'green' power source. The current state-of-the-art of hydro-turbine biological performance assessment, while still inadequate, has advanced considerably the past 10 years. For example, the importance of assessment of exposure to pressure changes during turbine passage has been emphasized by findings of laboratory studies of rapid decompression. It is now very clear that hydroturbine biological assessment must consider the physiological state and behavior of fish at turbine entry and changes in physiological state that drive aspects of behavior during tailrace passage. Such considerations are in addition to concerns about exposure of fish to mechanical and pressure sources of injury during turbine passage. Experimental designs and assessment tools have evolved for acclimation of test fish, observation of test fish behavior at approach and upon exit from the turbine environment, and precise estimation of turbine passage mortality. Fish condition assessment continues to improve permitting better classification of observed injuries to injury mechanisms. Computational fluid dynamics (CFD) models and other computer models permit detailed investigation of the turbine passage environment and development of hypotheses that can be tested in field studies using live fish. Risk assessment techniques permit synthesis of laboratory and in-field study findings and estimation of population level effects over a wide range of turbine operation scenarios. Risk assessment is also evolving to provide input to turbine runner design. These developments, and others, have resulted in more productive biological performance assessment studies and will continue to evolve and improve the quantity and quality of information obtained from costly live fish hydroturbine passage studies. This paper reviews the history of hydro-turbine biological assessment, presents the current state-of-the-art, and identify areas needing improvement.

  20. Effect of Multiple Turbine Passage on Juvenile Snake River Salmonid Survival

    SciTech Connect (OSTI)

    Ham, Kenneth D.; Anderson, James J.; Vucelick, Jessica A.

    2005-10-14T23:59:59.000Z

    This report describes a study conducted by Pacific Northwest National Laboratory to identify populations of migrating juvenile salmonids with a potential to be impacted by repeated exposure to turbine passage conditions. This study is part of a research program supported by the U.S. Department of Energy Wind/Hydropower Program. The program's goal is to increase hydropower generation and capacity while enhancing environmental performance. Our study objective is to determine whether the incremental effects of turbine passage during downstream migration impact populations of salmonids. When such a potential is found to exist, a secondary objective is to determine what level of effect of passing multiple turbines is required to decrease the number of successful migrants by 10%. This information will help identify whether future laboratory or field studies are feasible and design those studies to address conditions that present the greatest potential to improve dam survival and thus benefit fish and power generation.

  1. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine

    SciTech Connect (OSTI)

    Francis A. Di Bella

    2010-06-01T23:59:59.000Z

    The Phase I SBIR effort completed the feasibility design, fabrication, and wind tunnel testing of a self-actuated blade articulation mechanism that uses a torsion bar and a lightweight airfoil to affect the articulation of the Wells airfoil. The articulation is affected only by the air stream incident on the airfoil. The self-actuating blade eliminates the complex and costly linkage mechanism that is now needed to perform this function on either a variable pitch Wells-type or Dennis-Auld air turbine. Using the results reported by independent researchers, the projected improvement in the Wells-type turbine efficiency is 20-40%, in addition to an increase in the operating air flow range by 50-100%, therefore enabling a smaller or slower single turbine to be used.

  2. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  3. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  4. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01T23:59:59.000Z

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  5. Nafion-sepiolite composite membranes for improved Proton Exchange Membrane Fuel Cell performance.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Nafion®-sepiolite composite membranes for improved Proton Exchange Membrane Fuel Cell performance, characterized and integrated in Membrane-Electrodes Assembly to be tested in fuel cell operating conditions, mobile or stationary), Proton Exchange Membrane Fuel Cells (PEMFC) are amongst the most studied fuel

  6. Improving MPEG-4 coding performance by jointly optimising compression and blocking effect elimination

    E-Print Network [OSTI]

    Chan, Chris Y. H.

    1 Improving MPEG-4 coding performance by jointly optimising compression and blocking effect and Information Engineering The Hong Kong Polytechnic University, Hong Kong ABSTRACT In most current block into account in the compression and the two processes can be jointly optimised. An example is also provided

  7. Phase-change materials to improve solar panel's performance Pascal Biwole1,2,*

    E-Print Network [OSTI]

    -change materials to improve solar panel's performance Pascal Biwole1,2,* , Pierre Eclache3 , Frederic Kuznik3 1-mail:phbiwole@unice.fr Abstract: High operating temperatures induce a loss of efficiency in solar photovoltaic and thermal panels set-up. Results show that adding a PCM on the back of a solar panel can maintain the panel

  8. Improving the Performance of High-Energy Physics Analysis through Bitmap Indices

    E-Print Network [OSTI]

    Hoschek, Wolfgang

    Improving the Performance of High-Energy Physics Analysis through Bitmap Indices Kurt Stockinger1 for Nuclear Research CH-1211 Geneva, Switzerland {Kurt.Stockinger, Dirk.Duellmann, Wolfgang.Hoschek}@cern.ch 2 indices are popular multi-dimensional data struc- tures for accessing read-mostly data such as data

  9. A New Approach of Performance Improvement for Server Selection in Reliable Server Pooling Systems

    E-Print Network [OSTI]

    Dreibholz, Thomas

    A New Approach of Performance Improvement for Server Selection in Reliable Server Pooling Systems.dreibholz,erwin.rathgeb}@uni-due.de Abstract Reliable Server Pooling (RSerPool) is a light-weight pro- tocol framework for server redundancy architecture is. Server redundancy directly leads to the issues of load distribution and load balancing, which

  10. Increased performance of single-chamber microbial fuel cells using an improved cathode structure

    E-Print Network [OSTI]

    Increased performance of single-chamber microbial fuel cells using an improved cathode structure Maximum power densities by air-driven microbial fuel cells (MFCs) are considerably influenced by cathode reserved. Keywords: Microbial fuel cell; Air cathode; Diffusion layer; PTFE coating; Coulombic efficiency 1

  11. A Hybrid Solid-State Storage Architecture for the Performance, Energy Consumption, and Lifetime Improvement

    E-Print Network [OSTI]

    Giles, C. Lee

    A Hybrid Solid-State Storage Architecture for the Performance, Energy Consumption, and Lifetime-place updating so that it significantly im- proves the usage efficiency of log pages by eliminating out- of results show that our proposed methods can substantially improve the perfor- mance, energy consumption

  12. ADAPTIVE SWITCHING IN PRACTICE: IMPROVING MYOELECTRIC PROSTHESIS PERFORMANCE THROUGH REINFORCEMENT LEARNING

    E-Print Network [OSTI]

    Sutton, Richard S.

    ADAPTIVE SWITCHING IN PRACTICE: IMPROVING MYOELECTRIC PROSTHESIS PERFORMANCE THROUGH REINFORCEMENT, each muscle site directly controls one motion of the prosthesis, and various methods of switching can be used as needed to control additional motions of the prosthesis [1] [2] [3]. Some state

  13. Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.

    E-Print Network [OSTI]

    Transition metal oxide improves overall efficiency and maintains performance with inexpensive that inserting a transition metal oxide (TMO) between the lead sulfide (PbS) quantum dot (QD) layer and the metal-Yu Chen; Octavi E. Semonin; Arthur J. Nozik; Randy J. Ellingson; Matthew C. Beard."n-Type Transition Metal

  14. Using Run-Time Predictions to Estimate Queue Wait Times and Improve Scheduler Performance

    E-Print Network [OSTI]

    Feitelson, Dror

    that using our run-time predictor results in lower mean wait times for the workloads with higher o ered loads of the systems we are simulating.We also nd that using our run-time predictors result in mean wait timesUsing Run-Time Predictions to Estimate Queue Wait Times and Improve Scheduler Performance Warren

  15. Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance

    E-Print Network [OSTI]

    Whalley, David

    A Designing a Practical Data Filter Cache to Improve Both Energy Efficiency and Performance Alen Bardizbanyan, Chalmers University of Technology Magnus Sj¨alander, Florida State University David Whalley, Florida State University Per Larsson-Edefors, Chalmers University of Technology Conventional data filter

  16. Review of State of the Art Technologies used to Improve Performance of Thermoelectric Devices

    E-Print Network [OSTI]

    Walker, D. Greg

    Review of State of the Art Technologies used to Improve Performance of Thermoelectric Devices 19 th University Nashville, TN 37221 greg.walker@vanderbilt.edu Thermoelectric devices have gained importance focused towards developing both thermoelectric structures and materials that have high efficiency

  17. Improving the Performance and Power Efficiency of Shared Helpers in CMPs

    E-Print Network [OSTI]

    Sherwood, Tim

    coal or nuclear power plants typically supply the ma- jority of power needs, during periods of peak power demand, auxiliary power plants (often powered by natural gas) are used to meet temporary loadImproving the Performance and Power Efficiency of Shared Helpers in CMPs Anahita Shayesteh Comp

  18. A Caching Strategy to Improve iSCSI Performance Electrical and Computer Engineering

    E-Print Network [OSTI]

    Yang, Qing "Ken"

    Electrical and Computer Engineering University of Rhode Island Kingston, RI 02881 USA qyang, mingz @eleA Caching Strategy to Improve iSCSI Performance Xubin He, Electrical and Computer Engineering% of TCP/IP packets being less than 127 bytes long, implying an overwhelming quantity of small size packets

  19. Improving urban public transport performances by tendering lots: a cost function panel data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Improving urban public transport performances by tendering lots: a cost function panel data costs, some cities want to multiply the number of call for tender they organise, by dividing their network in sev- eral lots ("allotment"). In terms of costs-benefit analysis, gains obtained by in

  20. Improved Performance on High-dimensional Survival data by application of Survival-SVM

    E-Print Network [OSTI]

    Improved Performance on High-dimensional Survival data by application of Survival-SVM V. Van Belle1@it.uu.se Abstract. Motivation: New application areas of survival analysis as for example based on micro can be solved ef- ficiently), theoretically (for its intrinsic relation with learning theory) as well

  1. Storage-Enabled Access Points for Improved Mobile Performance: An Evaluation Study

    E-Print Network [OSTI]

    Tsaoussidis, Vassilis

    Networks and DTNs has been mainly con- cerned with storage and energy constraints for mobile devices and to which extend the storage and energy constraints can now be somewhat relaxed. We motivate our study basedStorage-Enabled Access Points for Improved Mobile Performance: An Evaluation Study Efthymios

  2. "De-randomizing" Congestion Losses To Improve TCP Performance over Wired-Wireless

    E-Print Network [OSTI]

    "De-randomizing" Congestion Losses To Improve TCP Performance over Wired-Wireless Networks Sa-Champaign sbiaz@eng.auburn.edu nhv@crhc.uiuc.edu Technical Report CSSE03-10 (October 30, 2003) Abstract Currently, a TCP sender considers all losses as congestion signals and reacts to them by throt- tling its sending

  3. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  4. Improving performance of transmission control protocol (TCP) over mobile wireless networks

    E-Print Network [OSTI]

    Bakshi, Bikram Singh

    1996-01-01T23:59:59.000Z

    of this research, we study thc eHect of (a) burst errors on wirelcss links, (b) packet size variation on the ivired network, (c) local error recovery by the base station, and (d) explicit feedback by the base station, on the performance of TCP over wireless... networks. It is shown that the performance of TCP is sensitive to the packet size, and that choosing a 'good' packet size results in performance improve- ments. While local recovery by the base station using link-level retransmissions is also found...

  5. Improving Cooling performance of the mechanical resonator with the two-level-system defects

    E-Print Network [OSTI]

    Tian Chen; Xiang-Bin Wang

    2014-06-03T23:59:59.000Z

    We study cooling performance of a realistic mechanical resonator containing defects. The normal cooling method through an optomechanical system does not work efficiently due to those defects. We show by employing periodical $\\sigma_z$ pulses, we can eliminate the interaction between defects and their surrounded heat baths up to the first order of time. Compared with the cooling performance of no $\\sigma_z$ pulses case, much better cooling results are obtained. Moreover, this pulse sequence has an ability to improve the cooling performance of the resonator with different defects energy gaps and different defects damping rates.

  6. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    SciTech Connect (OSTI)

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas (Open Grid Computing, Inc., Austin, TX); Thompson, David

    2011-09-01T23:59:59.000Z

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the face of the ever increasing size and complexity of HPC systems.

  7. Wind Turbine Competition Introduction

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

  8. Sliding vane geometry turbines

    DOE Patents [OSTI]

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30T23:59:59.000Z

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  9. Combined Cycle Combustion Turbines

    E-Print Network [OSTI]

    Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

  10. Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: October 31, 2002--January 31, 2003

    SciTech Connect (OSTI)

    Selig, M. S.; McGranahan, B. D.

    2004-10-01T23:59:59.000Z

    Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbinesrepresents the fourth installment in a series of volumes documenting the ongoing work of th University of Illinois at Urbana-Champaign Low-Speed Airfoil Tests Program. This particular volume deals with airfoils that are candidates for use on small wind turbines, which operate at low Reynolds numbers.

  11. Advanced Turbine System (ATS): Task 1, System scoping and feasibility study

    SciTech Connect (OSTI)

    van der Linden, S.

    1993-02-01T23:59:59.000Z

    Present GT(Gas Turbine) Systems are available to achieve 52% (LHV) thermal efficiencies, plants in construction will be capable of 54%, and the goal of this study is to identify incentives, technical issues, and resource requirements to develop natural gas-and coal-compatible ATS which would have a goal of 60% or greater based on LHV. The prime objective of this project task is to select a natural gas-fired ATS (Advanced Turbine System) that could be manufactured and marketed should development costs not be at issue with the goals of: (1) Coal of electricity 10% below 1991 vintage power plants in same market class and size. (2) Expected performance 60% efficiency and higher, (3) Emission levels, NO[sub x] < 10 ppM (0.15 lb/MW-h), CO < 20 ppM (0.30 lb/MW-h), and UHC < 20 ppM (0.30 lb/MW-h). ABB screening studies have identified the gas-fueled combined cycle as the most promising full scale solution to achieve the set goals for 1988--2002. This conclusion is based on ABB's experience level, as well as the multi-step potential of the combined cycle process to improve in many component without introducing radical changes that might increase costs and lower RAM. The technical approach to achieve 60% or better thermal efficiency will include increased turbine inlet temperatures, compressor intercooling, as well a improvements in material, turbine cooling technology and the steam turbine. Use of improved component efficiencies will achieve gas-fired cycle performance of 61.78%. Conversion to coal-firing will result in system performance of 52.17%.

  12. Advanced Turbine System (ATS): Task 1, System scoping and feasibility study. Final report

    SciTech Connect (OSTI)

    van der Linden, S.

    1993-02-01T23:59:59.000Z

    Present GT(Gas Turbine) Systems are available to achieve 52% (LHV) thermal efficiencies, plants in construction will be capable of 54%, and the goal of this study is to identify incentives, technical issues, and resource requirements to develop natural gas-and coal-compatible ATS which would have a goal of 60% or greater based on LHV. The prime objective of this project task is to select a natural gas-fired ATS (Advanced Turbine System) that could be manufactured and marketed should development costs not be at issue with the goals of: (1) Coal of electricity 10% below 1991 vintage power plants in same market class and size. (2) Expected performance 60% efficiency and higher, (3) Emission levels, NO{sub x} < 10 ppM (0.15 lb/MW-h), CO < 20 ppM (0.30 lb/MW-h), and UHC < 20 ppM (0.30 lb/MW-h). ABB screening studies have identified the gas-fueled combined cycle as the most promising full scale solution to achieve the set goals for 1988--2002. This conclusion is based on ABB`s experience level, as well as the multi-step potential of the combined cycle process to improve in many component without introducing radical changes that might increase costs and lower RAM. The technical approach to achieve 60% or better thermal efficiency will include increased turbine inlet temperatures, compressor intercooling, as well a improvements in material, turbine cooling technology and the steam turbine. Use of improved component efficiencies will achieve gas-fired cycle performance of 61.78%. Conversion to coal-firing will result in system performance of 52.17%.

  13. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04T23:59:59.000Z

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  14. Improving Rendering Performance by Texture-Map-Based Triangle Strips Yu Yang, Tulika Mitra and Huang Zhiyong

    E-Print Network [OSTI]

    Huang, Zhiyong

    Improving Rendering Performance by Texture-Map-Based Triangle Strips Yu Yang, Tulika Mitra, Singapore 117543) Abstract Improving the rendering performance is a basic problem for computer graphics system. In this paper, we are aiming to investigate the impact on the rendering performance of some

  15. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26T23:59:59.000Z

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  16. Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

    SciTech Connect (OSTI)

    Muth, T. R.; Mayer, R. (Queen City Forging)

    2012-05-04T23:59:59.000Z

    Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.

  17. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    2000-01-01T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  18. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    1999-07-20T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  19. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20T23:59:59.000Z

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  20. Integrated approach towards the Application of Horizontal Wells to Improve Waterflooding Performance. Annual report

    SciTech Connect (OSTI)

    Kelkar, M.; Liner, C.; Kerr, D.

    1994-06-01T23:59:59.000Z

    This annual report describes the progress during the first year of the project on Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance. This project is funded under the Department of Energy`s Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvial-dominated deltaic deposits. The project involves an integrated approach to characterize the reservoir followed by drilling of horizontal injection wells to improve production performance. The type of data the authors intend to integrate includes cross bore hole seismic surveys, geological interpretation based on logs and cores, and engineering information. This report covers the first phase of the project which includes a detailed reservoir description of the field based on the available information, followed by flow simulation of the Self Unit to compare the simulated result with the historical performance. Based on the simulated results, a vertical test well was drilled to validate this reservoir description. The well will also be used as a source well for a cross bore hole seismic survey. This report discusses the related geophysical, geological and engineering activities leading to the drilling of the vertical test well. The validation phase and the collection of the cross bore hole survey has just begun, and the results will be presented in the next annual report.

  1. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01T23:59:59.000Z

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of recuperation, the use of turbine reheat, and the non-consumptive use of EGS make-up water to supplement heat rejection

  2. Understanding Trends in Wind Turbine Prices Over the Past Decade

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2011-10-26T23:59:59.000Z

    Taking a bottom-up approach, this report examines seven primary drivers of wind turbine prices in the United States, with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010 (our analysis does not extend into 2011 because several of these drivers are best gauged on a full-year basis due to seasonality issues). The first four of these drivers can be considered, at least to some degree, endogenous influences – i.e., those that are largely within the control of the wind industry – and include changes in: 1) Labor costs, which have historically risen during times of tight turbine supply; 2) Warranty provisions, which reflect technology performance and reliability, and are most often capitalized in turbine prices; 3) Turbine manufacturer profitability, which can impact turbine prices independently of costs; and 4) Turbine design, which for the purpose of this analysis is principally manifested through increased turbine size. The other three drivers analyzed in this study can be considered exogenous influences, in that they can impact wind turbine costs but fall mostly outside of the direct control of the wind industry. These exogenous drivers include changes in: 5) Raw materials prices, which affect the cost of inputs to the manufacturing process; 6) Energy prices, which impact the cost of manufacturing and transporting turbines; and 7) Foreign exchange rates, which can impact the dollar amount paid for turbines and components imported into the United States.

  3. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; van Dam, J.

    2010-11-01T23:59:59.000Z

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  4. Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance

    SciTech Connect (OSTI)

    Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

    2012-04-30T23:59:59.000Z

    This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are also proposed.

  5. Improvement of speed control performance using PID type neurocontroller in an electric vehicle system

    SciTech Connect (OSTI)

    Matsumura, S.; Omatu, S.; Higasa, H. [Shikoku Research Inst. Inc., Takamatsu (Japan)

    1994-12-31T23:59:59.000Z

    In order to develop an efficient driving system for electric vehicle (EV), a testing system using motors has been built to simulate the driving performance of EVs. In the testing system, the PID (Proportional Integral Derivative) controller is used to control rotating speed of motor when the EV drives. In this paper, in order to improve the performance of speed control, a neural network is applied to tuning parameters of PID controller. It is shown, through experiments that a neural network can reduce output error effectively while the PID controller parameters are being tuned online. 6 refs.

  6. Development and Testing of A Low Cost Linear Slot Impulse Turbine

    E-Print Network [OSTI]

    Brennison, Michael Thomas

    2010-09-01T23:59:59.000Z

    In this thesis, an impulse turbine with geometric characteristics aimed to have significantly lower manufacturing costs than other turbines of the similar scale was investigated. Experiments were performed to ascertain ...

  7. Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance

    SciTech Connect (OSTI)

    Kelkar, M.; Kerr, D.

    1999-04-17T23:59:59.000Z

    This report is funded under the Department of Energy's Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially dominated deltaic geological environments. The project involves using an integrated approach to characterize the reservoir followed by proposing an approach reservoir management strategy to improve the field performance. In the first stage of the project, the type of data integrated includes cross bore hole seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In contrast, during the second stage of the project, it was intended to use only conventional data to construct the reservoir description. This report covers the results of the implementation from the first state of the project. It also discusses the work accomplished so far to the second stage of the project . The production from the Shelf Unit (location of Stage I) has sustained a significant increase over more than three years.

  8. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-12-08T23:59:59.000Z

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more representative of blade-strike probability than the steady solution is, mainly because DEM particles accounted for the full fish length, thus resolving (instead of modeling) the collision event.

  9. Improving the Performance of a Two-Shell Column with Advanced Control

    E-Print Network [OSTI]

    Morrison, T. A.; Laflamme, D.

    IMPROVING THE PERFORMANCE OF A TWO-SHELL COLUMN WITH ADVANCED CONTROL TIMOTHY A. MORRISON SENIOR PROJECT ENGINEER SETPOINT Inc. Houston, Texas ABSTRACT Application of advanced control techniques to a two-shell, two- pressure distillation... column has yielded stable operation with reduced utility consumption and increased capacity. Prior to the application of advanced controls this column was a plant capacity limit and composition control was very difficult. The advanced controls now...

  10. Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly the Industrial Technologies Program. AMO undertook this project as a series of sourcebook publications. Other topics in this series include: compressed air systems, pumping systems, fan systems, process heating and motor and drive systems. For more information about program resources, see AMO in the Where to Find Help section of this publication.

  11. Labs21: Improving the Environmental Performance of U.S. Laboratories

    E-Print Network [OSTI]

    Mathew, P.

    Labs21: Improving the Environmental Performance of U.S. Laboratories Paul Mathew Staff Scientist Lawrence Berkeley National Laboratory Washington, DC ABSTRACT The Laboratories for the 21 sl Century (Labs21) program is a voluntary partnership... studies, design guides, and benchmarking tools. Several of these tools build upon the Design Guide for Energy-EffiCient Research Laboratories, developed by the Lawrence Berkeley National Laboratory. In addition, Labs21 has developed the Environmental...

  12. Does DOF Separation on Elastic Devices Improve User 3D Steering Task Performance?

    E-Print Network [OSTI]

    Casiez, Géry

    Does DOF Separation on Elastic Devices Improve User 3D Steering Task Performance? G´ery CasiezHaptic in a 3D steering task. Unlike other devices intended to interact in 3D with one end-effector, the Digi the manipulation of a stylus or thimble, and the SpaceMouse [2] is an elastic device to rate control objects in 3D

  13. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17T23:59:59.000Z

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

  14. Improving Memory Subsystem Performance Using ViVA: Virtual Vector Architecture

    SciTech Connect (OSTI)

    Gebis, Joseph; Oliker, Leonid; Shalf, John; Williams, Samuel; Yelick, Katherine

    2009-01-12T23:59:59.000Z

    The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changes to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.

  15. Integrated approach towards the application of horizontal wells to improve waterflooding performance. 1995 annual report

    SciTech Connect (OSTI)

    Kelkar, M.; Liner, C.; Kerr, D.

    1996-06-01T23:59:59.000Z

    This annual report describes the progress during the third year of the project on Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance. This project is funded under the Department of Energy`s Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially dominated deltaic geological environments. The project involves using an integrated approach to characterize the reservoir followed by proposing an appropriate reservoir management strategy to improve the field performance. In the first stage of the project, the type of data we integrated include cross borehole seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In contrast, during the second stage of the project, we intend to use only conventional data to construct the reservoir description. This report covers the results of the implementation from the first stage of the project. It also discusses the work accomplished so far for the second stage of the project. The preliminary results look promising from the field implementation. The production from the Self Unit (location of Stage I) has increased by 35 bbls/day with additional increase anticipated with further implementation. Based on our understanding of the first stage, we hope to examine a greater area of the Glenn Pool field for additional increase in production. We have collected available core and log data and have finished the initial geological description. Although not a direct part of this project, we also have initiated a 3-D seismic survey of the area which should help us in improving the reservoir description.

  16. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01T23:59:59.000Z

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  17. Vertical axis wind turbine control strategy

    SciTech Connect (OSTI)

    McNerney, G.M.

    1981-08-01T23:59:59.000Z

    Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

  18. 24 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 16, NO. 1, FEBRUARY 2008 Cortical Neural Prosthesis Performance Improves

    E-Print Network [OSTI]

    Yu, Byron

    2008 Cortical Neural Prosthesis Performance Improves When Eye Position Is Monitored Aaron P. Batista that can improve prosthesis performance is to ac- count for the direction of gaze in the operation of the prosthesis. This proposal stems from recent discoveries that the direction of gaze influences neural activity

  19. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  20. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  1. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  2. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    SciTech Connect (OSTI)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19T23:59:59.000Z

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

  4. Surface Treatments for Improved Performance of Spinel-coated AISI 441 Ferritic Stainless Steel

    SciTech Connect (OSTI)

    Stevenson, Jeffry W.; Riel, Eric M.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2013-01-01T23:59:59.000Z

    Ferritic stainless steels are promising candidates for IT-SOFC interconnect applications due to their low cost and resistance to oxidation at SOFC operating temperatures. However, steel candidates face several challenges; including long term oxidation under interconnect exposure conditions, which can lead to increased electrical resistance, surface instability, and poisoning of cathodes due to volatilization of Cr. To potentially extend interconnect lifetime and improve performance, a variety of surface treatments were performed on AISI 441 ferritic stainless steel coupons prior to application of a protective spinel coating. The coated coupons were then subjected to oxidation testing at 800 and 850°C in air, and electrical testing at 800°C in air. While all of the surface-treatments resulted in improved surface stability (i.e., increased spallation resistance) compared to untreated AISI 441, the greatest degree of improvement (through 20,000 hours of testing at 800°C and 14,000 hours of testing at 850°C) was achieved by surface blasting.

  5. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Mandell, John [Montana State University; Agastra, Pancasatya [Montana State University

    2011-11-01T23:59:59.000Z

    To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

  6. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30T23:59:59.000Z

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  7. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  8. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  9. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

    1982-01-01T23:59:59.000Z

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  10. Recent Updates to NRC Fuel Performance Codes and Plans for Future Improvements

    SciTech Connect (OSTI)

    Geelhood, Kenneth J.

    2011-12-31T23:59:59.000Z

    FRAPCON-3.4a and FRAPTRAN 1.4 are the most recent versions of the U.S. Nuclear Regulatory Commission (NRC) steady-state and transient fuel performance codes, respectively. These codes have been assessed against separate effects data and integral assessment data and have been determined to provide a best estimate calculation of fuel performance. Recent updates included in FRAPCON-3.4a include updated material properties models, models for new fuel and cladding types, cladding finite element analysis capability, and capability to perform uncertainty analyses and calculate upper tolerance limits for important outputs. Recent updates included in FRAPTRAN 1.4 include: material properties models that are consistent with FRAPCON-3.4a, cladding failure models that are applicable for loss-of coolant-accident and reactivity initiated accident modeling, and updated heat transfer models. This paper briefly describes these code updates and data assessments, highlighting the particularly important improvements and data assessments. This paper also discusses areas of improvements that will be addressed in upcoming code versions.

  11. Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint

    SciTech Connect (OSTI)

    Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

    2014-10-01T23:59:59.000Z

    Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

  12. Self-excited induction generator for variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Gregory, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Broad, D. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering] [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering

    1996-10-01T23:59:59.000Z

    When an induction generator is connected to a utility bus, the voltage and frequency at the terminal of the generator are the same as the voltage and frequency of the utility. The reactive power needed by the induction generator is supplied by the utility and the real power is returned to the utility. The rotor speed varies within a very limited range, and the reactive power requirement must be transported through a long line feeder, thus creating additional transmission losses. The energy captured by a wind turbine can be increased if the rotor speed can be adjusted to follow wind speed variations. For small applications such as battery charging or water pumping, a stand alone operation can be implemented without the need to maintain the output frequency output of the generator. A self- excited induction generator is a good candidate for a stand alone operation where the wind turbine is operated at variable speed. Thus the performance of the wind turbine can be unproved. In this paper, we examine a self-excited induction generator operated in a stand alone mode. A potential application for battery charging is given. The output power of the generator will be controlled to improve the performance of the wind turbine.

  13. Evaluation of the Gas Turbine Modular Helium Reactor

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Recent advances in gas-turbine and heat exchanger technology have enhanced the potential for a Modular Helium Reactor (MHR) incorporating a direct gas turbine (Brayton) cycle for power conversion. The resulting Gas Turbine Modular Helium Reactor (GT-MHR) power plant combines the high temperature capabilities of the MHR with the efficiency and reliability of modern gas turbines. While the passive safety features of the steam cycle MHR (SC-MHR) are retained, generation efficiencies are projected to be in the range of 48% and steam power conversion systems, with their attendant complexities, are eliminated. Power costs are projected to be reduced by about 20%, relative to the SC-MHR or coal. This report documents the second, and final, phase of a two-part evaluation that concluded with a unanimous recommendation that the direct cycle (DC) variant of the GT-MHR be established as the commercial objective of the US Gas-Cooled Reactor Program. This recommendation has been endorsed by industrial and utility participants and accepted by the US Department of Energy (DOE). The Phase II effort, documented herein, concluded that the DC GT-MHR offers substantial technical and economic advantages over both the IDC and SC systems. Both the DC and IDC were found to offer safety advantages, relative to the SC, due to elimination of the potential for water ingress during power operations. This is the dominant consequence event for the SC. The IDC was judged to require somewhat less development than the direct cycle, while the SC, which has the greatest technology base, incurs the least development cost and risk. While the technical and licensing requirements for the DC were more demanding, they were judged to be incremental and feasible. Moreover, the DC offers significant performance and cost improvements over the other two concepts. Overall, the latter were found to justify the additional development needs.

  14. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    SciTech Connect (OSTI)

    BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

    2011-07-01T23:59:59.000Z

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82�ºC (180�ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  15. System and method for improving performance of a fluid sensor for an internal combustion engine

    DOE Patents [OSTI]

    Kubinski, David (Canton, MI); Zawacki, Garry (Livonia, MI)

    2009-03-03T23:59:59.000Z

    A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

  16. The future of gas turbine compliance monitoring: The integration of PEMS and CEMS for regulatory compliance

    SciTech Connect (OSTI)

    Macak, J.J. III

    1999-07-01T23:59:59.000Z

    When the New Source Performance Standards (NSPS) for Stationary Gas Turbines were first promulgated in 1979 (40 CFR 60, Subpart GG), continuous compliance monitoring for gas turbines was simply a parametric monitoring approach where a unit was tested at four load conditions. For those units where water or steam injection was used for NO{sub x} control, testing consisted of establishing a water (or steam injection) versus fuel flow curve to achieve permitted NO{sub x} emission levels across the load range. Since 1979, the growth in gas turbine popularity has encouraged the development of Predictive Emissions Monitoring Systems (PEMS) where gas turbine operating parameters and ambient conditions are fed into a prediction algorithm to predict, rather than monitor, emissions. However, permitting requirements and technological advances now have gas turbines emitting NO{sub x} in the single digits while the overall combined-cycle thermal efficiency has improved dramatically. The combination of supplemental duct-firing in heat recovery steam generators, pollution prevention technology, post-combustion emission controls, and EPA Continuous Emissions Monitoring System (CEMS) regulations for the power industry, resulted in a shift towards CEMS due to the complexity of the overall process. Yet, CEMS are often considered to be a maintenance nightmare with significant amounts of downtime. CEMS and PEMS have their own advantages and disadvantages. Thus evolved the need to find the optimum balance between CEMS and PEMS for gas turbine projects. To justify the cost of both PEMS and CEMS in the same installation, there must be an economic incentive to do so. This paper presents the application of a PEMS/CEMS monitoring system that integrates both PEMS and CEMS in order to meet, and exceed, all emissions monitoring requirements.

  17. Improving Secure Server Performance by Re-balancing SSL/TLS Claude Castelluccia, Einar Mykletun, Gene Tsudik

    E-Print Network [OSTI]

    Improving Secure Server Performance by Re-balancing SSL/TLS Handshakes Claude Castelluccia, Einar of each SSL handshake. Since most SSL-enabled servers use RSA, the burden of performing many costly to perform commensurately less work, thus resulting in better SSL throughput. Proposed tech- niques are based

  18. Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey

    E-Print Network [OSTI]

    Camci, Cengiz

    for turbine aero heat transfer work performed under rotational conditions. A flow coefficient and a loading candidates to generate very realistic gas turbine heat transfer data, the initial investment made generate an accurately measurable amount of heat transfer from the gas side to turbine blades in a linear

  19. Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept

    E-Print Network [OSTI]

    Ray, Asok

    307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

  20. High-Order Sliding Mode Control for DFIG-Based Wind Turbine Fault Ride-Through

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    High-Order Sliding Mode Control for DFIG-Based Wind Turbine Fault Ride-Through Mohamed Benbouzid Turbine (WT) using High-Order Sliding Mode (HOSM) control. Indeed, it has been recently suggested wind turbine are carried-out to evaluate ride-through performance of the proposed HOSM control strategy

  1. Market penetration of wind turbine concepts over the years Anca D. Hansen1

    E-Print Network [OSTI]

    Market penetration of wind turbine concepts over the years Anca D. Hansen1 , Lars H. Hansen2 1 Risø wind turbine concepts over the years (1995-2005). A detailed overview is performed based on suppliers market data and concept evaluation for each individual wind turbine type sold by the suppliers

  2. On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications

    E-Print Network [OSTI]

    Manuel, Lance

    On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications Korn, Austin, TX 78712 In stochastic simulation of inflow turbulence random fields for wind turbine applica models can be in turn highly variable. Turbine load and performance variability could as well result

  3. A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties

    E-Print Network [OSTI]

    Yu, Wenbin

    A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties Hui assess several computer tools for calculating the inertial and structural properties of wind turbine, and a realistic composite wind turbine blade are used to evaluate the performance of different tools

  4. A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring

    E-Print Network [OSTI]

    Stanford University

    1 A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural of wind turbines and reducing the life-cycle costs significantly. This paper presents a life-cycle management (LCM) framework for online monitoring and performance assessment of wind turbines, enabling

  5. DATA NORMALIZATION FOR FOUNDATION SHM OF AN OFFSHORE WIND TURBINE : A REAL-LIFE CASE STUDY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DATA NORMALIZATION FOR FOUNDATION SHM OF AN OFFSHORE WIND TURBINE : A REAL-LIFE CASE STUDY Wout the first results in the development of a SHM approach for the foun- dations of an offshore wind turbine the performance of the presented approach. KEYWORDS : Foundation Monitoring, Offshore Wind Turbine, Operational

  6. Proceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference

    E-Print Network [OSTI]

    Liu, Feng

    of design parameters. Three design cases are performed with a low-aspect-ratio steam turbine blade testedProceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference June 14-18, 2010 (Switzerland) Baden, Switzerland ABSTRACT For low-aspect-ratio turbine blades secondary loss reduc- tion

  7. Development of a Rig and Testing Procedures for the Experimental Investigation of Horizontal Axis Kinetic Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Kinetic Turbines by Catalina Lartiga B.Sc., Catholic University of Chile, 2001 A Thesis Submitted Turbines by Catalina Lartiga B.Sc., Catholic University of Chile, 2001 Supervisory Committee Dr. Curran system to characterize the non-dimensional performance coefficients of hor- izontal axis kinetic turbines

  8. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A. (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  9. Turbine disc sealing assembly

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2013-03-05T23:59:59.000Z

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  10. Gas turbine diagnostic system

    E-Print Network [OSTI]

    Talgat, Shuvatov

    2011-01-01T23:59:59.000Z

    In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

  11. High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles 

    E-Print Network [OSTI]

    King, J.

    1988-01-01T23:59:59.000Z

    Cogeneration project feasibility sometimes fails during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees...

  12. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect (OSTI)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01T23:59:59.000Z

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  13. Improving thermosyphon solar domestic hot water system model performance. Final report, March 1994--February 1995

    SciTech Connect (OSTI)

    Swift, T.N.

    1996-09-01T23:59:59.000Z

    Data from an indoor solar simulator experimental performance test is used to develop a systematic calibration procedure for a computer model of a thermosyphoning, solar domestic hot water heating system with a tank-in-tank heat exchanger. Calibration is performed using an indoor test with a simulated solar collector to adjust heat transfer in the heat exchanger and heat transfer between adjacent layers of water in the storage tank. An outdoor test is used to calibrate the calculation of the friction drop in the closed collector loop. Additional indoor data with forced flow in the annulus of the heat exchanger leads to improved heat transfer correlations for the inside and outside regions of the tank-in-tank heat exchanger. The calibrated simulation model is compared to several additional outdoor tests both with and without auxiliary heating. Integrated draw energies are predicted with greater accuracy and draw temperature profiles match experimental results to a better degree. Auxiliary energy input predictions improve significantly. 63 figs., 29 tabs.

  14. Improving the dynamic performance of a complex AC/DC system by HVDC control modifications

    SciTech Connect (OSTI)

    Hammad, A.E. (ABB Power Systems, Baden (CH)); Gagnon, J. (Hydro Quebec, Montreal (CA)); McCallum, D. (IREQ, Montreal (CA))

    1990-10-01T23:59:59.000Z

    The power system of Hydro-Quebec has a peak load of approximately 27 GW. The great distance between the production sites and the load centers introduces stability limitations, which is the reason why the Quebec grid cannot be economically synchronized (through ac transmission with limited capacity) with the U.S. northeastern network. Power exports are therefore dependent on the use of HVDC links of which Hydro-Quebec now possesses five, for a capacity of over 2600 MW. Such a capacity will again soon increase. At the moment, the Chateauguay scheme has the largest HVDC capacity. It transfers 1000 MW by means of two Back-to-Back converter blocks. Various automatic control systems are installed on the Chateauguay scheme owing to the fact that a single circuit of a 765 kV ac line transmits the output of both the HVDC converter stations as well as the output from Beauharnois hydro generating station. Such controls have performed satisfactorily since 1984. However, a remarkable improvement of the overall ac/dc system dynamic performance can be gained by making certain modifications in some of these HVDC system controls. This paper presents the salient features of such control modifications, currently under consideration, using the results of an investigation by digital and analogue simulations that demonstrate the achieved improvements.

  15. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-12-17T23:59:59.000Z

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  16. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

    1996-01-01T23:59:59.000Z

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  17. Ceramic Cerami Turbine Nozzle

    DOE Patents [OSTI]

    Boyd, Gary L. (Alpine, CA)

    1997-04-01T23:59:59.000Z

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  18. Modeling the Energy Output from an In-Stream Tidal Turbine Farm

    E-Print Network [OSTI]

    Ye Li; Barbara J. Lence; Sander M. Calisal

    Abstract—This paper is based on a recent paper presented in the 2007 IEEE SMC conference by the same authors [1], discussing an approach to predicting energy output from an instream tidal turbine farm. An in-stream tidal turbine is a device for harnessing energy from tidal currents in channels, and functions in a manner similar to a wind turbine. A group of such turbines distributed in a site is called an in-stream tidal turbine farm which is similar to a wind farm. Approaches to estimating energy output from wind farms cannot be fully transferred to study tidal farms, however, because of the complexities involved in modeling turbines underwater. In this paper, we intend to develop an approach for predicting energy output of an in-stream tidal turbine farm. The mathematical formulation and basic procedure for predicting power output of a stand-alone turbine 1 is presented, which includes several highly nonlinear terms. In order to facilitate the computation and utilize the formulation for predicting power output from a turbine farm, a simplified relationship between turbine distribution and turbine farm energy output is derived. A case study is then conducted by applying the numerical procedure to predict the energy output of the farms. Various scenarios are implemented according to the environmental conditions in Seymour Narrows, British Columbia, Canada. Additionally, energy cost results are presented as an extension. Index Terms—renewable energy, in-stream turbine, tidal current, tidal power, vertical axis turbine, farm system modeling, in-stream tidal turbine farm 1 A stand-alone turbine refers to a turbine around which there is no other turbine that might potentially affect the performance of this turbine.

  19. Cooled snubber structure for turbine blades

    DOE Patents [OSTI]

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01T23:59:59.000Z

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  20. Wind Turbine Blockset General Overview

    E-Print Network [OSTI]

    Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

  1. Micro-combustor for gas turbine engine

    DOE Patents [OSTI]

    Martin, Scott M. (Oviedo, FL)

    2010-11-30T23:59:59.000Z

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  2. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1982-08-01T23:59:59.000Z

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  3. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1983-03-01T23:59:59.000Z

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  4. Duration Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2013-01-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  5. Safety and Function Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2013-01-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Safety and Function testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, duration, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  6. Duration Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2013-06-01T23:59:59.000Z

    This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

  7. Improvement of the Performance for an Absorption Refrigeration System with Lithium bromide-water as Refrigerant by Increasing Absorption Pressure

    E-Print Network [OSTI]

    Xie, G.; Sheng, G.; Li, G.; Pan, S.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-10-4 Improvement of the Performance for an Absorption Refrigerating System with Lithium bromide-water as Refrigerant by Increasing Absorption... in order to lay a theoretical foundation of improving the performance of whole LBAC. 2. THE PRINCIPLE OF ENHANCING ABSORPTION EFFICIENCY OF THE ABSORBER It is well known that the absorption of ICEBO2006, Shenzhen, China HVAC...

  8. Decision-Making Aid Tool for the Evaluation and Improvement of the Energy Performance of Stock of Buildings 

    E-Print Network [OSTI]

    Joutey, H. A.; Vaezi-Nejad, H.; Lahrech, R.

    2005-01-01T23:59:59.000Z

    the most adapted one to develop each functionality of the decision- making aid tool for the evaluation and improvement of the energy performance of stock of buildings. Existing methods The Table 1 [1] & [4] shows a brief comparison between... the development of a tool. This tool is intended for building professionals, particularly managers, to help them manage their building stock and improve energy performance. Several studies based on simulation and benchmarking methods have been carried out...

  9. Fuel-performance-improvement program. Semiannual progress report, October 1980-March 1981. [Sphere-pac and annular-coated-pressurized

    SciTech Connect (OSTI)

    Crouthamel, C E; Freshley, M D

    1981-04-01T23:59:59.000Z

    Progress on the Fuel Performance Improvement Program's fuel test and demonstration irradiations is reported for the period of October 1980-March 1981. The purpose of the program is to test and demonstrate improved light water reactor fuel concepts that are more resistant to failure from pellet-cladding interaction during power increases than standard pellet fuel. This would also offer extended burnup potential and, hence, improved uranium utilization.

  10. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  11. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01T23:59:59.000Z

    R. Krutenat, Gas Turbine Materials Conference Proceedings,Conference on Gas Turbine Materials in a Marine Environment,in developing new turbine materials, coatings and processes,

  12. Continuous Improvement of H-Mode Discharge Performance with Progressively Increasing Lithium Coatings in the National Spherical Torus Experiment

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    -wall interactions. Recently, there is growing use of lithium coatings, in particular, to control edge recyclingContinuous Improvement of H-Mode Discharge Performance with Progressively Increasing Lithium September 2011) Lithium wall coatings have been shown to reduce recycling, improve energy confinement

  13. Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K McLaren S Ziada

    E-Print Network [OSTI]

    Tullis, Stephen

    Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K wind turbines in the urban environment: Current Research at McMaster University Nominal performance #12;Horizontal axis small wind turbines Numerous suppliers of turbines for tower/field installation

  14. Qtier-Rapor: Managing Spreadsheet Systems & Improving Corporate Performance, Compliance and Governance

    E-Print Network [OSTI]

    Bishop, Keith

    2008-01-01T23:59:59.000Z

    Much of what EuSpRIG discusses is concerned with the integrity of individual spreadsheets. In businesses, interlocking spreadsheets are regularly used to fill functional gaps in core administrative systems. The growth and deployment of such integrated spreadsheet SYSTEMS raises the scale of issues to a whole new level. The correct management of spreadsheet systems is necessary to ensure that the business achieves its goals of improved performance and good corporate governance, within the constraints of legislative compliance - poor management will deliver the opposite. This paper is an anatomy of the real-life issues of the commercial use of spreadsheets in business, and demonstrates how Qtier-Rapor has been used to instil best practice in the use of integrated commercial spreadsheet systems.

  15. Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.

    SciTech Connect (OSTI)

    Kim, Y S; Hofman, G L [Nuclear Engineering Division

    2011-06-01T23:59:59.000Z

    The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

  16. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2008-08-31T23:59:59.000Z

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  17. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

  18. Wind Turbine Micropitting Workshop: A Recap

    SciTech Connect (OSTI)

    Sheng, S.

    2010-02-01T23:59:59.000Z

    Micropitting is a Hertzian fatigue phenomenon that affects many wind turbine gearboxes, and it affects the reliability of the machines. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The U.S. Department of Energy has made a commitment to improving wind turbine reliability and the National Renewable Energy Laboratory (NREL) has started a gearbox reliability project. Micropitting as an issue that needed attention came to light through this effort. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of the issue by acknowledged experts, NREL hosted a wind turbine micropitting workshop, which was held at the National Wind Technology Center in Boulder, Colorado, on April 15 and 16, 2009.

  19. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect (OSTI)

    Ferguson, D.H.

    2007-10-01T23:59:59.000Z

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  20. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01T23:59:59.000Z

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  1. Composite turbine bucket assembly

    DOE Patents [OSTI]

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20T23:59:59.000Z

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  2. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25T23:59:59.000Z

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  3. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

    1997-07-08T23:59:59.000Z

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  4. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08T23:59:59.000Z

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  5. Fish schooling as a basis for vertical axis wind turbine farm design

    E-Print Network [OSTI]

    Whittlesey, Robert W; Dabiri, John O

    2010-01-01T23:59:59.000Z

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

  6. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  7. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-01-01T23:59:59.000Z

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOE’s role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

  8. Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan

    SciTech Connect (OSTI)

    Robert Youngblood

    2011-02-01T23:59:59.000Z

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOE’s role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

  9. Airfoil Heat Transfer Characteristics in Syngas and Hydrogen Turbines

    SciTech Connect (OSTI)

    Mazzotta, D.W. (Univ. of Pittsburgh); Chyu, M.K. (Univ. of Pittsburgh); Alvin, M.A.

    2007-05-01T23:59:59.000Z

    Hydrogen or coal-derivative syngas turbines promise increased efficiency with exceptionally low NOx emissions compared to the natural gas based turbines. To reach this goal, turbine inlet temperature (TIT) will need to be elevated to a level exceeding 1700°C [1, 2]. The thermal load induced by such a temperature increase alone will lead to immense challenges in maintaining material integrity of turbine components. In addition, as working fluid in the gas path will primarily be steam, possibly mixed with carbon oxides, the aero-thermal characteristic in a hydrogen turbine is expected to be far different from that of air/nitrogen enriched gas stream in a gas turbine. For instance, steam has distinctly higher density and specific heat in comparison to a mixture of air and combustion gases as they are expanded in a conventional gas turbine. Even if the temperature limits remain about the same, the expansion in a hydrogen turbine will have to proceed with a greater enthalpy drop and therefore requires a larger number of stages. This also implies that the flow areas may need to be expanded and blade span to be enlarged. Meanwhile, a greater number of stages and hot surfaces need to be protected. This also suggests that current cooling technology available for modern day gas turbines has to be significantly improved. The ultimate goal of the present study is to systematically investigate critical issues concerning cooling technology as it is applicable to oxy-fuel and hydrogen turbine systems, and the main scope is to develop viable means to estimate the thermal load on the turbine “gas side”, that is eventually to be removed from the “coolant side”, and to comparatively quantify the implication of external heat load and potential thermal barrier coating (TBC) degradation on the component durability and lifing. The analysis is based on two well-tested commercial codes, FLUENT and ANSYS.

  10. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12T23:59:59.000Z

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.

  11. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost

    SciTech Connect (OSTI)

    Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

    2013-01-10T23:59:59.000Z

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. A robust suite of relatively inexpensive tools is commercially available to measure these variables. Traditional plume/contaminant variables are various measures of contaminant concentration including traditional analysis of chemicals in groundwater samples. An innovative long term monitoring strategy has been developed for acidic or caustic groundwater plumes contaminated with metals and/or radionuclides. Not only should the proposed strategy be more effective at early identification of potential risks, this strategy should be significantly more cost effective because measurement of controlling boundary conditions and master variables is relatively simple. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate significant cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.

  12. Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from to produce electricity from fuels. To speed the search for why fuel cell performance decreases over time fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

  13. Gas Turbine Emissions 

    E-Print Network [OSTI]

    Frederick, J. D.

    1990-01-01T23:59:59.000Z

    of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies...

  14. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1996-01-30T23:59:59.000Z

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  15. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  16. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

    1996-01-30T23:59:59.000Z

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  17. Development of a measurement system able to determine the ow velocity eld on models of hydraulic turbines

    E-Print Network [OSTI]

    Diggavi, Suhas

    . Antoine Bombenger Probing strategy in a Kaplan Turbine Such a probe typically has a spherical head with 5 turbines Christian Landry Motivations & Objectives The project was driven by the need to improve the measurement of velocity elds and pressures in a hydraulic turbine. The development of a new probing system

  18. Quantifying the Improvements in Rapid Prototyping and Product Life Cycle Performance Created by Machining

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    improve manufacturing. Keywords: Machining, Laser ablation,manufacturing technology. The first project compared micromilling to laser

  19. New Siemens Research Turbine - time lapse

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and Siemens Energy Inc. recently commissioned a new 2.3 megawatt Siemens wind turbine at NREL's National Wind Technology Center. This video shows a time lapse of the installation. The turbine is the centerpiece of a multi-year project to study the performance and aerodynamics of a new class of large, land-based machines — in what will be the biggest government-industry research partnership for wind power generation ever undertaken in the U.S.

  20. DWEA Webinar: IRS Guidance for Small Wind Turbines

    Broader source: Energy.gov [DOE]

    The U.S. Internal Revenue Service (IRS) has issued Notice 2015-4 providing new performance and quality standards of small wind turbines – defined as having a nameplate capacity of up to 100 kW – in...